JP4363997B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP4363997B2
JP4363997B2 JP2004018097A JP2004018097A JP4363997B2 JP 4363997 B2 JP4363997 B2 JP 4363997B2 JP 2004018097 A JP2004018097 A JP 2004018097A JP 2004018097 A JP2004018097 A JP 2004018097A JP 4363997 B2 JP4363997 B2 JP 4363997B2
Authority
JP
Japan
Prior art keywords
refrigerant
gas
compressor
evaporator
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004018097A
Other languages
Japanese (ja)
Other versions
JP2005214443A (en
Inventor
邦衛 関上
雅久 大竹
晃司 佐藤
洋 向山
一朗 上村
千明 式地
実 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004018097A priority Critical patent/JP4363997B2/en
Publication of JP2005214443A publication Critical patent/JP2005214443A/en
Application granted granted Critical
Publication of JP4363997B2 publication Critical patent/JP4363997B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • F25B31/008Cooling of compressor or motor by injecting a liquid

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、冷凍装置に関し、特に、超臨界冷凍サイクルで運転される冷凍装置における液戻り防止に関する。   The present invention relates to a refrigeration apparatus, and more particularly to prevention of liquid return in a refrigeration apparatus operated in a supercritical refrigeration cycle.

近年、オゾン層破壊の問題及び給湯装置における給湯の高温化ニーズへの対応のために、二酸化炭素などの超臨界冷凍サイクルで冷凍運転される自然冷媒が注目を浴びている。また、このような超臨界サイクル冷凍運転を行う冷凍装置として、特許文献1に記載されているものが知られている。   In recent years, natural refrigerants that are refrigerated in a supercritical refrigeration cycle, such as carbon dioxide, have attracted attention in order to meet the problem of ozone depletion and the need for high temperature hot water supply in hot water supply devices. Moreover, what is described in patent document 1 is known as a freezing apparatus which performs such supercritical cycle freezing operation.

この冷凍装置は、例えば特許文献1の第2図に示されているように、圧縮機、熱交換器(高圧ガス冷却器)、高圧ガス冷媒と低圧冷媒とを向流型に熱交換する向流型熱交換器の高圧側通路、絞り弁、蒸発器、前記向流型熱交換器の低圧側通路、液体レシーバを順次直列に接続して閉回路を構成した冷凍サイクル装置により、超臨界冷凍サイクルで運転するように構成されている。また、液体レシーバの液体部分が圧縮機の吸入配管及び向流型熱交換器の低圧側通路の入り口側に接続されている。そして、絞り弁の開度を変更することにより蒸発器出口の余剰液冷媒量を変化させて、液体レシーバに貯留される液体冷媒量を変化させている。つまり、この従来技術では、余剰冷媒を低圧側の液体レシーバに貯留するように構成している。しかし、この従来技術は、低圧側に余剰冷媒を液状で貯留するため、通常運転中液冷媒が圧縮機に戻り易いという欠点がある。また、除霜運転時も液体レシーバに液冷媒が溜まり易くなるため、圧縮機に液戻りし易いという問題がある。さらに、冬季等において長期間運転を休止していたとき、或いは除霜運転した後に通常の運転に切り換えるとき等の過渡期には、より一層液冷媒が戻り易いという欠点がある。   For example, as shown in FIG. 2 of Patent Document 1, this refrigeration apparatus is a compressor, a heat exchanger (high-pressure gas cooler), and a heat exchanger that exchanges heat between a high-pressure gas refrigerant and a low-pressure refrigerant in a countercurrent type. Supercritical refrigeration by a refrigeration cycle device in which a closed circuit is configured by sequentially connecting a high-pressure side passage of a flow-type heat exchanger, a throttle valve, an evaporator, a low-pressure side passage of the counter-flow heat exchanger, and a liquid receiver in series It is configured to operate in a cycle. The liquid portion of the liquid receiver is connected to the suction pipe of the compressor and the inlet side of the low-pressure side passage of the counterflow heat exchanger. Then, the amount of excess liquid refrigerant at the evaporator outlet is changed by changing the opening of the throttle valve, and the amount of liquid refrigerant stored in the liquid receiver is changed. In other words, this conventional technology is configured to store excess refrigerant in the low-pressure liquid receiver. However, this conventional technique has a drawback that liquid refrigerant is easily returned to the compressor during normal operation because excess refrigerant is stored in liquid form on the low pressure side. In addition, liquid refrigerant easily accumulates in the liquid receiver even during the defrosting operation, so that there is a problem that the liquid easily returns to the compressor. Furthermore, there is a disadvantage that the liquid refrigerant is more likely to return during a transition period such as when the operation is stopped for a long time in winter or when the operation is switched to the normal operation after the defrosting operation.

また、同特許文献1における第3図のものは、圧縮機、熱交換器(高圧ガス冷却器)、高圧ガス冷媒と低圧冷媒とを向流型に熱交換する向流型熱交換器の高圧側通路、開閉弁、レシーバ、絞り弁、蒸発器、向流型熱交換器の低圧側通路を順次直列に接続して閉回路を構成した冷凍サイクル装置により、超臨界冷凍サイクルで運転するように構成されている。そして、レシーバ入口側の開閉弁を遮断すると同時に絞り弁の開度調整を同時に行っている。つまり、レシーバ入口を閉鎖しているときのレシーバから流出する冷媒量を増減することにより、余剰冷媒をレシーバに貯留するように構成している。
しかしながら、この従来技術では、レシ−バ出口を開閉するため、レシーバへの冷媒の流れが断続し、高圧側の圧力変動が大きくなるため冷媒貯留量の制御が困難である。また、前記過渡期には圧縮機への液冷媒の戻りを防止する対策については何ら記載していない。
FIG. 3 in Patent Document 1 shows a high pressure of a compressor, a heat exchanger (high-pressure gas cooler), and a counter-current heat exchanger that exchanges heat between a high-pressure gas refrigerant and a low-pressure refrigerant in a counter-current type. Operate in a supercritical refrigeration cycle with a refrigeration cycle device that configures a closed circuit by sequentially connecting the low-pressure side passages of the side passage, on-off valve, receiver, throttle valve, evaporator, and counter-current heat exchanger in series. It is configured. Then, the opening / closing adjustment of the throttle valve is simultaneously performed while shutting off the opening / closing valve on the receiver inlet side. That is, the refrigerant is stored in the receiver by increasing or decreasing the amount of refrigerant flowing out from the receiver when the receiver inlet is closed.
However, in this prior art, since the receiver outlet is opened and closed, the flow of the refrigerant to the receiver is intermittent, and the pressure fluctuation on the high pressure side becomes large, so it is difficult to control the refrigerant storage amount. Further, there is no description about measures for preventing the return of the liquid refrigerant to the compressor during the transition period.

また、同特許文献1における第4図のものは、圧縮機、熱交換器(高圧ガス冷却器)、高圧ガス冷媒と低圧冷媒とを向流型に熱交換する向流型熱交換器の高圧側通路、絞り弁、蒸発器、向流型熱交換器の低圧側通路を順次直列に接続して閉回路を構成し、かつ、絞り弁と並列に開閉弁、レシーバ、開閉弁の直列回路を接続した冷凍サイクル装置により、超臨界冷凍サイクルで運転するように構成されている。そして、絞り弁の開度制御とレシーバ出入口の開閉弁を開閉して、レシーバに対する流入冷媒量又は流出冷媒量を増減し、余剰冷媒をレシーバに貯留するように構成している。
しかしながら、この従来技術では、レシ−バ出入口の開閉弁を開閉することによりレシーバ内の圧力が高圧から低圧まで急激に変化するため、冷媒貯留量の制御が困難である。また、前記過渡期には圧縮機への液冷媒の戻りを防止する対策については何ら記載していない。
特公平7−18602号公報
FIG. 4 in Patent Document 1 shows a high pressure of a compressor, a heat exchanger (high-pressure gas cooler), and a counter-current heat exchanger that exchanges heat between the high-pressure gas refrigerant and the low-pressure refrigerant in a counter-current type. Side circuit, throttle valve, evaporator, low-pressure side passage of counter-current heat exchanger are connected in series to form a closed circuit, and a series circuit of on-off valve, receiver, and on-off valve in parallel with the throttle valve It is configured to operate in a supercritical refrigeration cycle by a connected refrigeration cycle apparatus. Then, the throttle valve opening control and the opening / closing valve at the receiver inlet / outlet are opened / closed to increase / decrease the amount of refrigerant flowing into or out of the receiver, and the excess refrigerant is stored in the receiver.
However, in this prior art, the pressure in the receiver changes abruptly from a high pressure to a low pressure by opening and closing the opening / closing valve of the receiver inlet / outlet, so that it is difficult to control the refrigerant storage amount. Further, there is no description about measures for preventing the return of the liquid refrigerant to the compressor during the transition period.
Japanese Patent Publication No. 7-18602

従来の技術は、上述のように通常運転中及び除霜運転中に圧縮機へ液戻りし易く、さらに、冬季の長期運転休止後の運転開始時或いは除霜運転後の通常運転への切り換え時などの過渡期には、より一層圧縮機へ液戻りし易いという欠点があった。   As described above, the conventional technology is easy to return the liquid to the compressor during normal operation and defrosting operation, and at the start of operation after a long-term operation stop in winter or when switching to normal operation after defrosting operation. In the transition period, there was a drawback that the liquid was more easily returned to the compressor.

本発明は、このような従来技術の課題を解決するためになされたものであって、通常運転中、除霜運転中、冬季の長期運転休止後の運転開始時、或いは除霜運転後の通常運転への切り換え時に圧縮機に液戻りを起こすことなく冷凍サイクル内の冷媒量調節を調節可能にした冷凍装置を提供することを目的とする。   The present invention has been made in order to solve the above-described problems of the prior art. During normal operation, during defrosting operation, at the start of operation after a long-term operation stop in winter, or after defrosting operation An object of the present invention is to provide a refrigeration apparatus that can adjust the refrigerant amount adjustment in the refrigeration cycle without causing liquid return to the compressor when switching to operation.

本発明に係る冷凍装置は、回転数可変型圧縮機、高圧側ガス冷媒を冷却する高圧側冷却装置、第1絞り装置、冷凍サイクル内の冷媒量を調整するための中間レシーバ、第2絞り装置、外気を熱源とする蒸発器、気液分離器を順次直列に接続して閉回路を形成した冷凍サイクル装置を備え、この冷凍サイクル装置は、通常運転時には超臨界冷凍サイクルで運転されるものであって、圧縮機と第1絞り装置との間が高圧状態となり、第1絞り装置と第2絞り装置との間が中間圧状態となり、第2絞り装置と圧縮機との間が低圧状態となり、かつ、蒸発器出口の冷媒が過熱状態となるように第1絞り装置及び第2絞り装置の少なくとも一方が制御され、さらに、運転開始時圧縮機を所定条件の間低速で運転するように制御されると共に、この所定条件の間として、圧縮機の吐出圧力が、過渡的状態の運転が完了したことを検知できるように予め設定された所定圧力に上昇するまでの間を採用することを特徴とする。 A refrigerating apparatus according to the present invention includes a variable speed compressor, a high-pressure side cooling device that cools a high-pressure side gas refrigerant, a first throttling device, an intermediate receiver for adjusting the amount of refrigerant in the refrigeration cycle, and a second throttling device. , Equipped with a refrigeration cycle device in which a closed circuit is formed by serially connecting an evaporator using heat from the outside as a heat source and a gas-liquid separator, and this refrigeration cycle device is operated in a supercritical refrigeration cycle during normal operation. Thus, the compressor and the first throttle device are in a high pressure state, the first throttle device and the second throttle device are in an intermediate pressure state, and the second throttle device and the compressor are in a low pressure state. In addition, at least one of the first expansion device and the second expansion device is controlled so that the refrigerant at the outlet of the evaporator is overheated, and further, the compressor is controlled to operate at a low speed for a predetermined condition at the start of operation. And this prescribed article As between the discharge pressure of the compressor, characterized in adopting until rises to a preset predetermined pressure, as can be detected that the operation of the transient state is complete.

又、回転数可変型圧縮機、高圧側ガス冷媒を冷却する高圧側冷却装置、第1絞り装置、冷凍サイクル内の冷媒量を調整するための中間レシーバ、第2絞り装置、外気を熱源とする蒸発器、気液分離器を順次直列に接続して閉回路を形成した冷凍サイクル装置を備え、この冷凍サイクル装置は、通常運転時には超臨界冷凍サイクルで運転されるものであって、圧縮機と第1絞り装置との間が高圧状態となり、第1絞り装置と第2絞り装置との間が中間圧状態となり、第2絞り装置と圧縮機との間が低圧状態となり、かつ、蒸発器出口の冷媒が過熱状態となるように第1絞り装置及び第2絞り装置の少なくとも一方が制御され、さらに、運転開始時圧縮機を所定条件の間低速で運転するように制御されると共に、この冷凍サイクル装置は、前記所定条件の間として、圧縮機の吐出ガス温度が、過渡的状態の運転が完了したことを検知できるように予め設定された所定温度に上昇するまでの間を採用することを特徴とするIn addition, a variable speed compressor, a high-pressure side cooling device that cools the high-pressure side gas refrigerant, a first expansion device, an intermediate receiver for adjusting the amount of refrigerant in the refrigeration cycle, a second expansion device, and outside air as a heat source A refrigeration cycle apparatus having a closed circuit formed by sequentially connecting an evaporator and a gas-liquid separator in series, which is operated in a supercritical refrigeration cycle during normal operation, The first throttle device is in a high pressure state, the first throttle device and the second throttle device are in an intermediate pressure state, the second throttle device and the compressor are in a low pressure state, and the evaporator outlet At least one of the first throttling device and the second throttling device is controlled so that the refrigerant in the overheated state is further controlled, and the compressor at the start of operation is controlled to operate at a low speed for a predetermined condition. The cycle device As for conditions, the discharge gas temperature of the compressor, characterized in that it employs a until the rise to a predetermined temperature set in advance can be detected that the operation of the transient state is complete.

前記冷凍サイクル装置は、前記気液分離器が蒸発器の冷媒出口の上方に配置され、気液分離器で分離された液冷媒が蒸発器と気液分離器とをつなぐ配管を介して蒸発器へ重力で戻るように構成したものとしてもよい。   In the refrigeration cycle apparatus, the gas-liquid separator is disposed above the refrigerant outlet of the evaporator, and the liquid refrigerant separated by the gas-liquid separator is connected to the evaporator via a pipe connecting the evaporator and the gas-liquid separator. It may be configured to return to gravity.

前記冷凍サイクル装置は、前記気液分離器が外気と熱交換する熱交換器として作用するものとしてもよい。   The said refrigeration cycle apparatus is good also as what acts as a heat exchanger with which the said gas-liquid separator heat-exchanges with external air.

前記冷凍サイクル装置は、蒸発器と気液分離器とをつなぐ配管の断面積が圧縮機吸入配管の断面積より大きく構成されているものとしてもよい。   The refrigeration cycle apparatus may be configured such that the cross-sectional area of the pipe connecting the evaporator and the gas-liquid separator is larger than the cross-sectional area of the compressor suction pipe.

前記冷凍サイクル装置は、除霜運転を停止したときに一時的に圧縮機を停止させ、所定時間経過後に運転を再開するように制御されるものとしてもよい。   The refrigeration cycle apparatus may be controlled to temporarily stop the compressor when the defrosting operation is stopped, and to restart the operation after a predetermined time has elapsed.

前記冷凍サイクル装置は、高圧ガス冷却器、第1絞り装置間の高圧冷媒と蒸発器、気液分離器間の低圧冷媒とを熱交換する熱交換器を備えている構成としたものでもよい。   The refrigeration cycle apparatus may include a high-pressure gas cooler, a high-pressure refrigerant between the first throttling device and an evaporator, and a heat exchanger that exchanges heat between the low-pressure refrigerant between the gas-liquid separators.

本発明に係る冷凍装置は、冷凍サイクル装置内の冷媒量を調節する中間レシーバが中間圧状態となる第1絞り装置と第2絞り装置との間に設けられているので、低圧側回路に液冷媒を貯留させることなく冷凍サイクル装置内の冷媒量の調節を行うことができる。また、従来の冷凍装置では低圧側に低圧レシーバを備えているが、本発明の冷凍サイクル装置は、このような低圧レシーバを設けずに、通常運転中蒸発器出口の冷媒が過熱状態となるように第1絞り装置及び第2絞り装置の少なくとも一方を制御しているので、蒸発器出口に液冷媒が流出することがない。また、本発明の冷凍サイクル装置は、圧縮機の吸入回路に液冷媒の貯留容器がないので、圧縮機への液冷媒の戻りが防止される。
さらに、本発明の冷凍サイクル装置は、運転開始時に所定条件の間、圧縮機を低速で運転するようにしているので、運転開始時の圧縮機への液冷媒の戻りをより確実に防止することができる。特に、冬季等における長期運転休止期間中の寝込み冷媒や、除霜運転後における運転態様の切り換え時においては圧縮機へ液戻りし易いが、上記のように圧縮機を低速運転することにより、その危険性を回避することができる。
In the refrigeration apparatus according to the present invention, the intermediate receiver for adjusting the amount of refrigerant in the refrigeration cycle apparatus is provided between the first expansion device and the second expansion device where the intermediate pressure state is established. The amount of refrigerant in the refrigeration cycle apparatus can be adjusted without storing the refrigerant. In addition, the conventional refrigeration apparatus includes a low-pressure receiver on the low-pressure side. However, the refrigeration cycle apparatus of the present invention does not include such a low-pressure receiver so that the refrigerant at the evaporator outlet is overheated during normal operation. In addition, since at least one of the first throttling device and the second throttling device is controlled, the liquid refrigerant does not flow out to the evaporator outlet. Further, in the refrigeration cycle apparatus of the present invention, since there is no liquid refrigerant storage container in the suction circuit of the compressor, the return of the liquid refrigerant to the compressor is prevented.
Furthermore, since the refrigeration cycle apparatus of the present invention operates the compressor at a low speed for a predetermined condition at the start of operation, it can more reliably prevent the return of liquid refrigerant to the compressor at the start of operation. Can do. In particular, it is easy to return the liquid to the compressor at the time of switching the operation mode after the defrosting operation during the long-term operation suspension period in winter etc., but by operating the compressor at a low speed as described above, Risk can be avoided.

本発明の冷凍サイクル装置は、上記所定条件の間として、運転開始後の運転時間が、運転開始の過渡的状態の運転が完了することを予測して設定された所定時間経過するまでの間とすれば、簡易な装置により所定条件の間を設定することができる。
また、上記所定条件の間として、圧縮機の吐出圧力が、運転開始後の過渡的状態の運転が完了することを予測して設定された所定圧力に上昇するまでの間を採用しても同様の効果がある。さらには、上記所定条件の間として、圧縮機の吐出ガス冷媒温度が、運転開始後の過渡的状態の運転が完了することを予測して設定された所定温度に上昇するまでの間を採用しても同様の効果がある。
In the refrigeration cycle apparatus according to the present invention, the operation time after the start of operation is between the predetermined condition and until a predetermined time elapses set by predicting that the operation in the transient state at the start of operation is completed. Then, it is possible to set between predetermined conditions with a simple device.
Moreover, even if it employ | adopts until the discharge pressure of a compressor rises to the predetermined pressure set in anticipation that the operation | movement of the transient state after an operation is completed is completed as said predetermined conditions. There is an effect. Further, as the interval between the predetermined conditions, a time until the temperature of the discharge gas refrigerant of the compressor rises to a predetermined temperature set in anticipation of completion of the transient operation after the start of operation is adopted. But there are similar effects.

また、前記冷凍サイクル装置において、気液分離器を蒸発器の冷媒出口の上方に配置し、気液分離器で分離された液冷媒が蒸発器と気液分離器とをつなぐ配管を介して蒸発器へ重力で戻るように構成すれば、運転開始時、所定条件の間圧縮機を低速で運転することとが相俟って、起動時等の過渡期の液戻りをより確実に防止することができる。このため、液圧縮することなく起動されるため、吐出ガス温度の上昇が早く、立ち上がり時間が短縮される。また、圧縮機の耐久性、信頼性がより一層向上する。   In the refrigeration cycle apparatus, the gas-liquid separator is disposed above the refrigerant outlet of the evaporator, and the liquid refrigerant separated by the gas-liquid separator is evaporated via a pipe connecting the evaporator and the gas-liquid separator. If it is configured so that it returns to the vessel by gravity, it is possible to more reliably prevent liquid return in the transitional period such as startup, etc., in combination with operating the compressor at a low speed for a predetermined condition at the start of operation. Can do. For this reason, since it starts without liquid compression, the rise of discharge gas temperature is quick and rise time is shortened. Further, the durability and reliability of the compressor are further improved.

また、前記気液分離器が外気と熱交換する熱交換器として作用するものとすれば、気液分離器に流れてきた冷媒が蒸発器に戻るばかりでなく外気と熱交換して蒸発するので、より確実に液冷媒の戻りを防止することができる。   If the gas-liquid separator acts as a heat exchanger that exchanges heat with the outside air, the refrigerant that has flowed into the gas-liquid separator not only returns to the evaporator but also exchanges heat with the outside air and evaporates. Thus, the return of the liquid refrigerant can be prevented more reliably.

また、蒸発器と気液分離器とをつなぐ配管の断面積を圧縮機吸入配管の断面積より大きく構成すると、この配管を気液分離器の一部として考えることができ、それだけ気液分離器の容積を小さくすることができる。   If the cross-sectional area of the pipe connecting the evaporator and the gas-liquid separator is made larger than the cross-sectional area of the compressor suction pipe, this pipe can be considered as a part of the gas-liquid separator. The volume of can be reduced.

また、上記冷凍サイクル装置において、除霜運転を停止したときに、一時的に圧縮機を停止させて所定時間経過後に運転を再開するようにすると、除霜運転時に気液分離器に流入した液冷媒を確実に蒸発器に戻すことができるので、除霜後における運転再開時の液冷媒の戻りをより確実に防止することができる。また、除霜後における運転開始時、所定条件の間圧縮機を低速で運転することとが相俟って、起動時等の過渡期の液戻りをより確実に防止することができる。   In the refrigeration cycle apparatus, when the defrosting operation is stopped, if the compressor is temporarily stopped and the operation is resumed after a predetermined time has elapsed, the liquid that has flowed into the gas-liquid separator during the defrosting operation Since the refrigerant can be reliably returned to the evaporator, it is possible to more reliably prevent the liquid refrigerant from returning when the operation is resumed after defrosting. In addition, at the start of operation after defrosting, combined with the operation of the compressor at a low speed for a predetermined condition, it is possible to more reliably prevent liquid return in a transitional period such as startup.

また、上記冷凍サイクル装置において、高圧ガス冷却器、第1絞り装置間の高圧冷媒と蒸発器、気液分離器間の低圧冷媒とを熱交換する熱交換器を設けると、圧縮機への液戻りをより確実に防止することができる。また、高圧ガス冷却器の出口冷媒の温度を低下させることができるので、高圧ガス冷却器の出口冷媒の比エンタルピー及び蒸発器入口側の比エンタルピーを小さくすることができ、エネルギー効率を向上させることができる。   In the refrigeration cycle apparatus, when a heat exchanger for exchanging heat between the high-pressure gas cooler, the high-pressure refrigerant between the first throttling device and the low-pressure refrigerant between the evaporator and the gas-liquid separator is provided, the liquid to the compressor Return can be prevented more reliably. In addition, since the temperature of the outlet refrigerant of the high-pressure gas cooler can be lowered, the specific enthalpy of the outlet refrigerant of the high-pressure gas cooler and the specific enthalpy on the evaporator inlet side can be reduced, and energy efficiency can be improved. Can do.

以下、各実施例について図面に基づき説明する。   Hereinafter, each embodiment will be described with reference to the drawings.

図1〜図3に基づき本発明の実施例1を説明する。
図1は実施例1に係る冷凍装置の冷媒回路図である。図2は同冷凍装置における超臨界冷凍サイクルのモリエル線図である。図3は同冷凍装置の蒸発器及び気液分離器周りの構成図である。
A first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a refrigerant circuit diagram of the refrigeration apparatus according to the first embodiment. FIG. 2 is a Mollier diagram of a supercritical refrigeration cycle in the refrigeration apparatus. FIG. 3 is a configuration diagram around the evaporator and the gas-liquid separator of the refrigeration apparatus.

図1に示すように、実施例1に係る冷凍サイクル装置は、圧縮機1、高圧側ガス冷媒を冷却して暖房用温水、給湯水、室内空気などの加熱流体を加熱する高圧ガス冷却器2、第1絞り装置3、冷凍サイクル内の冷媒量を調節する中間レシーバ4、第2絞り装置5、外気から熱を汲み上げる蒸発器6、気液分離器7を順次直列に接続して閉回路を形成している。また、この冷却装置は、冷媒回路内に二酸化炭素が冷媒として充填された超臨界冷凍サイクルであって、高圧ガス冷却器2で暖房用温水、給湯水、室内空気などの被加熱流体を加熱する装置として形成されている。   As shown in FIG. 1, a refrigeration cycle apparatus according to Embodiment 1 includes a compressor 1, a high-pressure gas cooler 2 that cools a high-pressure side gas refrigerant and heats a heating fluid such as hot water for heating, hot water, indoor air, and the like. The first throttle device 3, the intermediate receiver 4 for adjusting the amount of refrigerant in the refrigeration cycle, the second throttle device 5, the evaporator 6 for pumping heat from the outside air, and the gas-liquid separator 7 are sequentially connected in series to form a closed circuit. Forming. The cooling device is a supercritical refrigeration cycle in which a refrigerant circuit is filled with carbon dioxide as a refrigerant, and heats a fluid to be heated, such as hot water for heating, hot water, indoor air, etc., by the high-pressure gas cooler 2. It is formed as a device.

圧縮機1は、所謂内部中間圧ドーム型2段圧縮機であって、密閉ケーシング11内に低段側圧縮機部12、高段側圧縮機部13、電動機などを収納し、密閉ケーシング11内に低段側圧縮機部12から吐出された中間圧のガス冷媒を充満させ、高段側圧縮機部13はこの中間圧ガス冷媒を吸入して吐出するように形成したものである。また、この2段圧縮機1はインバータにより回転数可変に形成されていて、運転開始時は所定条件の間低速で運転される。
この所定条件の間は、冷凍装置の運転開始時において、過渡的状態の運転が完了したことを検知できるように予め設定された所定運転条件に達するまでの間を意味する。冷凍装置は、運転開始時においては、圧縮機1の吐出圧力及び吐出ガス温度が次第に上昇して過渡的状態の運転から通常状態の運転に移行する。また、過渡的状態の運転を検出するには、運転開始から過渡的状態の運転が完了するまでの運転時間、過渡的状態の運転が完了するときの吐出圧力又は吐出ガス温度を所定条件として設定しておき、この所定条件が満たされたときに過渡的状態の運転が完了したものとして、圧縮機1を低速運転から通常時の回転速度に切り換えるように構成している。
また、通常運転に移行した後において、圧縮機1は、超臨界冷凍サイクルによる加熱負荷が増大する外気温度が低下したときに高速で運転され、逆に、加熱負荷が減少する外気温度が上昇したときに低速で運転されるように構成されている。
The compressor 1 is a so-called internal intermediate pressure dome type two-stage compressor, and houses a low-stage compressor section 12, a high-stage compressor section 13, an electric motor and the like in a sealed casing 11, and the inside of the sealed casing 11. The intermediate-pressure gas refrigerant discharged from the low-stage compressor section 12 is filled, and the high-stage compressor section 13 is formed so as to suck and discharge the intermediate-pressure gas refrigerant. In addition, the two-stage compressor 1 is formed by an inverter so that the number of rotations can be varied, and is operated at a low speed for a predetermined condition at the start of operation.
The period between the predetermined conditions means a period until reaching a predetermined operating condition set in advance so that it can be detected that the operation in the transient state is completed at the start of the operation of the refrigeration apparatus. At the start of operation of the refrigeration apparatus, the discharge pressure and the discharge gas temperature of the compressor 1 gradually increase, and transition from the transient operation to the normal operation is performed. In order to detect the operation in the transient state, the operation time from the start of the operation to the completion of the operation in the transient state, the discharge pressure or the discharge gas temperature when the operation in the transient state is completed are set as predetermined conditions. In addition, it is configured that the compressor 1 is switched from the low speed operation to the normal rotation speed, assuming that the operation in the transitional state is completed when the predetermined condition is satisfied.
In addition, after shifting to the normal operation, the compressor 1 is operated at a high speed when the outside air temperature at which the heating load due to the supercritical refrigeration cycle increases, and conversely, the outside temperature at which the heating load decreases increases. Sometimes configured to be driven at low speed.

高圧ガス冷却器2は、高段側圧縮機部13から吐出された吐出ガスを冷却する熱交換器である。この冷凍サイクル装置は超臨界冷凍サイクル装置を形成しているので、高圧ガス冷却器2では冷媒は凝縮されない。なお、高圧ガス冷却器2は、温水暖房装置の場合暖房用温水を加熱し、温風暖房装置の場合室内空気を加熱し、給湯装置の場合給湯水を加熱するように構成される。   The high-pressure gas cooler 2 is a heat exchanger that cools the discharge gas discharged from the high-stage compressor unit 13. Since this refrigeration cycle apparatus forms a supercritical refrigeration cycle apparatus, the high-pressure gas cooler 2 does not condense the refrigerant. The high-pressure gas cooler 2 is configured to heat warm water for heating in the case of a hot water heater, to heat indoor air in the case of a hot air heater, and to heat hot water in the case of a hot water heater.

第1絞り装置3及び第2絞り装置5としてはそれぞれ電動膨張弁が用いられている。中間レシーバ4は、冷凍サイクル内の冷媒量を調節するものであって、第1絞り装置3及び第2絞り装置5の開度制御により臨界点以下の圧力となるように制御される。これにより中間レシーバ4内に超臨界冷凍サイクルの余剰冷媒が液冷媒として貯留される。
なお、中間レシーバ4は、運転条件の変化による冷凍サイクル装置内の余剰冷媒を貯留し得る大きさの容積を有する。
As the first expansion device 3 and the second expansion device 5, electric expansion valves are used, respectively. The intermediate receiver 4 adjusts the amount of refrigerant in the refrigeration cycle, and is controlled so that the pressure becomes a critical point or less by the opening control of the first expansion device 3 and the second expansion device 5. Thereby, the surplus refrigerant of the supercritical refrigeration cycle is stored in the intermediate receiver 4 as a liquid refrigerant.
The intermediate receiver 4 has a volume that can store excess refrigerant in the refrigeration cycle apparatus due to changes in operating conditions.

蒸発器6は、外気を熱源として熱交換する熱交換器であって、低圧液冷媒が蒸発することにより外気から熱を汲み上げて冷媒自身が蒸発する。また、この蒸発器6は、蒸発器6中間の冷媒温度を検出する冷媒温度センサー61と、蒸発器6出口の冷媒温度を検出する冷媒温度センサー62とを有している。なお、この両冷媒温度センサー61、62が検出する冷媒温度の温度差により、蒸発器6出口における冷媒の過熱度が検出される。また、前記第1絞り装置3及び第2絞り装置5の少なくとも一方は、蒸発器6出口の冷媒が過熱状態となるように開度制御される。
また、この蒸発器6は、冷媒が上部から下方に向かって流れるように、熱交換パイプ65を上方から下方に向かって蛇行させている(図3参照)。なお、図1及び図3において、符号63は冷媒入口であり、符号64は冷媒出口である。
The evaporator 6 is a heat exchanger that exchanges heat using outside air as a heat source, and the refrigerant itself evaporates by drawing up heat from the outside air as the low-pressure liquid refrigerant evaporates. Further, the evaporator 6 includes a refrigerant temperature sensor 61 that detects the refrigerant temperature in the middle of the evaporator 6 and a refrigerant temperature sensor 62 that detects the refrigerant temperature at the outlet of the evaporator 6. In addition, the superheat degree of the refrigerant | coolant in the evaporator 6 exit is detected by the temperature difference of the refrigerant | coolant temperature which both these refrigerant | coolant temperature sensors 61 and 62 detect. The opening degree of at least one of the first expansion device 3 and the second expansion device 5 is controlled so that the refrigerant at the outlet of the evaporator 6 is overheated.
Further, the evaporator 6 meanders the heat exchange pipe 65 from the upper side to the lower side so that the refrigerant flows from the upper side to the lower side (see FIG. 3). 1 and 3, reference numeral 63 denotes a refrigerant inlet, and reference numeral 64 denotes a refrigerant outlet.

また、上記超臨界冷凍サイクルには、中間レシーバ4のガス部41と圧縮機1の密閉ケーシング11内とを接続することにより、中間レシーバ4内の中間圧のガス冷媒を圧縮機の圧縮工程の中間圧力部にバイパスする中間圧冷媒バイパス回路8が形成されている。なお、この中間圧冷媒バイパス回路8には流量調整用のキャピラリーチューブ81と圧縮機1から中間レシーバ4への冷媒流れを阻止する逆止弁82が設けられている。また、超臨界冷凍サイクルには、圧縮機の圧縮工程の中間圧力のガス冷媒を蒸発器6にバイパスすることにより蒸発器6を除霜するためのデフロスト回路9も設けられている。なお、このデフロスト回路9には、デフロスト回路9を開閉するための開閉弁91が設けられている。この開閉弁91は通常運転中は閉塞され、除霜運転時に開放される。   Further, the supercritical refrigeration cycle is connected to the gas portion 41 of the intermediate receiver 4 and the inside of the closed casing 11 of the compressor 1, whereby the intermediate-pressure gas refrigerant in the intermediate receiver 4 is compressed in the compressor compression process. An intermediate pressure refrigerant bypass circuit 8 for bypassing to the intermediate pressure portion is formed. The intermediate pressure refrigerant bypass circuit 8 is provided with a capillary tube 81 for adjusting the flow rate and a check valve 82 for blocking the refrigerant flow from the compressor 1 to the intermediate receiver 4. The supercritical refrigeration cycle is also provided with a defrost circuit 9 for defrosting the evaporator 6 by bypassing the gas refrigerant having an intermediate pressure in the compression process of the compressor to the evaporator 6. The defrost circuit 9 is provided with an on / off valve 91 for opening and closing the defrost circuit 9. This on-off valve 91 is closed during normal operation and opened during defrosting operation.

気液分離器7は、円筒状などの適宜形状の密閉容器であって、この容器の下部に冷媒入口71を備え、上部に冷媒出口72を備えている。また、この気液分離器7は、図3に示すように、蒸発器6の冷媒出口64に対し冷媒入口71が所定ヘッド差H1高くなる位置に設けられている。また、気液分離器7の冷媒入口71と蒸発器6の冷媒出口64とをつなぐ配管73、すなわち、気液分離器7から蒸発器6への液冷媒の戻り配管73の断面積を、大径の配管を使用するなどして圧縮機吸入配管14の断面積より大きく構成している。また、気液分離器7は、除霜時の圧縮機への液バックを防止し得る容積を有する。   The gas-liquid separator 7 is an airtight container having an appropriate shape such as a cylindrical shape, and includes a refrigerant inlet 71 at a lower part of the container and a refrigerant outlet 72 at an upper part. Further, as shown in FIG. 3, the gas-liquid separator 7 is provided at a position where the refrigerant inlet 71 is higher than the refrigerant outlet 64 of the evaporator 6 by a predetermined head difference H1. Further, the pipe 73 connecting the refrigerant inlet 71 of the gas-liquid separator 7 and the refrigerant outlet 64 of the evaporator 6, that is, the cross-sectional area of the liquid refrigerant return pipe 73 from the gas-liquid separator 7 to the evaporator 6 is large. The cross-sectional area of the compressor suction pipe 14 is made larger by using a pipe having a diameter. The gas-liquid separator 7 has a volume that can prevent liquid back to the compressor during defrosting.

以上のように構成された超臨界冷凍サイクルの作動について、図2のモリエル線図に基づいて説明する。このモリエル線図上の各点を表示する符合は、図1の冷媒回路に付された回路上の各符号の位置における冷媒の状態を示すように対応して示す。   The operation of the supercritical refrigeration cycle configured as described above will be described based on the Mollier diagram of FIG. The symbols for indicating each point on the Mollier diagram are correspondingly shown to indicate the state of the refrigerant at the position of each symbol on the circuit attached to the refrigerant circuit of FIG.

まず、通常運転時における冷凍サイクルについて説明する。なお、この説明にはモリエル線図の各点を表示する符合を併記する。
2段圧縮機1の低段側圧縮機部12では、気液分離器7出口側の低圧ガス冷媒a1が吸入されて圧縮される。低段側圧縮機部12で圧縮された中間圧ガス冷媒b1が密閉ケーシング11内に吐出される。この密閉ケーシング11内では、中間レシーバ4において気液分離された中間圧ガス冷媒g1と低段側圧縮機部12の吐出ガスb1とが混合されてガス冷媒c1となる。高段側圧縮機部13は、この混合冷媒c1を吸入して高圧冷媒d1として2段圧縮機1から吐出する。
First, the refrigeration cycle during normal operation will be described. In this description, symbols for displaying each point on the Mollier diagram are also shown.
In the low-stage compressor section 12 of the two-stage compressor 1, the low-pressure gas refrigerant a1 on the outlet side of the gas-liquid separator 7 is sucked and compressed. The intermediate-pressure gas refrigerant b <b> 1 compressed by the low-stage compressor unit 12 is discharged into the sealed casing 11. In the hermetic casing 11, the intermediate pressure gas refrigerant g1 separated by gas and liquid in the intermediate receiver 4 and the discharge gas b1 of the low-stage compressor unit 12 are mixed to form a gas refrigerant c1. The high-stage compressor section 13 sucks the mixed refrigerant c1 and discharges it from the two-stage compressor 1 as a high-pressure refrigerant d1.

2段圧縮機1から吐出された高圧冷媒d1は高圧ガス冷却器2で暖房用温水、給湯水、室内空気などの加熱流体を加熱することにより冷却される。冷却された高圧ガス冷媒e1は、第1絞り装置3により膨張され臨界点以下の圧力の気液混合冷媒f1となって中間レシーバ4に流入する。この気液混合冷媒f1は中間レシーバ4内で気液分離される。中間レシーバ4内で気液分離された中間圧ガス冷媒g1は前述のように中間圧冷媒バイパス回路8を通って2段圧縮機1の密閉ケーシング11内に流れ込む。   The high-pressure refrigerant d1 discharged from the two-stage compressor 1 is cooled by heating a heating fluid such as warm water for heating, hot water, indoor air, etc. in the high-pressure gas cooler 2. The cooled high-pressure gas refrigerant e1 is expanded by the first expansion device 3 and becomes a gas-liquid mixed refrigerant f1 having a pressure equal to or lower than the critical point and flows into the intermediate receiver 4. This gas-liquid mixed refrigerant f1 is gas-liquid separated in the intermediate receiver 4. The intermediate-pressure gas refrigerant g1 that has been gas-liquid separated in the intermediate receiver 4 flows into the sealed casing 11 of the two-stage compressor 1 through the intermediate-pressure refrigerant bypass circuit 8 as described above.

一方、中間レシーバ4で気液分離された液冷媒h1は、第2絞り装置5で減圧され、低圧の気液混合冷媒i1となって、蒸発器6に流入する。蒸発器6に流入した低圧の気液混合冷媒i1は、外気と熱交換して(外気から熱を汲み上げて)蒸発し、低圧ガス冷媒j1となって気液分離器7に流入する。また、気液分離器7を流出した低圧ガス冷媒j1、すなわち、低圧ガス冷媒a1は前述のように低段側圧縮機部12に吸入される。   On the other hand, the liquid refrigerant h <b> 1 separated by the intermediate receiver 4 is decompressed by the second expansion device 5, becomes a low-pressure gas-liquid mixed refrigerant i <b> 1, and flows into the evaporator 6. The low-pressure gas-liquid mixed refrigerant i1 that has flowed into the evaporator 6 exchanges heat with the outside air (pumps heat from the outside air), evaporates, and flows into the gas-liquid separator 7 as the low-pressure gas refrigerant j1. Further, the low-pressure gas refrigerant j1 that has flowed out of the gas-liquid separator 7, that is, the low-pressure gas refrigerant a1, is sucked into the low-stage compressor section 12 as described above.

このような超臨界冷凍サイクルにおいて、第1絞り装置3及び第2絞り装置5の少なくとも一方は、蒸発器6の出口冷媒が所定の過熱状態となるように制御される。また、このとき冷媒の過熱度は、蒸発器6の中間部に設けられた冷媒温度センサー61の検出する冷媒温度と蒸発器6の出口側に設けられた冷媒温度センサー62が検出する冷媒温度との差温から検出され、この差温を一定とするように制御することにより、蒸発器6出口側の冷媒を一定の過熱度に制御している。   In such a supercritical refrigeration cycle, at least one of the first expansion device 3 and the second expansion device 5 is controlled so that the outlet refrigerant of the evaporator 6 is in a predetermined superheated state. At this time, the degree of superheat of the refrigerant is determined by the refrigerant temperature detected by the refrigerant temperature sensor 61 provided in the intermediate portion of the evaporator 6 and the refrigerant temperature detected by the refrigerant temperature sensor 62 provided on the outlet side of the evaporator 6. The refrigerant on the outlet side of the evaporator 6 is controlled to a constant degree of superheat by controlling the temperature difference to be constant.

以上は通常運転時における冷凍サイクルであるが、運転開始時においては、圧縮機1が高低圧力がバランスしている状態からスタートするため、圧縮機1の吐出圧力及び吐出ガス温度が低く、さらに、圧縮機1の吸入圧力が高い。また、運転開始時、上記通常状態の運転に至るまでの過渡的状態の運転において、圧縮機1の吐出圧力及び吐出ガス温度が次第に上昇し、吸入圧力が次第に低くなる。つまり、この間においては、蒸発器6や気液分離機7などの低圧側回路に存在する液冷媒が圧縮機1に吸入され易い状態となっている。
そこで、本発明においては、所定条件の間、換言すると、過渡的状態の運転が完了したことを検知できるように予め設定された所定運転条件の間圧縮機1を低速で運転するようにしている。より具体的には、運転開始時において、運転時間が予め設定された所定時間が経過するまでの間、吐出圧力が予め設定された所定圧力に上昇するまでの間、又は、吐出ガス温度が予め設定された所定温度に上昇するまでの間、圧縮機1を低速で運転するようにしている。これにより、低圧側回路に存在する液冷媒が圧縮機1に吸入され難いようにし、圧縮機1への液冷媒の戻りを抑制するようにしている。
The above is the refrigeration cycle during normal operation. At the start of operation, since the compressor 1 starts from a state where the high and low pressures are balanced, the discharge pressure and the discharge gas temperature of the compressor 1 are low. The suction pressure of the compressor 1 is high. Further, at the start of the operation, in the transient operation until the operation in the normal state, the discharge pressure and the discharge gas temperature of the compressor 1 gradually increase, and the suction pressure gradually decreases. That is, during this time, the liquid refrigerant existing in the low-pressure side circuit such as the evaporator 6 or the gas-liquid separator 7 is in a state in which it is easily sucked into the compressor 1.
Therefore, in the present invention, the compressor 1 is operated at a low speed during a predetermined condition, in other words, during a predetermined operating condition set in advance so that it can be detected that the operation in the transient state is completed. . More specifically, at the start of operation, until a predetermined time that has been set in advance has elapsed, until the discharge pressure rises to a predetermined pressure that has been set in advance, or the discharge gas temperature has been set in advance. The compressor 1 is operated at a low speed until the temperature rises to the predetermined temperature. Thereby, the liquid refrigerant existing in the low-pressure side circuit is hardly sucked into the compressor 1 and the return of the liquid refrigerant to the compressor 1 is suppressed.

また、上記冷凍サイクル装置において、冬季長時間運転を停止していたときは、外気に触れる蒸発器6や気液分離器7において冷媒が凝縮液化する。なお、気液分離器7で凝縮液化した冷媒は、気液分離器7の冷媒入口71が蒸発器6の冷媒出口64に対し所定高さH1だけ高く形成されていることにより、蒸発器6に戻される。また、気液分離器7内から戻った液冷媒や蒸発器6で液化した液冷媒は蒸発器6内に貯留される。この状態で起動した場合、蒸発器6から液冷媒が流出するが、この液冷媒は気液分離器7で気液分離されるので、圧縮機1には液冷媒が戻ることがない。
したがって、このように構成したことに加えて、前述のように運転開始時、通常状態の運転に至るまでの過渡的状態の運転において、圧縮機1を低速で運転することとが相俟って、起動時等の過渡期の液戻りをより確実に防止される。
Further, in the refrigeration cycle apparatus, when the operation is stopped for a long time in winter, the refrigerant is condensed and liquefied in the evaporator 6 and the gas-liquid separator 7 that come into contact with the outside air. Note that the refrigerant condensed and liquefied by the gas-liquid separator 7 is formed in the evaporator 6 because the refrigerant inlet 71 of the gas-liquid separator 7 is formed higher than the refrigerant outlet 64 of the evaporator 6 by a predetermined height H1. Returned. The liquid refrigerant returned from the gas-liquid separator 7 and the liquid refrigerant liquefied by the evaporator 6 are stored in the evaporator 6. When activated in this state, liquid refrigerant flows out of the evaporator 6, but this liquid refrigerant is gas-liquid separated by the gas-liquid separator 7, so that the liquid refrigerant does not return to the compressor 1.
Therefore, in addition to the above configuration, in combination with the operation of the compressor 1 at a low speed in the transient operation until the normal operation is started when the operation is started as described above. In addition, liquid return in a transitional period such as startup can be prevented more reliably.

また、上記冷凍サイクル装置において、蒸発器6の除霜が必要になった場合は、デフロスト回路9の開閉弁91を開き、第1絞り装置3及び第2絞り装置5の少なくとも一方の開度を調節することにより、低段側圧縮機部12から吐出された中間圧ガス冷媒を2段圧縮機1からデフロスト回路9を介して蒸発器6の入口側に送り込んでいる。これにより、中間圧ガス冷媒の有する潜熱により着霜した蒸発器6を加熱して除霜する。なお、高段側圧縮機部13から吐出された冷媒は、高圧ガス冷却器2、第1絞り装置3、中間レシーバ4のガス部41、キャピラリーチューブ81、逆止弁82、中間圧冷媒バイパス回路8を介してデフロスト回路9に流れ込むが、第1絞り装置3の開度を調節することにより少量とすることができる。また、中間レシーバ4内の液冷媒も第2絞り装置5の開度を調節することにより蒸発器6側への冷媒流れを防止することができる。   In the refrigeration cycle apparatus, when the evaporator 6 needs to be defrosted, the opening / closing valve 91 of the defrost circuit 9 is opened, and the opening degree of at least one of the first expansion device 3 and the second expansion device 5 is set. By adjusting, the intermediate-pressure gas refrigerant discharged from the low-stage compressor section 12 is sent from the two-stage compressor 1 to the inlet side of the evaporator 6 via the defrost circuit 9. As a result, the evaporator 6 frosted by the latent heat of the intermediate-pressure gas refrigerant is heated and defrosted. The refrigerant discharged from the high-stage compressor unit 13 is the high-pressure gas cooler 2, the first throttling device 3, the gas unit 41 of the intermediate receiver 4, the capillary tube 81, the check valve 82, and the intermediate-pressure refrigerant bypass circuit. 8 flows into the defrost circuit 9, but the amount can be reduced by adjusting the opening degree of the first expansion device 3. Also, the liquid refrigerant in the intermediate receiver 4 can be prevented from flowing into the evaporator 6 by adjusting the opening of the second expansion device 5.

また、蒸発器6を除霜運転した後に通常の運転に戻るときは蒸発器6から液冷媒が流出するが、気液分離器7により気液分離されるので、圧縮機1に液冷媒の戻る心配がない。また、本実施例では、除霜運転を停止したときに、一時的に圧縮機1を停止させて所定時間経過後に運転を再開するようにしている。このようにすると、除霜時一時的に液冷媒が気液分離器7に貯留しても、この貯留した液冷媒は圧縮機1の運転停止中に重力で蒸発器6に戻る。
したがって、このように構成したこととに加えて、前述のように運転開始時、通常状態の運転に至るまでの過渡的状態の運転において、圧縮機1を低速で運転することとが相俟って、起動時等の過渡期の液戻りをより確実に防止される。
Further, when the evaporator 6 is defrosted and returned to normal operation, the liquid refrigerant flows out of the evaporator 6, but is separated into gas and liquid by the gas-liquid separator 7, so that the liquid refrigerant returns to the compressor 1. There is no worry. Further, in this embodiment, when the defrosting operation is stopped, the compressor 1 is temporarily stopped and the operation is restarted after a predetermined time. In this way, even if liquid refrigerant is temporarily stored in the gas-liquid separator 7 during defrosting, the stored liquid refrigerant returns to the evaporator 6 by gravity while the compressor 1 is stopped.
Therefore, in addition to the above configuration, the compressor 1 is operated at a low speed in the transient operation until the normal operation is started at the start of operation as described above. Thus, the liquid return in the transition period such as at the start-up can be prevented more reliably.

実施例1に係る冷却装置は以上のように構成されているので、次のような効果を奏する。
(1) 実施例1に係る冷凍装置は、冷凍サイクル装置内の冷媒量を調節する中間レシーバ4が中間圧状態となる第1絞り装置3と第2絞り装置5との間に設けられているので、低圧側回路に液冷媒を貯留させることなく冷凍サイクル装置内の冷媒量の調節を行うことができる。また、本実施例の冷凍装置では低圧側に低圧レシーバを備えずに、通常運転中蒸発器6出口の冷媒が過熱状態となるように第1絞り装置3及び第2絞り装置5の少なくとも一方が制御されるので、蒸発器6出口に液冷媒が流出することがない。また、圧縮機1の吸入回路に液冷媒の貯留容器がないので、圧縮機1への液冷媒の戻りが防止される。
さらに、本実施例1に係る冷凍装置は、運転開始時所定条件の間、つまり、過渡的状態の運転が完了したことを検知できるように予め設定された所定運転条件に達するまでの間、圧縮機1を低速で運転するようにしているので、運転開始時の圧縮機1への液冷媒の戻りをより確実に防止することができる。特に、冬季等における長期運転休止期間中の寝込み冷媒や、除霜運転後における運転態様の切り換え時においては圧縮機1へ液戻りし易いが、上記のように圧縮機1を低速運転することにより、その危険性を回避することができる。
なお、上記所定条件の間として、運転開始後の運転時間が、運転開始の過渡的状態の運転が完了することを予測して設定された所定時間経過するまでの間を採用することにより、又は、圧縮機1の吐出圧力が、運転開始後の過渡的状態の運転が完了することを予測して設定された所定圧力に上昇するまでの間を採用することにより、又は、圧縮機1の吐出ガス冷媒温度が、運転開始後の過渡的状態の運転が完了することを予測して設定された所定温度に上昇するまでの間を採用することにより、簡易な装置により所定条件の間を設定することができる。
Since the cooling device according to the first embodiment is configured as described above, the following effects can be obtained.
(1) In the refrigeration apparatus according to the first embodiment, the intermediate receiver 4 that adjusts the amount of refrigerant in the refrigeration cycle apparatus is provided between the first expansion device 3 and the second expansion device 5 that are in an intermediate pressure state. Therefore, the amount of refrigerant in the refrigeration cycle apparatus can be adjusted without storing liquid refrigerant in the low-pressure side circuit. In the refrigeration apparatus of the present embodiment, at least one of the first expansion device 3 and the second expansion device 5 is not provided with a low pressure receiver on the low pressure side so that the refrigerant at the outlet of the evaporator 6 is overheated during normal operation. Since it is controlled, the liquid refrigerant does not flow out to the outlet of the evaporator 6. Further, since there is no liquid refrigerant storage container in the suction circuit of the compressor 1, the return of the liquid refrigerant to the compressor 1 is prevented.
Furthermore, the refrigeration apparatus according to the first embodiment performs compression during a predetermined condition at the start of operation, that is, until a predetermined operating condition set in advance so that it can be detected that the operation in the transient state is completed. Since the machine 1 is operated at a low speed, the return of the liquid refrigerant to the compressor 1 at the start of operation can be more reliably prevented. In particular, it is easy to return the liquid to the compressor 1 at the time of switching the operation mode after the defrosting operation during the long-term operation suspension period in winter or the like, but by operating the compressor 1 at a low speed as described above. That danger can be avoided.
In addition, by adopting a period until a predetermined time elapses after the operation time after the start of operation is predicted to complete the operation in a transitional state at the start of the operation as the predetermined condition, or By adopting a period until the discharge pressure of the compressor 1 rises to a predetermined pressure set in anticipation of completion of the transient operation after the start of operation, or the discharge of the compressor 1 By adopting the time until the gas refrigerant temperature rises to the predetermined temperature set in anticipation of completion of the operation in the transitional state after the start of operation, the interval between the predetermined conditions is set by a simple device. be able to.

(2) また、実施例1においては、中間レシーバ4の容積を、運転条件の変化による冷凍サイクル装置内の余剰冷媒を貯留し得る大きさとしているので、低圧側回路への余剰冷媒の貯留を抑制することができ、通常の運転時や、運転を一旦停止した後の運転再開時などにおける液冷媒の圧縮機1への戻りをより確実に防止することができる。   (2) Moreover, in Example 1, since the volume of the intermediate receiver 4 is set to a size capable of storing surplus refrigerant in the refrigeration cycle apparatus due to changes in operating conditions, the surplus refrigerant is stored in the low-pressure side circuit. Thus, it is possible to more reliably prevent the liquid refrigerant from returning to the compressor 1 during normal operation or when the operation is resumed after the operation is temporarily stopped.

(3) また、この冷凍サイクル装置では、気液分離器7が除霜時の圧縮機への液バックを防止し得る容積を有するので、除霜運転時の圧縮機1への液戻りをより確実に防止することができる。   (3) Moreover, in this refrigeration cycle apparatus, since the gas-liquid separator 7 has a volume capable of preventing liquid back to the compressor during defrosting, the liquid return to the compressor 1 during defrosting operation is further reduced. It can be surely prevented.

(4) また、気液分離器7を蒸発器6の冷媒出口64の上方に配置し、気液分離器7で分離された液冷媒が蒸発器6と気液分離器7とをつなぐ配管73を介して蒸発器6へ重力で戻るように構成されているので、運転停止時に何も運転することなく液冷媒が気液分離器7から蒸発器6へ確実に戻される。また、運転開始時、所定条件の間圧縮機1を低速で運転することとが相俟って、起動時等の過渡期の液戻りをより確実に防止することができる。このため、液冷媒が圧縮機1に戻ることなく起動されるため、吐出ガス温度の上昇が早く、立ち上がり時間が短縮される。また、圧縮機1の耐久性、信頼性がより一層向上する。   (4) In addition, the gas-liquid separator 7 is disposed above the refrigerant outlet 64 of the evaporator 6, and the liquid refrigerant separated by the gas-liquid separator 7 connects the evaporator 6 and the gas-liquid separator 7. Therefore, the liquid refrigerant is reliably returned from the gas-liquid separator 7 to the evaporator 6 without any operation when the operation is stopped. In addition, when the operation is started, the compressor 1 is operated at a low speed for a predetermined condition, so that the liquid return in the transition period such as at the start-up can be prevented more reliably. For this reason, since the liquid refrigerant is started without returning to the compressor 1, the discharge gas temperature rises quickly and the rise time is shortened. Moreover, the durability and reliability of the compressor 1 are further improved.

(5) また、蒸発器6と気液分離器7とをつなぐ配管73の断面積が圧縮機1の吸入配管14の断面積より大きく構成されているので、この配管73を気液分離器7の一部として考えることができ、それだけ気液分離器7の容積を小さくすることができる。   (5) Since the cross-sectional area of the pipe 73 connecting the evaporator 6 and the gas-liquid separator 7 is larger than the cross-sectional area of the suction pipe 14 of the compressor 1, the pipe 73 is connected to the gas-liquid separator 7. The volume of the gas-liquid separator 7 can be reduced accordingly.

(6) 除霜運転を停止したときに一時的に圧縮機1を停止させ、所定時間経過後に運転を再開するようにしているので、圧縮機1の運転停止中に一時的に気液分離器7に貯留した液冷媒が重力で蒸発器6に戻る。このため、圧縮機1に液冷媒が戻ることがなく圧縮機1の耐久性、信頼性を向上させることができる。また、除霜後における運転開始時、所定条件の間圧縮機1を低速で運転することとが相俟って、起動時等の過渡期の液戻りをより確実に防止することができる。   (6) Since the compressor 1 is temporarily stopped when the defrosting operation is stopped and the operation is restarted after a predetermined time has elapsed, the gas-liquid separator is temporarily stopped while the compressor 1 is stopped. The liquid refrigerant stored in 7 returns to the evaporator 6 by gravity. For this reason, the liquid refrigerant does not return to the compressor 1 and the durability and reliability of the compressor 1 can be improved. In addition, when the operation is started after defrosting, the compressor 1 is operated at a low speed for a predetermined condition, so that liquid return in a transitional period such as startup can be more reliably prevented.

(7) また、上記冷凍サイクル装置に充填する冷媒を二酸化炭素としているので、可燃性、毒性のない安全な冷媒を使用しながら高圧側のガス冷媒温度が高くなる超臨界冷凍サイクルでの運転を行うことができる。   (7) In addition, since the refrigerant charged in the refrigeration cycle apparatus is carbon dioxide, operation in a supercritical refrigeration cycle in which the gas refrigerant temperature on the high pressure side increases while using a flammable and non-toxic safe refrigerant. It can be carried out.

(8) また、高圧ガス冷却器2により暖房用温水、給湯水、室内空気などの被加熱流体を加熱する装置に応用した場合は、高温の暖房用温水、給湯水、温風などを供給することができる。   (8) In addition, when applied to a device that heats a heated fluid such as hot water for heating, hot water, indoor air, etc., by using the high-pressure gas cooler 2, high-temperature hot water for heating, hot water, hot air, etc. are supplied. be able to.

次に、実施例2を図4に基づき説明する。なお、図4は実施例2に係る冷凍装置の蒸発器及び気液分離器周りの構成図である。
実施例2は、実施例1における気液分離器7を外気と熱交換する気液分離器100に変更したものであって、他の構成は実施例1の場合と同一である。
この気液分離器100は、上部に上部ヘッダー101を、下部に下部ヘッダー102をそれぞれ配置し、この上下ヘッダー101、102間に熱交換チューブ103を垂直方向にして配置して構成されている。また、このように配設された熱交換チューブ103に対しプレートフィン104を水平方向に取り付けている。下部ヘッダー102は、蒸発器6の冷媒出口64に対し、実施例1の場合と同様に所定のヘッド差H2を付けるように配置している。さらに、蒸発器6の冷媒出口64と下部ヘッダー102とをつなぐ配管105、すなわち、気液分離器100から蒸発器6への液冷媒の戻り配管105の断面積は、大径の配管などを利用するなどして、圧縮機吸入配管14の断面積より大きく構成されている。
Next, Example 2 will be described with reference to FIG. FIG. 4 is a configuration diagram around the evaporator and the gas-liquid separator of the refrigeration apparatus according to the second embodiment.
In the second embodiment, the gas-liquid separator 7 in the first embodiment is changed to a gas-liquid separator 100 that exchanges heat with the outside air, and other configurations are the same as those in the first embodiment.
The gas-liquid separator 100 is configured by arranging an upper header 101 at the upper part and a lower header 102 at the lower part, and arranging a heat exchange tube 103 vertically between the upper and lower headers 101, 102. Moreover, the plate fin 104 is attached to the horizontal direction with respect to the heat exchange tube 103 arrange | positioned in this way. The lower header 102 is arranged so as to give a predetermined head difference H2 to the refrigerant outlet 64 of the evaporator 6 as in the case of the first embodiment. Furthermore, the pipe 105 connecting the refrigerant outlet 64 of the evaporator 6 and the lower header 102, that is, the cross-sectional area of the liquid refrigerant return pipe 105 from the gas-liquid separator 100 to the evaporator 6 uses a large diameter pipe or the like. For example, the cross-sectional area of the compressor suction pipe 14 is larger.

したがって、この気液分離器100に気液混合の冷媒が流れてきた場合は、液冷媒の一部は外気と熱交換して蒸発し、残りの液冷媒は垂直方向の熱交換チューブ103内において気液分離され、分離された液冷媒は下部ヘッダー102及び戻り配管(蒸発器6の冷媒出口64と下部ヘッダー102とをつなぐ配管)105を介して蒸発器6の冷媒入口63側に流れるように形成されている。   Therefore, when a gas-liquid mixed refrigerant flows into the gas-liquid separator 100, a part of the liquid refrigerant evaporates by exchanging heat with the outside air, and the remaining liquid refrigerant passes through the heat exchange tube 103 in the vertical direction. Gas-liquid separation is performed, and the separated liquid refrigerant flows to the refrigerant inlet 63 side of the evaporator 6 via the lower header 102 and the return pipe (pipe connecting the refrigerant outlet 64 of the evaporator 6 and the lower header 102) 105. Is formed.

実施例2は、以上のように気液分離器100が外気と熱交換する熱交換器として作用するので、実施例1の場合より確実に液冷媒が圧縮機1に戻るのを防止することができる。
また、実施例1の場合と同様に、蒸発器6の冷媒出口64と下部ヘッダー102とをつなぐ配管(戻り配管)105を気液分離器100の一部として考えることができ、その分気液分離器100の容積を小さくすることができる。
Since the gas-liquid separator 100 acts as a heat exchanger that exchanges heat with outside air as described above, the second embodiment can more reliably prevent the liquid refrigerant from returning to the compressor 1 than in the first embodiment. it can.
Similarly to the case of the first embodiment, a pipe (return pipe) 105 connecting the refrigerant outlet 64 of the evaporator 6 and the lower header 102 can be considered as a part of the gas-liquid separator 100. The volume of the separator 100 can be reduced.

次に、実施例3を図5に基づき説明する。なお、図5は実施例3に係る冷凍装置の蒸発器及び気液分離器周りの構成図である。
実施例3は、実施例1における蒸発器6の構成を変更し、気液分離器7の位置を変更したものであって、他の構成は実施例1と同一である。
すなわち、実施例3においては、蒸発器200は、冷媒入口201を下方に、また、冷媒出口202を上方に配置し、さらに、熱交換チューブ203を下方から上方に向かって蛇行状に配設して構成している。また、熱交換チューブ203に対しプレートフィン204が垂直方向に配置されている。一方、気液分離器7を蒸発器200の上方に配置し、気液分離器7の冷媒入口71と蒸発器200の冷媒出口72とを接続している。
Next, Example 3 will be described with reference to FIG. FIG. 5 is a configuration diagram around the evaporator and the gas-liquid separator of the refrigeration apparatus according to the third embodiment.
In the third embodiment, the configuration of the evaporator 6 in the first embodiment is changed, and the position of the gas-liquid separator 7 is changed. The other configurations are the same as those in the first embodiment.
That is, in Example 3, the evaporator 200 arranges the refrigerant inlet 201 downward, the refrigerant outlet 202 upward, and further arranges the heat exchange tube 203 in a meandering manner from below to above. Is configured. Further, plate fins 204 are arranged in the vertical direction with respect to the heat exchange tube 203. On the other hand, the gas-liquid separator 7 is disposed above the evaporator 200, and the refrigerant inlet 71 of the gas-liquid separator 7 and the refrigerant outlet 72 of the evaporator 200 are connected.

したがって、この実施例3に係る蒸発器200は、熱交換チューブ203が下方から上方に向かって蛇行状に配設しているので液冷媒を貯留し易い構造であり、液冷媒が冷媒出口202から気液分離器100に流れ難い構造となっている。また、気液混合の冷媒が気液分離器7に流れてきた場合は、気液分離器7で気液分離され、液冷媒が気液分離器7の冷媒入口71から下方の蒸発器200の冷媒出口202を介して蒸発器6に戻って、蒸発器6に溜まるように構成されている。
このようにして、この実施例3では、蒸発器6に液冷媒が溜まるので、気液分離器7の容積を小さくすることができる。
Therefore, the evaporator 200 according to the third embodiment has a structure in which the liquid refrigerant is easily stored because the heat exchange tube 203 is arranged in a meandering manner from the lower side to the upper side. The structure is difficult to flow to the gas-liquid separator 100. When the gas-liquid mixed refrigerant flows into the gas-liquid separator 7, the gas-liquid separator 7 gas-liquid separates the liquid refrigerant from the refrigerant inlet 71 of the gas-liquid separator 7. It is configured to return to the evaporator 6 through the refrigerant outlet 202 and accumulate in the evaporator 6.
Thus, in this Example 3, since a liquid refrigerant accumulates in the evaporator 6, the volume of the gas-liquid separator 7 can be made small.

次に実施例4を図6に基づき説明する。なお、図6は実施例4に係る冷凍装置の蒸発器及び気液分離器周りの構成図である。
実施例4は、実施例3において気液分離器7を実施例2における気液分離器100に変更したものである。なお、その他の構成は、実施例3と同一である。
Next, Example 4 will be described with reference to FIG. FIG. 6 is a configuration diagram around the evaporator and the gas-liquid separator of the refrigeration apparatus according to the fourth embodiment.
In the fourth embodiment, the gas-liquid separator 7 in the third embodiment is changed to the gas-liquid separator 100 in the second embodiment. Other configurations are the same as those in the third embodiment.

したがって、この実施例4に係る冷凍装置では、実施例2及び実施例3に係る冷凍装置と同様の効果を奏することができる。   Therefore, the refrigeration apparatus according to the fourth embodiment can achieve the same effects as the refrigeration apparatuses according to the second and third embodiments.

次に実施例5について、図7及び図8に基づき説明する。なお、図7は実施例5に係る冷凍装置の冷媒回路図である。図8は同冷凍サイクル装置による超臨界冷凍サイクルのモリエル線図である。
実施例5は、実施例1において、圧縮機1を回転数可変の1段圧縮機300とし、さらに、蒸発器6と気液分離器7との間に高圧ガス冷媒と低圧冷媒とを熱交換させる熱交換器303を設けたものである。
Next, Example 5 will be described with reference to FIGS. FIG. 7 is a refrigerant circuit diagram of the refrigeration apparatus according to the fifth embodiment. FIG. 8 is a Mollier diagram of a supercritical refrigeration cycle by the refrigeration cycle apparatus.
The fifth embodiment is the same as the first embodiment except that the compressor 1 is a one-stage compressor 300 having a variable rotation speed, and the high-pressure gas refrigerant and the low-pressure refrigerant are heat-exchanged between the evaporator 6 and the gas-liquid separator 7. The heat exchanger 303 is provided.

圧縮機300は、圧縮工程の中間圧力部にガスインジェクションポート302を設けた1段圧縮機であり、密閉ケーシング301内には高圧ガス冷媒が導入されている。また、中間圧冷媒バイパス回路8が中間レシーバ4のガス部41とガスインジェクションポート302との間に設けられている。圧縮機300は、実施例1の場合と同様に、インバータにより回転数可変に形成されていて、運転開始時は所定条件の間低速で運転される。
また、熱交換器303は、蒸発器6出口の低圧冷媒と高圧ガス冷却器2出口側の高圧ガス冷媒とが熱交換するように構成されている。
なお、その他の構成は、実施例1と同一である。
The compressor 300 is a single-stage compressor in which a gas injection port 302 is provided at an intermediate pressure portion in a compression process, and a high-pressure gas refrigerant is introduced into the sealed casing 301. An intermediate pressure refrigerant bypass circuit 8 is provided between the gas portion 41 of the intermediate receiver 4 and the gas injection port 302. As in the case of the first embodiment, the compressor 300 is formed by an inverter so that the number of rotations is variable, and is operated at a low speed for a predetermined condition at the start of operation.
Further, the heat exchanger 303 is configured such that heat exchange is performed between the low-pressure refrigerant at the outlet of the evaporator 6 and the high-pressure gas refrigerant at the outlet side of the high-pressure gas cooler 2.
Other configurations are the same as those of the first embodiment.

次に、上記のように構成される実施例5について、図7のモリエル線図に基づいて説明する。このモリエル線図上の各点を表示する符合は、図7の冷媒回路に付された回路上の位置における冷媒の状態を示すように対応して示されている。   Next, Example 5 configured as described above will be described based on the Mollier diagram of FIG. The symbols for indicating each point on the Mollier diagram are shown corresponding to the state of the refrigerant at a position on the circuit attached to the refrigerant circuit of FIG.

まず、通常運転時における冷凍サイクルについて説明する。なお、この説明にはモリエル線図の各点を表示する符合を併記する。
圧縮機300では、気液分離器7出口側の低圧ガス冷媒a2が吸入されて圧縮される。一方中間レシーバ4において気液分離された中間圧ガス冷媒h2が圧縮機300のガスインジェクションポート302から圧縮機300内の圧縮工程途中に導入される。したがって、圧縮機300で中間圧まで圧縮されたガス冷媒b2はガスインジェクションポート302から導入される中間圧ガス冷媒h2と混合して混合冷媒c2となる。さらに、この混合冷媒c2は圧縮されて、密閉ケーシング301内に吐出される。そして、密閉ケーシング301内から高圧ガス冷媒d2となって冷媒回路内に吐出される。
First, the refrigeration cycle during normal operation will be described. In this description, symbols for displaying each point on the Mollier diagram are also shown.
In the compressor 300, the low-pressure gas refrigerant a2 on the outlet side of the gas-liquid separator 7 is sucked and compressed. On the other hand, the intermediate pressure gas refrigerant h <b> 2 separated in the intermediate receiver 4 is introduced from the gas injection port 302 of the compressor 300 during the compression process in the compressor 300. Therefore, the gas refrigerant b2 compressed to the intermediate pressure by the compressor 300 is mixed with the intermediate pressure gas refrigerant h2 introduced from the gas injection port 302 to become the mixed refrigerant c2. Further, the mixed refrigerant c <b> 2 is compressed and discharged into the sealed casing 301. The high-pressure gas refrigerant d2 is discharged from the sealed casing 301 into the refrigerant circuit.

圧縮機300から吐出された高圧ガス冷媒d2は、高圧ガス冷却器2で暖房用温水、給湯水、室内空気などの被加熱流体を加熱することにより冷却される。高圧ガス冷却器2で冷却された高圧ガス冷媒e2は熱交換器303でさらに冷却される。熱交換器303で冷却された高圧ガス冷媒f2は、第1絞り装置3により膨張され臨界点以下の圧力の気液混合冷媒g2となって中間レシーバ4に流入する。この気液混合冷媒g2は中間レシーバ4内で気液分離される。中間レシーバ4内で気液分離された中間圧ガス冷媒h2は前述のように中間圧冷媒バイパス回路8を通って圧縮機300の密閉ケーシング301内に流れ込む。   The high-pressure gas refrigerant d2 discharged from the compressor 300 is cooled by heating a heated fluid such as hot water for heating, hot-water supply water, indoor air, etc., in the high-pressure gas cooler 2. The high-pressure gas refrigerant e2 cooled by the high-pressure gas cooler 2 is further cooled by the heat exchanger 303. The high-pressure gas refrigerant f2 cooled by the heat exchanger 303 is expanded by the first expansion device 3 and flows into the intermediate receiver 4 as a gas-liquid mixed refrigerant g2 having a pressure equal to or lower than the critical point. The gas-liquid mixed refrigerant g2 is gas-liquid separated in the intermediate receiver 4. The intermediate-pressure gas refrigerant h2 that has been gas-liquid separated in the intermediate receiver 4 flows into the sealed casing 301 of the compressor 300 through the intermediate-pressure refrigerant bypass circuit 8 as described above.

一方、中間レシーバ4で気液分離された液冷媒i2は、第2絞り装置5で減圧され、低圧の気液混合冷媒j2となって蒸発器6に流入する。蒸発器6に流入した低圧の気液混合冷媒j2は、外気と熱交換して外気から熱を汲み上げて蒸発し、湿り低圧冷媒k2となって熱交換器303に流入する。熱交換器303に流入した湿り低圧冷媒k2は、高圧ガス冷媒e2と熱交換して加熱され、過熱された低圧ガス冷媒l2となって気液分離器7に流入する。また、気液分離器7に流入した低圧ガス冷媒l2、すなわち、低圧ガス冷媒a2は、気液分離器7を流出して圧縮機300に吸入される。   On the other hand, the liquid refrigerant i2 that has been gas-liquid separated by the intermediate receiver 4 is decompressed by the second expansion device 5 and flows into the evaporator 6 as a low-pressure gas-liquid mixed refrigerant j2. The low-pressure gas-liquid mixed refrigerant j2 that has flowed into the evaporator 6 exchanges heat with the outside air, pumps heat from the outside air, evaporates, and flows into the heat exchanger 303 as a wet low-pressure refrigerant k2. The wet low-pressure refrigerant k2 that has flowed into the heat exchanger 303 is heated by exchanging heat with the high-pressure gas refrigerant e2, and becomes superheated low-pressure gas refrigerant l2 and flows into the gas-liquid separator 7. Further, the low-pressure gas refrigerant 12 that has flowed into the gas-liquid separator 7, that is, the low-pressure gas refrigerant a 2, flows out of the gas-liquid separator 7 and is sucked into the compressor 300.

このような超臨界冷凍サイクルにおいて、第1絞り装置3及び第2絞り装置5の少なくとも一方は、実施例1の場合と同様に、蒸発器6の出口冷媒が過熱状態となるように制御される。また、このとき冷媒の過熱度は、第1冷媒温度センサー61の検出する冷媒温度と第2冷媒温度センサー62が検出する冷媒温度との差温が一定となるように制御することにより、蒸発器6出口側の冷媒が一定の過熱度を有するように制御される。   In such a supercritical refrigeration cycle, at least one of the first throttling device 3 and the second throttling device 5 is controlled so that the outlet refrigerant of the evaporator 6 is overheated, as in the case of the first embodiment. . Further, at this time, the superheat degree of the refrigerant is controlled so that the difference temperature between the refrigerant temperature detected by the first refrigerant temperature sensor 61 and the refrigerant temperature detected by the second refrigerant temperature sensor 62 is constant. The refrigerant on the 6 outlet side is controlled to have a certain degree of superheat.

以上は通常運転時における冷凍サイクルであるが、運転開始時所定条件の間、圧縮機300を低速で運転することにより、低圧側回路に存在する液冷媒が圧縮機1に吸入され難いようにし、圧縮機1への液冷媒の戻りを抑制するようにしている。   The above is the refrigeration cycle during normal operation, but by operating the compressor 300 at a low speed during a predetermined condition at the start of operation, the liquid refrigerant present in the low-pressure side circuit is made difficult to be sucked into the compressor 1, The return of the liquid refrigerant to the compressor 1 is suppressed.

また、上記冷凍サイクル装置において、冬季長時間運転を停止していたときや、除霜運転した後に通常の運転を行うときは、蒸発器6から液冷媒が流出するが、実施例1の場合と同様に気液分離器7により気液分離されることと運転開始時、通常状態の運転に至るまでの過渡的状態の運転において、圧縮機1を低速で運転することとが相俟って、起動時等の過渡期の液戻りをより確実に防止することができる。   In the refrigeration cycle apparatus, when the operation is stopped for a long time in winter or when the normal operation is performed after the defrosting operation, the liquid refrigerant flows out from the evaporator 6. Similarly, gas-liquid separation by the gas-liquid separator 7 and the operation of the compressor 1 at a low speed in the operation in a transient state up to the normal operation at the start of operation, It is possible to more reliably prevent liquid return during a transition period such as startup.

また、上記冷凍サイクル装置において、蒸発器6の除霜が必要になった場合は、デフロスト回路9の開閉弁91を開き、第1絞り装置3を開放するとともに第2絞り装置5の開度を調節することにより、圧縮機300から吐出された高圧ガス冷媒が高圧ガス冷却器2、第1絞り装置3、中間レシーバ4のガス部41、キャピラリーチューブ81、中間圧冷媒バイパス回路8及びデフロスト回路9を介し中間圧力のガス冷媒となって蒸発器6の入口側に送られる。これにより蒸発器6を加熱して除霜することができる。   In the above refrigeration cycle apparatus, when defrosting of the evaporator 6 is necessary, the opening / closing valve 91 of the defrost circuit 9 is opened, the first expansion device 3 is opened, and the opening of the second expansion device 5 is increased. By adjusting, the high-pressure gas refrigerant discharged from the compressor 300 becomes the high-pressure gas cooler 2, the first throttling device 3, the gas part 41 of the intermediate receiver 4, the capillary tube 81, the intermediate-pressure refrigerant bypass circuit 8 and the defrost circuit 9. Then, it is sent to the inlet side of the evaporator 6 as a gas refrigerant having an intermediate pressure. Thereby, the evaporator 6 can be heated and defrosted.

また、蒸発器6を除霜運転した後に通常の運転に戻るときは蒸発器6から液冷媒が流出するが、気液分離器7により気液分離されるので、圧縮機300に液冷媒の戻る心配がない。また、本実施例では、除霜運転を停止したときに、一時的に圧縮機300を停止させて所定時間経過後に運転を再開するようにしている。このようにすると、除霜時一時的に液冷媒が気液分離器7に貯留しても、この貯留した液冷媒は圧縮機300の運転停止中に重力で蒸発器6に戻る。
したがって、このように構成したこととに加えて、前述のように運転開始時、通常状態の運転に至るまでの過渡的状態の運転において、圧縮機300を低速で運転することとが相俟って、起動時等の過渡期の液戻りをより確実に防止される。
Further, when the evaporator 6 is defrosted and returned to normal operation, the liquid refrigerant flows out of the evaporator 6, but is separated into gas and liquid by the gas-liquid separator 7, so that the liquid refrigerant returns to the compressor 300. There is no worry. Further, in this embodiment, when the defrosting operation is stopped, the compressor 300 is temporarily stopped and the operation is restarted after a predetermined time. In this way, even if liquid refrigerant is temporarily stored in the gas-liquid separator 7 during defrosting, the stored liquid refrigerant returns to the evaporator 6 by gravity while the compressor 300 is stopped.
Therefore, in addition to the configuration described above, the compressor 300 is operated at a low speed in the transient operation until the normal operation is started when the operation is started as described above. Thus, the liquid return in the transition period such as at the start-up can be prevented more reliably.

実施例5に係る冷却装置は以上のように構成されているので、実施例1の場合と同様に、前述の(1)〜(8)の効果を奏し、さらにこの効果に加えて次の効果を奏することができる。   Since the cooling device according to the fifth embodiment is configured as described above, the effects (1) to (8) described above are achieved as in the case of the first embodiment. In addition to this effect, the following effect is obtained. Can be played.

すなわち、実施例5の場合は、蒸発器6と気液分離器7との間に高圧ガス冷媒と低圧冷媒とを熱交換する熱交換器303を備えるので、蒸発器6出口の湿り低圧冷媒k2を加熱するとともに、高圧ガス冷却器2の出口冷媒の温度を低下させることができる。これにより圧縮機300への液戻りをより確実に防止することができる。また、高圧ガス冷却器2の出口冷媒の比エンタルピー及び蒸発器入口側の比エンタルピーを小さくすることができ、エネルギー効率を向上させることができる。   That is, in the case of Example 5, since the heat exchanger 303 for exchanging heat between the high-pressure gas refrigerant and the low-pressure refrigerant is provided between the evaporator 6 and the gas-liquid separator 7, the wet low-pressure refrigerant k2 at the outlet of the evaporator 6 is provided. And the temperature of the outlet refrigerant of the high-pressure gas cooler 2 can be lowered. Thereby, the liquid return to the compressor 300 can be prevented more reliably. Moreover, the specific enthalpy of the outlet refrigerant of the high-pressure gas cooler 2 and the specific enthalpy on the evaporator inlet side can be reduced, and the energy efficiency can be improved.

以上詳述した冷凍装置は、広く一般の冷凍装置に利用できるが、特に、外気を熱源とするヒートポンプ式家庭用エアコン、業務用エアコン(パッケージエアコン)、外気熱源のヒートポンプ式温水暖房装置、外気熱源のヒートポンプ式給湯装置などに利用されるものである。   The refrigeration apparatus described in detail above can be widely used for general refrigeration apparatuses. In particular, a heat pump type home air conditioner that uses outside air as a heat source, a commercial air conditioner (packaged air conditioner), a heat pump type hot water heating apparatus that uses an outside air source, and an outside air heat source It is used for the heat pump type hot-water supply apparatus of No ..

本発明の実施例1に係る冷凍装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating device concerning Example 1 of the present invention. 同冷凍装置における超臨界冷凍サイクルのモリエル線図である。It is a Mollier diagram of the supercritical refrigeration cycle in the same refrigeration apparatus. 同冷凍装置の蒸発器及び気液分離器周りの構成図である。It is a block diagram around the evaporator and gas-liquid separator of the freezing apparatus. 実施例2に係る冷凍装置の蒸発器及び気液分離器周りの構成図である。FIG. 6 is a configuration diagram around an evaporator and a gas-liquid separator of a refrigeration apparatus according to Embodiment 2. 図5は実施例3に係る冷凍装置の蒸発器及び気液分離器周りの構成図である。FIG. 5 is a configuration diagram around an evaporator and a gas-liquid separator of the refrigeration apparatus according to the third embodiment. 実施例4に係る冷凍装置の蒸発器及び気液分離器周りの構成図である。FIG. 6 is a configuration diagram around an evaporator and a gas-liquid separator of a refrigeration apparatus according to Embodiment 4. 本発明の実施例5に係る冷凍装置の冷媒回路図である。It is a refrigerant circuit figure of the freezing apparatus which concerns on Example 5 of this invention. 同冷凍装置における超臨界冷凍サイクルのモリエル線図である。It is a Mollier diagram of the supercritical refrigeration cycle in the same refrigeration apparatus.

符号の説明Explanation of symbols

1 (回転数可変型)圧縮機
2 高圧ガス冷却器
3 第1絞り装置
4 中間レシーバ
5 第2絞り装置
6 蒸発器
7 気液分離器
8 中間圧冷媒バイパス回路
14 圧縮機吸入配管
41 ガス部
61 冷媒温度センサー
62 冷媒温度センサー
63 冷媒入口
64 冷媒出口
73 配管
300 圧縮機
302 ガスインジェクションポート
303 熱交換器
H1 ヘッド差
H2 ヘッド差
DESCRIPTION OF SYMBOLS 1 (Rotation speed variable type) Compressor 2 High pressure gas cooler 3 First throttle device 4 Intermediate receiver 5 Second throttle device 6 Evaporator 7 Gas-liquid separator 8 Intermediate pressure refrigerant bypass circuit 14 Compressor suction pipe 41 Gas section 61 Refrigerant temperature sensor 62 Refrigerant temperature sensor 63 Refrigerant inlet 64 Refrigerant outlet 73 Pipe 300 Compressor 302 Gas injection port 303 Heat exchanger H1 Head difference H2 Head difference

Claims (7)

回転数可変型圧縮機、高圧側ガス冷媒を冷却する高圧側冷却装置、第1絞り装置、冷凍サイクル内の冷媒量を調整するための中間レシーバ、第2絞り装置、外気を熱源とする蒸発器、気液分離器を順次直列に接続して閉回路を形成した冷凍サイクル装置を備え、この冷凍サイクル装置は、通常運転時には超臨界冷凍サイクルで運転されるものであって、圧縮機と第1絞り装置との間が高圧状態となり、第1絞り装置と第2絞り装置との間が中間圧状態となり、第2絞り装置と圧縮機との間が低圧状態となり、かつ、蒸発器出口の冷媒が過熱状態となるように第1絞り装置及び第2絞り装置の少なくとも一方が制御され、さらに、運転開始時圧縮機を所定条件の間低速で運転するように制御されると共に、この所定条件の間として、圧縮機の吐出圧力が、過渡的状態の運転が完了したことを検知できるように予め設定された所定圧力に上昇するまでの間を採用することを特徴とする冷凍装置。 Rotational speed variable compressor, high pressure side cooling device for cooling high pressure side gas refrigerant, first throttle device, intermediate receiver for adjusting refrigerant quantity in refrigeration cycle, second throttle device, evaporator using outside air as heat source And a refrigeration cycle apparatus in which gas-liquid separators are sequentially connected in series to form a closed circuit. The refrigeration cycle apparatus is operated in a supercritical refrigeration cycle during normal operation. Between the throttle device is in a high pressure state, between the first throttle device and the second throttle device is in an intermediate pressure state, between the second throttle device and the compressor is in a low pressure state, and the refrigerant at the outlet of the evaporator At least one of the first throttle device and the second throttle device is controlled so as to be in an overheated state, and is further controlled to operate the compressor at a low speed for a predetermined condition at the start of operation . As the compressor discharges Pressure, refrigeration apparatus characterized by employing a until the rise preset predetermined pressure to allow detect that the operation of the transient state is complete. 回転数可変型圧縮機、高圧側ガス冷媒を冷却する高圧側冷却装置、第1絞り装置、冷凍サイクル内の冷媒量を調整するための中間レシーバ、第2絞り装置、外気を熱源とする蒸発器、気液分離器を順次直列に接続して閉回路を形成した冷凍サイクル装置を備え、この冷凍サイクル装置は、通常運転時には超臨界冷凍サイクルで運転されるものであって、圧縮機と第1絞り装置との間が高圧状態となり、第1絞り装置と第2絞り装置との間が中間圧状態となり、第2絞り装置と圧縮機との間が低圧状態となり、かつ、蒸発器出口の冷媒が過熱状態となるように第1絞り装置及び第2絞り装置の少なくとも一方が制御され、さらに、運転開始時圧縮機を所定条件の間低速で運転するように制御されると共に、この冷凍サイクル装置は、前記所定条件の間として、圧縮機の吐出ガス温度が、過渡的状態の運転が完了したことを検知できるように予め設定された所定温度に上昇するまでの間を採用することを特徴とする冷凍装置。
Rotational speed variable compressor, high pressure side cooling device for cooling high pressure side gas refrigerant, first throttle device, intermediate receiver for adjusting refrigerant quantity in refrigeration cycle, second throttle device, evaporator using outside air as heat source And a refrigeration cycle apparatus in which gas-liquid separators are sequentially connected in series to form a closed circuit. The refrigeration cycle apparatus is operated in a supercritical refrigeration cycle during normal operation. Between the throttle device is in a high pressure state, between the first throttle device and the second throttle device is in an intermediate pressure state, between the second throttle device and the compressor is in a low pressure state, and the refrigerant at the outlet of the evaporator At least one of the first throttle device and the second throttle device is controlled such that the compressor is in an overheated state, and is further controlled to operate the compressor at a low speed for a predetermined condition at the start of operation. Is the prescribed provision As for the discharge gas temperature of the compressor, the refrigeration apparatus characterized by employing a until the rise preset predetermined temperature can be detected that the operation of the transient state is complete.

前記冷凍サイクル装置は、前記気液分離器が蒸発器の冷媒出口の上方に配置され、気液分離器で分離された液冷媒が蒸発器と気液分離器とをつなぐ配管を介して蒸発器へ重力で戻るように構成されてなることを特徴とする請求項1、2の何れか1項に記載の冷凍装置。

In the refrigeration cycle apparatus, the gas-liquid separator is disposed above the refrigerant outlet of the evaporator, and the liquid refrigerant separated by the gas-liquid separator is connected to the evaporator via a pipe connecting the evaporator and the gas-liquid separator. The refrigeration apparatus according to claim 1, wherein the refrigeration apparatus is configured to return to gravity by gravity.

前記冷凍サイクル装置は、前記気液分離器が外気と熱交換する熱交換器として作用することを特徴とする請求項3記載の冷凍装置。

4. The refrigeration apparatus according to claim 3 , wherein the refrigeration cycle apparatus acts as a heat exchanger in which the gas-liquid separator exchanges heat with outside air.

前記冷凍サイクル装置は、蒸発器と気液分離器とをつなぐ配管の断面積が圧縮機吸入配管の断面積より大きく構成されていることを特徴とする請求項4記載の冷凍装置。

The refrigeration cycle apparatus, a refrigeration apparatus of claim 4, wherein the cross-sectional area of the pipe connecting the evaporator and the gas-liquid separator is configured larger than the cross-sectional area of the compressor intake piping.

前記冷凍サイクル装置は、除霜運転を停止したときに一時的に圧縮機を停止させ、所定時間経過後に運転を再開するように制御されることを特徴とする請求項3〜6の何れか1項記載の冷凍装置。

The refrigeration cycle apparatus, the defrosting operation is stopped temporarily compressor when stopped, any one of claims 3-6, characterized in that it is controlled to resume operation after a predetermined time has elapsed 1 The refrigeration apparatus according to item.

前記冷凍サイクル装置は、高圧ガス冷却器、第1絞り装置間の高圧冷媒と蒸発器、気液分離器間の低圧冷媒とを熱交換する熱交換器を備えていることを特徴とする請求項1〜6の何れか1項に記載の冷凍装置。

The refrigeration cycle apparatus claims, characterized in that it comprises a high-pressure gas cooler, evaporator and high-pressure refrigerant between the first expansion device, a heat exchanger for exchanging heat between low pressure refrigerant among the gas-liquid separator The refrigeration apparatus according to any one of 1 to 6 .
JP2004018097A 2004-01-27 2004-01-27 Refrigeration equipment Expired - Fee Related JP4363997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004018097A JP4363997B2 (en) 2004-01-27 2004-01-27 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004018097A JP4363997B2 (en) 2004-01-27 2004-01-27 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2005214443A JP2005214443A (en) 2005-08-11
JP4363997B2 true JP4363997B2 (en) 2009-11-11

Family

ID=34902703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004018097A Expired - Fee Related JP4363997B2 (en) 2004-01-27 2004-01-27 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP4363997B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005214444A (en) * 2004-01-27 2005-08-11 Sanyo Electric Co Ltd Refrigerator
JP2007139347A (en) * 2005-11-21 2007-06-07 Daikin Ind Ltd Refrigerating unit and its construction method
JP2007139346A (en) * 2005-11-21 2007-06-07 Daikin Ind Ltd Refrigeration unit and its constructing method
JP4897284B2 (en) * 2005-12-13 2012-03-14 サンデン株式会社 Refrigeration cycle
JP2007263432A (en) * 2006-03-28 2007-10-11 Sanyo Electric Co Ltd Refrigerant cycle device
JP5324749B2 (en) * 2006-09-11 2013-10-23 ダイキン工業株式会社 Refrigeration equipment
JP5145674B2 (en) 2006-09-11 2013-02-20 ダイキン工業株式会社 Refrigeration equipment
JP4973078B2 (en) * 2006-09-11 2012-07-11 ダイキン工業株式会社 Refrigeration equipment
US20110174014A1 (en) * 2008-10-01 2011-07-21 Carrier Corporation Liquid vapor separation in transcritical refrigerant cycle
JP2010133656A (en) * 2008-12-05 2010-06-17 Sharp Corp Indoor unit of air conditioner
EP2417406B1 (en) * 2009-04-09 2019-03-06 Carrier Corporation Refrigerant vapor compression system with hot gas bypass
CN102713474B (en) * 2009-10-14 2016-05-11 开利公司 There is the receiver of flow measurement device
JP5558132B2 (en) * 2010-02-16 2014-07-23 三菱電機株式会社 Refrigerator and refrigeration apparatus to which the refrigerator is connected
JP2012026645A (en) * 2010-07-23 2012-02-09 Sanyo Electric Co Ltd Refrigerating device, and auger type ice making machine and showcase using the same
JP5912866B2 (en) * 2012-05-29 2016-04-27 中野冷機株式会社 Refrigerated / refrigerated showcase
JP5959373B2 (en) * 2012-08-29 2016-08-02 三菱電機株式会社 Refrigeration equipment
CN113324312B (en) * 2020-02-28 2022-10-28 青岛海尔空调电子有限公司 Control method of air conditioning unit and air conditioning unit
CN111412674A (en) * 2020-04-01 2020-07-14 南京东达智慧环境能源研究院有限公司 Total-heat frostless air source heat pump system based on two-stage centrifugal compressor

Also Published As

Publication number Publication date
JP2005214443A (en) 2005-08-11

Similar Documents

Publication Publication Date Title
JP4363997B2 (en) Refrigeration equipment
EP2565555B1 (en) Refrigeration cycle apparatus
JP6292480B2 (en) Refrigeration equipment
CN101688698B (en) Refrigerant vapor compression system with flash tank economizer
EP2765369B1 (en) Refrigeration cycle device
US20080047284A1 (en) Flash tank design and control for heat pumps
JP2007278686A (en) Heat pump water heater
US9222706B2 (en) Refrigeration cycle apparatus and operating method of same
WO2013065233A1 (en) Refrigeration cycle apparatus and air conditioner provided with same
JP6057871B2 (en) Heat pump system and heat pump type water heater
JP2005214444A (en) Refrigerator
JP2005214575A (en) Refrigerator
JP2012145251A (en) Heat pump device
US20100326125A1 (en) Refrigeration system
KR100644407B1 (en) Air conditioning system with co2refrigerant
JP2015218911A (en) Refrigeration device
JP3724239B2 (en) Cooling system
JP2005214442A (en) Refrigerator
JP5163161B2 (en) Auxiliary heating unit and air conditioner
JP2002277083A (en) Refrigerator
JP2008096072A (en) Refrigerating cycle device
JP2017161159A (en) Outdoor uni of air conditioner
JP2009293887A (en) Refrigerating device
US20240027077A1 (en) Hybrid multi-air conditioning system and method for controlling a hybrid multi-air conditioning system
JP2004205142A (en) Refrigerating and air conditioning apparatus and its operation control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090428

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees