JP2007263432A - Refrigerant cycle device - Google Patents

Refrigerant cycle device Download PDF

Info

Publication number
JP2007263432A
JP2007263432A JP2006087833A JP2006087833A JP2007263432A JP 2007263432 A JP2007263432 A JP 2007263432A JP 2006087833 A JP2006087833 A JP 2006087833A JP 2006087833 A JP2006087833 A JP 2006087833A JP 2007263432 A JP2007263432 A JP 2007263432A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
oil
compressor
refrigerant cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006087833A
Other languages
Japanese (ja)
Inventor
Haruhisa Yamazaki
晴久 山崎
Setsu Hasegawa
説 長谷川
Tetsuya Kato
哲也 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006087833A priority Critical patent/JP2007263432A/en
Publication of JP2007263432A publication Critical patent/JP2007263432A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve heat exchanging capacity by smoothly discharging oil stored in an evaporator, and to solve shortage of oil in a compressor of the refrigerant cycle device comprising the evaporator. <P>SOLUTION: In this refrigerant cycle device 1 having a refrigerant cycle composed of the compressor 10, a radiator 154, an expansion valve 156 (pressure reducing device) and the evaporator 157, the refrigerant flows in from an upper portion of the evaporator 157, and the refrigerant flows out from a lower portion of the evaporator 157. Thus the oil flowing into the evaporator 157 can flow downward. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、コンプレッサ、放熱器、減圧装置、蒸発器などから冷媒サイクルが構成される冷媒サイクル装置に関するものである。   The present invention relates to a refrigerant cycle device in which a refrigerant cycle is constituted by a compressor, a radiator, a decompression device, an evaporator, and the like.

従来この種冷媒サイクル装置は、コンプレッサ、放熱器、膨張弁やキャピラリチューブなどの減圧装置、蒸発器等を順次環状に配管接続して冷媒サイクルが構成されている。そして、コンプレッサにて圧縮された冷媒ガスが放熱器にて放熱し、減圧装置にて減圧された後、蒸発器にて周囲と熱交換して蒸発する。このとき、冷媒は周囲から吸熱することにより冷却作用を発揮するものであった(例えば、特許文献1)。
特公平7−18602号公報
Conventionally, this type of refrigerant cycle apparatus is configured by connecting a compressor, a radiator, a decompression device such as an expansion valve and a capillary tube, an evaporator, and the like sequentially in a circular pipe connection. Then, the refrigerant gas compressed by the compressor dissipates heat by the radiator and is depressurized by the decompressor, and then evaporates by exchanging heat with the surroundings by the evaporator. At this time, the refrigerant exhibited a cooling action by absorbing heat from the surroundings (for example, Patent Document 1).
Japanese Patent Publication No. 7-18602

このような冷媒サイクル装置では、コンプレッサから吐出されたオイルが放熱器や蒸発器などの熱交換器の冷媒経路中に溜まり、当該オイルが熱交換器における熱交換性能を変化させてしまう不都合が生じていた。特に、従来の蒸発器は、蒸発器の下部に冷媒入口を形成し、上部に冷媒出口を形成して、蒸発器内に流入した冷媒及びオイルを下から上に流す仕様とされていたため、オイルが非常に流れ難くかった。これによって、蒸発器の冷媒通路を流れる冷媒の流速が遅くなり、熱交換性能が低下する問題が生じていた。更に、蒸発器に溜まったオイルはコンプレッサに戻らないので、コンプレッサ内のオイル量が不足して摺動性能の悪化を招いていた。   In such a refrigerant cycle device, the oil discharged from the compressor accumulates in the refrigerant path of a heat exchanger such as a radiator or an evaporator, and the oil causes a disadvantage that the heat exchange performance in the heat exchanger is changed. It was. In particular, the conventional evaporator has a specification in which a refrigerant inlet is formed in the lower part of the evaporator and a refrigerant outlet is formed in the upper part so that the refrigerant and oil that have flowed into the evaporator flow from the bottom to the top. Was very difficult to flow. As a result, the flow rate of the refrigerant flowing through the refrigerant passage of the evaporator is slowed, resulting in a problem that the heat exchange performance is deteriorated. Furthermore, since the oil accumulated in the evaporator does not return to the compressor, the amount of oil in the compressor is insufficient and the sliding performance is deteriorated.

また、近年この種冷媒サイクル装置では、冷媒として自然冷媒である二酸化炭素を使用する試みがなされているが、係る二酸化炭素冷媒は他の冷媒と比べて冷媒の流速が遅いため、他の冷媒を使用した冷媒サイクル装置よりも上述した蒸発器のオイル溜まりにより熱交換性能の悪化はより深刻な問題となっていた。   In recent years, in this type of refrigerant cycle device, an attempt has been made to use carbon dioxide, which is a natural refrigerant, as a refrigerant. However, since the carbon dioxide refrigerant has a slower flow rate than other refrigerants, other refrigerants are used. The deterioration of heat exchange performance has become a more serious problem due to the oil reservoir in the evaporator described above than the refrigerant cycle apparatus used.

本発明は、係る従来の技術的問題を解決するために成されたものであり、蒸発器に溜まったオイルを円滑に排出して、熱交換能力の改善を図ると共に、当該蒸発器を備えた冷媒サイクル装置のコンプレッサのオイル不足を解消することを目的とする。   The present invention has been made to solve the conventional technical problems, and smoothly drains the oil accumulated in the evaporator to improve the heat exchanging ability and includes the evaporator. It aims at solving the oil shortage of the compressor of a refrigerant cycle device.

本発明の冷媒サイクル装置は、コンプレッサ、放熱器、減圧装置、蒸発器などから冷媒サイクルが構成されたものであって、蒸発器の上部から冷媒を流入させ、当該蒸発器の下部から冷媒を流出させることを特徴とする。   The refrigerant cycle device of the present invention is configured by a refrigerant cycle including a compressor, a radiator, a decompression device, an evaporator, and the like. The refrigerant is allowed to flow in from the upper part of the evaporator, and the refrigerant is discharged from the lower part of the evaporator. It is characterized by making it.

請求項2の発明の冷媒サイクル装置は、上記発明において冷媒として二酸化炭素を所定量封入したことを特徴とする。   A refrigerant cycle device according to a second aspect of the present invention is characterized in that a predetermined amount of carbon dioxide is sealed as a refrigerant in the above invention.

本発明によれば、コンプレッサ、放熱器、減圧装置、蒸発器などから冷媒サイクルが構成された冷媒サイクル装置において、蒸発器の上部から冷媒を流入させ、蒸発器の下部から冷媒を流出させるので、当該蒸発器内に流入したオイルを上から下に流すことができるようになる。これにより、オイルを重力で流下させて、蒸発器内に溜まろうとするオイルを流れ易くすることができる。   According to the present invention, in the refrigerant cycle device in which the refrigerant cycle is configured from a compressor, a radiator, a decompression device, an evaporator, and the like, the refrigerant flows in from the upper part of the evaporator, and the refrigerant flows out from the lower part of the evaporator. The oil that has flowed into the evaporator can flow from top to bottom. Thereby, oil can be made to flow down by gravity and the oil which is going to accumulate in an evaporator can be made easy to flow.

これにより、オイルを蒸発器から円滑に排出させることが可能となるので、蒸発器の熱交換能力の改善を図ることができる。また、蒸発器から排出されたオイルはコンプレッサに帰還するため、コンプレッサのオイル不足も解消することができる。   As a result, oil can be smoothly discharged from the evaporator, so that the heat exchange capability of the evaporator can be improved. Further, since the oil discharged from the evaporator returns to the compressor, the shortage of oil in the compressor can be solved.

特に、上記各発明を請求項2の発明の如く高低圧差の大きい二酸化炭素冷媒が所定量封入された冷媒サイクル装置に適用することで、蒸発器における熱交換性能が著しく悪化する不都合を解消することが可能となり、二酸化炭素冷媒を用いた冷媒サイクル装置の性能を向上させることができる。   In particular, by applying each of the above inventions to a refrigerant cycle device in which a predetermined amount of carbon dioxide refrigerant having a large high-low pressure difference is sealed as in the invention of claim 2, the disadvantage that the heat exchange performance in the evaporator is remarkably deteriorated is eliminated. Thus, the performance of the refrigerant cycle device using the carbon dioxide refrigerant can be improved.

本発明は、コンプレッサから流出したオイルが蒸発器内に溜まり、当該蒸発器内における冷媒の円滑な熱交換を阻害する不都合を改善し、且つ、コンプレッサのオイル不足による摺動性の低下を解消するために成されたものである。冷媒サイクル装置の蒸発器におけるオイルの停滞と、コンプレッサのオイル不足を解消するという目的を、蒸発器の上部から冷媒を流入させ、当該蒸発器の下部から冷媒を流出させることにより実現した。   The present invention improves the inconvenience of the oil flowing out from the compressor being accumulated in the evaporator and hindering the smooth heat exchange of the refrigerant in the evaporator, and eliminating the deterioration of the slidability due to the lack of oil in the compressor. It was made for. The purpose of eliminating the stagnation of oil in the evaporator of the refrigerant cycle device and the shortage of oil in the compressor was realized by flowing the refrigerant from the upper part of the evaporator and flowing the refrigerant from the lower part of the evaporator.

以下、図面に基づき本発明の実施形態を詳述する。図1は本発明の一実施例の冷媒サイクル装置の冷媒回路図を示している。図1の冷媒サイクル装置1は、コンプレッサ10、放熱器154、減圧装置としての膨張弁156、及び蒸発器157等を順次環状に配管接続して所定の冷媒回路が構成されている。当該冷媒回路内には冷媒として二酸化炭素(CO2)が所定量封入されている。実施例のコンプレッサ10は、密閉容器12内に駆動要素としての電動要素14と、この電動要素14の回転軸16にて駆動される第1の回転圧縮要素32と第2の回転圧縮要素34とを備えた内部中間圧型の多段(2段)圧縮式ロータリコンプレッサである。そして、冷媒導入管94から吸い込んだ冷媒(CO2)を第1の回転圧縮要素32で圧縮し、この圧縮した中間圧の冷媒ガスを密閉容器12内に吐出した後、冷媒導入管92を介して第2の回転圧縮要素34に吸い込んで圧縮し、冷媒導入管96に吐出する構成とされている。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a refrigerant circuit diagram of a refrigerant cycle device according to an embodiment of the present invention. In the refrigerant cycle apparatus 1 of FIG. 1, a compressor 10, a radiator 154, an expansion valve 156 as a decompression device, an evaporator 157, and the like are sequentially connected in an annular manner to form a predetermined refrigerant circuit. A predetermined amount of carbon dioxide (CO 2 ) is sealed as a refrigerant in the refrigerant circuit. The compressor 10 of the embodiment includes an electric element 14 as a driving element in a sealed container 12, a first rotary compression element 32 and a second rotary compression element 34 that are driven by a rotary shaft 16 of the electric element 14. Is an internal intermediate pressure type multi-stage (two-stage) compression rotary compressor. Then, the refrigerant (CO 2 ) sucked from the refrigerant introduction pipe 94 is compressed by the first rotary compression element 32, and after the compressed intermediate pressure refrigerant gas is discharged into the sealed container 12, the refrigerant is introduced through the refrigerant introduction pipe 92. Thus, the second rotary compression element 34 is sucked and compressed, and discharged to the refrigerant introduction pipe 96.

前記冷媒導入管94はコンプレッサの第1の回転圧縮要素32に冷媒を導入するための冷媒配管であり、当該冷媒導入管94の一端は当該第1の回転圧縮要素32の吸込側に接続され、他端は蒸発器157の冷媒出口157Bに接続されている。   The refrigerant introduction pipe 94 is a refrigerant pipe for introducing refrigerant into the first rotary compression element 32 of the compressor, and one end of the refrigerant introduction pipe 94 is connected to the suction side of the first rotary compression element 32; The other end is connected to the refrigerant outlet 157B of the evaporator 157.

前記冷媒吐出管96は第2の回転圧縮要素34で圧縮された冷媒を放熱器154に吐出させるための冷媒配管であり、この冷媒吐出管96の一端は第2の回転圧縮要素34の吐出側に接続され、他端は放熱器154の入口に接続されている。   The refrigerant discharge pipe 96 is a refrigerant pipe for discharging the refrigerant compressed by the second rotary compression element 34 to the radiator 154, and one end of the refrigerant discharge pipe 96 is on the discharge side of the second rotary compression element 34. And the other end is connected to the inlet of the radiator 154.

また、冷媒導入管92は密閉容器12内と第2の回転圧縮要素34の吸込側とを接続する冷媒配管であり、この冷媒導入管92は、コンプレッサ10の外部の放熱器154を通過するように配設されている。即ち、コンプレッサ10の第1の回転圧縮要素32にて圧縮され、密閉容器12内に吐出された中間圧の冷媒は、冷媒導入管92に流入し、放熱器154を通過する過程で、ファン111の通風を受けて放熱した後、第2の回転圧縮要素34に吸い込まれるものとされている。   The refrigerant introduction pipe 92 is a refrigerant pipe connecting the inside of the sealed container 12 and the suction side of the second rotary compression element 34, and this refrigerant introduction pipe 92 passes through the radiator 154 outside the compressor 10. It is arranged. That is, the intermediate-pressure refrigerant compressed by the first rotary compression element 32 of the compressor 10 and discharged into the sealed container 12 flows into the refrigerant introduction pipe 92 and passes through the radiator 154 in the process of passing through the fan 111. After being radiated and receiving heat, the second rotary compression element 34 is sucked.

そして、当該コンプレッサ10の密閉容器12内底部には、オイル溜めが構成されており、当該オイル溜め内に収納されたオイルが回転軸16の下端に取り付けられた図示しないオイルポンプにより第1及び第2の回転圧縮要素32、34の摺動部等に供給されて潤滑とシールを行っている。尚、本実施例では冷媒として高低圧差の大きい二酸化炭素を使用する関係上、オイルは耐久性を考慮して従来のHFC系冷媒で使用するオイルよりも高粘度のものを使用する。例えば、本実施例では、粘度が+40℃で60cst以上のPAG(ポリアルキルグリコール)を使用するものとする。尚、実施例の冷媒サイクル装置1に使用するオイルは、上記PAGに限らず、その他の高粘度のオイルであっても構わない。また、ここで使用される高粘度のオイルとは、流動点がー40℃以上、粘度が+40℃で40乃至120cstを満たすものであり、好ましくは、+40℃で60乃至80cstの粘度のオイルを使用こととする。   An oil sump is formed at the inner bottom of the sealed container 12 of the compressor 10, and the oil stored in the oil sump is first and second by an oil pump (not shown) attached to the lower end of the rotating shaft 16. 2 is supplied to the sliding portions of the rotary compression elements 32 and 34 to perform lubrication and sealing. In this embodiment, since carbon dioxide having a large difference in high and low pressure is used as the refrigerant, oil having higher viscosity than oil used in the conventional HFC refrigerant is used in consideration of durability. For example, in this embodiment, PAG (polyalkyl glycol) having a viscosity of + 60 ° C. or more at + 40 ° C. is used. In addition, the oil used for the refrigerant cycle apparatus 1 of the embodiment is not limited to the PAG, and may be other high viscosity oil. The high-viscosity oil used here has a pour point of −40 ° C. or higher and a viscosity of 40 to 120 cst at + 40 ° C., preferably an oil having a viscosity of 60 to 80 cst at + 40 ° C. I will use it.

一方、前記放熱器154の出口は、減圧装置として膨張弁156に至る冷媒配管と接続されている。尚、本実施例の冷媒サイクル装置1では、減圧装置として膨張弁を用いるものとしたが、これ以外に、キャピラリチューブやその他、冷媒を減圧することができるものであればどのような装置を用いても構わない。   On the other hand, the outlet of the radiator 154 is connected to a refrigerant pipe reaching the expansion valve 156 as a decompression device. In the refrigerant cycle device 1 of the present embodiment, an expansion valve is used as the pressure reducing device. However, any other device can be used as long as it can depressurize the refrigerant, such as a capillary tube. It doesn't matter.

他方、膨張弁156の出口に接続された配管156Aは蒸発器157の冷媒入口157Aに接続され、蒸発器157の冷媒出口157Bは前記冷媒導入管94と接続されている。   On the other hand, the pipe 156A connected to the outlet of the expansion valve 156 is connected to the refrigerant inlet 157A of the evaporator 157, and the refrigerant outlet 157B of the evaporator 157 is connected to the refrigerant introduction pipe 94.

ここで、上記蒸発器157について図2に示す蒸発器157の正面図を用いて説明する。本実施例の蒸発器157は、所謂フィンアンドチューブ型の熱交換器であり、一対の管板121、121と、両管板121、121間に所定間隔を存して複数配設されたアルミ薄板から成る熱交換用のフィン122・・と、これら管板121、121及びフィン122・・をそれぞれ貫通する冷媒配管101から構成されている。当該冷媒配管101は、蒸発器157一端の上部に形成された冷媒入口157Aから蒸発器157他端の下部に形成された冷媒出口157Bに渡って、前記両管板121、121間に蛇行状に配設されている。これにより、当該蒸発器157において、冷媒は上部に形成された冷媒入口157Aから流入し、管板121、121間に形成された蛇行状の通路を通過した後、下部に形成された冷媒出口157Bから当該蒸発器157を流出することになる。   Here, the evaporator 157 will be described with reference to a front view of the evaporator 157 shown in FIG. The evaporator 157 of the present embodiment is a so-called fin-and-tube heat exchanger, and is a pair of tube plates 121 and 121 and a plurality of aluminum plates disposed at predetermined intervals between the tube plates 121 and 121. The heat exchange fins 122 are made of thin plates, and the refrigerant pipes 101 pass through the tube plates 121 and 121 and the fins 122, respectively. The refrigerant pipe 101 extends in a meandering manner between the tube plates 121 and 121 from the refrigerant inlet 157A formed at the upper end of the evaporator 157 to the refrigerant outlet 157B formed at the lower end of the other end of the evaporator 157. It is arranged. Thus, in the evaporator 157, the refrigerant flows in from the refrigerant inlet 157A formed in the upper part, passes through the meandering passage formed between the tube plates 121 and 121, and then formed in the lower part of the refrigerant outlet 157B. From the evaporator 157.

このように蒸発器157の上部から冷媒を流入させ、当該蒸発器157の下部から冷媒を流出させることで、冷媒配管101は蒸発器157内に上方から下方に渡って配置されるので、当該蒸発器157の冷媒配管101内に流入したオイルを上から下に流すことができるようになる。これにより、冷媒配管101内に溜まろうとするオイルが蒸発器157から流出し易くなる。   Since the refrigerant flows in from the upper part of the evaporator 157 and flows out from the lower part of the evaporator 157 in this way, the refrigerant pipe 101 is arranged in the evaporator 157 from the upper side to the lower side. The oil that has flowed into the refrigerant pipe 101 of the vessel 157 can flow from the top to the bottom. As a result, oil that tends to accumulate in the refrigerant pipe 101 easily flows out of the evaporator 157.

以上の構成で、次に本発明の冷媒サイクル装置1の動作を説明する。図示しない制御装置からコンプレッサ10の電動要素14に通電されると、当該電動要素14が起動する。これにより、コンプレッサ10の第1の回転圧縮要素32に低温低圧の冷媒ガスが吸い込まれて圧縮され、中間圧となり、密閉容器12内に吐出される。密閉容器12内に吐出された中間圧の冷媒ガスは冷媒導入管92に入り、当該冷媒導入管92が放熱器154を通過する過程で放熱器154のファン111により空冷方式で放熱する。   Next, the operation of the refrigerant cycle device 1 of the present invention will be described with the above configuration. When the electric element 14 of the compressor 10 is energized from a control device (not shown), the electric element 14 is activated. As a result, the low-temperature and low-pressure refrigerant gas is sucked into the first rotary compression element 32 of the compressor 10 and compressed, becomes an intermediate pressure, and is discharged into the sealed container 12. The intermediate-pressure refrigerant gas discharged into the hermetic container 12 enters the refrigerant introduction pipe 92 and radiates heat by the fan 111 of the radiator 154 in an air-cooling manner while the refrigerant introduction pipe 92 passes through the radiator 154.

そして、空気と熱交換して冷却された中間圧の冷媒ガスは冷媒導入管92から第2の回転圧縮要素34に吸入され、2段目の圧縮が行われて高温高圧の冷媒ガスとなり、冷媒吐出管96よりコンプレッサ10の外部に吐出される。このとき、後述するように当該冷媒ガスと共に第2の回転圧縮要素34の摺動部に供給されたオイルも吐出される。コンプレッサ10から吐出された冷媒ガス及びオイルは冷媒吐出管96から放熱器154内に流入し、そこでファン111により空冷方式で放熱した後、放熱器154から出て膨張弁156にて減圧された後、配管156Aを経て蒸発器157一端の上部に形成された冷媒入口157Aから当該蒸発器157の冷媒配管101内に流入する。   Then, the intermediate-pressure refrigerant gas cooled by exchanging heat with air is sucked into the second rotary compression element 34 from the refrigerant introduction pipe 92 and is compressed in the second stage to become a high-temperature and high-pressure refrigerant gas. It is discharged from the discharge pipe 96 to the outside of the compressor 10. At this time, as will be described later, oil supplied to the sliding portion of the second rotary compression element 34 is also discharged together with the refrigerant gas. Refrigerant gas and oil discharged from the compressor 10 flow into the radiator 154 from the refrigerant discharge pipe 96, where they are radiated by the fan 111 in an air-cooling manner, and then discharged from the radiator 154 and decompressed by the expansion valve 156. Then, the refrigerant flows into the refrigerant pipe 101 of the evaporator 157 from the refrigerant inlet 157A formed at the upper part of one end of the evaporator 157 via the pipe 156A.

そして、蒸発器157に流入した冷媒は冷媒配管101内の冷媒経路を下方に向かって蛇行状に流れる過程で蒸発し、空気から吸熱することにより冷却作用を発揮する。このように蒸発器157の冷媒配管101を通過する過程で蒸発した冷媒は、その後、蒸発器157他端の下部に形成された冷媒出口157Bから出て冷媒導入管94に入り、コンプレッサ10の第1の回転圧縮要素32に吸い込まれるサイクルを繰り返す。   Then, the refrigerant that has flowed into the evaporator 157 evaporates in the process of meandering downward in the refrigerant path in the refrigerant pipe 101 and exhibits a cooling action by absorbing heat from the air. Thus, the refrigerant evaporated in the process of passing through the refrigerant pipe 101 of the evaporator 157 then exits from the refrigerant outlet 157B formed at the lower part of the other end of the evaporator 157 and enters the refrigerant introduction pipe 94 to enter the refrigerant 10 The cycle of being sucked into one rotary compression element 32 is repeated.

ここで、コンプレッサ10の第1及び第2の回転圧縮要素32、34の摺動部にはオイルが供給され、潤滑とシールを行う関係上、当該各回転圧縮要素32、34に供給されたオイルは、コンプレッサ10外部に吐出されることとなるが、当該オイルが冷媒経路中の放熱器154や蒸発器157等の熱交換器内に溜まる場合がある。特に、温度が低くなる蒸発器157では、冷媒配管101内のオイルは低粘度となり、オイルが溜まり易い状況となる。   Here, oil is supplied to the sliding portions of the first and second rotary compression elements 32 and 34 of the compressor 10, and the oil supplied to the rotary compression elements 32 and 34 in relation to lubrication and sealing. Is discharged to the outside of the compressor 10, but the oil may accumulate in a heat exchanger such as the radiator 154 or the evaporator 157 in the refrigerant path. In particular, in the evaporator 157 where the temperature is low, the oil in the refrigerant pipe 101 has a low viscosity, and the oil tends to accumulate.

更に、蒸発器では通常冷媒を蒸発させながら流すため、従来の蒸発器は、蒸発器の下部に冷媒入口を形成し、上部に冷媒出口を形成していた。即ち、冷媒配管は蒸発器内に下方から上方に渡って配設されることとなる。これによって、蒸発器内に流入した冷媒及びオイルを下から上に流す仕様とされていたため、オイルが非常に流れ難くかった。このように、蒸発器の冷媒配管内にオイルが溜まると当該オイルにより冷媒配管内の冷媒通路を流れる冷媒の流速が落ち、熱伝達率も悪化してしまう。   Furthermore, since the evaporator normally flows while evaporating the refrigerant, the conventional evaporator has a refrigerant inlet formed in the lower part of the evaporator and a refrigerant outlet formed in the upper part. That is, the refrigerant pipe is disposed in the evaporator from the lower side to the upper side. As a result, the specification was such that the refrigerant and oil that flowed into the evaporator flowed from the bottom to the top, so that the oil was very difficult to flow. Thus, when oil accumulates in the refrigerant piping of the evaporator, the flow rate of the refrigerant flowing through the refrigerant passage in the refrigerant piping is lowered by the oil, and the heat transfer coefficient is also deteriorated.

特に、冷媒として二酸化炭素を使用した場合には、当該二酸化炭素が高低圧差の大きい冷媒であり、高圧側の圧力が他の冷媒と比較して著しく高く成る関係上、耐久性を考慮して、高粘度のオイルが使用されることと、二酸化炭素冷媒は他の冷媒と比べて冷媒密度が高いため、流速が遅いことから、他の冷媒を使用した冷媒サイクル装置より熱交換器のオイル溜まりによる熱交換性能の悪化はより深刻であった。   In particular, when carbon dioxide is used as a refrigerant, the carbon dioxide is a refrigerant with a large difference in high and low pressure, and the pressure on the high pressure side is significantly higher than other refrigerants, considering durability, Due to the fact that high viscosity oil is used and the density of carbon dioxide refrigerant is higher than that of other refrigerants, the flow rate is slower, so it is more dependent on the oil pool in the heat exchanger than the refrigerant cycle device using other refrigerants. The deterioration of heat exchange performance was more serious.

これに対して、本発明では蒸発器157の冷媒入口157Aを蒸発器157の一端上部に形成し、冷媒出口157Bを他端下部に形成することにより、蒸発器157の上部から冷媒を流入させ、蒸発器157の下部から冷媒を流出させるので、当該蒸発器157内に流入したオイルを上から下に流すことができるようになる。これにより、冷媒配管101内のオイルを重力で流下させて、蒸発器157内に溜まろうとするオイルを流れ易くすることができる。従って、冷媒配管101内にオイルが溜まり難くなり、蒸発器157から円滑に排出させることができるようになる。   On the other hand, in the present invention, the refrigerant inlet 157A of the evaporator 157 is formed at one upper end of the evaporator 157, and the refrigerant outlet 157B is formed at the lower end of the other end so that the refrigerant flows from the upper part of the evaporator 157, Since the refrigerant flows out from the lower portion of the evaporator 157, the oil that has flowed into the evaporator 157 can flow from the top to the bottom. As a result, the oil in the refrigerant pipe 101 can be caused to flow down by gravity, and the oil that tends to accumulate in the evaporator 157 can be made to flow easily. Accordingly, the oil does not easily accumulate in the refrigerant pipe 101, and can be smoothly discharged from the evaporator 157.

このように、蒸発器157の上部から冷媒を流入させ、蒸発器157の下部から冷媒を流出させることで、オイルを蒸発器157から円滑に排出させることができるようになるので、冷媒配管101内を流れる冷媒がオイルにより熱交換を阻害される不都合を回避することができる。これにより、蒸発器157の熱交換性能が改善され、良好な熱交換を行うことができるようになる。   As described above, the refrigerant can be smoothly discharged from the evaporator 157 by flowing the refrigerant from the upper part of the evaporator 157 and flowing the refrigerant from the lower part of the evaporator 157. It is possible to avoid the inconvenience that the refrigerant flowing through hinders heat exchange by oil. Thereby, the heat exchange performance of the evaporator 157 is improved, and good heat exchange can be performed.

更に、蒸発器157からオイルを排出させることにより、当該排出されたオイルは冷媒と共に冷媒出口157Bから出て冷媒導入管94からコンプレッサ10内に円滑に帰還するようになるので、コンプレッサ10がオイル不足に陥る不都合も解消することができる。   Further, by discharging the oil from the evaporator 157, the discharged oil comes out from the refrigerant outlet 157B together with the refrigerant and smoothly returns to the compressor 10 from the refrigerant introduction pipe 94. The inconvenience of falling into can also be eliminated.

以上に詳述した如く、本発明により蒸発器157内に溜まったオイルを円滑に排出して熱交換能力の改善を図ることが可能となると共に、コンプレッサ10のオイル不足を解消することができるようになる。従って、本発明により冷媒サイクル装置1の性能及び信頼性の向上を図ることができるようになる。   As described in detail above, according to the present invention, the oil accumulated in the evaporator 157 can be smoothly discharged to improve the heat exchanging capacity, and the shortage of oil in the compressor 10 can be solved. become. Therefore, the performance and reliability of the refrigerant cycle device 1 can be improved by the present invention.

尚、本実施例では蒸発器157としてフィンアンドチューブ型の熱交換器を用いて説明したが、他の熱交換器、例えば、マイクロチューブ型の熱交換器に本発明を適用しても構わない。   In the present embodiment, the fin-and-tube heat exchanger is used as the evaporator 157, but the present invention may be applied to other heat exchangers, for example, a microtube heat exchanger. .

また、本実施例では、冷媒サイクル装置1の冷媒として二酸化炭素を使用するものとしたが、請求項1の発明はこれに限定されるものでなく、他の冷媒を用いた冷媒サイクル装置にも有効である。   Further, in this embodiment, carbon dioxide is used as the refrigerant of the refrigerant cycle device 1, but the invention of claim 1 is not limited to this, and the refrigerant cycle device using other refrigerants is also used. It is valid.

本発明を適用した実施例の冷媒サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerant cycle device of the example to which the present invention is applied. 図1の蒸発器の正面図である。It is a front view of the evaporator of FIG.

符号の説明Explanation of symbols

1 冷媒サイクル装置
10 コンプレッサ
12 密閉容器
14 電動要素
32 第1の回転圧縮要素
34 第2の回転圧縮要素
92、94 冷媒導入管
96 冷媒吐出管
101 冷媒配管
121 管板
122 フィン
154 放熱器
156 膨張弁
157 蒸発器
DESCRIPTION OF SYMBOLS 1 Refrigerant cycle apparatus 10 Compressor 12 Airtight container 14 Electric element 32 1st rotation compression element 34 2nd rotation compression element 92, 94 Refrigerant introduction pipe 96 Refrigerant discharge pipe 101 Refrigerant piping 121 Tube plate 122 Fin 154 Radiator 156 Expansion valve 157 evaporator

Claims (2)

コンプレッサ、放熱器、減圧装置、蒸発器などから冷媒サイクルが構成された冷媒サイクル装置において、
前記蒸発器の上部から冷媒を流入させ、当該蒸発器の下部から冷媒を流出させることを特徴とする冷媒サイクル装置。
In the refrigerant cycle device in which the refrigerant cycle is configured from a compressor, a radiator, a decompressor, an evaporator, etc.
A refrigerant cycle apparatus, wherein a refrigerant is introduced from an upper part of the evaporator and a refrigerant is caused to flow out from a lower part of the evaporator.
冷媒として二酸化炭素を所定量封入したことを特徴とする請求項1に記載の冷媒サイクル装置。   The refrigerant cycle apparatus according to claim 1, wherein a predetermined amount of carbon dioxide is sealed as a refrigerant.
JP2006087833A 2006-03-28 2006-03-28 Refrigerant cycle device Pending JP2007263432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006087833A JP2007263432A (en) 2006-03-28 2006-03-28 Refrigerant cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006087833A JP2007263432A (en) 2006-03-28 2006-03-28 Refrigerant cycle device

Publications (1)

Publication Number Publication Date
JP2007263432A true JP2007263432A (en) 2007-10-11

Family

ID=38636591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006087833A Pending JP2007263432A (en) 2006-03-28 2006-03-28 Refrigerant cycle device

Country Status (1)

Country Link
JP (1) JP2007263432A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230259A (en) * 2009-03-27 2010-10-14 Sanyo Electric Co Ltd Evaporator and showcase including the evaporator
KR101202257B1 (en) * 2009-12-09 2012-11-16 한라공조주식회사 Refrigerant apparatus of air conditioner for vehicles

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07174439A (en) * 1993-09-30 1995-07-14 Mitsubishi Electric Corp Refrigerating cycle
JPH11181459A (en) * 1997-10-17 1999-07-06 Daikin Ind Ltd Refrigeration air-conditioning system
JP2001153476A (en) * 1999-11-30 2001-06-08 Sanyo Electric Co Ltd Refrigerating plant
JP2001272117A (en) * 2000-03-29 2001-10-05 Mitsubishi Electric Corp Refrigerating and air-conditioning cycle device
JP2004232986A (en) * 2003-01-31 2004-08-19 Sanyo Electric Co Ltd Refrigerator
JP2005214443A (en) * 2004-01-27 2005-08-11 Sanyo Electric Co Ltd Refrigerator
JP2005214444A (en) * 2004-01-27 2005-08-11 Sanyo Electric Co Ltd Refrigerator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07174439A (en) * 1993-09-30 1995-07-14 Mitsubishi Electric Corp Refrigerating cycle
JPH11181459A (en) * 1997-10-17 1999-07-06 Daikin Ind Ltd Refrigeration air-conditioning system
JP2001153476A (en) * 1999-11-30 2001-06-08 Sanyo Electric Co Ltd Refrigerating plant
JP2001272117A (en) * 2000-03-29 2001-10-05 Mitsubishi Electric Corp Refrigerating and air-conditioning cycle device
JP2004232986A (en) * 2003-01-31 2004-08-19 Sanyo Electric Co Ltd Refrigerator
JP2005214443A (en) * 2004-01-27 2005-08-11 Sanyo Electric Co Ltd Refrigerator
JP2005214444A (en) * 2004-01-27 2005-08-11 Sanyo Electric Co Ltd Refrigerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230259A (en) * 2009-03-27 2010-10-14 Sanyo Electric Co Ltd Evaporator and showcase including the evaporator
KR101202257B1 (en) * 2009-12-09 2012-11-16 한라공조주식회사 Refrigerant apparatus of air conditioner for vehicles

Similar Documents

Publication Publication Date Title
US8020405B2 (en) Air conditioning apparatus
JP2006071174A (en) Refrigerating device
JP4049769B2 (en) Refrigerant cycle equipment
JP2008256350A (en) Refrigerant cycle device
JP2005214550A (en) Air conditioner
JP2008002742A (en) Refrigerating device
JP2006226590A (en) Refrigeration cycle device
JP2007263432A (en) Refrigerant cycle device
JP2007248006A (en) Refrigerant cycle device
JP5372901B2 (en) Cooling system for data center
JP2007263433A (en) Refrigerant cycle device and heat exchanger for the same
JP2008116135A (en) Heat exchanger and refrigeration device
JP2015052439A (en) Heat exchanger
JP2007263492A (en) Refrigerant cycle device
JP2017036900A (en) Radiator and super-critical pressure refrigerating-cycle using the radiator
JP2012057849A (en) Heat transfer tube, heat exchanger, and refrigerating cycle device
JP2008122059A (en) Heat exchanger and refrigeration system
JP2007263490A (en) Refrigerant cycle device
JP2007263491A (en) Refrigerant cycle device
JP2005226913A (en) Transient critical refrigerant cycle device
JP4813534B2 (en) Air conditioner
JP2007315639A (en) Evaporator and refrigerating cycle device using the same
JP2007263402A (en) Transient critical refrigerating cycle device
JP2006214610A (en) Refrigerating device
JP2007315638A (en) Refrigeration cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090324

A977 Report on retrieval

Effective date: 20110119

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110413

A131 Notification of reasons for refusal

Effective date: 20110712

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20110805

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120110