JP2006226590A - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
JP2006226590A
JP2006226590A JP2005040143A JP2005040143A JP2006226590A JP 2006226590 A JP2006226590 A JP 2006226590A JP 2005040143 A JP2005040143 A JP 2005040143A JP 2005040143 A JP2005040143 A JP 2005040143A JP 2006226590 A JP2006226590 A JP 2006226590A
Authority
JP
Japan
Prior art keywords
oil
evaporator
refrigerant
refrigeration cycle
refrigerating machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005040143A
Other languages
Japanese (ja)
Inventor
Tetsuya Saito
哲哉 斎藤
Akira Komori
晃 小森
Tomoichiro Tamura
朋一郎 田村
Masaya Honma
雅也 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005040143A priority Critical patent/JP2006226590A/en
Publication of JP2006226590A publication Critical patent/JP2006226590A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent degradation of evaporation performance by refrigerator oil in an evaporator by surely lubricating an expander and a compressor. <P>SOLUTION: A refrigeration cycle is composed by sealing a refrigerant and refrigerator oil in a circuit with the compressor, a radiator, the expander and the evaporator connected in this order; an evaporator body 30 of the evaporator is provided with an entrance header 31 having an oil accumulation part 34 diving a refrigerant passage into a plurality of parts and separating the refrigerator oil 40; an oil feed pipe 35 is mounted in a lower part of the entrance header 31; and the oil feed pipe 35 is made to communicate with an exit header 33. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、冷凍サイクル装置に関し、特に冷媒が膨張する際の膨張エネルギを回収するエネルギ回収手段を備えた冷凍サイクル装置に関する。   The present invention relates to a refrigeration cycle apparatus, and more particularly to a refrigeration cycle apparatus provided with energy recovery means for recovering expansion energy when a refrigerant expands.

冷凍サイクル装置は圧縮機と放熱器と蒸発器とを順に接続して冷媒を封入し、放熱器と蒸発器との間に膨張機構を配置して冷媒を膨張させている。膨張機構としては膨張弁やキャピラリチューブなどが使用されている。一方、冷凍サイクル中の高圧圧力と低圧圧力の差が大きい場合には、上記膨張機構に換えて膨張機を用いて、膨張機における冷媒の膨張エネルギを回転エネルギに変換して電力または動力のかたちで回収し、冷凍サイクル装置の高効率化を図る例が開示されている(例えば、特許文献1参照)。   In the refrigeration cycle apparatus, a compressor, a radiator, and an evaporator are connected in order to enclose a refrigerant, and an expansion mechanism is disposed between the radiator and the evaporator to expand the refrigerant. An expansion valve, a capillary tube, or the like is used as the expansion mechanism. On the other hand, when the difference between the high pressure and the low pressure in the refrigeration cycle is large, an expansion machine is used instead of the expansion mechanism, and the expansion energy of the refrigerant in the expansion machine is converted into rotational energy to generate power or power. In this example, the efficiency of the refrigeration cycle apparatus is improved (see, for example, Patent Document 1).

このような膨張機では軸受などの摺動部を有するため、それらの潤滑が必要となり冷凍サイクル内を循環する冷凍機油を膨張機に供給している。一方、膨張機から吐出された冷凍機油は冷媒とともに蒸発器に流入し、蒸発器での蒸発能力を低下させる。そこで、膨張機から吐出された冷媒と冷凍機油とを油分離器で分離して、冷媒を蒸発器に、冷凍器油を圧縮機に供給する例が開示されている(例えば、特許文献2参照)。
特開2000−329416号公報 特開2003−139420号公報
Since such an expander has sliding parts such as bearings, it is necessary to lubricate them, and refrigeration oil circulating in the refrigeration cycle is supplied to the expander. On the other hand, the refrigerating machine oil discharged from the expander flows into the evaporator together with the refrigerant, and lowers the evaporation capability in the evaporator. Therefore, an example is disclosed in which the refrigerant discharged from the expander and the refrigerating machine oil are separated by an oil separator, and the refrigerant is supplied to the evaporator and the refrigerating machine oil is supplied to the compressor (see, for example, Patent Document 2). ).
JP 2000-329416 A JP 2003-139420 A

しかしながら、従来例のように膨張機の出口に油分離器を別途設ける構成では、冷凍サイクル装置が大型化する。また、油分離器に油が貯留されない場合には、油分離器から圧縮機側にバイパスして設けたバイパス管に大部分の冷媒が流れるため、蒸発器の蒸発性能が著しく低下するといった課題がある。   However, in the configuration in which an oil separator is separately provided at the outlet of the expander as in the conventional example, the refrigeration cycle apparatus is increased in size. In addition, when oil is not stored in the oil separator, most of the refrigerant flows through a bypass pipe provided by bypassing from the oil separator to the compressor side, so that the evaporation performance of the evaporator is significantly reduced. is there.

本発明は、簡単な構成で蒸発器に冷凍機油の流入を防止し、蒸発性能を低下させることがない冷凍サイクル装置を提供することを目的とする。   An object of this invention is to provide the refrigerating-cycle apparatus which prevents inflow of refrigerating machine oil to an evaporator with a simple structure, and does not reduce evaporation performance.

上記の課題を解決するために、本発明の冷凍サイクル装置は、圧縮機と、放熱器と、膨張機と、蒸発器とを順に接続した回路に冷媒と冷凍機油とを封入して冷凍サイクルを構成し、蒸発器には冷媒流路を複数に分割するとともに冷凍機油を分離する入口ヘッダーを設けている。   In order to solve the above-described problems, the refrigeration cycle apparatus of the present invention includes a refrigerant, refrigeration oil, and a refrigeration cycle enclosed in a circuit in which a compressor, a radiator, an expander, and an evaporator are connected in order. In the evaporator, the refrigerant flow path is divided into a plurality and an inlet header for separating the refrigerating machine oil is provided.

このような構成によれば、冷媒を分流するための入口ヘッダーと油分離器を共用した簡単な構成で、蒸発器への冷凍機油の流入を抑制することができ、蒸発器の性能を向上させることができる。特に、冷媒の膨張エネルギを回収するための摺動部などを有する膨張機の冷凍機油による確実な潤滑と高い蒸発器の性能確保とを両立させることができる。   According to such a configuration, it is possible to suppress the inflow of refrigerating machine oil to the evaporator with a simple configuration that shares the inlet header and the oil separator for diverting the refrigerant, thereby improving the performance of the evaporator. be able to. In particular, reliable lubrication with refrigerating machine oil for an expander having a sliding portion for recovering the expansion energy of the refrigerant and ensuring the performance of a high evaporator can be achieved at the same time.

さらに、蒸発器に出口ヘッダーを設けるとともに入口ヘッダーの下部に送油管を設け、送油管を出口ヘッダーに連通させることが望ましい。このような構成によれば、蒸発器の性能を阻害することなく冷凍機油を圧縮機に供給し、さらに冷凍サイクル内を循環させることができる。   Furthermore, it is desirable to provide an outlet header in the evaporator and an oil feeding pipe below the inlet header so that the oil feeding pipe communicates with the outlet header. According to such a configuration, the refrigerating machine oil can be supplied to the compressor without interfering with the performance of the evaporator and further circulated in the refrigerating cycle.

さらに、入口ヘッダーに設けた冷凍機油の液面を検知する液面検知手段と、液面検知手
段により検知された冷凍機油の液面によって送油管の連通を開閉制御する送油管開閉手段とを有することが望ましい。このような構成によれば、冷凍機油の量が少ないときに、大部分の冷媒が送油管に流れてしまうのを防止することができ、蒸発性能の低下を防止することができる。
Furthermore, it has a liquid level detection means for detecting the liquid level of the refrigerating machine oil provided in the inlet header, and an oil supply pipe opening / closing means for controlling the opening and closing of the communication of the oil supply pipe by the liquid level of the refrigerating machine oil detected by the liquid level detection means. It is desirable. According to such a configuration, when the amount of refrigerating machine oil is small, it is possible to prevent most of the refrigerant from flowing into the oil feeding pipe, and it is possible to prevent a decrease in evaporation performance.

さらに、液面検知手段は冷凍機油の比重よりも小さく、液冷媒の比重よりも大きい比重の材料で構成されたフロートであることが望ましい。このような構成によれば、簡単な構成で冷凍機油の液面検知を実現することができる。   Further, it is desirable that the liquid level detecting means is a float made of a material having a specific gravity smaller than the specific gravity of the refrigerating machine oil and larger than the specific gravity of the liquid refrigerant. According to such a configuration, the liquid level detection of the refrigeration oil can be realized with a simple configuration.

さらに、送油管開閉手段がフロートであり、入口ヘッダーにおける冷凍機油の液面が所定液面以下の場合に、フロートにより送油管を閉止することが望ましい。このような構成によれば、簡単な構成でなおかつ確実に冷凍機油の送油管への流入制御が可能となる。   Furthermore, when the oil feed pipe opening / closing means is a float and the liquid level of the refrigerating machine oil at the inlet header is below a predetermined liquid level, it is desirable to close the oil feed pipe with the float. According to such a configuration, the flow control of the refrigerating machine oil to the oil feeding pipe can be reliably performed with a simple configuration.

さらに、冷媒が二酸化炭素であることが望ましい。このような構成によれば、環境に優しく、冷凍機油での潤滑が必要な膨張機での冷媒の膨張エネルギを回収する高効率の冷凍サイクル装置を実現することができる。   Furthermore, it is desirable that the refrigerant is carbon dioxide. According to such a configuration, it is possible to realize a highly efficient refrigeration cycle apparatus that is friendly to the environment and collects the expansion energy of the refrigerant in the expander that requires lubrication with refrigeration oil.

本発明によれば、簡単な構成で蒸発器への冷凍機油の流入を防止でき、蒸発性能を低下させることがない冷凍サイクル装置とすることができる。   ADVANTAGE OF THE INVENTION According to this invention, it can be set as the refrigerating-cycle apparatus which can prevent the inflow of the refrigerating machine oil to an evaporator with simple structure, and does not reduce evaporation performance.

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1の実施の形態)
図2は本発明の第1の実施の形態における冷凍サイクル装置の構成図である。冷凍サイクル装置10は、圧縮機12、放熱器14、膨張機16および蒸発器18を順次直列に接続して冷媒を循環させる冷凍サイクル20を形成している。本発明の実施の形態では冷媒としては二酸化炭素が充填され、さらに、圧縮機12や膨張機16の軸受部やその他の機構部を潤滑する目的の冷凍機油としてはポリアルキレングルコール(以下、PAGと記載)を充填している。
(First embodiment)
FIG. 2 is a configuration diagram of the refrigeration cycle apparatus according to the first embodiment of the present invention. The refrigeration cycle apparatus 10 forms a refrigeration cycle 20 in which a refrigerant is circulated by sequentially connecting a compressor 12, a radiator 14, an expander 16, and an evaporator 18 in series. In the embodiment of the present invention, the refrigerant is filled with carbon dioxide, and the refrigerant oil for the purpose of lubricating the bearings and other mechanisms of the compressor 12 and the expander 16 is polyalkylene glycol (hereinafter referred to as PAG). Is described).

冷凍サイクル装置10において冷媒は矢印Aに示す方向に循環する。圧縮機12において冷媒の二酸化炭素をその臨界点を超える高温、高圧の超臨界状態にまで圧縮し、放熱器14において圧力を保ったまま放熱させることで、その温度が低下する。膨張機16では高圧の冷媒の膨張エネルギを機械エネルギに変換する。具体的には、膨張による容積変化を回転エネルギに変換し、膨張機16に駆動軸22で接続された発電機24によって電力を発生させている。膨張機16の具体例としては、スクロール型やベーンロータリ型などが考えられる。発電機24で発生した電力は図2の破線で示す電力線28を介して圧縮機12や蒸発器18のファン26などの駆動電力として使用することができる。さらに、蒸発器18では膨張機16を通過して低温・低圧となった冷媒が周囲より熱を奪い蒸発して気相となり、圧縮機12に戻る。また、冷凍サイクル20に封入した冷凍機油は冷媒とともに、冷凍サイクル20を循環し、圧縮機12や膨張機16などの機構部を潤滑あるいは冷却する。   In the refrigeration cycle apparatus 10, the refrigerant circulates in the direction indicated by the arrow A. The compressor 12 compresses the carbon dioxide of the refrigerant to a high temperature and high pressure supercritical state exceeding the critical point, and the heat is released in the radiator 14 while maintaining the pressure, thereby lowering the temperature. The expander 16 converts the expansion energy of the high-pressure refrigerant into mechanical energy. Specifically, volume change due to expansion is converted into rotational energy, and electric power is generated by a generator 24 connected to the expander 16 by a drive shaft 22. Specific examples of the expander 16 include a scroll type and a vane rotary type. The electric power generated by the generator 24 can be used as driving electric power for the compressor 12 and the fan 26 of the evaporator 18 through the electric power line 28 shown by the broken line in FIG. Further, in the evaporator 18, the refrigerant that has passed through the expander 16 and has become low temperature and low pressure takes heat from the surroundings and evaporates into a gas phase, and returns to the compressor 12. The refrigerating machine oil enclosed in the refrigerating cycle 20 circulates in the refrigerating cycle 20 together with the refrigerant, and lubricates or cools the mechanical parts such as the compressor 12 and the expander 16.

次に、蒸発器18についてさらに詳しく説明する。図1は本発明の第1の実施の形態における冷凍サイクル装置の蒸発器の構成を示す断面図である。蒸発器本体30は、膨張機16で膨張した気液二相の冷媒が入る入口ヘッダー31と、蒸発器熱交換部32と、入口ヘッダー31の冷媒流路に対向して設けられた出口ヘッダー33とにより構成され、いわゆる1パス回路の蒸発器を構成している。入口ヘッダー31の下部には仕切り部42を介
してオイル貯留部34が設けられ、さらに、オイル貯留部34と出口ヘッダー33とを連通する送油管35が設けられている。また、蒸発器熱交換部32は内部を冷媒が通過する例えば銅管などよりなる複数の冷媒管36と、その冷媒管36の外周部に設けられた拡大伝熱面としてのフィン37より構成され、フィン37の間に外気を流通させ、外気と冷媒との間で熱交換するように構成している。
Next, the evaporator 18 will be described in more detail. FIG. 1 is a cross-sectional view showing the configuration of the evaporator of the refrigeration cycle apparatus according to the first embodiment of the present invention. The evaporator main body 30 includes an inlet header 31 into which the gas-liquid two-phase refrigerant expanded by the expander 16 enters, an evaporator heat exchanging section 32, and an outlet header 33 provided to face the refrigerant flow path of the inlet header 31. And constitutes a so-called one-pass circuit evaporator. An oil reservoir 34 is provided below the inlet header 31 via a partition 42, and an oil feed pipe 35 that connects the oil reservoir 34 and the outlet header 33 is further provided. The evaporator heat exchanging section 32 includes a plurality of refrigerant pipes 36 made of, for example, copper pipes through which the refrigerant passes, and fins 37 as enlarged heat transfer surfaces provided on the outer periphery of the refrigerant pipe 36. The outside air is circulated between the fins 37 so that heat is exchanged between the outside air and the refrigerant.

膨張機16で膨張し、気液二相の状態となった冷媒が入口ヘッダー31に設けられた冷媒入口管38から入口ヘッダー31内に吐出される。冷凍機油のPAGと冷媒の二酸化炭素とは、−50℃以上で二相分離し、−10℃以上ではPAGの方が二酸化炭素より比重が大である。したがって、入口ヘッダー31には気体状態と液体状態の冷媒と、それらの冷媒中に分散した液状態の冷凍機油とが吐出され、冷凍機油40が入口ヘッダー31のオイル貯留部34に貯留される。また、冷媒中の液冷媒のうちの一部がガス冷媒と分離されて冷凍機油40の上部に貯留される。なお、冷媒から冷凍機油を積極的に分離させる方法として、入口ヘッダー31内で比重差を利用して遠心分離させるように、冷媒入口管38の配置や形状、あるいは入り口ヘッダー31の形状などを変えることも可能である。   The refrigerant expanded in the expander 16 and in a gas-liquid two-phase state is discharged into the inlet header 31 from the refrigerant inlet pipe 38 provided in the inlet header 31. The PAG of the refrigerating machine oil and the carbon dioxide of the refrigerant are two-phase separated at −50 ° C. or higher, and the specific gravity of PAG is larger than that of carbon dioxide at −10 ° C. or higher. Therefore, the refrigerant in the gaseous state and the liquid state and the refrigeration oil in the liquid state dispersed in the refrigerant are discharged to the inlet header 31, and the refrigeration oil 40 is stored in the oil storage part 34 of the inlet header 31. Further, a part of the liquid refrigerant in the refrigerant is separated from the gas refrigerant and stored in the upper part of the refrigerating machine oil 40. As a method of actively separating the refrigerating machine oil from the refrigerant, the arrangement and shape of the refrigerant inlet pipe 38 or the shape of the inlet header 31 are changed so that the centrifugal separation is performed using the specific gravity difference in the inlet header 31. It is also possible.

入口ヘッダー31に吐出されて冷凍機油と分離された冷媒は、複数の冷媒管36に分流して、圧力差によって出口ヘッダー33に流れる。冷媒管36を通過する間に、冷媒は外気と熱交換して蒸発し、出口ヘッダー33では気体状態のみの冷媒が再度合流する。合流した冷媒は、出口ヘッダー33の下部に設けられた冷媒出口管41より圧縮機12に吸い込まれる。ここで、冷媒出口管41には送油管35からの冷凍機油40と出口ヘッダー33内の冷媒とが合流して圧縮機12に吸い込まれる。   The refrigerant discharged to the inlet header 31 and separated from the refrigerating machine oil is divided into a plurality of refrigerant pipes 36 and flows to the outlet header 33 due to a pressure difference. While passing through the refrigerant pipe 36, the refrigerant exchanges heat with the outside air and evaporates, and the refrigerant only in the gaseous state joins again at the outlet header 33. The merged refrigerant is sucked into the compressor 12 through a refrigerant outlet pipe 41 provided at the lower part of the outlet header 33. Here, the refrigerant oil 40 from the oil feed pipe 35 and the refrigerant in the outlet header 33 join the refrigerant outlet pipe 41 and are sucked into the compressor 12.

このように本発明の第1の実施の形態によれば、冷媒を分流するための入口ヘッダー31と油分離器であるオイル貯留部34を共用しているため、簡単な構成で蒸発器本体30の冷媒管36への冷凍機油の流入を抑制することができる。そのため、冷媒管36の内壁に冷凍機油の油膜などが形成されることがない。そのため、冷媒管36の伝熱性能を阻害することなく、蒸発器本体30での蒸発性能を向上させることができる。したがって、冷媒として二酸化炭素などを用いて、冷媒の膨張エネルギを回収するための摺動部などを有する膨張機を用いた冷凍サイクル装置でも、圧縮機と膨張機との冷凍機油による確実な潤滑を行い、さらに蒸発器の高い性能を確保することができる。   As described above, according to the first embodiment of the present invention, since the inlet header 31 for diverting the refrigerant and the oil reservoir 34 as an oil separator are shared, the evaporator main body 30 can be configured with a simple configuration. Inflow of the refrigeration oil into the refrigerant pipe 36 can be suppressed. Therefore, an oil film of refrigeration oil or the like is not formed on the inner wall of the refrigerant pipe 36. Therefore, the evaporation performance in the evaporator main body 30 can be improved without hindering the heat transfer performance of the refrigerant pipe 36. Therefore, even in a refrigeration cycle apparatus using an expander using a carbon dioxide or the like as a refrigerant and having a sliding portion for recovering the expansion energy of the refrigerant, reliable lubrication with the compressor oil between the compressor and the expander is possible. And higher performance of the evaporator can be ensured.

(第2の実施の形態)
図3(a)(b)は本発明の第2の実施の形態における冷凍サイクル装置の蒸発器の要部の構成を示す断面図であり、特に入口ヘッダー31のオイル貯留部34近傍を拡大して示す部分断面図である。
(Second Embodiment)
FIGS. 3A and 3B are cross-sectional views showing the configuration of the main part of the evaporator of the refrigeration cycle apparatus according to the second embodiment of the present invention. In particular, the vicinity of the oil reservoir 34 of the inlet header 31 is enlarged. FIG.

図3(a)(b)に示すように、蒸発器本体30の入口ヘッダー31にはオイル貯留部34が設けられ、オイル貯留部34に開口して送油管35が設けられている。また、オイル貯留部34内には冷凍機油40の液面を検知する液面検知手段としてのフロート43が設けられている。フロート43は、冷凍機油40の比重よりも小さく、液冷媒の比重よりも大きい比重の材料で構成されている。また、フロート43は送油管開閉手段としてのフロート支持板44に取り付けられ、フロート支持板44がオイル貯留部34に設けられた案内筒45内を上下移動可能なように構成されている。さらにフロート43の上部にはストッパー46を設け、フロート43の上部位置を規制している。また、案内筒45には送油管35に開口する開口部47が設けられ、フロート支持板44によって開口部47と送油管35との連通が制御できるようにしている。   As shown in FIGS. 3A and 3B, an oil reservoir 34 is provided in the inlet header 31 of the evaporator body 30, and an oil feed pipe 35 is provided in the oil reservoir 34 so as to open. In addition, a float 43 serving as a liquid level detecting means for detecting the liquid level of the refrigerating machine oil 40 is provided in the oil reservoir 34. The float 43 is made of a material having a specific gravity smaller than the specific gravity of the refrigerating machine oil 40 and larger than the specific gravity of the liquid refrigerant. The float 43 is attached to a float support plate 44 serving as an oil feed pipe opening / closing means, and is configured so that the float support plate 44 can move up and down in a guide tube 45 provided in the oil reservoir 34. Further, a stopper 46 is provided on the upper part of the float 43 to regulate the upper position of the float 43. The guide tube 45 is provided with an opening 47 that opens to the oil feed pipe 35, and the float support plate 44 can control the communication between the opening 47 and the oil feed pipe 35.

図3(a)は冷凍機油40の貯留レベルすなわち冷凍機油40が多い場合、図3(b)は貯留レベルが下がって冷凍機油40が少なくなった場合の状態を示す図である。図3(
a)に示すように、冷凍機油40の貯留量が多い場合には、フロート43が上昇するとともにフロート支持板44も上昇し、開口部47と送油管35とが連通して出口ヘッダー33に冷凍機油40が吐出される。一方、図3(b)に示すように、冷凍機油40の貯留量が少なくなるとフロート43とフロート支持板44とが下降して、開口部47と送油管35との連通を閉止し、送油管35からの冷凍機油40の吐出を閉止する。
FIG. 3A is a diagram illustrating a state where the storage level of the refrigerating machine oil 40, that is, the refrigerating machine oil 40 is large, and FIG. FIG.
As shown in a), when the storage amount of the refrigerating machine oil 40 is large, the float 43 rises and the float support plate 44 also rises, and the opening 47 and the oil feeding pipe 35 communicate with each other to freeze the outlet header 33. Machine oil 40 is discharged. On the other hand, as shown in FIG. 3B, when the storage amount of the refrigerating machine oil 40 is reduced, the float 43 and the float support plate 44 are lowered to close the communication between the opening 47 and the oil feed pipe 35, and the oil feed pipe The discharge of the refrigerating machine oil 40 from 35 is closed.

このように、フロート43を冷凍機油40の比重よりも小さく、液冷媒の比重よりも大きい比重の材料で構成して冷凍機油40の液面検知手段とすることによって、入口ヘッダー31に貯留された液冷媒に影響されずに、冷凍機油40の液面を確実に検知することができる。そのため、冷凍機油40の量が少ないときに冷媒が送油管35に流れてしまうのを防止することができ、蒸発性能の低下を防止することができる。   In this way, the float 43 is made of a material having a specific gravity smaller than the specific gravity of the refrigerating machine oil 40 and larger than the specific gravity of the liquid refrigerant, and is used as a liquid level detection means of the refrigerating machine oil 40, so The liquid level of the refrigerating machine oil 40 can be reliably detected without being affected by the liquid refrigerant. Therefore, it is possible to prevent the refrigerant from flowing into the oil feeding pipe 35 when the amount of the refrigerating machine oil 40 is small, and it is possible to prevent a decrease in evaporation performance.

なお、本発明の第2の実施の形態では、フロート43の上昇下降によってフロート43に取り付けたフロート支持板44を上下させて、送油管35への連通を制御する送油管開閉手段としているが、フロート43の位置を電磁気的に検知して送油管35の経路に別途設けた電磁弁などの流路開閉弁を制御してもよい。さらに、液面検知手段としては、光学的な受発信器を設けて検知手段とすることなども可能である。   In the second embodiment of the present invention, the float support plate 44 attached to the float 43 is moved up and down by the rising and lowering of the float 43 so as to control the communication with the oil feed pipe 35. The position of the float 43 may be detected electromagnetically, and a flow path opening / closing valve such as an electromagnetic valve provided separately in the route of the oil feeding pipe 35 may be controlled. Furthermore, as the liquid level detection means, an optical transmitter / receiver may be provided to serve as the detection means.

(第3の実施の形態)
図4は本発明の第3の実施の形態における冷凍サイクル装置の蒸発器の構成を示す断面図である。蒸発器本体50の基本の構成は、図1に示す本発明の第1の実施の形態と同様である。本発明の第1の実施の形態では、冷媒が入口ヘッダーで分流して熱交換した後に、出口ヘッダーで再度合流して蒸発器に流入する、いわゆる1パス回路の蒸発器について述べた。本発明の第3の実施の形態は、冷媒がヘッダー間で往還する、いわゆるマルチパス回路の蒸発器に関する。
(Third embodiment)
FIG. 4 is a sectional view showing the configuration of the evaporator of the refrigeration cycle apparatus in the third embodiment of the present invention. The basic configuration of the evaporator body 50 is the same as that of the first embodiment of the present invention shown in FIG. In the first embodiment of the present invention, a so-called one-pass circuit evaporator is described in which the refrigerant is divided at the inlet header and heat-exchanged, and then merged again at the outlet header and flows into the evaporator. The third embodiment of the present invention relates to a so-called multi-pass circuit evaporator in which refrigerant travels back and forth between headers.

図4に示すように、蒸発器本体50は第1蒸発器51と第2蒸発器52とにより構成されている。第1蒸発器51は第1蒸発器入口ヘッダー53と第1蒸発器出口ヘッダー54と第1蒸発器熱交換部55とにより構成されている。また、第1蒸発器熱交換部55は複数の冷媒管56とその周囲に設けられたフィン57により構成されている。一方、第2蒸発器52は第2蒸発器入口ヘッダー58と第2蒸発器出口ヘッダー59と第2蒸発器熱交換部60とにより構成され、第2蒸発器熱交換部60は複数の冷媒管56とその周囲に設けられたフィン57とにより構成されている。   As shown in FIG. 4, the evaporator body 50 includes a first evaporator 51 and a second evaporator 52. The first evaporator 51 includes a first evaporator inlet header 53, a first evaporator outlet header 54, and a first evaporator heat exchange unit 55. The first evaporator heat exchanging section 55 includes a plurality of refrigerant tubes 56 and fins 57 provided around the refrigerant tubes 56. On the other hand, the second evaporator 52 includes a second evaporator inlet header 58, a second evaporator outlet header 59, and a second evaporator heat exchange unit 60. The second evaporator heat exchange unit 60 includes a plurality of refrigerant pipes. 56 and fins 57 provided around it.

したがって、膨張機からの冷媒は冷媒入口管61から第1蒸発器入口ヘッダー53に入り、第1蒸発器熱交換部55、第1蒸発器出口ヘッダー54、第2蒸発器入口ヘッダー58、第2蒸発器熱交換部60、第2蒸発器出口ヘッダー59の順に経由して、冷媒出口管63から圧縮機に吸い込まれる。したがって、蒸発器本体50の入口ヘッダーは第1蒸発器入口ヘッダー53であり、出口ヘッダーが第2蒸発器出口ヘッダー59となる。なお、第1蒸発器出口ヘッダー54と第2蒸発器入口ヘッダー58とはお互いが仕切られ冷媒連通部62によって連通されている。また、第1蒸発器入口ヘッダー53と第2蒸発器出口ヘッダー59とはお互いが仕切られ、油連通部64によって連通されている。   Therefore, the refrigerant from the expander enters the first evaporator inlet header 53 through the refrigerant inlet pipe 61, and the first evaporator heat exchange section 55, the first evaporator outlet header 54, the second evaporator inlet header 58, the second evaporator. The refrigerant is sucked into the compressor from the refrigerant outlet pipe 63 via the evaporator heat exchange section 60 and the second evaporator outlet header 59 in this order. Therefore, the inlet header of the evaporator body 50 is the first evaporator inlet header 53, and the outlet header is the second evaporator outlet header 59. The first evaporator outlet header 54 and the second evaporator inlet header 58 are partitioned from each other and communicated by the refrigerant communication portion 62. The first evaporator inlet header 53 and the second evaporator outlet header 59 are partitioned from each other and communicated by the oil communication portion 64.

第1蒸発器入口ヘッダー53には、第1の実施の形態と同様に、オイル貯留部65が仕切り部67によって形成され、そのオイル貯留部65の底部に油連通部64が設けられている。第1の実施の形態で述べたのと同様に、第1蒸発器入口ヘッダー53に流入した冷凍機油が混在した冷媒は、第1蒸発器入口ヘッダー53内で冷媒と冷凍機油とに分離され、オイル貯留部65に冷凍機油66が貯留される。オイル貯留部65に貯留された冷凍機油66は、油連通部64から第2蒸発器出口ヘッダー59に落下し、第2蒸発器出口ヘッダー59に設けた冷媒出口管63で冷媒と合流して圧縮機に吸入される。   In the first evaporator inlet header 53, as in the first embodiment, an oil reservoir 65 is formed by a partition portion 67, and an oil communication portion 64 is provided at the bottom of the oil reservoir 65. As described in the first embodiment, the refrigerant mixed with the refrigerating machine oil flowing into the first evaporator inlet header 53 is separated into the refrigerant and the refrigerating machine oil in the first evaporator inlet header 53, Refrigerating machine oil 66 is stored in the oil storage unit 65. The refrigerating machine oil 66 stored in the oil storage section 65 falls from the oil communication section 64 to the second evaporator outlet header 59 and joins and compresses the refrigerant in the refrigerant outlet pipe 63 provided in the second evaporator outlet header 59. Inhaled into the machine.

したがって、このようにマルチパス回路の蒸発器であっても、蒸発器に流入する冷凍機油と冷媒を分離することで、冷凍機油66が蒸発器本体50の冷媒管56に流入することがないため、冷媒管56の伝熱性能を阻害することなく、蒸発器本体50での蒸発性能を向上させることができる。   Therefore, even in the evaporator of the multipath circuit in this way, the refrigerating machine oil 66 does not flow into the refrigerant pipe 56 of the evaporator main body 50 by separating the refrigerating machine oil and the refrigerant flowing into the evaporator. The evaporation performance in the evaporator main body 50 can be improved without hindering the heat transfer performance of the refrigerant pipe 56.

本発明の冷凍サイクル装置は、簡単な構成で蒸発器への冷凍機油の流入を防止でき、蒸発性能を低下させることがないため、空気調和装置、給湯機、冷蔵庫などの用途に適用できる。   The refrigeration cycle apparatus of the present invention can prevent the inflow of refrigeration oil into the evaporator with a simple configuration and does not deteriorate the evaporation performance, so that the refrigeration cycle apparatus can be applied to uses such as an air conditioner, a water heater, and a refrigerator.

本発明の第1の実施の形態における冷凍サイクル装置の蒸発器の構成を示す断面図Sectional drawing which shows the structure of the evaporator of the refrigerating-cycle apparatus in the 1st Embodiment of this invention 本発明の第1の実施の形態における冷凍サイクル装置の構成図The block diagram of the refrigerating-cycle apparatus in the 1st Embodiment of this invention (a)本発明の第2の実施の形態における冷凍サイクル装置の蒸発器の冷凍機油が多い場合の要部の構成を示す断面図(b)本発明の第2の実施の形態における冷凍サイクル装置の蒸発器の冷凍機油が多い場合の要部の構成を示す断面図(A) Sectional drawing which shows the structure of the principal part when there is much refrigeration oil of the evaporator of the refrigerating-cycle apparatus in the 2nd Embodiment of this invention (b) Refrigerating-cycle apparatus in the 2nd Embodiment of this invention Sectional drawing which shows the structure of the principal part when there is much refrigerating machine oil of an evaporator 本発明の第3の実施の形態における冷凍サイクル装置の蒸発器の構成を示す断面図Sectional drawing which shows the structure of the evaporator of the refrigerating-cycle apparatus in the 3rd Embodiment of this invention.

符号の説明Explanation of symbols

10 冷凍サイクル装置
12 圧縮機
14 放熱器
16 膨張機
18 蒸発器
20 冷凍サイクル
22 駆動軸
24 発電機
26 ファン
28 電力線
30,50 蒸発器本体
31 入口ヘッダー
32 蒸発器熱交換部
33 出口ヘッダー
34,65 オイル貯留部
35 送油管
36,56 冷媒管
37,57 フィン
38,61 冷媒入口管
40,66 冷凍機油
41,63 冷媒出口管
42,67 仕切り部
43 フロート
44 フロート支持板
45 案内筒
46 ストッパー
47 開口部
51 第1蒸発器
52 第2蒸発器
53 第1蒸発器入口ヘッダー
54 第1蒸発器出口ヘッダー
55 第1蒸発器熱交換部
58 第2蒸発器入口ヘッダー
59 第2蒸発器出口ヘッダー
60 第2蒸発器熱交換部
62 冷媒連通部
64 油連通部
DESCRIPTION OF SYMBOLS 10 Refrigeration cycle apparatus 12 Compressor 14 Radiator 16 Expander 18 Evaporator 20 Refrigeration cycle 22 Drive shaft 24 Generator 26 Fan 28 Power line 30, 50 Evaporator main body 31 Inlet header 32 Evaporator heat exchange part 33 Outlet header 34, 65 Oil reservoir 35 Oil feed pipe 36, 56 Refrigerant pipe 37, 57 Fin 38, 61 Refrigerant inlet pipe 40, 66 Refrigerating machine oil 41, 63 Refrigerant outlet pipe 42, 67 Partition 43 Float 44 Float support plate 45 Guide cylinder 46 Stopper 47 Opening Part 51 First evaporator 52 Second evaporator 53 First evaporator inlet header 54 First evaporator outlet header 55 First evaporator heat exchange section 58 Second evaporator inlet header 59 Second evaporator outlet header 60 Second Evaporator heat exchange unit 62 Refrigerant communication unit 64 Oil communication unit

Claims (6)

圧縮機と、放熱器と、膨張機と、蒸発器とを順に接続した回路に冷媒と冷凍機油とを封入して冷凍サイクルを構成し、前記蒸発器には冷媒流路を複数に分割するとともに前記冷凍機油を分離する入口ヘッダーを設けたことを特徴とする冷凍サイクル装置。 A refrigerant, refrigerating machine oil is enclosed in a circuit in which a compressor, a radiator, an expander, and an evaporator are connected in order to form a refrigeration cycle, and the refrigerant flow path is divided into a plurality of parts in the evaporator. An refrigeration cycle apparatus comprising an inlet header for separating the refrigeration oil. 蒸発器に出口ヘッダーを設けるとともに入口ヘッダーの下部に送油管を設け、前記送油管を前記出口ヘッダーに連通させたことを特徴とする請求項1に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1, wherein an outlet header is provided in the evaporator, an oil feeding pipe is provided at a lower portion of the inlet header, and the oil feeding pipe is communicated with the outlet header. 入口ヘッダーに設けた冷凍機油の液面を検知する液面検知手段と、前記液面検知手段により検知された冷凍機油の液面によって送油管の連通を開閉制御する送油管開閉手段とを有することを特徴とする請求項2に記載の冷凍サイクル装置。 A liquid level detecting means for detecting a liquid level of the refrigerating machine oil provided in the inlet header; and an oil feeding pipe opening / closing means for controlling the opening and closing of the communication of the oil feeding pipe by the liquid level of the refrigerating machine oil detected by the liquid level detecting means. The refrigeration cycle apparatus according to claim 2. 液面検知手段は冷凍機油の比重よりも小さく、液冷媒の比重よりも大きい比重の材料で構成されたフロートであることを特徴とする請求項3に記載の冷凍サイクル装置。 4. The refrigeration cycle apparatus according to claim 3, wherein the liquid level detecting means is a float made of a material having a specific gravity smaller than the specific gravity of the refrigerating machine oil and larger than the specific gravity of the liquid refrigerant. 送油管開閉手段がフロートであり、入口ヘッダーにおける冷凍機油の液面が所定液面以下の場合に、前記フロートにより送油管を閉止することを特徴とする請求項4に記載の冷凍サイクル装置。 5. The refrigeration cycle apparatus according to claim 4, wherein the oil feed pipe opening / closing means is a float, and the oil feed pipe is closed by the float when the liquid level of the refrigeration oil in the inlet header is equal to or lower than a predetermined liquid level. 冷媒が二酸化炭素であることを特徴とする請求項1から請求項5のいずれかに記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 5, wherein the refrigerant is carbon dioxide.
JP2005040143A 2005-02-17 2005-02-17 Refrigeration cycle device Pending JP2006226590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005040143A JP2006226590A (en) 2005-02-17 2005-02-17 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005040143A JP2006226590A (en) 2005-02-17 2005-02-17 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
JP2006226590A true JP2006226590A (en) 2006-08-31

Family

ID=36988115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005040143A Pending JP2006226590A (en) 2005-02-17 2005-02-17 Refrigeration cycle device

Country Status (1)

Country Link
JP (1) JP2006226590A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196762A (en) * 2007-02-13 2008-08-28 Daikin Ind Ltd Flow divider, heat exchanger unit and refrigerating device
JP2008196761A (en) * 2007-02-13 2008-08-28 Daikin Ind Ltd Flow divider and refrigerating device
JP2009001270A (en) * 2007-06-25 2009-01-08 Visteon Global Technologies Inc Engine/machine, and expander type heat exchanger unit
JP2010121896A (en) * 2008-11-21 2010-06-03 Sanyo Electric Co Ltd Air conditioner
JP2011247442A (en) * 2010-05-24 2011-12-08 Japan Climate Systems Corp Heat exchanger
CN102401512A (en) * 2011-11-18 2012-04-04 广东美的电器股份有限公司 Parallel flow heat exchanger
DE102015121583A1 (en) * 2015-12-11 2017-06-14 Hanon Systems Device for separating oil of a refrigerant-oil mixture and for cooling the oil and for cooling and / or liquefying the refrigerant in a refrigerant circuit

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196762A (en) * 2007-02-13 2008-08-28 Daikin Ind Ltd Flow divider, heat exchanger unit and refrigerating device
JP2008196761A (en) * 2007-02-13 2008-08-28 Daikin Ind Ltd Flow divider and refrigerating device
JP2009001270A (en) * 2007-06-25 2009-01-08 Visteon Global Technologies Inc Engine/machine, and expander type heat exchanger unit
JP2010121896A (en) * 2008-11-21 2010-06-03 Sanyo Electric Co Ltd Air conditioner
JP2011247442A (en) * 2010-05-24 2011-12-08 Japan Climate Systems Corp Heat exchanger
CN102401512A (en) * 2011-11-18 2012-04-04 广东美的电器股份有限公司 Parallel flow heat exchanger
DE102015121583A1 (en) * 2015-12-11 2017-06-14 Hanon Systems Device for separating oil of a refrigerant-oil mixture and for cooling the oil and for cooling and / or liquefying the refrigerant in a refrigerant circuit
DE102015121583B4 (en) * 2015-12-11 2021-02-11 Hanon Systems Device for separating oil from a refrigerant-oil mixture and for cooling the oil and for cooling and / or liquefying the refrigerant in a refrigerant circuit
US10989451B2 (en) 2015-12-11 2021-04-27 Hanon Systems Oil management in a refrigeration system—compressor oil cooler integrated into gascooler

Similar Documents

Publication Publication Date Title
EP2565557B1 (en) Refrigeration cycle device and refrigerant circulation method
JP4816220B2 (en) Refrigeration equipment
CN106321499B (en) Turbine and refrigeration cycle device
JP4967435B2 (en) Refrigeration equipment
JP2006226590A (en) Refrigeration cycle device
JP4583280B2 (en) Refrigeration equipment
KR20110097367A (en) Chiller
JP4591402B2 (en) Refrigeration equipment
JPWO2014083900A1 (en) Compressor, refrigeration cycle device and heat pump hot water supply device
JP2009186054A (en) Refrigerating cycle device
US11898571B2 (en) Compressor lubrication supply system and compressor thereof
JP2004150749A (en) Refrigerating cycle device
JP6150906B2 (en) Refrigeration cycle equipment
JP2007315638A (en) Refrigeration cycle device
JP2007315639A (en) Evaporator and refrigerating cycle device using the same
US20240183360A1 (en) Compressor lubrication supply system and compressor thereof
JP2008196760A (en) Refrigerating device
JP5176874B2 (en) Refrigeration equipment
JP2004225928A (en) Refrigeration unit
JP4720594B2 (en) Refrigeration equipment
JP2007198681A (en) Heat pump device
JP6150907B2 (en) Refrigeration cycle equipment
JP4720593B2 (en) Refrigeration equipment
JP5892261B2 (en) Refrigeration cycle apparatus and heat pump water heater
JP2008133967A (en) Refrigerating cycle device