JP2016048125A - Supply water heating system - Google Patents

Supply water heating system Download PDF

Info

Publication number
JP2016048125A
JP2016048125A JP2014172514A JP2014172514A JP2016048125A JP 2016048125 A JP2016048125 A JP 2016048125A JP 2014172514 A JP2014172514 A JP 2014172514A JP 2014172514 A JP2014172514 A JP 2014172514A JP 2016048125 A JP2016048125 A JP 2016048125A
Authority
JP
Japan
Prior art keywords
water
stage
low
heat
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014172514A
Other languages
Japanese (ja)
Other versions
JP6421496B2 (en
Inventor
大沢 智也
Tomoya Osawa
智也 大沢
和之 大谷
Kazuyuki Otani
和之 大谷
悠斗 森田
Yuto Morita
悠斗 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2014172514A priority Critical patent/JP6421496B2/en
Publication of JP2016048125A publication Critical patent/JP2016048125A/en
Application granted granted Critical
Publication of JP6421496B2 publication Critical patent/JP6421496B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently heat supply water to a desired temperature even when a temperature of a heat source fluid is low, in a supply water heating system using a heat pump.SOLUTION: A low stage-side heat pump 4 includes a low stage-side compressor 14, a low stage-side condenser 15, a cascade heat exchanger 13, a low stage-side expansion valve 16 and a low stage-side evaporator 17 in order. A high stage-side heat pump 5 includes a high stage-side compressor 18, a high stage-side condenser 19, a high stage-side expansion valve 21, a cascade heat exchanger 13, and a high stage-side evaporator 22 in order. The cascade heat exchanger 13 is a heat exchanger for a refrigerant of the low stage-side heat pump 4 and a refrigerant of the high stage-side heat pump 5. The heat source fluid is passed through a heat exchanger 25 for heating supply water, the low stage-side evaporator 17, and the high stage-side evaporator 22. The supply water to a supply water tank 3 through a water supply path 9 is successively passed through the heat exchanger 25 for heating supply water, the low stage-side condenser 15, and the high stage-side condenser 19.SELECTED DRAWING: Figure 1

Description

本発明は、ヒートポンプを用いた給水加温システムに関するものである。   The present invention relates to a feed water heating system using a heat pump.

従来、下記特許文献1に開示されるように、ヒートポンプを用いた給水加温システムが知られている。この給水加温システム(1)は、ヒートポンプ(4)と給水加温用熱交換器(12)とを備え、給水路(8)を介した給水タンク(3)への給水は、給水加温用熱交換器(12)、過冷却器(17)および凝縮器(14)を順に通される。給水加温用熱交換器(12)は、給水路(8)を介した給水タンク(3)への給水と、蒸発器(16)を通過後の熱源流体との熱交換器であり、過冷却器(17)は、給水路(8)を介した給水タンク(3)への給水と、凝縮器(14)から膨張弁(15)への冷媒との熱交換器であり、凝縮器(14)は、給水路(8)を介した給水タンク(3)への給水と、圧縮機(13)からの冷媒との熱交換器である。   Conventionally, as disclosed in Patent Document 1 below, a feed water heating system using a heat pump is known. This feed water heating system (1) includes a heat pump (4) and a feed water heating heat exchanger (12), and the feed water to the feed water tank (3) via the feed water channel (8) is the feed water warming. The heat exchanger for heat (12), the supercooler (17) and the condenser (14) are passed in order. The feed water heating heat exchanger (12) is a heat exchanger for supplying water to the feed water tank (3) via the feed water channel (8) and the heat source fluid after passing through the evaporator (16). The cooler (17) is a heat exchanger for supplying water to the water supply tank (3) via the water supply channel (8) and refrigerant from the condenser (14) to the expansion valve (15). 14) is a heat exchanger for supplying water to the water supply tank (3) via the water supply channel (8) and the refrigerant from the compressor (13).

特開2013−210118号公報JP2013-210118A

従来構成では、熱源流体の温度が低い場合(たとえば30〜40℃の場合)、凝縮器の出口側における出湯温度を所望温度まで加温することが難しい。   In the conventional configuration, when the temperature of the heat source fluid is low (for example, 30 to 40 ° C.), it is difficult to warm the hot water temperature at the outlet side of the condenser to a desired temperature.

そこで、本発明が解決しようとする課題は、熱源流体の温度が低くても、効率よく給水を所望温度まで加温できる給水加温システムを提供することにある。   Therefore, the problem to be solved by the present invention is to provide a feed water heating system that can efficiently heat feed water to a desired temperature even when the temperature of the heat source fluid is low.

本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、低段側圧縮機、低段側凝縮器、カスケード熱交換器、低段側膨張弁および低段側蒸発器が順次環状に接続されて冷媒を循環させる低段側ヒートポンプと、高段側圧縮機、高段側凝縮器、高段側膨張弁、前記カスケード熱交換器および高段側蒸発器が順次環状に接続されて冷媒を循環させる高段側ヒートポンプと、熱源流体との熱交換により通水を加温する給水加温用熱交換器とを備え、前記低段側凝縮器は、前記低段側ヒートポンプの冷媒と通水との熱交換器であり、前記低段側蒸発器は、前記低段側ヒートポンプの冷媒と熱源流体との熱交換器であり、前記高段側凝縮器は、前記高段側ヒートポンプの冷媒と通水との熱交換器であり、前記高段側蒸発器は、前記高段側ヒートポンプの冷媒と熱源流体との熱交換器であり、前記カスケード熱交換器は、前記低段側ヒートポンプの冷媒と前記高段側ヒートポンプの冷媒との熱交換器であり、給水路を介した給水タンクへの給水が、前記給水加温用熱交換器、前記低段側凝縮器および前記高段側凝縮器に順に通されることを特徴とする給水加温システムである。   The present invention has been made to solve the above problems, and the invention according to claim 1 includes a low stage compressor, a low stage condenser, a cascade heat exchanger, a low stage expansion valve, and a low stage. A low-stage heat pump in which the side evaporators are sequentially connected in an annular manner to circulate the refrigerant, a high-stage compressor, a high-stage condenser, a high-stage expansion valve, the cascade heat exchanger, and the high-stage evaporator A high-stage heat pump that is sequentially connected in a ring to circulate the refrigerant, and a heat exchanger for heating the feed water that heats the water by heat exchange with the heat source fluid, and the low-stage condenser includes the low-stage condenser It is a heat exchanger between the refrigerant of the stage side heat pump and the water flow, the low stage side evaporator is a heat exchanger between the refrigerant of the low stage side heat pump and the heat source fluid, and the high stage side condenser is The high-stage side heat pump is a heat exchanger between refrigerant and water flow, and the high-stage side evaporator is It is a heat exchanger between the refrigerant of the high stage side heat pump and the heat source fluid, and the cascade heat exchanger is a heat exchanger between the refrigerant of the low stage side heat pump and the refrigerant of the high stage side heat pump, and a water supply channel The feed water warming system is characterized in that the feed water to the feed water tank via is passed through the feed water warming heat exchanger, the low stage side condenser and the high stage side condenser in this order.

請求項1に記載の発明によれば、低段側ヒートポンプと高段側ヒートポンプとが、カスケード熱交換器で接続される。カスケード熱交換器は、低段側過冷却器として機能すると共に、高段側蒸発器としても機能する。低段側ヒートポンプで熱源流体から汲み上げられた熱は、カスケード熱交換器を介して、高段側ヒートポンプでさらに汲み上げられる。しかも、高段側ヒートポンプでは、カスケード熱交換器とは別に設けた高段側蒸発器においても、熱源流体から熱が汲み上げられる。従って、熱源流体が比較的低温であっても、給水路の通水を所望に加温することができる。この際、給水加温用熱交換器で予熱した給水を、低段側凝縮器および高段側凝縮器に順に通して、所望温度まで加温することができる。低段側ヒートポンプでは、低段側凝縮器がカスケード熱交換器より低段側圧縮機の側に設けられ、低段側圧縮機からの高温の冷媒で通水を加温できるので、通水を昇温させ易い。   According to invention of Claim 1, a low stage side heat pump and a high stage side heat pump are connected by a cascade heat exchanger. The cascade heat exchanger functions as a low stage side subcooler and also functions as a high stage side evaporator. The heat pumped from the heat source fluid by the low-stage heat pump is further pumped by the high-stage heat pump via the cascade heat exchanger. Moreover, in the high stage heat pump, heat is pumped up from the heat source fluid even in the high stage evaporator provided separately from the cascade heat exchanger. Therefore, even if the heat source fluid is at a relatively low temperature, the water passing through the water supply channel can be heated as desired. At this time, the feed water preheated by the feed water warming heat exchanger can be passed through the low stage side condenser and the high stage side condenser in order to be heated to a desired temperature. In the low-stage heat pump, the low-stage condenser is provided on the low-stage compressor side of the cascade heat exchanger, and the water can be heated with the high-temperature refrigerant from the low-stage compressor. Easy to raise temperature.

請求項2に記載の発明は、前記低段側蒸発器と前記高段側蒸発器とに、熱源流体が、設定順序で直列に通されるか、並列に通され、これら各蒸発器への熱源流体の供給とは並列に、前記給水加温用熱交換器に熱源流体が通されることを特徴とする請求項1に記載の給水加温システムである。   According to a second aspect of the present invention, a heat source fluid is passed through the low-stage evaporator and the high-stage evaporator in series or in parallel in a set order. The feed water warming system according to claim 1, wherein the heat source fluid is passed through the feed water warming heat exchanger in parallel with the heat source fluid supply.

請求項2に記載の発明によれば、給水加温用熱交換器には、各蒸発器と並列に熱源流体が通されるので、各蒸発器を通過後の熱源流体が直列に通される場合と比較して、給水加温用熱交換器における通水の加熱量を増すことができる。   According to the invention described in claim 2, since the heat source fluid is passed through the feed water heating heat exchanger in parallel with each evaporator, the heat source fluid after passing through each evaporator is passed in series. Compared with the case, the heating amount of the water flow in the heat exchanger for water supply heating can be increased.

請求項3に記載の発明は、前記給水路を介した前記給水タンクへの給水中、設定条件を満たすと、前記高段側圧縮機の運転を維持しつつ、前記低段側圧縮機の運転を停止することを特徴とする請求項1または請求項2に記載の給水加温システムである。   According to a third aspect of the present invention, the operation of the low-stage compressor is maintained while maintaining the operation of the high-stage compressor when a set condition is satisfied during water supply to the water supply tank via the water supply channel. The feed water warming system according to claim 1 or 2, wherein the water supply warming system is stopped.

請求項3に記載の発明によれば、給水路を介した給水タンクへの給水中、所望により、低段側圧縮機を停止させて、高段側ヒートポンプのみで給水の加温を図ることができる。   According to the third aspect of the present invention, when supplying water to the water supply tank via the water supply channel, if desired, the low-stage compressor is stopped, and only the high-stage heat pump is used to heat the supply water. it can.

請求項4に記載の発明は、前記高段側蒸発器への熱源流体温度が低段側停止温度を超えると、前記設定条件を満たしたとして、前記低段側圧縮機を停止することを特徴とする請求項3に記載の給水加温システムである。   The invention according to claim 4 is characterized in that when the heat source fluid temperature to the high stage side evaporator exceeds the low stage side stop temperature, the low stage side compressor is stopped assuming that the setting condition is satisfied. The feed water warming system according to claim 3.

請求項4に記載の発明によれば、熱源流体温度が所定より高ければ、低段側圧縮機を停止させて、高段側ヒートポンプのみで給水の加温を図ることができる。これにより、消費電力の削減を図ることができる。   According to the fourth aspect of the present invention, if the heat source fluid temperature is higher than a predetermined value, the low-stage compressor can be stopped and the water supply can be heated only by the high-stage heat pump. Thereby, power consumption can be reduced.

請求項5に記載の発明は、前記給水路を介した前記給水タンクへの給水中、前記高段側凝縮器の出口側水温を設定温度に維持するように通水量を調整し、前記通水量を調整するポンプの回転数または弁の開度が低段側停止値を超えると、前記設定条件を満たしたとして、前記低段側圧縮機を停止することを特徴とする請求項3または請求項4に記載の給水加温システムである。   The invention according to claim 5 adjusts the water flow rate so that the water temperature at the outlet side of the high-stage side condenser is maintained at a set temperature during the water supply to the water supply tank via the water supply channel, and the water flow rate 4. The low-stage compressor is stopped when the rotational speed of the pump for adjusting the valve opening or the valve opening exceeds a low-stage-side stop value, assuming that the setting condition is satisfied. 4. A water heating system according to 4.

請求項5に記載の発明によれば、給水路を介した給水タンクへの給水中、高段側凝縮器の出口側水温を設定温度に維持するように通水量を調整することで、給水源の水温や熱源流体の温度に拘わらず、所望温度の温水を得ることができる。また、通水量を調整するポンプの回転数または弁の開度が所定より大きくなり過ぎると、前記通水量の調整が不可能になるおそれがあるので、低段側圧縮機を停止させることで、出湯温度一定制御を安定して行うことができる。   According to the fifth aspect of the present invention, the water supply source is adjusted by adjusting the water flow rate so as to maintain the outlet side water temperature of the high stage side condenser at the set temperature during the water supply to the water supply tank via the water supply channel. Regardless of the water temperature or the temperature of the heat source fluid, hot water having a desired temperature can be obtained. Also, if the number of rotations of the pump for adjusting the water flow rate or the opening of the valve becomes larger than a predetermined value, the adjustment of the water flow rate may be impossible, so by stopping the low-stage compressor, The hot water temperature constant control can be stably performed.

請求項6に記載の発明は、前記給水タンクの水位が低段側停止水位を上回ると、前記設定条件を満たしたとして、前記低段側圧縮機を停止することを特徴とする請求項3〜5のいずれか1項に記載の給水加温システムである。   The invention according to claim 6 is characterized in that when the water level of the water supply tank exceeds the low-stage stop water level, the low-stage compressor is stopped assuming that the setting condition is satisfied. 5. The feed water warming system according to claim 1.

請求項6に記載の発明によれば、給水タンクの水位が所定より高まれば、低段側圧縮機を停止させて、高段側ヒートポンプのみで給水の加温を図るので、給水量を落とした制御が容易となる。   According to the invention described in claim 6, when the water level of the water supply tank becomes higher than a predetermined level, the low-stage compressor is stopped and the water supply is heated only by the high-stage heat pump. Control becomes easy.

請求項7に記載の発明は、前記給水タンクの水位が下限水位を下回ると、前記給水路を介した前記給水タンクへの給水を開始すると共に、前記各圧縮機を起動し、前記給水タンクの水位が上限水位を上回ると、前記給水路を介した前記給水タンクへの給水を停止すると共に、前記各圧縮機を停止することを特徴とする請求項1〜6のいずれか1項に記載の給水加温システムである。   When the water level of the water supply tank falls below a lower limit water level, the invention according to claim 7 starts water supply to the water supply tank via the water supply path, starts the compressors, When the water level exceeds an upper limit water level, water supply to the water supply tank via the water supply channel is stopped, and the compressors are stopped. This is a water heating system.

請求項7に記載の発明によれば、給水タンクの水位に応じて、各ヒートポンプを制御して、給水タンクへの給水を制御することができる。   According to invention of Claim 7, according to the water level of a water supply tank, each heat pump can be controlled and the water supply to a water supply tank can be controlled.

請求項8に記載の発明は、前記各圧縮機の停止状態からの起動時、まずは前記高段側圧縮機を起動し、その後、設定タイミングで前記低段側圧縮機を起動することを特徴とする請求項1〜7のいずれか1項に記載の給水加温システムである。   The invention according to claim 8 is characterized in that when the compressors are started from a stopped state, the high-stage compressor is first started, and then the low-stage compressor is started at a set timing. The feed water warming system according to any one of claims 1 to 7.

仮に、先に低段側圧縮機を起動し、遅れて高段側圧縮機を起動すると、高段側圧縮機の起動時に通水温度(高段側凝縮器の出口側水温)が高くなり過ぎるおそれがあるが、請求項8に記載の発明によれば、先に高段側圧縮機を起動し、遅れて低段側圧縮機を起動するので、低段側圧縮機の起動時に通水温度が過度に上昇するのが防止される。   If the low-stage compressor is started first and the high-stage compressor is started after a delay, the water flow temperature (the outlet-side water temperature of the high-stage condenser) becomes too high when the high-stage compressor is started. However, according to the invention described in claim 8, since the high-stage compressor is started first, and the low-stage compressor is started after a delay, the water flow temperature when the low-stage compressor is started. Is prevented from rising excessively.

請求項9に記載の発明は、前記給水加温用熱交換器への熱源流体温度と、前記給水加温用熱交換器の出口側水温との温度差を設定値に維持するように、前記給水加温用熱交換器への熱源流体の供給流量を調整することを特徴とする請求項1〜8のいずれか1項に記載の給水加温システムである。   In the invention according to claim 9, the temperature difference between the heat source fluid temperature to the feed water heating heat exchanger and the outlet water temperature of the feed water heating heat exchanger is maintained at a set value. The feed water warming system according to any one of claims 1 to 8, wherein a supply flow rate of the heat source fluid to the feed water warming heat exchanger is adjusted.

請求項9に記載の発明によれば、給水加温用熱交換器への熱源流体温度と、給水加温用熱交換器の出口側水温との温度差を設定値に維持するように、給水加温用熱交換器への熱源流体の供給流量を制御することで、給水加温用熱交換器における熱交換効率を高めることができる。また、給水加温用熱交換器への熱源流体温度が、給水加温用熱交換器の入口側水温よりも低い場合には、給水加温用熱交換器への熱源流体の供給が規制されるので、給水加温用熱交換器に熱源流体を通すと却って給水を冷却してしまう不都合が防止される。   According to the ninth aspect of the present invention, the water supply water temperature is maintained so that the temperature difference between the heat source fluid temperature to the feed water heating heat exchanger and the outlet water temperature of the feed water heating heat exchanger is maintained at a set value. By controlling the supply flow rate of the heat source fluid to the heating heat exchanger, the heat exchange efficiency in the feed water heating heat exchanger can be increased. Also, when the heat source fluid temperature to the feed water heating heat exchanger is lower than the inlet side water temperature of the feed water heating heat exchanger, the supply of the heat source fluid to the feed water heating heat exchanger is regulated. Therefore, inconvenience of cooling the feed water when the heat source fluid is passed through the feed water heating heat exchanger is prevented.

さらに、請求項10に記載の発明は、前記低段側蒸発器と前記高段側蒸発器とに、熱源流体が設定順序で順に通され、これら各蒸発器への熱源流体の供給とは並列に、前記給水加温用熱交換器に熱源流体が通され、前記各蒸発器を通過後の熱源流体温度と、前記給水加温用熱交換器を通過後の熱源流体温度とが等しくなるように、前記各蒸発器と前記給水加温用熱交換器とへの熱源流体の分配割合を調整することを特徴とする請求項1〜9のいずれか1項に記載の給水加温システムである。   Furthermore, in the invention described in claim 10, heat source fluid is sequentially passed through the low stage side evaporator and the high stage side evaporator in a set order, and supply of the heat source fluid to each of the evaporators is in parallel. The heat source fluid is passed through the feed water heating heat exchanger, so that the heat source fluid temperature after passing through each of the evaporators is equal to the heat source fluid temperature after passing through the feed water warming heat exchanger. 10. The feed water heating system according to claim 1, wherein a distribution ratio of a heat source fluid to each of the evaporators and the feed water warming heat exchanger is adjusted. .

請求項10に記載の発明によれば、各蒸発器を設定順序で通過後の熱源流体温度と、給水加温用熱交換器を通過後の熱源流体温度とが等しくなるように、各蒸発器と給水加温用熱交換器とへの熱源流体の分配割合を調整することで、各ヒートポンプと給水加温用熱交換器とにバランスよく熱を分配することができる。   According to the tenth aspect of the present invention, each evaporator is set so that the heat source fluid temperature after passing through each evaporator in the setting order is equal to the heat source fluid temperature after passing through the feed water heating heat exchanger. By adjusting the distribution ratio of the heat source fluid to the heat exchanger for heating and supplying water, heat can be distributed in a balanced manner to each heat pump and heat exchanger for heating and supplying water.

本発明の給水加温システムによれば、熱源流体の温度が低くても、効率よく給水を所望温度まで加温することができる。   According to the feed water heating system of the present invention, even when the temperature of the heat source fluid is low, the feed water can be efficiently heated to a desired temperature.

本発明の一実施例の給水加温システムを示す概略図である。It is the schematic which shows the feed water heating system of one Example of this invention.

以下、本発明の具体的実施例を図面に基づいて詳細に説明する。
図1は、本発明の一実施例の給水加温システム1を示す概略図である。
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic diagram showing a feed water heating system 1 according to an embodiment of the present invention.

本実施例の給水加温システム1は、ボイラ2の給水タンク3への給水をヒートポンプ4,5で加温できるシステムであり、ボイラ2への給水を貯留する給水タンク3と、この給水タンク3への給水を貯留する補給水タンク6と、この補給水タンク6から給水タンク3への給水を加温するヒートポンプ4,5と、このヒートポンプ4,5の熱源としての熱源水(たとえば廃温水)を貯留する熱源水タンク7とを備える。   The feed water warming system 1 of the present embodiment is a system that can heat feed water to the feed water tank 3 of the boiler 2 with the heat pumps 4, 5. The feed water tank 3 that stores the feed water to the boiler 2, and the feed water tank 3 A replenishment water tank 6 for storing water supply to the water, heat pumps 4 and 5 for heating water supplied from the replenishment water tank 6 to the water supply tank 3, and heat source water (for example, waste hot water) as a heat source for the heat pumps 4 and 5 The heat source water tank 7 is stored.

ボイラ2は、蒸気ボイラであり、給水タンク3からの給水を加熱して蒸気にする。ボイラ2は、典型的には、蒸気の圧力を所望に維持するように、燃焼量を調整される。また、ボイラ2は、缶体内の水位を所望に維持するように、給水タンク3からボイラ2への給水路またはボイラ2の内部に設けたポンプ8が制御される。ボイラ2からの蒸気は、各種の蒸気使用設備(図示省略)へ送られるが、蒸気使用設備からのドレン(蒸気の凝縮水)を給水タンク3へ戻してもよい。   The boiler 2 is a steam boiler, and heats the feed water from the feed water tank 3 into steam. The boiler 2 is typically adjusted in combustion quantity so as to maintain the desired steam pressure. Moreover, the pump 8 provided in the inside of the water supply path from the water supply tank 3 to the boiler 2 or the boiler 2 is controlled so that the boiler 2 may maintain the water level in a can body as desired. The steam from the boiler 2 is sent to various steam use facilities (not shown), but drain (condensed water of steam) from the steam use facility may be returned to the water supply tank 3.

給水タンク3は、補給水タンク6から、ヒートポンプ4,5を介して給水路9により給水可能であると共に、ヒートポンプ4,5を介さずに補給水路10により給水可能である。給水路9に設けた給水ポンプ11と、補給水路10に設けた補給水ポンプ12との作動を制御することで、給水路9と補給水路10との内、いずれか一方または双方を介して、補給水タンク6から給水タンク3へ給水可能である。   The water supply tank 3 can be supplied with water from the make-up water tank 6 through the heat supply passage 9 via the heat pumps 4, 5, and can be supplied through the supply water passage 10 without going through the heat pumps 4, 5. By controlling the operation of the water supply pump 11 provided in the water supply channel 9 and the makeup water pump 12 provided in the makeup water channel 10, via either one or both of the water supply channel 9 and the makeup water channel 10, Water can be supplied from the makeup water tank 6 to the water supply tank 3.

給水ポンプ11は、本実施例では、インバータにより回転数を制御可能とされる。給水ポンプ11の回転数を変更することで、給水路9を介した給水タンク3への給水流量を調整することができる。一方、補給水ポンプ12は、本実施例では、オンオフ制御される。   In this embodiment, the feed water pump 11 can control the rotation speed by an inverter. By changing the rotation speed of the water supply pump 11, the water supply flow rate to the water supply tank 3 through the water supply path 9 can be adjusted. On the other hand, the makeup water pump 12 is on / off controlled in this embodiment.

補給水タンク6は、給水タンク3への給水を貯留する。補給水タンク6への給水として、本実施例では軟水が用いられる。すなわち、軟水器(図示省略)にて水中の硬度分を除去された軟水は、補給水タンク6に供給され貯留される。補給水タンク6の水位に基づき軟水器からの給水を制御することで、補給水タンク6の水位は所望に維持される。   The makeup water tank 6 stores the water supply to the water supply tank 3. In this embodiment, soft water is used as water supply to the makeup water tank 6. That is, the soft water from which the water hardness is removed by the water softener (not shown) is supplied to the makeup water tank 6 and stored. By controlling the water supply from the water softener based on the water level of the makeup water tank 6, the water level of the makeup water tank 6 is maintained as desired.

ヒートポンプ4,5は、蒸気圧縮式のヒートポンプであり、且つ、二元のヒートポンプサイクルから構成される。具体的には、低段側ヒートポンプ(低温側ヒートポンプ)4と、高段側ヒートポンプ(高温側ヒートポンプ)5とが、カスケード熱交換器13を介して接続されて構成される。なお、各ヒートポンプ4,5の冷媒は、同じでもよいし、異なってもよい。   The heat pumps 4 and 5 are vapor compression heat pumps, and are constituted by two heat pump cycles. Specifically, a low stage side heat pump (low temperature side heat pump) 4 and a high stage side heat pump (high temperature side heat pump) 5 are connected via a cascade heat exchanger 13. In addition, the refrigerant | coolants of each heat pump 4 and 5 may be the same, and may differ.

低段側ヒートポンプ4は、低段側圧縮機14、低段側凝縮器15、カスケード熱交換器13、低段側膨張弁16および低段側蒸発器17が順次環状に接続されて、冷媒を循環させる。低段側ヒートポンプ4は、低段側蒸発器17において、冷媒が外部から熱を奪って気化する一方、低段側凝縮器15およびカスケード熱交換器13において、冷媒が外部へ放熱して凝縮、過冷却する。これを利用して、低段側ヒートポンプ4は、低段側蒸発器17において熱源水から熱を汲み上げ、低段側凝縮器15において給水路9の水を加温すると共に、カスケード熱交換器13において高段側ヒートポンプ5の冷媒を加熱する。   The low-stage heat pump 4 includes a low-stage compressor 14, a low-stage condenser 15, a cascade heat exchanger 13, a low-stage expansion valve 16, and a low-stage evaporator 17 that are sequentially connected in an annular manner, Circulate. In the low stage side heat pump 4, the refrigerant takes heat from outside in the low stage side evaporator 17 and vaporizes, while in the low stage side condenser 15 and the cascade heat exchanger 13, the refrigerant dissipates heat to the outside and condenses. Supercool. Using this, the low-stage heat pump 4 pumps heat from the heat source water in the low-stage evaporator 17, warms the water in the water supply passage 9 in the low-stage condenser 15, and cascades the heat exchanger 13. The refrigerant of the high stage side heat pump 5 is heated.

低段側ヒートポンプ4の各構成要素を順に説明する。低段側圧縮機14は、ガス冷媒を圧縮して高温高圧にする。低段側凝縮器15は、低段側ヒートポンプ4の冷媒と給水路9の水とを混ぜることなく熱交換する間接熱交換器であり、低段側圧縮機14からのガス冷媒を凝縮する一方、給水路9の水を加温する。カスケード熱交換器13は、低段側ヒートポンプ4の冷媒と高段側ヒートポンプ5の冷媒とを混ぜることなく熱交換する間接熱交換器であり、低段側凝縮器15からの冷媒を過冷却する一方、高段側ヒートポンプ5の冷媒を蒸発させる。低段側膨張弁16は、カスケード熱交換器13からの液冷媒を通過させることで、冷媒の圧力と温度とを低下させる。低段側蒸発器17は、低段側ヒートポンプ4の冷媒と熱源水とを混ぜることなく熱交換する間接熱交換器であり、低段側膨張弁16からの冷媒を蒸発させる一方、熱源水を冷却する。   Each component of the low stage side heat pump 4 is demonstrated in order. The low stage compressor 14 compresses the gas refrigerant to a high temperature and a high pressure. The low stage side condenser 15 is an indirect heat exchanger that exchanges heat without mixing the refrigerant of the low stage side heat pump 4 and the water of the water supply path 9, and condenses the gas refrigerant from the low stage side compressor 14. The water in the water supply channel 9 is heated. The cascade heat exchanger 13 is an indirect heat exchanger that exchanges heat without mixing the refrigerant of the low-stage heat pump 4 and the refrigerant of the high-stage heat pump 5, and supercools the refrigerant from the low-stage condenser 15. On the other hand, the refrigerant of the high-stage heat pump 5 is evaporated. The low stage side expansion valve 16 allows the liquid refrigerant from the cascade heat exchanger 13 to pass therethrough, thereby reducing the pressure and temperature of the refrigerant. The low-stage evaporator 17 is an indirect heat exchanger that exchanges heat without mixing the refrigerant of the low-stage heat pump 4 and the heat source water, and evaporates the refrigerant from the low-stage side expansion valve 16 while Cooling.

高段側ヒートポンプ5は、高段側圧縮機18、高段側凝縮器19、高段側過冷却器20、高段側膨張弁21、カスケード熱交換器13および高段側蒸発器22が順次環状に接続されて、冷媒を循環させる。高段側ヒートポンプ5は、カスケード熱交換器13および高段側蒸発器22において、冷媒が外部から熱を奪って気化する一方、高段側凝縮器19および高段側過冷却器20において、冷媒が外部へ放熱して凝縮、過冷却する。これを利用して、高段側ヒートポンプ5は、カスケード熱交換器13において低段側ヒートポンプ4の冷媒から熱を汲み上げると共に、高段側蒸発器22において熱源水から熱を汲み上げ、高段側過冷却器20および高段側凝縮器19において給水路9の水を加温する。   The high-stage heat pump 5 includes a high-stage compressor 18, a high-stage condenser 19, a high-stage subcooler 20, a high-stage expansion valve 21, a cascade heat exchanger 13, and a high-stage evaporator 22. It is connected in a ring and circulates the refrigerant. The high-stage heat pump 5 is vaporized by removing heat from the outside in the cascade heat exchanger 13 and the high-stage evaporator 22, while the refrigerant is removed in the high-stage condenser 19 and the high-stage subcooler 20. Radiates heat to the outside and condenses and supercools. Utilizing this, the high stage side heat pump 5 pumps heat from the refrigerant of the low stage side heat pump 4 in the cascade heat exchanger 13, and pumps heat from the heat source water in the high stage side evaporator 22. Water in the water supply passage 9 is heated in the cooler 20 and the high-stage condenser 19.

高段側ヒートポンプ5の各構成要素を順に説明する。高段側圧縮機18は、ガス冷媒を圧縮して高温高圧にする。高段側凝縮器19は、高段側ヒートポンプ5の冷媒と給水路9の水とを混ぜることなく熱交換する間接熱交換器であり、高段側圧縮機18からのガス冷媒を凝縮する一方、給水路9の水を加温する。高段側過冷却器20は、高段側ヒートポンプ5の冷媒と給水路9の水とを混ぜることなく熱交換する間接熱交換器であり、高段側凝縮器19からの冷媒を過冷却する一方、給水路9の水を加温する。高段側膨張弁21は、高段側過冷却器20からの液冷媒を通過させることで、冷媒の圧力と温度とを低下させる。カスケード熱交換器13は、低段側ヒートポンプ4の冷媒と高段側ヒートポンプ5の冷媒とを混ぜることなく熱交換する間接熱交換器であり、低段側凝縮器15からの冷媒の過冷却器として機能すると共に、高段側膨張弁21からの冷媒の蒸発器としても機能する。高段側蒸発器22は、高段側ヒートポンプ5の冷媒と熱源水とを混ぜることなく熱交換する間接熱交換器であり、カスケード熱交換器13からの冷媒を蒸発(さらに所望により過熱)させる一方、熱源水を冷却する。   Each component of the high stage side heat pump 5 is demonstrated in order. The high stage compressor 18 compresses the gas refrigerant to a high temperature and a high pressure. The high stage side condenser 19 is an indirect heat exchanger that exchanges heat without mixing the refrigerant of the high stage side heat pump 5 and the water of the water supply path 9, and condenses the gas refrigerant from the high stage side compressor 18. The water in the water supply channel 9 is heated. The high stage side subcooler 20 is an indirect heat exchanger that exchanges heat without mixing the refrigerant of the high stage side heat pump 5 and the water of the water supply passage 9, and supercools the refrigerant from the high stage side condenser 19. On the other hand, the water in the water supply channel 9 is heated. The high stage side expansion valve 21 reduces the pressure and temperature of the refrigerant by allowing the liquid refrigerant from the high stage side subcooler 20 to pass therethrough. The cascade heat exchanger 13 is an indirect heat exchanger that exchanges heat without mixing the refrigerant of the low-stage heat pump 4 and the refrigerant of the high-stage heat pump 5, and the refrigerant subcooler from the low-stage condenser 15. And also functions as a refrigerant evaporator from the high-stage expansion valve 21. The high stage side evaporator 22 is an indirect heat exchanger that exchanges heat without mixing the refrigerant of the high stage side heat pump 5 and the heat source water, and evaporates the refrigerant from the cascade heat exchanger 13 (and further overheats if desired). On the other hand, the heat source water is cooled.

なお、各ヒートポンプ4,5には、圧縮機14,18の入口側にアキュムレータを設置したり、圧縮機14,18の出口側に油分離器を設置したり、凝縮器15,19の出口側(凝縮器15,19と過冷却器13,20との間)に受液器を設置したりしてもよい。また、低段側凝縮器15からカスケード熱交換器13への冷媒と、低段側蒸発器17から低段側圧縮機14への冷媒とを間接熱交換する低段側液ガス熱交換器を設けたり、高段側凝縮器19から高段側過冷却器20への冷媒と、高段側蒸発器22から高段側圧縮機18への冷媒とを間接熱交換する高段側液ガス熱交換器を設けたりしてもよい。その他、各ヒートポンプ4,5の圧縮機14,18は、本実施例では、オンオフ制御され、作動中には、回転数が一定に維持されるが、場合により、所定箇所の温度もしくは圧力または水位などに基づき、インバータにより回転数を変更させてもよい。   In each heat pump 4, 5, an accumulator is installed on the inlet side of the compressors 14, 18, an oil separator is installed on the outlet side of the compressors 14, 18, or the outlet side of the condensers 15, 19 A liquid receiver may be installed between the condensers 15 and 19 and the subcoolers 13 and 20. Also, a low-stage liquid gas heat exchanger that indirectly exchanges heat between the refrigerant from the low-stage condenser 15 to the cascade heat exchanger 13 and the refrigerant from the low-stage evaporator 17 to the low-stage compressor 14. Or high-stage liquid gas heat that indirectly exchanges heat between the refrigerant from the high-stage condenser 19 to the high-stage subcooler 20 and the refrigerant from the high-stage evaporator 22 to the high-stage compressor 18. An exchanger may be provided. In addition, in the present embodiment, the compressors 14 and 18 of the heat pumps 4 and 5 are on / off controlled, and the rotation speed is kept constant during the operation. Based on the above, the rotational speed may be changed by an inverter.

熱源水タンク7は、各ヒートポンプ4,5の熱源としての熱源水を貯留する。熱源水とは、たとえば廃温水(工場などから排出される温水)である。本実施例の給水加温システム1の場合、熱源水温度が比較的低くても(たとえば30〜40℃程度であっても)、後述するように所望温度の温水を製造することができる。なお、熱源水タンク7には、熱源水の供給路23が設けられると共に、所定以上の水をあふれさせるオーバーフロー路24が設けられている。   The heat source water tank 7 stores heat source water as a heat source for the heat pumps 4 and 5. The heat source water is, for example, waste hot water (hot water discharged from a factory or the like). In the case of the feed water warming system 1 of the present embodiment, even when the heat source water temperature is relatively low (for example, about 30 to 40 ° C.), hot water having a desired temperature can be produced as described later. The heat source water tank 7 is provided with a heat source water supply path 23 and an overflow path 24 for overflowing a predetermined amount or more of water.

給水加温システム1は、さらに、給水加温用熱交換器25を備える。この給水加温用熱交換器25は、給水路9を介した給水タンク3への給水と、熱源水タンク7からの熱源水とを混ぜることなく熱交換する間接熱交換器である。   The feed water heating system 1 further includes a feed water warming heat exchanger 25. The heat exchanger 25 for heating and supplying water is an indirect heat exchanger that performs heat exchange without mixing water supplied to the water supply tank 3 via the water supply passage 9 and heat source water from the heat source water tank 7.

給水路9を介した給水タンク3への給水は、給水加温用熱交換器25、低段側凝縮器15、高段側過冷却器20および高段側凝縮器19に、順に通される。一方、熱源水タンク7からの熱源水は、低段側蒸発器17、高段側蒸発器22および給水加温用熱交換器25に、設定順序で直列に通されるか、一部または全部の熱交換器には並列に通される。好ましくは、低段側蒸発器17と高段側蒸発器22とに、熱源水が、設定順序で直列に通されるか、並列に通され、これら各蒸発器17,22への熱源水の供給とは並列に、給水加温用熱交換器25に熱源水が通される。   The water supply to the water supply tank 3 through the water supply path 9 is sequentially passed through the heat exchanger 25 for supplying water heating, the low stage side condenser 15, the high stage side subcooler 20, and the high stage side condenser 19. . On the other hand, the heat source water from the heat source water tank 7 is passed through the low-stage evaporator 17, the high-stage evaporator 22, and the feed water heating heat exchanger 25 in series in a set order, or part or all of them. The heat exchanger is passed in parallel. Preferably, the heat source water is passed through the low stage side evaporator 17 and the high stage side evaporator 22 in series or in parallel in a set order, and the heat source water to each of the evaporators 17 and 22 is passed. In parallel with the supply, the heat source water is passed through the heat exchanger 25 for heating the feed water.

本実施例では、熱源水タンク7からの熱源水は、熱源供給ポンプ26を介した後、第一熱源供給路27と第二熱源供給路28とに分岐され、第一熱源供給路27の熱源水は、高段側蒸発器22および低段側蒸発器17を順に通される一方、第二熱源供給路28の熱源水は、給水加温用熱交換器25に通される。つまり、本実施例では、高段側蒸発器22と低段側蒸発器17とに熱源水が順に通されると共に、これと並行に、給水加温用熱交換器25に熱源水が通される。   In the present embodiment, the heat source water from the heat source water tank 7 is branched into a first heat source supply path 27 and a second heat source supply path 28 via a heat source supply pump 26, and the heat source of the first heat source supply path 27. The water is sequentially passed through the high-stage evaporator 22 and the low-stage evaporator 17, while the heat source water in the second heat source supply path 28 is passed to the feed water heating heat exchanger 25. That is, in the present embodiment, the heat source water is passed through the high stage side evaporator 22 and the low stage side evaporator 17 in order, and in parallel with this, the heat source water is passed through the feed water heating heat exchanger 25. The

第二熱源供給路28には、開度調整可能な流量調整弁29が設けられる。この流量調整弁29の開度を調整することで、給水加温用熱交換器25への熱源水の供給流量(通水流量)を調整することができる。   The second heat source supply path 28 is provided with a flow rate adjustment valve 29 whose opening degree can be adjusted. By adjusting the opening degree of the flow rate adjustment valve 29, the supply flow rate (water flow rate) of the heat source water to the heat exchanger 25 for heating and heating the feed water can be adjusted.

給水路9には、高段側凝縮器19の出口側に、出湯温度センサ30が設けられる。出湯温度センサ30は、高段側凝縮器19を通過後の水温を検出する。出湯温度センサ30の検出温度に基づき、給水ポンプ11が制御される。ここでは、給水ポンプ11は、出湯温度センサ30の検出温度を設定温度(たとえば75℃)に維持するようにインバータ制御される。つまり、給水路9を介した給水タンク3への給水は、出湯温度センサ30の検出温度を設定温度に維持するように、流量が調整される。但し、場合により、このような出湯温度センサ30による流量調整制御を省略することもできる。   In the water supply path 9, a hot water temperature sensor 30 is provided on the outlet side of the high stage side condenser 19. The tapping temperature sensor 30 detects the water temperature after passing through the high-stage condenser 19. Based on the temperature detected by the hot water temperature sensor 30, the feed water pump 11 is controlled. Here, the feed water pump 11 is inverter-controlled so as to maintain the temperature detected by the tapping temperature sensor 30 at a set temperature (for example, 75 ° C.). That is, the flow rate of water supplied to the water supply tank 3 via the water supply path 9 is adjusted so that the temperature detected by the hot water temperature sensor 30 is maintained at the set temperature. However, in some cases, such flow rate adjustment control by the tapping temperature sensor 30 can be omitted.

給水タンク3には、水位検出器31が設けられる。この水位検出器31は、その構成を特に問わないが、本実施例では、電極式水位検出器とされる。この場合、給水タンク3には、長さの異なる複数の電極棒32,33が、その下端部の高さ位置を互いに異ならせて差し込まれて保持されている。具体的には、給水停止電極棒32および給水開始電極棒33が、順に下端部の高さ位置を低くして、給水タンク3に挿入されている。さらに、破線で示すように、低段側停止電極棒34を設けてもよく、その場合、給水停止電極棒32、低段側停止電極棒34および給水開始電極棒33の順に、下端部の高さ位置を低くして、給水タンク3に挿入される。いずれにしても、各電極棒32〜34は、その下端部が水に浸かるか否かにより、下端部における水位の有無を検出する。なお、給水停止電極棒32による検出水位を給水停止水位(上限水位)、給水開始電極棒33による検出水位を給水開始水位(下限水位)、低段側停止電極棒34による検出水位を低段側停止水位ということにする。   A water level detector 31 is provided in the water supply tank 3. The configuration of the water level detector 31 is not particularly limited. In the present embodiment, the water level detector 31 is an electrode type water level detector. In this case, a plurality of electrode rods 32 and 33 having different lengths are inserted and held in the water supply tank 3 with their lower end portions having different height positions. Specifically, the water supply stop electrode rod 32 and the water supply start electrode rod 33 are inserted into the water supply tank 3 with the lower end portion having a lower height in order. Furthermore, as shown by a broken line, a low-stage stop electrode rod 34 may be provided. In this case, the lower end portion of the lower end is arranged in the order of the water supply stop electrode rod 32, the low-stage stop electrode rod 34, and the water supply start electrode rod 33. The position is lowered and inserted into the water supply tank 3. In any case, each electrode rod 32 to 34 detects the presence or absence of a water level at the lower end portion depending on whether the lower end portion is immersed in water. The water level detected by the water supply stop electrode rod 32 is the water supply stop water level (upper limit water level), the water level detected by the water supply start electrode rod 33 is the water supply start water level (lower limit water level), and the water level detected by the lower stage stop electrode rod 34 is lower. The stop water level is assumed.

給水加温用熱交換器25への熱源供給路(第一熱源供給路27と第二熱源供給路28との分岐部よりも上流の共通路であるのが好ましいが、場合により前記分岐部よりも下流の第二熱源供給路28であってもよい)には、給水加温用熱交換器25への熱源水温度を検出する熱源温度センサ35が設けられる。一方、給水路9の内、給水加温用熱交換器25の出口側には、給水加温用熱交換器25の出口側水温を検出する水温センサ36が設けられる。   A heat source supply path to the heat exchanger 25 for supplying water heating (a common path upstream from the branch section of the first heat source supply path 27 and the second heat source supply path 28 is preferable. The heat source temperature sensor 35 for detecting the heat source water temperature to the feed water heating heat exchanger 25 is provided in the second heat source supply path 28 on the downstream side. On the other hand, a water temperature sensor 36 for detecting the outlet water temperature of the feed water warming heat exchanger 25 is provided on the outlet side of the feed water warming heat exchanger 25 in the feed water channel 9.

各ヒートポンプ4,5(特にその圧縮機14,18)、給水ポンプ11、補給水ポンプ12、熱源供給ポンプ26、流量調整弁29、出湯温度センサ30、水位検出器31、熱源温度センサ35および水温センサ36などは、制御器(図示省略)に接続される。そして、制御器は、各センサ30,31,35,36の検出信号などに基づき、各ヒートポンプ4,5、各ポンプ11,12,26および流量調整弁29などを制御して、以下に述べる各制御を実行する。   Each heat pump 4, 5 (particularly its compressors 14, 18), feed water pump 11, makeup water pump 12, heat source supply pump 26, flow rate adjustment valve 29, tapping temperature sensor 30, water level detector 31, heat source temperature sensor 35, and water temperature The sensor 36 and the like are connected to a controller (not shown). And a controller controls each heat pump 4,5, each pump 11,12,26, the flow regulating valve 29, etc. based on the detection signal of each sensor 30,31,35,36, etc. Execute control.

給水路9を介した給水タンク3への給水は、給水タンク3の水位に基づき制御される。具体的には、本実施例では、次のように制御される。いま、給水停止電極棒32が水位を検知し、給水タンク3の水位が十分にある場合(つまり給水停止水位を上回っている場合)、給水タンク3への給水は不要であるから、給水ポンプ11を停止している。給水タンク3からボイラ2への給水により、給水タンク3の水位が下がり、給水開始電極棒33が水位を検知しなくなると(つまり給水開始水位を下回った場合)、給水ポンプ11を作動させる。これにより、給水路9を介して給水タンク3に給水されるが、給水停止電極棒32が水位を検知すると、給水ポンプ11を停止する。   Water supply to the water supply tank 3 via the water supply path 9 is controlled based on the water level of the water supply tank 3. Specifically, in this embodiment, control is performed as follows. Now, when the water supply stop electrode rod 32 detects the water level and the water level of the water supply tank 3 is sufficient (that is, when it exceeds the water supply stop water level), water supply to the water supply tank 3 is unnecessary, so the water supply pump 11 Has stopped. When the water level from the water supply tank 3 to the boiler 2 is lowered and the water supply start electrode rod 33 no longer detects the water level (that is, when the water level falls below the water supply start water level), the water supply pump 11 is operated. Thus, water is supplied to the water supply tank 3 through the water supply passage 9, but when the water supply stop electrode rod 32 detects the water level, the water supply pump 11 is stopped.

給水タンク3には、給水路9を介して給水可能であると共に補給水路10を介しても給水可能であるが、給水路9を介した給水が優先されるように制御されるのが好ましい。たとえば、給水タンク3の水位を設定範囲に維持するように、上述したとおり給水路9を介した給水を制御するが、それでは給水タンク3の水位が設定範囲を維持できない場合には、補給水路10を介しても給水タンク3へ給水するのが好ましい。その場合、給水タンク3の水位検出器31は、補給水ポンプ12を発停するための水位(補給水開始水位と補給水停止水位)も検出可能に構成しておけばよい。   Although it is possible to supply water to the water supply tank 3 via the water supply channel 9 and also to supply water via the replenishment water channel 10, it is preferable that the water supply via the water supply channel 9 be controlled so that priority is given. For example, the water supply through the water supply channel 9 is controlled as described above so as to maintain the water level of the water supply tank 3 within the set range. However, if the water level of the water supply tank 3 cannot maintain the set range, the supply water channel 10 It is preferable to supply water to the water supply tank 3 also through the In that case, the water level detector 31 of the water supply tank 3 may be configured to be able to detect the water levels for starting and stopping the makeup water pump 12 (the makeup water start water level and the makeup water stop water level).

給水路9を介した給水タンク3への給水中(つまり給水ポンプ11の作動中)、熱源供給ポンプ26を作動させると共に、ヒートポンプ4,5(後述するように少なくとも高段側ヒートポンプ5)を作動させる。つまり、熱源供給ポンプ26およびヒートポンプ4,5は、給水ポンプ11と連動するよう発停される。但し、ヒートポンプ4,5の起動時、まずは給水ポンプ11および熱源供給ポンプ26を作動させて、ヒートポンプ4,5への給水および熱源水の供給を確認した後、ヒートポンプ4,5を起動するのが好ましい。なお、ヒートポンプ4,5は、その圧縮機14,18の作動の有無により、運転と停止が切り替えられる。   While supplying water to the water supply tank 3 via the water supply passage 9 (that is, during operation of the water supply pump 11), the heat source supply pump 26 is operated and the heat pumps 4 and 5 (at least the high-stage heat pump 5 as described later) are operated. Let That is, the heat source supply pump 26 and the heat pumps 4 and 5 are started and stopped so as to interlock with the water supply pump 11. However, when the heat pumps 4 and 5 are started, first, the water supply pump 11 and the heat source supply pump 26 are operated to check the supply of the water supply and heat source water to the heat pumps 4 and 5 and then the heat pumps 4 and 5 are started. preferable. The heat pumps 4 and 5 are switched between operation and stop depending on whether or not the compressors 14 and 18 are activated.

給水路9を介した給水タンク3への給水中、給水ポンプ11は、出湯温度センサ30の検出温度を設定温度に維持するように、回転数をインバータ制御されるのがよい。以下、この制御を、出湯温度一定制御という。   During the water supply to the water supply tank 3 through the water supply path 9, the water supply pump 11 is preferably inverter-controlled so that the temperature detected by the tapping temperature sensor 30 is maintained at the set temperature. Hereinafter, this control is referred to as a constant tapping temperature control.

ヒートポンプ4,5の起動時、まずは高段側ヒートポンプ5を起動し、その後、設定タイミングで低段側ヒートポンプ4を起動するのがよい。たとえば、まずは高段側ヒートポンプ5を起動し、その起動から設定時間(高段側ヒートポンプ5の運転が安定するまでの時間であり、たとえば5分)後、低段側ヒートポンプ4を起動するのがよい。その理由は、次のとおりである。   When the heat pumps 4 and 5 are started, it is preferable to start the high stage heat pump 5 first, and then start the low stage heat pump 4 at the set timing. For example, first, the high-stage heat pump 5 is activated, and the low-stage heat pump 4 is activated after a set time (for example, 5 minutes) until the operation of the high-stage heat pump 5 is stabilized. Good. The reason is as follows.

すなわち、仮に、低段側ヒートポンプ4を先に起動し、遅れて高段側ヒートポンプ5を起動する場合、低段側ヒートポンプ4のみ運転中でも、前述した出湯温度一定制御により、出湯温度センサ30の検出温度を設定温度に維持するように給水量が調整されるので、その状態で、給水路9の下流側の高段側ヒートポンプ5をさらに起動すると、出湯温度センサ30の検出温度が設定温度を超えるおそれがある。また、比較的高温の水が高段側ヒートポンプ5に通されるので、高段側ヒートポンプ5の起動時、高段側凝縮器19や高段側過冷却器20において冷媒を所望に凝縮できず、高段側ヒートポンプ5の冷媒の圧力や温度が高まり過ぎて、高段側ヒートポンプ5をインターロック停止させるおそれもある。これに対し、高段側ヒートポンプ5を先に起動しておけば、そのような不都合を防止することができる。   That is, if the low-stage heat pump 4 is activated first and the high-stage heat pump 5 is activated later, even when only the low-stage heat pump 4 is in operation, the detection of the tapping temperature sensor 30 is performed by the above-described constant tapping temperature control. Since the amount of water supply is adjusted so as to maintain the temperature at the set temperature, when the high-stage heat pump 5 on the downstream side of the water supply path 9 is further activated in this state, the temperature detected by the tapping temperature sensor 30 exceeds the set temperature. There is a fear. In addition, since relatively high-temperature water is passed through the high-stage heat pump 5, the refrigerant cannot be condensed in the high-stage condenser 19 or the high-stage subcooler 20 as desired when the high-stage heat pump 5 is started. Further, the pressure and temperature of the refrigerant in the high stage heat pump 5 may increase excessively, and the high stage heat pump 5 may be interlocked. On the other hand, if the high stage side heat pump 5 is started first, such inconvenience can be prevented.

ヒートポンプ4,5を運転して、補給水タンク6から給水路9を介して給水タンク3へ給水する際、補給水タンク6からの給水は、給水加温用熱交換器25、低段側凝縮器15、高段側過冷却器20および高段側凝縮器19に順に通され加温される。一方、熱源水タンク7からの熱源水は、本実施例では、高段側蒸発器22と低段側蒸発器17とに順に通されると共に、これと並行に給水加温用熱交換器25に通される。各蒸発器22,17と給水加温用熱交換器25とに熱源水を直列に順に通す場合と比較して、各蒸発器22,17と給水加温用熱交換器25とに熱源水を並列に通す場合、比較的高温の熱源水を給水加温用熱交換器25に通すことができる。これにより、給水加温用熱交換器25における熱交換量を高めることができ、ヒートポンプ4,5の手前における給水の加温が図られるので、各圧縮機14,18の動力を小さくして、ヒートポンプ4,5の効率を向上することができる。さらに、各蒸発器22,17と給水加温用熱交換器25とに順に熱源水を通した場合、各蒸発器22,17が圧損要素となるが、各蒸発器22,17と給水加温用熱交換器25とに熱源水を並列に通す場合、そのような圧損要素がないというメリットもある。   When the heat pumps 4 and 5 are operated to supply water from the make-up water tank 6 to the water supply tank 3 through the water supply passage 9, the water supplied from the make-up water tank 6 is supplied with the heat exchanger 25 for supplying water heating, the low-stage side condensation The heater 15, the high stage side subcooler 20, and the high stage side condenser 19 are sequentially passed through and heated. On the other hand, in this embodiment, the heat source water from the heat source water tank 7 is passed through the high stage side evaporator 22 and the low stage side evaporator 17 in order, and in parallel with this, the heat exchanger 25 for heating the feed water is used. Passed through. Compared with the case where heat source water is sequentially passed through each evaporator 22, 17 and feed water heating heat exchanger 25 in series, heat source water is fed to each evaporator 22, 17 and feed water heating heat exchanger 25. When passing in parallel, heat source water having a relatively high temperature can be passed through the heat exchanger 25 for heating the feed water. Thereby, since the heat exchange amount in the heat exchanger 25 for feed water warming can be increased and heating of the feed water in front of the heat pumps 4 and 5 is achieved, the power of each compressor 14, 18 is reduced, The efficiency of the heat pumps 4 and 5 can be improved. Further, when the heat source water is passed through the evaporators 22 and 17 and the feed water heating heat exchanger 25 in order, the evaporators 22 and 17 become pressure loss elements. When the heat source water is passed through the heat exchanger 25 for use in parallel, there is an advantage that there is no such pressure loss element.

また、本実施例の給水加温システム1によれば、低段側ヒートポンプ4で熱源水から汲み上げられた熱は、カスケード熱交換器13を介して、高段側ヒートポンプ5でさらに汲み上げられる上、高段側ヒートポンプ5では、カスケード熱交換器13とは別に設けた高段側蒸発器22においても、熱源水から熱が汲み上げられる。従って、熱源水が比較的低温であっても、給水路9の通水を所望に加温することができる。また、カスケード熱交換器13で高段側蒸発器22のサポートをすることで、高段側蒸発器22からの熱源水の出口温度の低下を防止することができる。さらに、低段側ヒートポンプ4では、低段側凝縮器15がカスケード熱交換器13より低段側圧縮機14の側(つまり冷媒がより高温の側)に設けられ、低段側圧縮機14からの高温の冷媒で通水を加温できるので、給水路9の水温を昇温させ易い。   Moreover, according to the feed water heating system 1 of the present embodiment, the heat pumped from the heat source water by the low stage heat pump 4 is further pumped by the high stage heat pump 5 via the cascade heat exchanger 13. In the high stage heat pump 5, heat is pumped up from the heat source water also in the high stage evaporator 22 provided separately from the cascade heat exchanger 13. Therefore, even if the heat source water is at a relatively low temperature, the water passing through the water supply passage 9 can be heated as desired. Further, by supporting the high stage side evaporator 22 with the cascade heat exchanger 13, it is possible to prevent a decrease in the outlet temperature of the heat source water from the high stage side evaporator 22. Further, in the low-stage heat pump 4, the low-stage condenser 15 is provided on the low-stage compressor 14 side (that is, the refrigerant is at a higher temperature side) than the cascade heat exchanger 13. Therefore, it is easy to raise the water temperature of the water supply passage 9.

両ヒートポンプ4,5を運転して、給水路9を介した給水タンク3への給水中、設定条件を満たすと、高段側圧縮機18の運転を維持しつつ、低段側圧縮機14の運転を停止してもよい。つまり、高段側ヒートポンプ5のみを運転しつつ、給水路9を介した給水タンク3への給水を図ってもよい。   When both heat pumps 4 and 5 are operated to supply water to the water supply tank 3 through the water supply channel 9 and the set condition is satisfied, the operation of the high stage compressor 18 is maintained and the low stage compressor 14 is maintained. The operation may be stopped. That is, water supply to the water supply tank 3 through the water supply path 9 may be achieved while operating only the high-stage heat pump 5.

たとえば、高段側蒸発器22への熱源水温度が低段側停止温度を超えると、前記設定条件を満たしたとして、低段側圧縮機14を停止させればよい。具体的には、熱源温度センサ35の検出温度が低段側停止温度を超えると、低段側圧縮機14を停止させればよい。その後、給水ポンプ11の作動が継続中であることを前提に、熱源温度センサ35の検出温度が低段側起動温度以下になれば、低段側圧縮機14を起動すればよい。このようにして、熱源水が比較的高温の場合には、高段側ヒートポンプ5のみで給水を所望に加温できるから、低段側ヒートポンプ4を停止させて、消費電力の削減を図ることができる。   For example, when the heat source water temperature to the high stage side evaporator 22 exceeds the low stage side stop temperature, the low stage side compressor 14 may be stopped assuming that the setting condition is satisfied. Specifically, when the temperature detected by the heat source temperature sensor 35 exceeds the low-stage stop temperature, the low-stage compressor 14 may be stopped. Thereafter, on the assumption that the operation of the feed water pump 11 is continuing, if the temperature detected by the heat source temperature sensor 35 is equal to or lower than the low-stage start temperature, the low-stage compressor 14 may be started. In this way, when the heat source water is at a relatively high temperature, the water supply can be heated as desired by using only the high-stage heat pump 5, so the low-stage heat pump 4 can be stopped to reduce power consumption. it can.

また、給水ポンプ11の回転数をインバータで制御しつつ、出湯温度一定制御を実施する場合において、給水ポンプ11の回転数が低段側停止値を超える(たとえば、インバータ制御による給水ポンプ11のモータの駆動周波数が予め設定された最大周波数を超える)と、前記設定条件を満たしたとして、低段側圧縮機14を停止すればよい。その後、給水ポンプ11の作動が継続中であることを前提に、給水ポンプ11の回転数が低段側起動値以下になれば、低段側圧縮機14を起動すればよい。   In addition, in the case where the hot water temperature constant control is performed while controlling the rotation speed of the feed water pump 11 with an inverter, the rotation speed of the feed water pump 11 exceeds a low-stage stop value (for example, the motor of the feed water pump 11 by inverter control). If the drive frequency exceeds the preset maximum frequency), the low-stage compressor 14 may be stopped assuming that the setting condition is satisfied. Thereafter, on the assumption that the operation of the feed water pump 11 is continuing, if the rotation speed of the feed water pump 11 falls below the low stage start value, the low stage compressor 14 may be started.

出湯温度一定制御により、給水ポンプ11の回転数(周波数)を調整中、通水量(給水ポンプ11の回転数)が高くなり過ぎ、出湯温度センサ30の検出温度を設定温度に維持できないおそれがある場合には、低段側ヒートポンプ4を停止させることで、そのような不都合を防止できる。また、高段側ヒートポンプ5の冷媒圧が高くなり過ぎるのを防止できる。   During the adjustment of the rotation speed (frequency) of the feed water pump 11 by the constant tapping temperature control, the water flow rate (the rotation speed of the feed water pump 11) becomes too high, and the temperature detected by the tapping temperature sensor 30 may not be maintained at the set temperature. In such a case, such inconvenience can be prevented by stopping the low-stage heat pump 4. Moreover, it can prevent that the refrigerant | coolant pressure of the high stage side heat pump 5 becomes high too much.

さらに、給水タンク3の水位検出器31において、前述したとおり、給水停止電極棒32および給水開始電極棒33の他に、低段側停止電極棒34を設けておくなどして、給水停止水位と給水開始水位との間(典型的には中央)で、低段側停止水位を検知可能としておき、給水タンク3の水位が低段側停止水位を上回ると、前記設定条件を満たしたとして、低段側圧縮機14を停止するようにしてもよい。この場合、給水開始電極棒33が水位を検知せず(つまり給水開始水位を下回っており)、両ヒートポンプ4,5が作動中だとして、水位上昇時、低段側停止電極棒34が水位を検知する(つまり低段側停止水位を上回る)と、まずは低段側ヒートポンプ4を停止し、さらに給水停止電極棒32が水位を検知する(つまり給水停止水位を上回る)と、高段側ヒートポンプ5も停止する。その状態から逆に、水位下降時、低段側停止電極棒34が水位を検知しなくなる(つまり低段側停止水位を下回る)と、まずは高段側ヒートポンプ5を起動し、さらに給水開始電極棒33が水位を検知しなくなる(つまり給水開始水位を下回る)と、低段側ヒートポンプ4も起動する。   Further, in the water level detector 31 of the water supply tank 3, as described above, in addition to the water supply stop electrode rod 32 and the water supply start electrode rod 33, a low stage side stop electrode rod 34 is provided, etc. The low-stage stop water level can be detected between the water supply start water level (typically in the center) and if the water level in the water supply tank 3 exceeds the low-stage stop water level, The stage side compressor 14 may be stopped. In this case, the water supply start electrode rod 33 does not detect the water level (that is, it is below the water supply start water level), and both heat pumps 4 and 5 are operating. When detected (that is, above the low-stage stop water level), the low-stage heat pump 4 is stopped first, and when the water supply stop electrode rod 32 detects the water level (that is, above the water supply stop water level), the high-stage heat pump 5 is detected. Also stop. On the contrary, when the water level is lowered, if the low stage side stop electrode bar 34 does not detect the water level (that is, lower than the low stage side stop water level), the high stage side heat pump 5 is started first, and then the water supply start electrode bar When 33 does not detect the water level (that is, below the water supply start water level), the low-stage heat pump 4 is also started.

ところで、給水加温用熱交換器25への熱源水温度と、給水加温用熱交換器25の出口側水温との温度差を設定値に維持するように、給水加温用熱交換器25への熱源水の供給流量を制御するのがよい。具体的には、給水ポンプ11の作動中、水温センサ36の検出温度T1と、熱源温度センサ35の検出温度T2とを比較し、T2−T1が一定温度(たとえば1℃)になるように、流量調整弁29の開度を調整すればよい。これにより、給水加温用熱交換器25への熱源水の供給流量を最小限にできる。また、給水加温用熱交換器25への熱源水温度が、給水加温用熱交換器25の入口側水温よりも低い場合には、給水加温用熱交換器25への熱源水の供給が規制されるので、給水加温用熱交換器25に熱源水を通すと却って給水を冷却してしまう不都合が防止される。   By the way, the heat exchanger 25 for water supply heating is maintained so that the temperature difference between the temperature of the heat source water to the heat exchanger 25 for water supply heating and the water temperature on the outlet side of the heat exchanger 25 for water supply warming is maintained at a set value. It is good to control the supply flow rate of the heat source water. Specifically, during the operation of the water supply pump 11, the detected temperature T1 of the water temperature sensor 36 is compared with the detected temperature T2 of the heat source temperature sensor 35 so that T2-T1 becomes a constant temperature (for example, 1 ° C.). The opening degree of the flow rate adjustment valve 29 may be adjusted. Thereby, the supply flow rate of the heat source water to the heat exchanger 25 for supplying water heating can be minimized. When the heat source water temperature to the feed water heating heat exchanger 25 is lower than the inlet water temperature of the feed water heating heat exchanger 25, the heat source water is supplied to the feed water heating heat exchanger 25. Therefore, inconvenience of cooling the feed water when the heat source water is passed through the feed water heating heat exchanger 25 is prevented.

本発明の給水加温システム1は、前記実施例の構成に限らず、適宜変更可能である。特に、カスケード熱交換器13で接続された低段側ヒートポンプ4と高段側ヒートポンプ5との他、給水加温用熱交換器25を備え、給水路9を介した給水タンク3への給水が、給水加温用熱交換器25、低段側凝縮器15および高段側凝縮器19に順に通されるのであれば、その他の構成(制御を含む)は適宜に変更可能である。たとえば、前記実施例において、高段側過冷却器20は、場合により設置を省略してもよい。   The feed water warming system 1 of the present invention is not limited to the configuration of the above embodiment, and can be changed as appropriate. In particular, in addition to the low-stage heat pump 4 and the high-stage heat pump 5 connected by the cascade heat exchanger 13, a water supply heating heat exchanger 25 is provided to supply water to the water supply tank 3 via the water supply path 9. The other configurations (including control) can be appropriately changed as long as they are passed through the feed water heating heat exchanger 25, the low-stage condenser 15 and the high-stage condenser 19 in this order. For example, in the above embodiment, the high stage subcooler 20 may be omitted depending on circumstances.

また、低段側蒸発器17、高段側蒸発器22および給水加温用熱交換器25への熱源水の流し方は、前記実施例の構成に限らず適宜に変更可能である。   Moreover, the flow method of the heat source water to the low-stage evaporator 17, the high-stage evaporator 22, and the feed water heating heat exchanger 25 is not limited to the configuration of the above embodiment, and can be changed as appropriate.

また、前記実施例では、給水加温用熱交換器25への第二熱源供給路28に流量調整弁29を設けたが、給水加温用熱交換器25への熱源水の供給流量(あるいは後述するように第一熱源供給路27と第二熱源供給路28とへの熱源水の供給流量つまり分配割合)を調整可能であれば、その具体的構成は適宜に変更可能である。   Moreover, in the said Example, although the flow volume adjustment valve 29 was provided in the 2nd heat source supply path 28 to the heat exchanger 25 for feed water heating, supply flow rate of heat source water to the heat exchanger 25 for feed water heating (or As will be described later, if the heat source water supply flow rate to the first heat source supply path 27 and the second heat source supply path 28 (ie, the distribution ratio) can be adjusted, the specific configuration can be changed as appropriate.

たとえば、前記実施例では、第一熱源供給路27との分岐後の第二熱源供給路28に流量調整弁29を設け、この流量調整弁29を熱源温度センサ35と水温センサ36の各検出温度に基づき制御したが、第二熱源供給路28に流量調整弁29を設ける代わりに、第一熱源供給路27と第二熱源供給路28との分岐部に、図1において破線で示すように三方弁37を設けてもよい。三方弁37は、熱源供給ポンプ26からの熱源水について、第一熱源供給路27と第二熱源供給路28への分配割合を調整する。前記実施例と同様に、給水加温用熱交換器25への熱源水温度と、給水加温用熱交換器25の出口側水温との温度差を設定値に維持するように、三方弁37による分配割合を調整して、給水加温用熱交換器25への熱源水の供給流量を調整してもよい。   For example, in the embodiment described above, the flow rate adjustment valve 29 is provided in the second heat source supply path 28 after branching from the first heat source supply path 27, and the flow rate adjustment valve 29 is detected by the heat source temperature sensor 35 and the water temperature sensor 36. However, instead of providing the flow rate adjusting valve 29 in the second heat source supply path 28, three-way as shown by the broken line in FIG. 1 is provided at the branch portion of the first heat source supply path 27 and the second heat source supply path 28. A valve 37 may be provided. The three-way valve 37 adjusts the distribution ratio of the heat source water from the heat source supply pump 26 to the first heat source supply path 27 and the second heat source supply path 28. As in the above embodiment, the three-way valve 37 is set so that the temperature difference between the heat source water temperature to the feed water heating heat exchanger 25 and the outlet water temperature of the feed water heating heat exchanger 25 is maintained at a set value. The supply flow rate of the heat source water to the heat exchanger 25 for heating and supplying water may be adjusted by adjusting the distribution ratio.

また、このような三方弁37を設けた場合(あるいは前記実施例と同様に流量調整弁29を設けた場合)において、給水加温用熱交換器25への熱源水温度と、給水加温用熱交換器25の出口側水温との温度差を設定値に維持するように、給水加温用熱交換器25への熱源水の供給流量を制御することに代えて、次のように制御してもよい。すなわち、低段側蒸発器17と高段側蒸発器22とに、熱源水が設定順序で順に通され、これら各蒸発器17,22への熱源水の供給とは並列に、給水加温用熱交換器25に熱源水が通されるシステムにおいて、各蒸発器17,22を通過後の熱源水温度と、給水加温用熱交換器25を通過後の熱源水温度とが等しくなるように、各蒸発器17,22と給水加温用熱交換器25とへの熱源水の分配割合を調整してもよい。たとえば、図1において、熱源供給ポンプ26の作動中、低段側蒸発器17の出口側の熱源水温度(A点の温度)と、給水加温用熱交換器25の出口側の熱源水温度(B点の温度)とをそれぞれ温度センサ(図示省略)で監視し、両温度が等しくなるように三方弁37などを制御すればよい。この場合、各蒸発器17,22および給水加温用熱交換器25にバランスよく熱を分配することができる。   Further, when such a three-way valve 37 is provided (or when the flow rate adjustment valve 29 is provided in the same manner as in the above embodiment), the heat source water temperature to the feed water warming heat exchanger 25 and the feed water warming Instead of controlling the supply flow rate of the heat source water to the feed water heating heat exchanger 25 so as to maintain the temperature difference from the outlet water temperature of the heat exchanger 25 at the set value, the following control is performed. May be. That is, the heat source water is sequentially passed through the low-stage evaporator 17 and the high-stage evaporator 22 in the order of setting, and the supply of the heat source water to each of the evaporators 17 and 22 is in parallel with the supply water heating. In the system in which the heat source water is passed through the heat exchanger 25, the heat source water temperature after passing through each of the evaporators 17 and 22 is equal to the heat source water temperature after passing through the feed water heating heat exchanger 25. The distribution ratio of the heat source water to each of the evaporators 17 and 22 and the heat exchanger 25 for heating the feed water may be adjusted. For example, in FIG. 1, during the operation of the heat source supply pump 26, the heat source water temperature on the outlet side of the low-stage evaporator 17 (temperature at point A) and the heat source water temperature on the outlet side of the heat exchanger 25 for supplying water heating. (Temperature B) may be monitored by temperature sensors (not shown), and the three-way valve 37 and the like may be controlled so that both temperatures are equal. In this case, heat can be distributed to each of the evaporators 17 and 22 and the feed water heating heat exchanger 25 in a well-balanced manner.

また、前記実施例では、給水路9を介した給水タンク3への給水流量を調整するために、給水ポンプ11をインバータ制御したが、給水ポンプ11をオンオフ制御しつつ、給水路9に設けたバルブの開度を調整してもよい。つまり、出湯温度センサ30の検出温度などに基づき給水路9を介した給水の流量を調整可能であれば、その流量調整方法は適宜に変更可能である。   Moreover, in the said Example, although the water supply pump 11 was inverter-controlled in order to adjust the water supply flow volume to the water supply tank 3 via the water supply path 9, it provided in the water supply path 9 controlling the water supply pump 11 on / off. The opening degree of the valve may be adjusted. That is, if the flow rate of the water supply through the water supply channel 9 can be adjusted based on the temperature detected by the hot water temperature sensor 30, the flow rate adjustment method can be changed as appropriate.

また、前記実施例では、給水ポンプ11の回転数をインバータで制御しつつ、出湯温度一定制御を実施する場合において、給水ポンプ11の回転数(周波数)が低段側停止値を超えると、設定条件を満たしたとして、低段側圧縮機14を停止させた。これに関し、給水ポンプ11をインバータ制御するのではなく、給水路9の通水流量をバルブの開度調整で行う場合、次のように制御してもよい。すなわち、そのバルブの開度が低段側停止値を超えると、前記設定条件を満たしたとして、低段側圧縮機14を停止させてもよい。その後、バルブの開度が低段側起動値以下になれば、低段側圧縮機14を起動すればよい。   Moreover, in the said Example, when controlling the tapping water temperature constant control, controlling the rotation speed of the feed water pump 11 with an inverter, when the rotation speed (frequency) of the feed water pump 11 exceeds a low stage side stop value, it is set. Assuming that the condition was satisfied, the low-stage compressor 14 was stopped. In this regard, when the feed water flow rate of the water supply passage 9 is not adjusted by the inverter but by adjusting the opening of the valve, it may be controlled as follows. That is, when the opening degree of the valve exceeds the low-stage stop value, the low-stage compressor 14 may be stopped assuming that the set condition is satisfied. Thereafter, if the valve opening is equal to or lower than the low stage start value, the low stage compressor 14 may be started.

また、前記実施例では、給水タンク3への給水を貯留するために補給水タンク6を設置したが、場合により補給水タンク6の設置を省略して、給水源から直接に給水路9および補給水路10に水を通してもよい。   Moreover, in the said Example, although the makeup water tank 6 was installed in order to store the water supply to the water supply tank 3, installation of the makeup water tank 6 may be abbreviate | omitted depending on the case, and the water supply path 9 and the replenishment directly from a water supply source. Water may be passed through the water channel 10.

また、前記実施例では、給水路9および/または補給水路10を介して、補給水タンク6から給水タンク3へ給水可能としたが、これら給水は、軟水器から直接に行ってもよい。たとえば、図1において、給水路9および補給水路10の基端部をまとめて軟水器に接続し、給水ポンプ11の設置を省略する代わりに給水路9に設けた電動弁(モータバルブ)の開度を調整し、補給水ポンプ12の設置を省略する代わりに補給水路10に設けた電磁弁の開閉を制御すればよい。   Moreover, in the said Example, although the water supply from the replenishment water tank 6 to the water supply tank 3 was enabled via the water supply path 9 and / or the replenishment water path 10, these water supply may be performed directly from a water softener. For example, in FIG. 1, the base end portions of the water supply channel 9 and the makeup water channel 10 are collectively connected to the water softener, and instead of omitting the installation of the water supply pump 11, an electric valve (motor valve) provided in the water supply channel 9 is opened. Instead of adjusting the degree and omitting the installation of the makeup water pump 12, the opening and closing of the electromagnetic valve provided in the makeup water channel 10 may be controlled.

また、前記実施例では、ボイラ2の給水タンク3への給水をヒートポンプ4,5で加温できるシステムについて説明したが、給水タンク3の貯留水の利用先は、ボイラ2に限らず適宜に変更可能である。そして、場合により、補給水タンク6や補給水路10を省略してもよい。   Moreover, although the said Example demonstrated the system which can heat the water supply to the water supply tank 3 of the boiler 2 with the heat pumps 4 and 5, the utilization place of the stored water of the water supply tank 3 is not restricted to the boiler 2, and changes suitably. Is possible. In some cases, the replenishment water tank 6 and the replenishment water channel 10 may be omitted.

また、前記実施例では、ヒートポンプ4,5の熱源(給水加温用熱交換器25において給水を加温する流体でもある。)として熱源水を用いた例について説明したが、ヒートポンプ4,5の熱源流体として、熱源水に限らず、空気や排ガスなど各種の流体を用いることができる。   Moreover, although the said Example demonstrated the example using heat source water as a heat source of the heat pumps 4 and 5 (it is also a fluid which heats water supply in the heat exchanger 25 for water supply heating), The heat source fluid is not limited to heat source water, and various fluids such as air and exhaust gas can be used.

さらに、前記実施例では、ヒートポンプ4,5の圧縮機14,18は、電気モータにより駆動されたが、圧縮機14,18の駆動源は特に問わない。たとえば、圧縮機14,18は、電気モータに代えてまたはそれに加えて、蒸気を用いて動力を起こすスチームモータ(蒸気エンジン)により駆動されたり、ガスエンジンにより駆動されたりしてもよい。その場合、スチームモータへの給蒸量を調整したり、ガスエンジンへの供給ガス量を調整したりして、圧縮機14,18の出力が調整可能である。   Furthermore, in the said Example, although the compressors 14 and 18 of the heat pumps 4 and 5 were driven by the electric motor, the drive source of the compressors 14 and 18 is not ask | required in particular. For example, the compressors 14 and 18 may be driven by a steam motor (steam engine) that generates power using steam instead of or in addition to the electric motor, or may be driven by a gas engine. In that case, the output of the compressors 14 and 18 can be adjusted by adjusting the amount of steam supplied to the steam motor or the amount of gas supplied to the gas engine.

1 給水加温システム
3 給水タンク
4 低段側ヒートポンプ
5 高段側ヒートポンプ
6 補給水タンク
7 熱源水タンク
9 給水路
11 給水ポンプ
13 カスケード熱交換器
14 低段側圧縮機
15 低段側凝縮器
16 低段側膨張弁
17 低段側蒸発器
18 高段側圧縮機
19 高段側凝縮器
20 高段側過冷却器
21 高段側膨張弁
22 高段側蒸発器
25 給水加温用熱交換器
26 熱源供給ポンプ
27 第一熱源供給路
28 第二熱源供給路
29 流量調整弁
30 出湯温度センサ
31 水位検出器
32 給水停止電極棒
33 給水開始電極棒
34 低段停止電極棒
35 熱源温度センサ
36 水温センサ
DESCRIPTION OF SYMBOLS 1 Feed water heating system 3 Feed water tank 4 Low stage side heat pump 5 High stage side heat pump 6 Supplementary water tank 7 Heat source water tank 9 Water supply path 11 Feed water pump 13 Cascade heat exchanger 14 Low stage side compressor 15 Low stage side condenser 16 Low stage side expansion valve 17 Low stage side evaporator 18 High stage side compressor 19 High stage side condenser 20 High stage side subcooler 21 High stage side expansion valve 22 High stage side evaporator 25 Heat exchanger for heating water supply 26 Heat source supply pump 27 First heat source supply path 28 Second heat source supply path 29 Flow rate adjusting valve 30 Hot water temperature sensor 31 Water level detector 32 Water supply stop electrode rod 33 Water supply start electrode rod 34 Low stage stop electrode rod 35 Heat source temperature sensor 36 Water temperature Sensor

Claims (10)

低段側圧縮機、低段側凝縮器、カスケード熱交換器、低段側膨張弁および低段側蒸発器が順次環状に接続されて冷媒を循環させる低段側ヒートポンプと、
高段側圧縮機、高段側凝縮器、高段側膨張弁、前記カスケード熱交換器および高段側蒸発器が順次環状に接続されて冷媒を循環させる高段側ヒートポンプと、
熱源流体との熱交換により通水を加温する給水加温用熱交換器とを備え、
前記低段側凝縮器は、前記低段側ヒートポンプの冷媒と通水との熱交換器であり、
前記低段側蒸発器は、前記低段側ヒートポンプの冷媒と熱源流体との熱交換器であり、
前記高段側凝縮器は、前記高段側ヒートポンプの冷媒と通水との熱交換器であり、
前記高段側蒸発器は、前記高段側ヒートポンプの冷媒と熱源流体との熱交換器であり、
前記カスケード熱交換器は、前記低段側ヒートポンプの冷媒と前記高段側ヒートポンプの冷媒との熱交換器であり、
給水路を介した給水タンクへの給水が、前記給水加温用熱交換器、前記低段側凝縮器および前記高段側凝縮器に順に通される
ことを特徴とする給水加温システム。
A low-stage side heat pump in which a low-stage side compressor, a low-stage side condenser, a cascade heat exchanger, a low-stage side expansion valve, and a low-stage side evaporator are sequentially connected in an annular manner to circulate the refrigerant;
A high-stage heat pump for circulating a refrigerant by sequentially connecting a high-stage compressor, a high-stage condenser, a high-stage expansion valve, the cascade heat exchanger and the high-stage evaporator in an annular manner,
A heat exchanger for heating the feed water that heats the water through heat exchange with the heat source fluid,
The low-stage condenser is a heat exchanger between the refrigerant and water flow of the low-stage heat pump,
The low-stage evaporator is a heat exchanger between the refrigerant of the low-stage heat pump and the heat source fluid,
The high-stage condenser is a heat exchanger between the refrigerant and water flow of the high-stage heat pump,
The high-stage evaporator is a heat exchanger between the refrigerant of the high-stage heat pump and the heat source fluid,
The cascade heat exchanger is a heat exchanger between the refrigerant of the low stage side heat pump and the refrigerant of the high stage side heat pump,
Water supply to the water supply tank via the water supply path is sequentially passed through the water supply heating heat exchanger, the low-stage condenser, and the high-stage condenser.
前記低段側蒸発器と前記高段側蒸発器とに、熱源流体が、設定順序で直列に通されるか、並列に通され、
これら各蒸発器への熱源流体の供給とは並列に、前記給水加温用熱交換器に熱源流体が通される
ことを特徴とする請求項1に記載の給水加温システム。
A heat source fluid is passed through the low-stage evaporator and the high-stage evaporator in series in a set order or in parallel.
The feed water heating system according to claim 1, wherein a heat source fluid is passed through the feed water warming heat exchanger in parallel with the supply of the heat source fluid to each of the evaporators.
前記給水路を介した前記給水タンクへの給水中、設定条件を満たすと、前記高段側圧縮機の運転を維持しつつ、前記低段側圧縮機の運転を停止する
ことを特徴とする請求項1または請求項2に記載の給水加温システム。
When the setting condition is satisfied during water supply to the water supply tank via the water supply channel, the operation of the low-stage compressor is stopped while maintaining the operation of the high-stage compressor. The feed water warming system according to claim 1 or 2.
前記高段側蒸発器への熱源流体温度が低段側停止温度を超えると、前記設定条件を満たしたとして、前記低段側圧縮機を停止する
ことを特徴とする請求項3に記載の給水加温システム。
The water supply according to claim 3, wherein when the heat source fluid temperature to the high stage side evaporator exceeds a low stage side stop temperature, the low stage side compressor is stopped assuming that the setting condition is satisfied. Heating system.
前記給水路を介した前記給水タンクへの給水中、前記高段側凝縮器の出口側水温を設定温度に維持するように通水量を調整し、
前記通水量を調整するポンプの回転数または弁の開度が低段側停止値を超えると、前記設定条件を満たしたとして、前記低段側圧縮機を停止する
ことを特徴とする請求項3または請求項4に記載の給水加温システム。
During the water supply to the water supply tank via the water supply path, the water flow rate is adjusted so as to maintain the outlet side water temperature of the high stage side condenser at a set temperature,
4. The low-stage compressor is stopped when the rotational speed of the pump for adjusting the water flow rate or the opening of the valve exceeds a low-stage stop value, assuming that the setting condition is satisfied. Or the feed water heating system of Claim 4.
前記給水タンクの水位が低段側停止水位を上回ると、前記設定条件を満たしたとして、前記低段側圧縮機を停止する
ことを特徴とする請求項3〜5のいずれか1項に記載の給水加温システム。
The said low stage side compressor is stopped as the said setting conditions are satisfy | filled when the water level of the said water supply tank exceeds the low stage side stop water level, The one of Claims 3-5 characterized by the above-mentioned. Water heating system.
前記給水タンクの水位が下限水位を下回ると、前記給水路を介した前記給水タンクへの給水を開始すると共に、前記各圧縮機を起動し、
前記給水タンクの水位が上限水位を上回ると、前記給水路を介した前記給水タンクへの給水を停止すると共に、前記各圧縮機を停止する
ことを特徴とする請求項1〜6のいずれか1項に記載の給水加温システム。
When the water level of the water supply tank is below the lower limit water level, the water supply to the water supply tank via the water supply path is started, and each compressor is started,
When the water level of the water supply tank exceeds an upper limit water level, water supply to the water supply tank via the water supply path is stopped, and the compressors are stopped. Water supply heating system according to item.
前記各圧縮機の停止状態からの起動時、まずは前記高段側圧縮機を起動し、その後、設定タイミングで前記低段側圧縮機を起動する
ことを特徴とする請求項1〜7のいずれか1項に記載の給水加温システム。
8. When starting each compressor from a stopped state, first, the high-stage compressor is started, and then the low-stage compressor is started at a set timing. The feed water heating system according to Item 1.
前記給水加温用熱交換器への熱源流体温度と、前記給水加温用熱交換器の出口側水温との温度差を設定値に維持するように、前記給水加温用熱交換器への熱源流体の供給流量を調整する
ことを特徴とする請求項1〜8のいずれか1項に記載の給水加温システム。
In order to maintain the temperature difference between the heat source fluid temperature to the feed water heating heat exchanger and the outlet water temperature of the feed water warming heat exchanger at a set value, the feed water heating heat exchanger The supply water heating system according to any one of claims 1 to 8, wherein a supply flow rate of the heat source fluid is adjusted.
前記低段側蒸発器と前記高段側蒸発器とに、熱源流体が設定順序で順に通され、
これら各蒸発器への熱源流体の供給とは並列に、前記給水加温用熱交換器に熱源流体が通され、
前記各蒸発器を通過後の熱源流体温度と、前記給水加温用熱交換器を通過後の熱源流体温度とが等しくなるように、前記各蒸発器と前記給水加温用熱交換器とへの熱源流体の分配割合を調整する
ことを特徴とする請求項1〜9のいずれか1項に記載の給水加温システム。
A heat source fluid is sequentially passed through the low-stage evaporator and the high-stage evaporator in a set order,
In parallel with the supply of the heat source fluid to each of these evaporators, the heat source fluid is passed through the heat exchanger for heating the feed water,
To each evaporator and the feed water heating heat exchanger, the heat source fluid temperature after passing through each evaporator and the heat source fluid temperature after passing through the feed water heating heat exchanger are equal to each other. The feed water heating system according to any one of claims 1 to 9, wherein a distribution ratio of the heat source fluid is adjusted.
JP2014172514A 2014-08-27 2014-08-27 Water heating system Expired - Fee Related JP6421496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014172514A JP6421496B2 (en) 2014-08-27 2014-08-27 Water heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014172514A JP6421496B2 (en) 2014-08-27 2014-08-27 Water heating system

Publications (2)

Publication Number Publication Date
JP2016048125A true JP2016048125A (en) 2016-04-07
JP6421496B2 JP6421496B2 (en) 2018-11-14

Family

ID=55649129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014172514A Expired - Fee Related JP6421496B2 (en) 2014-08-27 2014-08-27 Water heating system

Country Status (1)

Country Link
JP (1) JP6421496B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7019214B1 (en) 2020-09-11 2022-02-15 オリオン機械株式会社 Simultaneous cold and hot temperature control device
JP7019212B1 (en) 2020-09-11 2022-02-15 オリオン機械株式会社 Simultaneous cold and hot temperature control device
WO2023038516A1 (en) * 2021-09-07 2023-03-16 Werkenhorst B.V. Heat pump installation and method for heating a medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038561A (en) * 1983-08-11 1985-02-28 ダイキン工業株式会社 Heater for composite heat pump
JP2012097941A (en) * 2010-11-01 2012-05-24 Miura Co Ltd Water supply heating system
JP2013238335A (en) * 2012-05-15 2013-11-28 Miura Co Ltd Water supply heating system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038561A (en) * 1983-08-11 1985-02-28 ダイキン工業株式会社 Heater for composite heat pump
JP2012097941A (en) * 2010-11-01 2012-05-24 Miura Co Ltd Water supply heating system
JP2013238335A (en) * 2012-05-15 2013-11-28 Miura Co Ltd Water supply heating system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7019214B1 (en) 2020-09-11 2022-02-15 オリオン機械株式会社 Simultaneous cold and hot temperature control device
JP7019212B1 (en) 2020-09-11 2022-02-15 オリオン機械株式会社 Simultaneous cold and hot temperature control device
JP2022046849A (en) * 2020-09-11 2022-03-24 オリオン機械株式会社 Cold and hot temperature simultaneous adjustment device
JP2022046847A (en) * 2020-09-11 2022-03-24 オリオン機械株式会社 Cold and hot temperature simultaneous adjustment device
WO2023038516A1 (en) * 2021-09-07 2023-03-16 Werkenhorst B.V. Heat pump installation and method for heating a medium
NL1044144B1 (en) * 2021-09-07 2023-03-21 Werkenhorst B V Heat pump installation and method for heating a medium

Also Published As

Publication number Publication date
JP6421496B2 (en) 2018-11-14

Similar Documents

Publication Publication Date Title
JP2013210118A (en) Feed water heating system
JP6694582B2 (en) Water supply heating system
EP2857761B1 (en) Water heater
JP2014194315A (en) Water supply and heating system
KR101613374B1 (en) Hot water supply device
JP6421496B2 (en) Water heating system
JP6132188B2 (en) Water heating system
JP6164565B2 (en) Water heating system
JP6341465B2 (en) Water heating system
JP5962972B2 (en) Water heating system
JP2014169819A (en) Feedwater heating system
JP6237109B2 (en) Water heating system
JP6090568B2 (en) Water heating system
JP6066072B2 (en) Water heating system
JP6066071B2 (en) Water heating system
JP2015081708A (en) Water supply heating system
JP6249282B2 (en) Water heating system
JP6083509B2 (en) Water heating system
JP2013238336A (en) Water supply heating system
JP6065212B2 (en) Water heating system
JP6210204B2 (en) Water heating system
JP2017146034A (en) Feedwater heating system
JP6083508B2 (en) Water heating system
JP2014169822A (en) Feedwater heating system
JP2013238335A (en) Water supply heating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180502

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180828

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181001

R150 Certificate of patent or registration of utility model

Ref document number: 6421496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees