WO2013146731A1 - Refrigeration device - Google Patents

Refrigeration device Download PDF

Info

Publication number
WO2013146731A1
WO2013146731A1 PCT/JP2013/058687 JP2013058687W WO2013146731A1 WO 2013146731 A1 WO2013146731 A1 WO 2013146731A1 JP 2013058687 W JP2013058687 W JP 2013058687W WO 2013146731 A1 WO2013146731 A1 WO 2013146731A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
refrigerant
outdoor heat
compressor
storage tank
Prior art date
Application number
PCT/JP2013/058687
Other languages
French (fr)
Japanese (ja)
Inventor
奥田 則之
瀬戸口 隆之
谷本 啓介
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201380015601.3A priority Critical patent/CN104185765B/en
Priority to EP13768582.2A priority patent/EP2848876A4/en
Priority to US14/387,394 priority patent/US20150075202A1/en
Priority to KR1020147029754A priority patent/KR101617574B1/en
Priority to AU2013241498A priority patent/AU2013241498B2/en
Publication of WO2013146731A1 publication Critical patent/WO2013146731A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/005Compression machines, plants or systems with non-reversible cycle of the single unit type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/002Collecting refrigerant from a cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/12Fins with U-shaped slots for laterally inserting conduits

Definitions

  • the present invention relates to a refrigeration apparatus, and more particularly to a refrigeration apparatus that uses R32 as a refrigerant and can perform a cooling operation and a heating operation.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-194015
  • the refrigerant flows in the order of the gas-liquid separator (refrigerant storage tank), the compressor, the outdoor heat exchanger, the expansion valve (expansion mechanism), and the indoor heat exchanger.
  • the refrigerant flows in the order of the refrigerant storage tank, the compressor, the indoor heat exchanger, the expansion mechanism, and the outdoor heat exchanger.
  • the optimum refrigerant amount during the cooling operation is different from the optimum refrigerant amount during the heating operation.
  • the volume of the outdoor heat exchanger that functions as a radiator during the cooling operation is different from the volume of the indoor heat exchanger that functions as a radiator during the heating operation.
  • the refrigerant that cannot be accommodated by the indoor heat exchanger during the heating operation is stored in a refrigerant storage tank connected to the suction side of the compressor. Stored temporarily.
  • 6-143991 is used as an outdoor heat exchanger, the outdoor heat exchanger The volume becomes less than the volume of the indoor heat exchanger. For this reason, in this case, refrigerant (excess refrigerant) that cannot be accommodated by the outdoor heat exchanger during cooling operation is generated, and the amount exceeds the amount that can be stored in the refrigerant storage tank or the like.
  • An object of the present invention is to provide a refrigeration apparatus using R32 as a refrigerant and capable of performing a cooling operation and a heating operation, when the volume of the outdoor heat exchanger is equal to or less than the volume of the indoor heat exchanger. It is to be able to accommodate surplus refrigerant that is generated and to return the refrigeration oil to the compressor.
  • the refrigerant flows in the order of the compressor, the outdoor heat exchanger, the expansion mechanism, and the indoor heat exchanger during the cooling operation, and the compressor, the indoor heat exchanger, the expansion mechanism, and the outdoor heat during the heating operation.
  • It is a refrigeration apparatus in which the refrigerant flows in the order of the exchanger.
  • R32 is used as the refrigerant
  • the volume of the outdoor heat exchanger is equal to or less than the volume of the indoor heat exchanger
  • the refrigerant is stored between the outdoor heat exchanger and the expansion mechanism.
  • a refrigerant storage tank is provided.
  • the refrigeration apparatus according to the second aspect is the refrigeration apparatus according to the first aspect, wherein the refrigerant storage tank has a high pressure in the refrigeration cycle during the cooling operation and a low pressure in the refrigeration cycle during the heating operation. ing.
  • this refrigeration apparatus uses R32 as a refrigerant, there is a concern about the problem of oil return to the compressor.
  • a refrigerant storage tank is provided between the outdoor heat exchanger and the expansion mechanism, compression is performed. Compared with the case where a refrigerant storage tank is provided on the suction side of the machine, the refrigerating machine oil is easily returned to the compressor.
  • this refrigeration apparatus when the capacity of the outdoor heat exchanger is equal to or less than the capacity of the indoor heat exchanger, surplus refrigerant is generated during the cooling operation, and this surplus refrigerant is accommodated in the refrigerant storage tank. Can be prevented.
  • R32 is used as the refrigerant, and it is possible to accommodate surplus refrigerant generated during the cooling operation even though the volume of the outdoor heat exchanger is equal to or less than the volume of the indoor heat exchanger. At the same time, the refrigeration oil can be returned to the compressor.
  • the refrigeration apparatus according to the third aspect is a heat exchanger in which, in the refrigeration apparatus according to the first or second aspect, the outdoor heat exchanger uses a flat tube as a heat transfer tube.
  • the refrigeration apparatus according to the fourth aspect is the refrigeration apparatus according to the third aspect, wherein the outdoor heat exchangers are arranged in a plurality of flat tubes arranged so as to be stacked at intervals, and adjacent flat tubes. And a heat exchanger having sandwiched fins.
  • the refrigeration apparatus according to the fifth aspect is the refrigeration apparatus according to the third aspect, wherein the outdoor heat exchanger has a plurality of flat tubes arranged so as to be stacked at intervals, and a cut into which the flat tubes are inserted. And a fin formed with a notch.
  • a refrigeration apparatus is the refrigeration apparatus according to the first or second aspect, wherein the outdoor heat exchanger and the indoor heat exchanger are cross-fin heat exchangers, and the heat transfer of the outdoor heat exchanger The tube diameter is set to be thinner than the heat transfer tube diameter of the indoor heat exchanger.
  • the capacity of the outdoor heat exchanger is equal to or less than the capacity of the indoor heat exchanger, similarly to the refrigeration apparatus according to the first or second aspect, the amount of refrigerant in the refrigeration apparatus is reduced. .
  • surplus refrigerant is generated during the cooling operation. However, since this surplus refrigerant can be stored in the refrigerant storage tank, it is possible to prevent the refrigerant control from being hindered.
  • a refrigeration apparatus is the refrigeration apparatus according to any one of the first to sixth aspects, wherein the bypass pipe for guiding the gas component of the refrigerant accumulated in the refrigerant storage tank to the compressor or the suction pipe of the compressor is provided. Furthermore, it is provided.
  • the bypass pipe for guiding the gas component of the refrigerant accumulated in the refrigerant storage tank to the compressor or the suction pipe of the compressor is provided. Furthermore, it is provided.
  • the bypass pipe for guiding the gas component of the refrigerant accumulated in the refrigerant storage tank to the compressor or the suction pipe of the compressor is provided. Furthermore, it is provided.
  • the bypass pipe for guiding the gas component of the refrigerant accumulated in the refrigerant storage tank to the compressor or the suction pipe of the compressor is provided. Furthermore, it is provided.
  • the refrigerant is separated into liquid and gas in the refrigerant storage tank before the entrance of the outdoor heat exchanger, and the gas component is bypassed. Will head to.
  • a refrigeration apparatus is the refrigeration apparatus according to the seventh aspect, wherein the bypass pipe has a flow rate adjusting mechanism.
  • the operating frequency of the compressor is high, there is a possibility that the gas-liquid two-phase refrigerant returns from the refrigerant storage tank to the compressor or the suction pipe of the compressor through the bypass pipe and is sucked into the compressor.
  • the flow rate adjusting mechanism is provided in the bypass pipe, the liquid component of the gas-liquid two-phase refrigerant is decompressed and evaporated. Thereby, in this refrigeration apparatus, it is possible to prevent the liquid component from returning to the compressor or the suction pipe of the compressor.
  • the refrigerant that has passed through the flow rate adjusting mechanism evaporates in the outdoor heat exchanger and then merges with the refrigerant toward the compressor or the suction pipe of the compressor.
  • the flow rate adjusting mechanism is an electric expansion valve
  • the state of the refrigerant immediately before being sucked into the compressor can be adjusted more optimally by controlling the valve opening degree.
  • the circulation flow rate of the refrigerant, that is, the indoor heat according to the refrigeration load on the indoor heat exchanger side. The flow rate of the refrigerant flowing through the exchanger can be controlled.
  • a refrigeration apparatus is the refrigeration apparatus according to any one of the first to eighth aspects, wherein the refrigerant storage tank is a gas-liquid separator.
  • the refrigerant storage tank composed of the gas-liquid separator has both a function of storing the liquid component and a function of separating the liquid component and the gas component.
  • FIG. 1 is a schematic configuration diagram of an air conditioner 1 as a refrigeration apparatus according to an embodiment of the present invention.
  • the air conditioner 1 is a refrigeration apparatus capable of performing a cooling operation as a cooling operation and a heating operation as a heating operation by performing a vapor compression refrigeration cycle.
  • the air conditioner 1 is mainly configured by connecting an outdoor unit 2 and an indoor unit 4.
  • the outdoor unit 2 and the indoor unit 4 are connected via a liquid refrigerant communication tube 5 and a gas refrigerant communication tube 6. That is, the vapor compression refrigerant circuit 10 of the air conditioner 1 is configured by connecting the outdoor unit 2 and the indoor unit 4 via the refrigerant communication pipes 5 and 6.
  • the refrigerant circuit 10 is filled with R32 which is a kind of HFC refrigerant.
  • the refrigerant circuit 10 is filled with refrigeration oil for lubricating the compressor 21 (described later) together with the refrigerant.
  • the refrigerating machine oil an ether-based synthetic oil that has some compatibility with R32, a mineral oil that is incompatible with R32, an alkylbenzene-based synthetic oil, or the like is used.
  • the indoor unit 4 is installed indoors and constitutes a part of the refrigerant circuit 10.
  • the indoor unit 4 mainly has an indoor heat exchanger 41.
  • the indoor heat exchanger 41 is a heat exchanger that functions as a refrigerant evaporator during cooling operation to cool indoor air, and functions as a refrigerant radiator during heating operation to heat indoor air.
  • the liquid side of the indoor heat exchanger 41 is connected to the liquid refrigerant communication tube 5, and the gas side of the indoor heat exchanger 41 is connected to the gas refrigerant communication tube 6.
  • the indoor heat exchanger 41 is a cross fin heat exchanger, and mainly includes heat transfer fins 411 and heat transfer tubes 412.
  • FIG. 1 the indoor heat exchanger 41 is a cross fin heat exchanger, and mainly includes heat transfer fins 411 and heat transfer tubes 412.
  • the heat transfer fins 411 are thin aluminum flat plates, and the heat transfer fins 411 have a plurality of through holes.
  • the heat transfer tube 412 includes a straight tube 412a inserted into the through hole of the heat transfer fin 411, and U-shaped tubes 412b and 412c that connect ends of adjacent straight tubes 412a.
  • the straight pipe 412 a is brought into close contact with the heat transfer fin 411 by being expanded after being inserted into the through hole of the heat transfer fin 411.
  • the straight pipe 412a and the first U-shaped pipe 412b are integrally formed.
  • the second U-shaped pipe 412c is welded or brazed after the straight pipe 412a is inserted into the through-hole of the heat transfer fin 411 and expanded. Is connected to the end of the straight pipe 411a.
  • the indoor unit 4 also has an indoor fan 42 for supplying indoor air as supply air after sucking indoor air into the indoor unit 4 and exchanging heat with the refrigerant in the indoor heat exchanger 41.
  • the indoor unit 4 also has an indoor side control unit 44 that controls the operation of each part constituting the indoor unit 4.
  • the indoor side control unit 44 includes a microcomputer and a memory for controlling the indoor unit 4, and exchanges control signals and the like with a remote controller (not shown). Control signals and the like can be exchanged with the unit 2 via the transmission line 8a.
  • the outdoor unit 2 is installed outside and constitutes a part of the refrigerant circuit 10.
  • the outdoor unit 2 mainly includes a compressor 21, a switching mechanism 22, an outdoor heat exchanger 23, an expansion mechanism 24, a refrigerant storage tank 25, a liquid side closing valve 27, and a gas side closing valve 28. is doing.
  • the compressor 21 is a device that compresses the low-pressure refrigerant in the refrigeration cycle until the pressure becomes high.
  • the compressor 21 has a hermetic structure in which a rotary type or scroll type positive displacement compression element (not shown) is rotationally driven by a compressor motor 21a controlled by an inverter.
  • the compressor 21 has a suction pipe 31 connected to the suction side and a discharge pipe 32 connected to the discharge side.
  • the suction pipe 31 is a refrigerant pipe that connects the suction side of the compressor 21 and the first port 22 a of the switching mechanism 22.
  • the suction pipe 31 is provided with an accumulator 29.
  • the discharge pipe 32 is a refrigerant pipe that connects the discharge side of the compressor 21 and the second port 22 b of the switching mechanism 22.
  • the switching mechanism 22 is a mechanism for switching the direction of refrigerant flow in the refrigerant circuit 10.
  • the switching mechanism 22 causes the outdoor heat exchanger 23 to function as a radiator for the refrigerant compressed in the compressor 21, and the refrigerant evaporator that has radiated the indoor heat exchanger 41 in the outdoor heat exchanger 23. Switch to function as. That is, during the cooling operation, the switching mechanism 22 switches between the second port 22b and the third port 22c and the first port 22a and the fourth port 22d. Thereby, the discharge side (here, the discharge pipe 32) of the compressor 21 and the gas side (here, the first gas refrigerant pipe 33) of the outdoor heat exchanger 23 are connected (of the switching mechanism 22 of FIG. 1).
  • the suction side (here, the suction pipe 31) of the compressor 21 and the gas refrigerant communication pipe 6 side (here, the second gas refrigerant pipe 34) are connected (see the solid line of the switching mechanism 22 in FIG. 1). ).
  • the switching mechanism 22 causes the outdoor heat exchanger 23 to function as an evaporator of the refrigerant that has dissipated heat in the indoor heat exchanger 41 during the heating operation, and the indoor heat exchanger 41 is used for the refrigerant compressed in the compressor 21. Switch to function as a radiator. That is, during the heating operation, the switching mechanism 22 switches the second port 22b and the fourth port 22d to communicate and the first port 22a and the third port 22c to communicate.
  • the discharge side (here, the discharge pipe 32) of the compressor 21 and the gas refrigerant communication pipe 6 side (here, the second gas refrigerant pipe 34) are connected (the broken line of the switching mechanism 22 in FIG. 1). reference).
  • the suction side (here, the suction pipe 31) of the compressor 21 and the gas side (here, the first gas refrigerant pipe 33) of the outdoor heat exchanger 23 are connected (broken line of the switching mechanism 22 in FIG. 1). See).
  • the first gas refrigerant pipe 33 is a refrigerant pipe that connects the third port 22 c of the switching mechanism 22 and the gas side of the outdoor heat exchanger 23.
  • the second gas refrigerant pipe 33 is a refrigerant pipe that connects the fourth port 22d of the switching mechanism 22 and the gas refrigerant communication pipe 6 side.
  • the switching mechanism 22 is a four-way switching valve.
  • the outdoor heat exchanger 23 is a heat exchanger that functions as a refrigerant radiator that uses outdoor air as a cooling source during cooling operation, and functions as a refrigerant evaporator that uses outdoor air as a heating source during heating operation.
  • the outdoor heat exchanger 23 has a liquid side connected to the liquid refrigerant pipe 35 and a gas side connected to the first gas refrigerant pipe 33.
  • the liquid refrigerant pipe 35 is a refrigerant pipe that connects the liquid side of the outdoor heat exchanger 23 and the liquid refrigerant communication pipe 7 side.
  • the outdoor heat exchanger 23 is a heat exchanger that uses a flat tube as a heat transfer tube.
  • the outdoor heat exchanger 23 is a stacked heat exchanger, and mainly includes a flat tube 231, a corrugated fin 232, and headers 233a and 233b.
  • FIG. 3 is an external perspective view of the outdoor heat exchanger 23.
  • the flat tube 231 is formed of aluminum or an aluminum alloy, and has a flat portion 231a serving as a heat transfer surface and a plurality of internal flow paths (not shown) through which a refrigerant flows.
  • the flat tubes 231 are arranged in a plurality of stages so as to be stacked with an interval (ventilation space) in a state where the flat portion 231a is directed upward and downward.
  • the corrugated fins 232 are aluminum or aluminum alloy fins bent into a corrugated shape.
  • the corrugated fins 232 are arranged in a ventilation space sandwiched between upper and lower flat tubes 231, and a valley portion and a mountain portion are in contact with a flat portion 231 a of the flat tube 231.
  • the trough part, the peak part, and the plane part 231a are joined by brazing or the like.
  • the headers 233a and 233b are connected to both ends of the flat tubes 231 arranged in a plurality of stages in the vertical direction.
  • the headers 233 a and 233 b have a function of supporting the flat tube 231, a function of guiding the refrigerant to the internal flow path of the flat tube 231, and a function of collecting the refrigerant that has come out of the internal flow path.
  • the refrigerant flowing from the first inlet / outlet 234 of the first header 233a is distributed almost evenly to each internal flow path of the uppermost flat tube 231; It flows toward the second header 233b.
  • the refrigerant that has reached the second header 233b is evenly distributed to each internal flow path of the second-stage flat tube 231 and flows toward the first header 233a.
  • the refrigerant in the odd-numbered flat tubes 231 flows toward the second header 233b, and the refrigerant in the even-numbered flat tubes 231 flows toward the first header 233a.
  • the refrigerant in the flat tube 231 at the lowest level and the even number level flows toward the first header 233a, collects at the first header 233a, and flows out from the second inlet / outlet 235 of the first header 233a.
  • the outdoor heat exchanger 23 functions as a refrigerant evaporator
  • the refrigerant flows in from the second inlet / outlet 235 of the first header 233a, and the flat tubes 231 and 231 in the opposite direction to the function as a refrigerant radiator. After flowing through the headers 233a and 233b, it flows out from the first entrance / exit 234 of the first header 233a.
  • the refrigerant flowing in the flat tube 231 radiates heat to the airflow flowing in the ventilation space via the corrugated fins 232. Further, when the outdoor heat exchanger 23 functions as a refrigerant evaporator, the refrigerant flowing through the flat tube 231 absorbs heat from the air flow flowing through the ventilation space via the corrugated fins 232.
  • the capacity of the outdoor heat exchanger 23 is smaller than the capacity of the indoor heat exchanger 41 by using the laminated heat exchanger as described above as the outdoor heat exchanger 23. This point will be described with reference to FIG. 4 using a packaged air conditioner as an example.
  • FIG. 4 using a packaged air conditioner as an example.
  • FIG. 4 is a graph showing the outdoor heat exchanger volume / indoor heat exchanger volume ratio by capacity.
  • is a normal type of packaged air conditioner (cross fin type outdoor heat exchanger)
  • is an outdoor heat exchanger of package air conditioner small diameter type (stacked type outdoor heat exchanger)
  • is a normal type of room air conditioner ( Cross fin type outdoor heat exchanger)
  • indicates outdoor heat exchanger small diameter type (stacked type outdoor heat exchanger) of room air conditioner.
  • the expansion mechanism 24 is a device that reduces the high-pressure refrigerant in the refrigeration cycle temporarily stored in the refrigerant storage tank 25 to the low pressure in the refrigeration cycle during the cooling operation.
  • the expansion mechanism 24 is a device that reduces the high-pressure refrigerant in the refrigeration cycle that has radiated heat in the indoor heat exchanger 41 to the low pressure in the refrigeration cycle during heating operation.
  • the expansion mechanism 24 is provided in a portion of the liquid refrigerant pipe 35 near the liquid side closing valve 27. Here, an electric expansion valve is used as the expansion mechanism 24.
  • the refrigerant storage tank 25 is provided between the outdoor heat exchanger 23 and the expansion mechanism 24.
  • the refrigerant storage tank 25 is a container that is capable of storing high-pressure refrigerant in the refrigeration cycle that has become high pressure in the refrigeration cycle during cooling operation and radiates heat in the outdoor heat exchanger 23.
  • the refrigerant storage tank 25 is a container capable of storing a low-pressure refrigerant in the refrigeration cycle that is low in the refrigeration cycle during heating operation and decompressed in the expansion mechanism 24.
  • the amount of liquid refrigerant that can be accommodated in the indoor heat exchanger 41 during the heating operation in which the indoor heat exchanger 41 functions as a refrigerant radiator is 1100 cc, and the outdoor heat exchanger 23 functions as a refrigerant radiator.
  • the amount of liquid refrigerant that can be accommodated in the outdoor heat exchanger 23 during the cooling operation is 800 cc
  • the remaining 300 cc of liquid refrigerant that cannot be accommodated in the outdoor heat exchanger 23 during the cooling operation is stored in the refrigerant storage tank 25. Temporarily accommodated.
  • the liquid side shut-off valve 27 and the gas side shut-off valve 28 are valves provided at connection ports with external devices and pipes (specifically, the liquid refrigerant communication pipe 5 and the gas refrigerant communication pipe 6).
  • the liquid side closing valve 26 is provided at the end of the liquid refrigerant pipe 35.
  • the gas side closing valve 27 is provided at the end of the second gas refrigerant pipe 34.
  • the outdoor unit 2 has an outdoor fan 36 for sucking outdoor air into the outdoor unit 2, exchanging heat with the refrigerant in the outdoor heat exchanger 23, and then discharging the air to the outside.
  • a propeller fan or the like driven by an outdoor fan motor 37 is used as the outdoor fan 36.
  • the outdoor unit 2 also has an outdoor control unit 38 that controls the operation of each unit constituting the outdoor unit 2.
  • the outdoor side control part 38 has a microcomputer, memory, etc. for controlling the outdoor unit 2, and controls signal between the indoor side control parts 43 of the indoor unit 4 via the transmission line 8a. Etc. can be exchanged. That is, the control part 8 which performs operation control of the whole air conditioning apparatus 1 is comprised by the transmission line 8a which connects between the indoor side control part 44, the outdoor side control part 38, and the control parts 38 and 44.
  • the controller 8 can control the operation of various devices and valves 21a, 22, 24, 26, 37, 43, and the like based on various operation settings, detection values of various sensors, and the like.
  • Refrigerant communication pipe> Refrigerant communication pipes 5 and 6 are refrigerant pipes constructed on site when the air conditioner 1 is installed at an installation location such as a building, and installation conditions such as an installation location and a combination of an outdoor unit and an indoor unit. Those having various lengths and tube diameters are used. As described above, the refrigerant circuit 10 of the air conditioner 1 is configured by connecting the outdoor unit 2, the indoor unit 4, and the refrigerant communication pipes 5 and 6.
  • the refrigerant circuit 10 performs a refrigeration cycle in which the refrigerant flows in the order of the compressor 21, the outdoor heat exchanger 23, the refrigerant storage tank 25, the expansion mechanism 24, and the indoor heat exchanger 41. It has become.
  • the refrigerant circuit 10 performs a refrigeration cycle in which the refrigerant flows in the order of the compressor 21, the indoor heat exchanger 41, the expansion mechanism 24, the refrigerant storage tank 25, and the outdoor heat exchanger 23 during the heating operation as the heating operation. It is like that.
  • the air conditioner 1 can perform various operations such as a cooling operation and a heating operation by the control unit 8 including the indoor side control unit 44 and the outdoor side control unit 38.
  • the air conditioner 1 can perform a cooling operation and a heating operation as described above.
  • cooling operation of the air conditioning apparatus 1 and heating operation is demonstrated.
  • Heating operation> During the heating operation, the switching mechanism 22 is switched to the state indicated by the broken line in FIG. 1, that is, the communication between the second port 22b and the fourth port 22d and the communication between the first port 22a and the third port 22c. Do.
  • the low-pressure refrigerant in the refrigeration cycle is sucked into the compressor 21, compressed until it reaches a high pressure in the refrigeration cycle, and then discharged.
  • the high-pressure refrigerant discharged from the compressor 21 is sent to the indoor heat exchanger 41 through the switching mechanism 22, the gas side closing valve 28 and the gas refrigerant communication pipe 6.
  • the high-pressure refrigerant sent to the indoor heat exchanger 41 radiates heat by exchanging heat with indoor air in the indoor heat exchanger 41. Thereby, indoor air is heated.
  • capacitance of the indoor heat exchanger 41 is larger than the capacity
  • most liquid refrigerants are accommodated in the indoor heat exchanger 41 at the time of heating operation.
  • the high-pressure refrigerant radiated by the indoor heat exchanger 41 is sent to the expansion mechanism 24 through the liquid refrigerant communication pipe 5 and the liquid side shut-off valve 27.
  • the refrigerant sent to the expansion mechanism 24 is depressurized to a low pressure in the refrigeration cycle by the expansion mechanism 24, and then sent to the refrigerant storage tank 25 to be accumulated in the refrigerant storage tank 25. Then, the refrigerant in the refrigerant storage tank 25 is sent to the outdoor heat exchanger 23.
  • the low-pressure refrigerant sent to the outdoor heat exchanger 23 evaporates by exchanging heat with outdoor air supplied by the outdoor fan 36 in the outdoor heat exchanger 23.
  • the low-pressure refrigerant evaporated in the outdoor heat exchanger 23 is again sucked into the compressor 21 through the switching mechanism 22.
  • the switching mechanism 22 is in a state indicated by a solid line in FIG. 1, that is, switching between the second port 22b and the third port 22c and the first port 22a and the fourth port 22d.
  • the low-pressure refrigerant in the refrigeration cycle is sucked into the compressor 21, compressed until it reaches a high pressure in the refrigeration cycle, and then discharged.
  • the high-pressure refrigerant discharged from the compressor 21 is sent to the outdoor heat exchanger 23 through the switching mechanism 22.
  • the high-pressure refrigerant sent to the outdoor heat exchanger 23 radiates heat by exchanging heat with outdoor air in the outdoor heat exchanger 23.
  • the high-pressure refrigerant that has radiated heat in the outdoor heat exchanger 23 is sent to the refrigerant storage tank 25.
  • capacitance of the outdoor heat exchanger 23 is below the capacity
  • the liquid refrigerant in the refrigerant storage tank 25 is depressurized to a low pressure in the refrigeration cycle by the expansion mechanism 24 and then sent to the indoor heat exchanger 41 through the liquid side closing valve 27 and the liquid refrigerant communication pipe 5.
  • the low-pressure refrigerant sent to the indoor heat exchanger 41 evaporates by exchanging heat with indoor air in the indoor heat exchanger 41. Thereby, indoor air is cooled.
  • the air conditioner 1 of the present embodiment has the following features.
  • R32 is used as the refrigerant.
  • the indoor heat exchanger 41 is a cross-fin heat exchanger
  • the outdoor heat exchanger 23 is a laminated heat exchanger using a flat tube 231 as a heat transfer tube
  • the volume of the heat exchanger 23 is 100% or less of the volume of the indoor heat exchanger 41. For this reason, surplus refrigerant is generated during the cooling operation, which may hinder refrigerant control.
  • the refrigerant storage tank 25 is provided between the outdoor heat exchanger 23 and the expansion mechanism 24, and the refrigerant storage tank 25 is in the refrigeration cycle during the cooling operation.
  • the pressure is high, and the pressure is low in the refrigeration cycle during heating operation.
  • the air conditioner 1 since the capacity of the outdoor heat exchanger 23 is equal to or less than the capacity of the indoor heat exchanger 41, surplus refrigerant generated during the cooling operation is accommodated in the refrigerant storage tank 25, which hinders refrigerant control. Can be prevented.
  • R32 is used as the refrigerant, and the excess refrigerant generated during the cooling operation is accommodated even though the volume of the outdoor heat exchanger 23 is equal to or less than the volume of the indoor heat exchanger 41. And the refrigerating machine oil can be returned to the compressor 21.
  • a bypass pipe 30 is further provided for guiding the gas component of the refrigerant stored in the refrigerant storage tank 25 to the compressor 21 or the suction pipe 31 of the compressor 21.
  • the refrigerant immediately before entering the refrigerant storage tank 25 during the heating operation includes a gas component generated when passing through the expansion mechanism 24.
  • this refrigerant enters the refrigerant storage tank 25, it is separated into a liquid component and a gas component, the liquid refrigerant is stored on the lower side, and the gas refrigerant is stored on the upper side.
  • the gas refrigerant separated in the refrigerant storage tank 25 flows through the bypass pipe 30 to the suction pipe 31 of the compressor 21. Further, the liquid refrigerant separated in the refrigerant storage tank 25 is depressurized in the expansion mechanism 24 and then flows to the outdoor heat exchanger 23.
  • the bypass pipe 30 is provided so as to connect between the upper part of the refrigerant storage tank 25 and the middle part of the suction pipe 31.
  • a flow rate adjusting mechanism 30a is provided in the middle of the bypass pipe 30, a flow rate adjusting mechanism 30a is provided.
  • an electric expansion valve is used as the flow rate adjusting mechanism 30a.
  • the outlet of the bypass pipe 30 may be directly connected to the compressor 21 instead of being connected to the middle part of the suction pipe 31.
  • the flow rate adjusting mechanism 30a is controlled by the control unit 8 in the same manner as other devices and valves 21a, 22, 24, 26, 37, 43 and the like. Specifically, during the heating operation, the flow rate adjustment mechanism 30a is controlled to be in an open state, and during the cooling operation, the flow rate adjustment mechanism 30a is controlled to be in a closed state.
  • the high-pressure refrigerant that has been radiated in the indoor heat exchanger 41 and then sent to the expansion mechanism 24 is depressurized by the expansion mechanism 24 to a low pressure in the refrigeration cycle, and then sent to the refrigerant storage tank 25.
  • the refrigerant immediately before entering the refrigerant storage tank 25 includes a gas component generated when the expansion mechanism 24 is depressurized.
  • the refrigerant is separated into a liquid component and a gas component.
  • the liquid refrigerant in the refrigeration cycle is stored on the lower side, and the low-pressure gas refrigerant in the refrigeration cycle is stored on the upper side.
  • the flow rate adjusting mechanism 30a of the bypass pipe 30 is controlled to be in the open state, so that the gas refrigerant in the refrigerant storage tank 25 goes to the suction pipe 31 of the compressor 21 through the bypass pipe 30.
  • the liquid refrigerant in the refrigerant storage tank 25 is sent to the outdoor heat exchanger 23.
  • the low-pressure refrigerant sent to the outdoor heat exchanger 23 evaporates in the outdoor heat exchanger 23 by exchanging heat with outdoor air supplied by the outdoor fan 36.
  • the refrigerant flowing into the outdoor heat exchanger 23 is reduced by the gas-liquid separation operation in the refrigerant storage tank 25 and the operation of sucking the gas refrigerant separated into the compressor 21 through the bypass pipe 30. .
  • coolant which flows through the outdoor heat exchanger 23 reduces and a pressure loss can be made small by that much, the decompression loss in a refrigerating cycle can be reduced.
  • the flow rate adjusting mechanism 30a of the bypass pipe 30 is controlled to be closed as described above, so that the liquid refrigerant accumulated in the refrigerant storage tank 25 does not flow to the bypass pipe 30.
  • the liquid refrigerant in the refrigerant storage tank 25 is depressurized to a low pressure in the refrigeration cycle by the expansion mechanism 24 and then sent to the indoor heat exchanger 41 through the liquid side closing valve 27 and the liquid refrigerant communication pipe 5.
  • the bypass pipe 30 which guides the gas component of the refrigerant
  • the air conditioning apparatus 1 it is possible to prevent the liquid component from returning to the compressor 21 or the suction pipe 31 of the compressor 21.
  • the refrigerant that has passed through the flow rate adjustment mechanism 30 a evaporates in the indoor heat exchanger 41 and the outdoor heat exchanger 23, and then enters the compressor 21 or the suction pipe 31 of the compressor 21. It will be merged with the refrigerant.
  • the flow rate adjustment mechanism 30a is an electric expansion valve, the refrigerant state immediately before being sucked into the compressor 21 can be adjusted more optimally by controlling the valve opening degree.
  • the flow rate of the refrigerant returning to the compressor 21 can be increased or decreased by controlling the valve opening degree of the flow rate adjusting mechanism 30a, the circulation flow rate of the refrigerant according to the refrigeration load on the indoor heat exchanger 41 side, that is, The flow rate of the refrigerant flowing through the indoor heat exchanger 41 can be controlled.
  • a container for storing the refrigerant is employed as the refrigerant storage tank 25, but the present invention is not limited to this.
  • a cyclone type gas-liquid separator as shown in FIG. 6 may be employed.
  • the refrigerant storage tank 25 of this modification mainly includes a cylindrical container 251, a first connection pipe 252, a second connection pipe 253, and a third connection pipe 254.
  • the first connection pipe 252 is connected in the tangential direction of the circumferential side wall of the cylindrical container 251, and communicates the inside of the cylindrical container 251 and the expansion mechanism 24.
  • the second connection pipe 253 is connected to the bottom wall of the cylindrical container 251 and communicates the inside of the cylindrical container 251 and the outdoor heat exchanger 23.
  • the third connection pipe 254 is connected to the upper wall of the cylindrical container 251 and connects the inside of the cylindrical container 251 and the bypass pipe 30.
  • the low-pressure refrigerant in the refrigeration cycle flowing into the cylindrical container 251 through the first connection pipe 252 swirls along the inner peripheral surface 251a of the circumferential side wall of the cylindrical container 251.
  • the liquid refrigerant adheres to the inner peripheral surface 251a, and the liquid refrigerant and the gas refrigerant are efficiently separated.
  • the liquid refrigerant descends due to gravity, accumulates on the lower side, and flows out from the cylindrical container 251 through the second connection pipe 253.
  • the gas refrigerant rises while turning, accumulates on the upper side, and flows out of the cylindrical container 251 through the third connection pipe 254.
  • the refrigerant storage tank 25 composed of a gas-liquid separator has both a refrigerant storage function for storing liquid refrigerant and a function for separating the liquid component and the gas component. This eliminates the need for a device and contributes to the simplification of the device configuration.
  • a stacked heat exchanger having a plurality of flat tubes 231 and corrugated fins 232 is illustrated as an example of the outdoor heat exchanger 23 that uses a flat tube 231 as a heat transfer tube. Yes.
  • the outdoor heat exchanger 23 is arranged such that a plurality of flat tubes 231 are stacked at intervals, and corrugated fins 232 are sandwiched between adjacent flat tubes 231.
  • the outdoor heat exchanger 23 is not limited to the configuration in the above embodiment and the first and second modifications, and is arranged to be stacked with an interval as shown in FIGS. 7 and 8, for example.
  • a laminated heat exchanger having a plurality of flat tubes 231 and fins 236 formed with notches 236a into which the flat tubes 231 are inserted may be used. Even in this case, the same effects as those of the above embodiment and the first and second modifications can be obtained.
  • the laminated heat exchanger which has the some flat tube 231 and the corrugated fin 232 is illustrated as an example of the outdoor heat exchanger 23 which uses the flat tube 231 as a heat exchanger tube. Yes.
  • the outdoor heat exchanger 23 is arranged such that a plurality of flat tubes 231 are stacked at intervals, and corrugated fins 232 are sandwiched between adjacent flat tubes 231.
  • the outdoor heat exchanger 23 is not limited to the configuration in the above embodiment and the first and second modifications.
  • the flat tube is formed in a meandering shape, and the fin is between the adjacent surfaces of the flat tube. It may be configured to be sandwiched between. Even in this case, the same effects as those of the above embodiment and the first and second modifications can be obtained.
  • the outdoor heat exchanger 23 is a stacked heat exchanger having a plurality of flat tubes 231 and fins 236 formed with corrugated fins 232 and notches 236a. It is not limited to this.
  • both the outdoor heat exchanger 23 and the indoor heat exchanger 41 are cross-fin heat exchangers, and the outdoor heat exchanger 23
  • the heat transfer tube diameter may be narrower than the heat transfer tube diameter of the indoor heat exchanger 41. Even in this case, the same effects as those of the above-described embodiment and Modifications 1 to 4 can be obtained.
  • the present invention is widely applicable to a refrigeration apparatus that uses R32 as a refrigerant and can perform a cooling operation and a heating operation.
  • Air conditioning equipment (refrigeration equipment) DESCRIPTION OF SYMBOLS 21 Compressor 23 Outdoor heat exchanger 24 Expansion mechanism 25 Refrigerant storage tank 30 Bypass pipe 30a Flow rate adjustment mechanism 41 Indoor heat exchanger

Abstract

An air conditioning device (1) is configured so that, in cooling operation, a refrigerant flows sequentially through a compressor (21), an outdoor heat exchanger (23), an expansion mechanism (24), and an indoor heat exchanger (41) and so that, in heating operation, the refrigerant flows sequentially through the compressor (21), the indoor heat exchanger (41), the expansion mechanism (24), and the outdoor heat exchanger (23). The air conditioning device (1) uses R32 as the refrigerant. The volume of the outdoor heat exchanger (23) is less than or equal to the volume of the indoor heat exchanger (41). A refrigerant storage tank (25) for storing the refrigerant is provided between the outdoor heat exchanger (23) and the expansion mechanism (24).

Description

冷凍装置Refrigeration equipment
 本発明は、冷凍装置、特に、冷媒としてR32を使用しており冷却運転及び加熱運転を行うことが可能な冷凍装置に関する。 The present invention relates to a refrigeration apparatus, and more particularly to a refrigeration apparatus that uses R32 as a refrigerant and can perform a cooling operation and a heating operation.
 従来の冷暖房運転可能な空気調和装置等の冷凍装置として、特許文献1(特開2001-194015号公報)に記載されているように、冷媒としてR32を使用したものがある。この冷凍装置では、冷房運転(冷却運転)時には、気液分離器(冷媒貯留タンク)、圧縮機、室外熱交換器、膨張弁(膨張機構)、室内熱交換器の順に冷媒が流れるようになっている。また、暖房運転(加熱運転)時には、冷媒貯留タンク、圧縮機、室内熱交換器、膨張機構、室外熱交換器の順に冷媒が流れるようになっている。そして、この冷凍装置では、冷却運転時に最適な冷媒量と、加熱運転時に最適な冷媒量とが異なる。このため、冷却運転時に放熱器として機能する室外熱交換器の容積と、加熱運転時に放熱器として機能する室内熱交換器の容積とが異なる。通常は、室外熱交換器の容積が室内熱交換器の容積よりも大きいため、加熱運転時に室内熱交換器で収容しきれない冷媒は、圧縮機の吸入側に接続された冷媒貯留タンクなどにより一時的に貯留される。 As a conventional refrigeration apparatus such as an air conditioner capable of cooling and heating operation, there is one using R32 as a refrigerant as described in Patent Document 1 (Japanese Patent Laid-Open No. 2001-194015). In this refrigeration apparatus, during the cooling operation (cooling operation), the refrigerant flows in the order of the gas-liquid separator (refrigerant storage tank), the compressor, the outdoor heat exchanger, the expansion valve (expansion mechanism), and the indoor heat exchanger. ing. Further, during the heating operation (heating operation), the refrigerant flows in the order of the refrigerant storage tank, the compressor, the indoor heat exchanger, the expansion mechanism, and the outdoor heat exchanger. In this refrigeration apparatus, the optimum refrigerant amount during the cooling operation is different from the optimum refrigerant amount during the heating operation. For this reason, the volume of the outdoor heat exchanger that functions as a radiator during the cooling operation is different from the volume of the indoor heat exchanger that functions as a radiator during the heating operation. Usually, since the volume of the outdoor heat exchanger is larger than the volume of the indoor heat exchanger, the refrigerant that cannot be accommodated by the indoor heat exchanger during the heating operation is stored in a refrigerant storage tank connected to the suction side of the compressor. Stored temporarily.
 しかし、上記の冷凍装置では、冷媒としてR32を使用しているため、低温条件においては、圧縮機の潤滑のために冷媒とともに封入されている冷凍機油の溶解度が非常に小さくなる傾向がある。このため、冷凍サイクルにおける低圧になると、冷媒温度の低下によって、冷凍機油の溶解度が大きく低下することになり、冷凍サイクルにおける低圧になる冷媒貯留タンク内で冷媒であるR32と冷凍機油が二層分離し、圧縮機に冷凍機油が戻りにくくなっている。
 また、上記の冷凍装置において、特許文献2(特開平6-143991号公報)に記載されているような高性能な放熱器が室外熱交換器として使用されるようになると、室外熱交換器の容積が室内熱交換器の容積以下になる。このため、この場合には、冷房運転時に室外熱交換器で収容しきれない冷媒(余剰冷媒)が発生し、その量は、冷媒貯留タンクなどに貯留可能な量を超えてしまうことになる。
However, since the above-described refrigeration apparatus uses R32 as the refrigerant, the solubility of the refrigeration oil enclosed with the refrigerant for lubricating the compressor tends to be extremely low under low temperature conditions. For this reason, when the pressure in the refrigeration cycle is low, the solubility of the refrigeration oil is greatly reduced due to a decrease in the refrigerant temperature, and the refrigerant R32 and the refrigeration oil are separated into two layers in the refrigerant storage tank that is low in the refrigeration cycle However, it is difficult for refrigeration oil to return to the compressor.
In the above refrigeration apparatus, when a high-performance radiator as described in Patent Document 2 (Japanese Patent Laid-Open No. 6-143991) is used as an outdoor heat exchanger, the outdoor heat exchanger The volume becomes less than the volume of the indoor heat exchanger. For this reason, in this case, refrigerant (excess refrigerant) that cannot be accommodated by the outdoor heat exchanger during cooling operation is generated, and the amount exceeds the amount that can be stored in the refrigerant storage tank or the like.
 このように、冷媒としてR32を使用しており冷却運転及び加熱運転を行うことが可能な冷凍装置においては、圧縮機の吸入側に冷媒貯留タンクが接続されていることに起因して、圧縮機への油戻しの問題が生じ、また、室外熱交換器の容積が室内熱交換器の容積以下にする場合には、余剰冷媒の問題も生じる。
 本発明の課題は、冷媒としてR32を使用しており冷却運転及び加熱運転を行うことが可能な冷凍装置において、室外熱交換器の容積が室内熱交換器の容積以下の場合に、冷却運転時に生じる余剰冷媒を収容できるようにするとともに、圧縮機に冷凍機油を戻すことができるようにすることにある。
As described above, in the refrigeration apparatus using R32 as the refrigerant and capable of performing the cooling operation and the heating operation, the compressor storage tank is connected to the suction side of the compressor. When the volume of the outdoor heat exchanger is less than or equal to the volume of the indoor heat exchanger, a problem of excess refrigerant also occurs.
An object of the present invention is to provide a refrigeration apparatus using R32 as a refrigerant and capable of performing a cooling operation and a heating operation, when the volume of the outdoor heat exchanger is equal to or less than the volume of the indoor heat exchanger. It is to be able to accommodate surplus refrigerant that is generated and to return the refrigeration oil to the compressor.
 第1の観点にかかる冷凍装置は、冷却運転時に圧縮機、室外熱交換器、膨張機構及び室内熱交換器の順に冷媒が流れ、加熱運転時に圧縮機、室内熱交換器、膨張機構及び室外熱交換器の順に冷媒が流れる冷凍装置である。そして、この冷凍装置では、冷媒としてR32を使用しており、室外熱交換器の容積が室内熱交換器の容積以下であり、室外熱交換器と膨張機構との間には、冷媒を貯留する冷媒貯留タンクが設けられている。また、第2の観点にかかる冷凍装置は、第1の観点にかかる冷凍装置において、冷媒貯留タンクが、冷却運転時に冷凍サイクルにおける高圧になり、加熱運転時に冷凍サイクルにおける低圧になるように設けられている。 In the refrigeration apparatus according to the first aspect, the refrigerant flows in the order of the compressor, the outdoor heat exchanger, the expansion mechanism, and the indoor heat exchanger during the cooling operation, and the compressor, the indoor heat exchanger, the expansion mechanism, and the outdoor heat during the heating operation. It is a refrigeration apparatus in which the refrigerant flows in the order of the exchanger. In this refrigeration apparatus, R32 is used as the refrigerant, the volume of the outdoor heat exchanger is equal to or less than the volume of the indoor heat exchanger, and the refrigerant is stored between the outdoor heat exchanger and the expansion mechanism. A refrigerant storage tank is provided. The refrigeration apparatus according to the second aspect is the refrigeration apparatus according to the first aspect, wherein the refrigerant storage tank has a high pressure in the refrigeration cycle during the cooling operation and a low pressure in the refrigeration cycle during the heating operation. ing.
 この冷凍装置では、冷媒としてR32を使用しているため、圧縮機への油戻しの問題が懸念されるところ、室外熱交換器と膨張機構との間に冷媒貯留タンクを設けているため、圧縮機の吸入側に冷媒貯留タンクを設ける場合に比べて、圧縮機に冷凍機油が戻りやすくなる。しかも、この冷凍装置では、室外熱交換器の容量が室内熱交換器の容量以下となることによって冷却運転時に余剰冷媒が発生するところ、この余剰冷媒が冷媒貯留タンクに収容されるため、冷媒制御に支障をきたすことを防止することができる。
 これにより、この冷凍装置では、冷媒としてR32を使用しており、室外熱交換器の容積が室内熱交換器の容積以下であるにもかかわらず、冷却運転時に生じる余剰冷媒を収容することができるとともに、圧縮機に冷凍機油を戻すことができる。
Since this refrigeration apparatus uses R32 as a refrigerant, there is a concern about the problem of oil return to the compressor. However, since a refrigerant storage tank is provided between the outdoor heat exchanger and the expansion mechanism, compression is performed. Compared with the case where a refrigerant storage tank is provided on the suction side of the machine, the refrigerating machine oil is easily returned to the compressor. In addition, in this refrigeration apparatus, when the capacity of the outdoor heat exchanger is equal to or less than the capacity of the indoor heat exchanger, surplus refrigerant is generated during the cooling operation, and this surplus refrigerant is accommodated in the refrigerant storage tank. Can be prevented.
Thereby, in this refrigeration apparatus, R32 is used as the refrigerant, and it is possible to accommodate surplus refrigerant generated during the cooling operation even though the volume of the outdoor heat exchanger is equal to or less than the volume of the indoor heat exchanger. At the same time, the refrigeration oil can be returned to the compressor.
 第3の観点にかかる冷凍装置は、第1又は第2の観点にかかる冷凍装置において、室外熱交換器が、伝熱管として扁平管を使用した熱交換器である。また、第4の観点にかかる冷凍装置は、第3の観点にかかる冷凍装置において、室外熱交換器が、間隔を空けて積み重なるように複数配列された複数の扁平管と、隣接する扁平管に挟まれたフィンと、を有する熱交換器である。また、第5の観点にかかる冷凍装置は、第3の観点にかかる冷凍装置において、室外熱交換器が、間隔を空けて積み重なるように配列された複数の扁平管と、扁平管が差し込まれる切り欠きが形成されたフィンと、を有する熱交換器である。 The refrigeration apparatus according to the third aspect is a heat exchanger in which, in the refrigeration apparatus according to the first or second aspect, the outdoor heat exchanger uses a flat tube as a heat transfer tube. Further, the refrigeration apparatus according to the fourth aspect is the refrigeration apparatus according to the third aspect, wherein the outdoor heat exchangers are arranged in a plurality of flat tubes arranged so as to be stacked at intervals, and adjacent flat tubes. And a heat exchanger having sandwiched fins. Further, the refrigeration apparatus according to the fifth aspect is the refrigeration apparatus according to the third aspect, wherein the outdoor heat exchanger has a plurality of flat tubes arranged so as to be stacked at intervals, and a cut into which the flat tubes are inserted. And a fin formed with a notch.
 この冷凍装置では、伝熱管として扁平管を使用することによって、室外熱交換器の容量が室内熱交換器の容量以下になるため、冷凍装置内の冷媒量が低減される。尚、この冷凍装置では、冷却運転時に余剰冷媒が発生するが、この余剰冷媒を冷媒貯留タンクに収容することができるため、冷媒制御に支障をきたすことを防止することができる。 In this refrigeration apparatus, since the capacity of the outdoor heat exchanger becomes less than or equal to the capacity of the indoor heat exchanger by using a flat tube as the heat transfer tube, the amount of refrigerant in the refrigeration apparatus is reduced. In this refrigeration apparatus, surplus refrigerant is generated during the cooling operation. However, since this surplus refrigerant can be stored in the refrigerant storage tank, it is possible to prevent the refrigerant control from being hindered.
 第6の観点にかかる冷凍装置は、第1又は第2の観点にかかる冷凍装置において、室外熱交換器及び室内熱交換器が、クロスフィン型熱交換器であり、室外熱交換器の伝熱管径が、室内熱交換器の伝熱管径よりも細く設定されている。
 この冷凍装置では、上記の第1又は第2の観点にかかる冷凍装置と同様に、室外熱交換器の容量が室内熱交換器の容量以下になるため、冷凍装置内の冷媒量が低減される。尚、この冷凍装置では、冷却運転時に余剰冷媒が発生するが、この余剰冷媒を冷媒貯留タンクに収容することができるため、冷媒制御に支障をきたすことを防止することができる。
A refrigeration apparatus according to a sixth aspect is the refrigeration apparatus according to the first or second aspect, wherein the outdoor heat exchanger and the indoor heat exchanger are cross-fin heat exchangers, and the heat transfer of the outdoor heat exchanger The tube diameter is set to be thinner than the heat transfer tube diameter of the indoor heat exchanger.
In this refrigeration apparatus, since the capacity of the outdoor heat exchanger is equal to or less than the capacity of the indoor heat exchanger, similarly to the refrigeration apparatus according to the first or second aspect, the amount of refrigerant in the refrigeration apparatus is reduced. . In this refrigeration apparatus, surplus refrigerant is generated during the cooling operation. However, since this surplus refrigerant can be stored in the refrigerant storage tank, it is possible to prevent the refrigerant control from being hindered.
 第7の観点にかかる冷凍装置は、第1~第6の観点のいずれかにかかる冷凍装置において、冷媒貯留タンク内に溜まる冷媒のガス成分を圧縮機又は圧縮機の吸入管に導くバイパス管がさらに設けられている。
 この冷凍装置では、加熱運転時、すなわち、室外熱交換器が蒸発器として機能するとき、冷媒が室外熱交換器の入口手前の冷媒貯留タンクで液とガスとに分離され、ガス成分はバイパス管に向かうことになる。その結果、蒸発に寄与しないガス成分が室外熱交換器に流入しなくなるため、その分、室外熱交換器を流れる冷媒の流量が減少し、室外熱交換器での冷媒の圧力損失(すなわち、減圧ロス)が抑制される。
A refrigeration apparatus according to a seventh aspect is the refrigeration apparatus according to any one of the first to sixth aspects, wherein the bypass pipe for guiding the gas component of the refrigerant accumulated in the refrigerant storage tank to the compressor or the suction pipe of the compressor is provided. Furthermore, it is provided.
In this refrigeration apparatus, during the heating operation, that is, when the outdoor heat exchanger functions as an evaporator, the refrigerant is separated into liquid and gas in the refrigerant storage tank before the entrance of the outdoor heat exchanger, and the gas component is bypassed. Will head to. As a result, gas components that do not contribute to evaporation do not flow into the outdoor heat exchanger, and accordingly, the flow rate of the refrigerant flowing through the outdoor heat exchanger decreases, and the pressure loss of the refrigerant in the outdoor heat exchanger (that is, reduced pressure) Loss) is suppressed.
 第8の観点にかかる冷凍装置は、第7の観点にかかる冷凍装置において、バイパス管が、流量調整機構を有する。
 圧縮機の運転周波数が高い場合には、冷媒貯留タンクから気液二相状態の冷媒がバイパス管を通じて圧縮機または圧縮機の吸入管に戻り、圧縮機に吸入されるおそれがある。
 しかし、この冷凍装置では、バイパス管に流量調整機構が設けられているため、気液二相状態の冷媒の液成分が減圧されて蒸発することになる。
 これにより、この冷凍装置では、圧縮機又は圧縮機の吸入管に液成分が戻ることを防止することができる。
 また、この冷凍装置では、加熱運転時に、流量調整機構を通過した冷媒が、室外熱交換器において蒸発した後に、圧縮機又は圧縮機の吸入管に向う冷媒に合流することになる。このとき、流量調整機構が電動膨張弁である場合には、弁開度を制御することによって、圧縮機に吸入される直前の冷媒状態を、より最適に調整することができる。しかも、流量調整機構の弁開度を制御することによって、圧縮機に戻る冷媒の流量を増減させることができるため、室内熱交換器側の冷凍負荷に応じて冷媒の循環流量、すなわち、室内熱交換器を流れる冷媒の流量を制御することができる。
A refrigeration apparatus according to an eighth aspect is the refrigeration apparatus according to the seventh aspect, wherein the bypass pipe has a flow rate adjusting mechanism.
When the operating frequency of the compressor is high, there is a possibility that the gas-liquid two-phase refrigerant returns from the refrigerant storage tank to the compressor or the suction pipe of the compressor through the bypass pipe and is sucked into the compressor.
However, in this refrigeration apparatus, since the flow rate adjusting mechanism is provided in the bypass pipe, the liquid component of the gas-liquid two-phase refrigerant is decompressed and evaporated.
Thereby, in this refrigeration apparatus, it is possible to prevent the liquid component from returning to the compressor or the suction pipe of the compressor.
Further, in this refrigeration apparatus, during the heating operation, the refrigerant that has passed through the flow rate adjusting mechanism evaporates in the outdoor heat exchanger and then merges with the refrigerant toward the compressor or the suction pipe of the compressor. At this time, when the flow rate adjusting mechanism is an electric expansion valve, the state of the refrigerant immediately before being sucked into the compressor can be adjusted more optimally by controlling the valve opening degree. Moreover, since the flow rate of the refrigerant returning to the compressor can be increased or decreased by controlling the valve opening degree of the flow rate adjusting mechanism, the circulation flow rate of the refrigerant, that is, the indoor heat, according to the refrigeration load on the indoor heat exchanger side. The flow rate of the refrigerant flowing through the exchanger can be controlled.
 第9の観点にかかる冷凍装置は、第1~第8の観点のいずれかにかかる冷凍装置において、冷媒貯留タンクが、気液分離器である。
 この冷凍装置では、気液分離器からなる冷媒貯留タンクが、液成分を溜める機能、及び、液成分とガス成分とを分離する機能の両方を担うことになる。
 これにより、この冷凍装置では、冷媒貯留機能を有する機器と気液分離機能を有する機器とを併設する必要がなくなるため、装置構成の簡素化に寄与する。
A refrigeration apparatus according to a ninth aspect is the refrigeration apparatus according to any one of the first to eighth aspects, wherein the refrigerant storage tank is a gas-liquid separator.
In this refrigeration apparatus, the refrigerant storage tank composed of the gas-liquid separator has both a function of storing the liquid component and a function of separating the liquid component and the gas component.
Thereby, in this refrigeration apparatus, it is not necessary to provide a device having a refrigerant storage function and a device having a gas-liquid separation function, which contributes to simplification of the device configuration.
本発明の一実施形態にかかる冷凍装置としての空気調和装置の概略構成図である。It is a schematic block diagram of the air conditioning apparatus as a refrigeration apparatus concerning one Embodiment of this invention. 室内熱交換器の概略正面図である。It is a schematic front view of an indoor heat exchanger. 室外熱交換器の外観斜視図である。It is an external appearance perspective view of an outdoor heat exchanger. 室外熱交換器容積/室内熱交換器容積比を能力別に表したグラフである。It is the graph which represented the outdoor heat exchanger volume / indoor heat exchanger volume ratio according to capability. 変形例1にかかる冷凍装置としての空気調和装置の概略構成図である。It is a schematic block diagram of the air conditioning apparatus as a freezing apparatus concerning the modification 1. 変形例2における冷媒貯留タンクの概略断面図である。10 is a schematic cross-sectional view of a refrigerant storage tank in Modification 2. FIG. 変形例3における室外熱交換器の外観斜視図である。It is an external appearance perspective view of the outdoor heat exchanger in the modification 3. 変形例3における室外熱交換器の縦断面図である。It is a longitudinal cross-sectional view of the outdoor heat exchanger in the modification 3.
 以下、本発明にかかる冷凍装置の実施形態及びその変形例について、図面に基づいて説明する。尚、本発明にかかる冷凍装置の具体的な構成は、下記の実施形態及びその変形例に限られるものではなく、発明の要旨を逸脱しない範囲で変更可能である。
 (1)空気調和装置の構成
 図1は、本発明の一実施形態にかかる冷凍装置としての空気調和装置1の概略構成図である。
 空気調和装置1は、蒸気圧縮式の冷凍サイクルを行うことによって、冷却運転としての冷房運転及び加熱運転としての暖房運転を行うことが可能な冷凍装置である。空気調和装置1は、主として、室外ユニット2と、室内ユニット4とが接続されることによって構成されている。ここで、室外ユニット2と室内ユニット4とは、液冷媒連絡管5及びガス冷媒連絡管6を介して接続されている。すなわち、空気調和装置1の蒸気圧縮式の冷媒回路10は、室外ユニット2と、室内ユニット4とが冷媒連絡管5、6を介して接続されることによって構成されている。この冷媒回路10には、HFC系冷媒の一種であるR32が封入されている。また、冷媒回路10には、冷媒とともに、圧縮機21(後述)の潤滑のための冷凍機油が封入されている。ここでは、冷凍機油として、R32に対していくらか相溶性を有するエーテル系合成油や、R32に対して非相溶性を有する鉱油、アルキルベンゼン系合成油等が使用される。
DESCRIPTION OF EMBODIMENTS Hereinafter, an embodiment of a refrigeration apparatus according to the present invention and modifications thereof will be described with reference to the drawings. In addition, the specific structure of the freezing apparatus concerning this invention is not restricted to the following embodiment and its modification, It can change in the range which does not deviate from the summary of invention.
(1) Configuration of Air Conditioner FIG. 1 is a schematic configuration diagram of an air conditioner 1 as a refrigeration apparatus according to an embodiment of the present invention.
The air conditioner 1 is a refrigeration apparatus capable of performing a cooling operation as a cooling operation and a heating operation as a heating operation by performing a vapor compression refrigeration cycle. The air conditioner 1 is mainly configured by connecting an outdoor unit 2 and an indoor unit 4. Here, the outdoor unit 2 and the indoor unit 4 are connected via a liquid refrigerant communication tube 5 and a gas refrigerant communication tube 6. That is, the vapor compression refrigerant circuit 10 of the air conditioner 1 is configured by connecting the outdoor unit 2 and the indoor unit 4 via the refrigerant communication pipes 5 and 6. The refrigerant circuit 10 is filled with R32 which is a kind of HFC refrigerant. The refrigerant circuit 10 is filled with refrigeration oil for lubricating the compressor 21 (described later) together with the refrigerant. Here, as the refrigerating machine oil, an ether-based synthetic oil that has some compatibility with R32, a mineral oil that is incompatible with R32, an alkylbenzene-based synthetic oil, or the like is used.
 <室内ユニット>
 室内ユニット4は、室内に設置されており、冷媒回路10の一部を構成している。室内ユニット4は、主として、室内熱交換器41を有している。
 室内熱交換器41は、冷房運転時には冷媒の蒸発器として機能して室内空気を冷却し、暖房運転時には冷媒の放熱器として機能して室内空気を加熱する熱交換器である。室内熱交換器41の液側は液冷媒連絡管5に接続されており、室内熱交換器41のガス側はガス冷媒連絡管6に接続されている。
 室内熱交換器41は、図2に示すように、クロスフィン型熱交換器であり、主として、伝熱フィン411と、伝熱管412とを有している。ここで、図2は、室内熱交換器41の正面図である。伝熱フィン411は、薄いアルミニウム製の平板であり、伝熱フィン411には、複数の貫通孔が形成されている。伝熱管412は、伝熱フィン411の貫通孔に挿入される直管412aと、隣り合う直管412aの端部同士を連結するU字管412b、412cとを有している。直管412aは、伝熱フィン411の貫通孔に挿入された後に拡管加工されることによって、伝熱フィン411と密着させられている。直管412aと第1U字管412bとは一体に形成されており、第2U字管412cは、直管412aが伝熱フィン411の貫通孔に挿入され拡管加工された後に、溶接やろう付け等によって直管411aの端部に連結されている。
<Indoor unit>
The indoor unit 4 is installed indoors and constitutes a part of the refrigerant circuit 10. The indoor unit 4 mainly has an indoor heat exchanger 41.
The indoor heat exchanger 41 is a heat exchanger that functions as a refrigerant evaporator during cooling operation to cool indoor air, and functions as a refrigerant radiator during heating operation to heat indoor air. The liquid side of the indoor heat exchanger 41 is connected to the liquid refrigerant communication tube 5, and the gas side of the indoor heat exchanger 41 is connected to the gas refrigerant communication tube 6.
As shown in FIG. 2, the indoor heat exchanger 41 is a cross fin heat exchanger, and mainly includes heat transfer fins 411 and heat transfer tubes 412. Here, FIG. 2 is a front view of the indoor heat exchanger 41. The heat transfer fins 411 are thin aluminum flat plates, and the heat transfer fins 411 have a plurality of through holes. The heat transfer tube 412 includes a straight tube 412a inserted into the through hole of the heat transfer fin 411, and U-shaped tubes 412b and 412c that connect ends of adjacent straight tubes 412a. The straight pipe 412 a is brought into close contact with the heat transfer fin 411 by being expanded after being inserted into the through hole of the heat transfer fin 411. The straight pipe 412a and the first U-shaped pipe 412b are integrally formed. The second U-shaped pipe 412c is welded or brazed after the straight pipe 412a is inserted into the through-hole of the heat transfer fin 411 and expanded. Is connected to the end of the straight pipe 411a.
 また、室内ユニット4は、室内ユニット4内に室内空気を吸入して、室内熱交換器41において冷媒と熱交換させた後に、供給空気として室内に供給するための室内ファン42を有している。ここでは、室内ファン42として、室内ファンモータ43によって駆動される遠心ファンや多翼ファン等が使用されている。
 また、室内ユニット4は、室内ユニット4を構成する各部の動作を制御する室内側制御部44を有している。そして、室内側制御部44は、室内ユニット4の制御を行うためのマイクロコンピュータやメモリ等を有しており、リモートコントローラ(図示せず)との間で制御信号等のやりとりを行ったり、室外ユニット2との間で伝送線8aを介して制御信号等のやりとりを行うことができるようになっている。
 <室外ユニット>
 室外ユニット2は、室外に設置されており、冷媒回路10の一部を構成している。室外ユニット2は、主として、圧縮機21と、切換機構22と、室外熱交換器23と、膨張機構24と、冷媒貯留タンク25と、液側閉鎖弁27と、ガス側閉鎖弁28とを有している。
The indoor unit 4 also has an indoor fan 42 for supplying indoor air as supply air after sucking indoor air into the indoor unit 4 and exchanging heat with the refrigerant in the indoor heat exchanger 41. . Here, as the indoor fan 42, a centrifugal fan or a multi-blade fan driven by an indoor fan motor 43 is used.
The indoor unit 4 also has an indoor side control unit 44 that controls the operation of each part constituting the indoor unit 4. The indoor side control unit 44 includes a microcomputer and a memory for controlling the indoor unit 4, and exchanges control signals and the like with a remote controller (not shown). Control signals and the like can be exchanged with the unit 2 via the transmission line 8a.
<Outdoor unit>
The outdoor unit 2 is installed outside and constitutes a part of the refrigerant circuit 10. The outdoor unit 2 mainly includes a compressor 21, a switching mechanism 22, an outdoor heat exchanger 23, an expansion mechanism 24, a refrigerant storage tank 25, a liquid side closing valve 27, and a gas side closing valve 28. is doing.
 圧縮機21は、冷凍サイクルにおける低圧の冷媒を高圧になるまで圧縮する機器である。圧縮機21は、ロータリ式やスクロール式等の容積式の圧縮要素(図示せず)をインバータにより制御される圧縮機モータ21aによって回転駆動する密閉式構造となっている。圧縮機21は、吸入側に吸入管31が接続されており、吐出側に吐出管32が接続されている。吸入管31は、圧縮機21の吸入側と切換機構22の第1ポート22aとを接続する冷媒管である。吸入管31には、アキュムレータ29が設けられている。吐出管32は、圧縮機21の吐出側と切換機構22の第2ポート22bとを接続する冷媒管である。
 切換機構22は、冷媒回路10における冷媒の流れの方向を切り換えるための機構である。切換機構22は、冷房運転時には、室外熱交換器23を圧縮機21において圧縮された冷媒の放熱器として機能させ、かつ、室内熱交換器41を室外熱交換器23において放熱した冷媒の蒸発器として機能させる切り換えを行う。すなわち、切換機構22は、冷房運転時には、第2ポート22bと第3ポート22cとを連通させ、かつ、第1ポート22aと第4ポート22dとを連通させる切り換えを行う。これにより、圧縮機21の吐出側(ここでは、吐出管32)と室外熱交換器23のガス側(ここでは、第1ガス冷媒管33)とが接続される(図1の切換機構22の実線を参照)。しかも、圧縮機21の吸入側(ここでは、吸入管31)とガス冷媒連絡管6側(ここでは、第2ガス冷媒管34)とが接続される(図1の切換機構22の実線を参照)。また、切換機構22は、暖房運転時には、室外熱交換器23を室内熱交換器41において放熱した冷媒の蒸発器として機能させ、かつ、室内熱交換器41を圧縮機21において圧縮された冷媒の放熱器として機能させる切り換えを行う。すなわち、切換機構22は、暖房運転時には、第2ポート22bと第4ポート22dとを連通させ、かつ、第1ポート22aと第3ポート22cとを連通させる切り換えを行う。これにより、圧縮機21の吐出側(ここでは、吐出管32)とガス冷媒連絡管6側(ここでは、第2ガス冷媒管34)とが接続される(図1の切換機構22の破線を参照)。しかも、圧縮機21の吸入側(ここでは、吸入管31)と室外熱交換器23のガス側(ここでは、第1ガス冷媒管33)とが接続される(図1の切換機構22の破線を参照)。第1ガス冷媒管33は、切換機構22の第3ポート22cと室外熱交換器23のガス側とを接続する冷媒管である。第2ガス冷媒管33は、切換機構22の第4ポート22dとガス冷媒連絡管6側とを接続する冷媒管である。切換機構22は、ここでは、四路切換弁である。
The compressor 21 is a device that compresses the low-pressure refrigerant in the refrigeration cycle until the pressure becomes high. The compressor 21 has a hermetic structure in which a rotary type or scroll type positive displacement compression element (not shown) is rotationally driven by a compressor motor 21a controlled by an inverter. The compressor 21 has a suction pipe 31 connected to the suction side and a discharge pipe 32 connected to the discharge side. The suction pipe 31 is a refrigerant pipe that connects the suction side of the compressor 21 and the first port 22 a of the switching mechanism 22. The suction pipe 31 is provided with an accumulator 29. The discharge pipe 32 is a refrigerant pipe that connects the discharge side of the compressor 21 and the second port 22 b of the switching mechanism 22.
The switching mechanism 22 is a mechanism for switching the direction of refrigerant flow in the refrigerant circuit 10. During the cooling operation, the switching mechanism 22 causes the outdoor heat exchanger 23 to function as a radiator for the refrigerant compressed in the compressor 21, and the refrigerant evaporator that has radiated the indoor heat exchanger 41 in the outdoor heat exchanger 23. Switch to function as. That is, during the cooling operation, the switching mechanism 22 switches between the second port 22b and the third port 22c and the first port 22a and the fourth port 22d. Thereby, the discharge side (here, the discharge pipe 32) of the compressor 21 and the gas side (here, the first gas refrigerant pipe 33) of the outdoor heat exchanger 23 are connected (of the switching mechanism 22 of FIG. 1). (See solid line). Moreover, the suction side (here, the suction pipe 31) of the compressor 21 and the gas refrigerant communication pipe 6 side (here, the second gas refrigerant pipe 34) are connected (see the solid line of the switching mechanism 22 in FIG. 1). ). Further, the switching mechanism 22 causes the outdoor heat exchanger 23 to function as an evaporator of the refrigerant that has dissipated heat in the indoor heat exchanger 41 during the heating operation, and the indoor heat exchanger 41 is used for the refrigerant compressed in the compressor 21. Switch to function as a radiator. That is, during the heating operation, the switching mechanism 22 switches the second port 22b and the fourth port 22d to communicate and the first port 22a and the third port 22c to communicate. As a result, the discharge side (here, the discharge pipe 32) of the compressor 21 and the gas refrigerant communication pipe 6 side (here, the second gas refrigerant pipe 34) are connected (the broken line of the switching mechanism 22 in FIG. 1). reference). Moreover, the suction side (here, the suction pipe 31) of the compressor 21 and the gas side (here, the first gas refrigerant pipe 33) of the outdoor heat exchanger 23 are connected (broken line of the switching mechanism 22 in FIG. 1). See). The first gas refrigerant pipe 33 is a refrigerant pipe that connects the third port 22 c of the switching mechanism 22 and the gas side of the outdoor heat exchanger 23. The second gas refrigerant pipe 33 is a refrigerant pipe that connects the fourth port 22d of the switching mechanism 22 and the gas refrigerant communication pipe 6 side. Here, the switching mechanism 22 is a four-way switching valve.
 室外熱交換器23は、冷房運転時には室外空気を冷却源とする冷媒の放熱器として機能し、暖房運転時には室外空気を加熱源とする冷媒の蒸発器として機能する熱交換器である。室外熱交換器23は、液側が液冷媒管35に接続されており、ガス側が第1ガス冷媒管33に接続されている。液冷媒管35は、室外熱交換器23の液側と液冷媒連絡管7側とを接続する冷媒管である。
 室外熱交換器23は、図3に示すように、伝熱管として扁平管を使用した熱交換器である。より具体的には、室外熱交換器23は、積層型熱交換器であり、主として、扁平管231と、波形フィン232と、ヘッダ233a、233bとを有している。ここで、図3は、室外熱交換器23の外観斜視図である。扁平管231は、アルミニウムまたはアルミニウム合金で成形されており、伝熱面となる平面部231aと、冷媒が流れる複数の内部流路(図示せず)を有している。扁平管231は、平面部231aを上下に向けた状態で間隔(通風空間)を空けて積み重なるように複数段配列されている。波形フィン232は、波形に折り曲げられたアルミニウム製またはアルミニウム合金製のフィンである。波形フィン232は、上下に隣接する扁平管231に挟まれた通風空間に配置され、谷部および山部が扁平管231の平面部231aと接触している。なお、谷部と山部と平面部231aとはロウ付け等によって接合されている。ヘッダ233a、233bは、上下方向に複数段配列された扁平管231の両端に連結されている。ヘッダ233a、233bは、扁平管231を支持する機能と、冷媒を扁平管231の内部流路に導く機能と、内部流路から出てきた冷媒を集合させる機能とを有している。室外熱交換器23が冷媒の放熱器として機能する場合には、第1ヘッダ233aの第1出入口234から流入した冷媒は、最上段の扁平管231の各内部流路へほぼ均等に分配され、第2ヘッダ233bに向って流れる。第2ヘッダ233bに達した冷媒は、2段目の扁平管231の各内部流路へ均等に分配され第1ヘッダ233aへ向って流れる。以降、奇数段目の扁平管231内の冷媒は、第2ヘッダ233bへ向って流れ、偶数段目の扁平管231内の冷媒は、第1ヘッダ233aに向って流れる。そして、最下段で且つ偶数段目の扁平管231内の冷媒は、第1ヘッダ233aに向って流れ、第1ヘッダ233aで集合して、第1ヘッダ233aの第2出入口235から流出する。室外熱交換器23が冷媒の蒸発器として機能する場合には、第1ヘッダ233aの第2出入口235から冷媒が流入して、冷媒の放熱器として機能する場合とは逆方向に扁平管231及びヘッダ233a、233bを流れた後に、第1ヘッダ233aの第1出入口234から流出する。そして、室外熱交換器23が冷媒の放熱器として機能する場合には、扁平管231内を流れる冷媒は、波形フィン232を介して通風空間を流れる空気流に放熱する。また、室外熱交換器23が冷媒の蒸発器として機能する場合には、扁平管231内を流れる冷媒は、波形フィン232を介して通風空間を流れる空気流から吸熱する。ここでは、室外熱交換器23として、上記のような積層型熱交換器を使用することによって、室外熱交換器23の容量が、室内熱交換器41の容量よりも小さくなっている。この点に関して、パッケージエアコンを例に挙げて、図4を用いて説明する。ここで、図4は、室外熱交換器容積/室内熱交換器容積比を能力別に表したグラフである。図4において、◇はパッケージエアコンの通常タイプ(クロスフィン型室外熱交換器)、◆はパッケージエアコンの室外熱交換器細径タイプ(積層型室外熱交換器)、△はルームエアコンの通常タイプ(クロスフィン型室外熱交換器)、▲はルームエアコンの室外熱交換器細径タイプ(積層型室外熱交換器)を示している。図4によれば、室外熱交換器と室内熱交換器とがともにクロスフィン型熱交換器である場合に対して、室外熱交換器だけを同等の熱交換性能を有する積層型熱交換器に変更した場合には、室外熱交換器容量/室内熱交換器容積比が1.0を下回っている。これは、積層型熱交換器の容積がクロスフィン型の室外熱交換器の容積に比べて小さくなるだけでなく、これに接続されているクロスフィン型の室内熱交換器41の容積よりも小さくなることを意味している。このため、空気調和装置1では、冷房運転時に余剰冷媒が発生することになる。そこで、空気調和装置1では、その余剰冷媒を冷媒貯留タンク25に収容するようにしている。尚、図4によれば、室外熱交換器容量/室内熱交換器容積比が0.3~0.9のときに、余剰冷媒を収容する冷媒貯留タンク25を用いることが好ましいが、室外熱交換器容量/室内熱交換器容積比が1.0の場合でも冷媒貯留タンク25を用いることによって、安定した冷媒制御が可能になる。
The outdoor heat exchanger 23 is a heat exchanger that functions as a refrigerant radiator that uses outdoor air as a cooling source during cooling operation, and functions as a refrigerant evaporator that uses outdoor air as a heating source during heating operation. The outdoor heat exchanger 23 has a liquid side connected to the liquid refrigerant pipe 35 and a gas side connected to the first gas refrigerant pipe 33. The liquid refrigerant pipe 35 is a refrigerant pipe that connects the liquid side of the outdoor heat exchanger 23 and the liquid refrigerant communication pipe 7 side.
As shown in FIG. 3, the outdoor heat exchanger 23 is a heat exchanger that uses a flat tube as a heat transfer tube. More specifically, the outdoor heat exchanger 23 is a stacked heat exchanger, and mainly includes a flat tube 231, a corrugated fin 232, and headers 233a and 233b. Here, FIG. 3 is an external perspective view of the outdoor heat exchanger 23. The flat tube 231 is formed of aluminum or an aluminum alloy, and has a flat portion 231a serving as a heat transfer surface and a plurality of internal flow paths (not shown) through which a refrigerant flows. The flat tubes 231 are arranged in a plurality of stages so as to be stacked with an interval (ventilation space) in a state where the flat portion 231a is directed upward and downward. The corrugated fins 232 are aluminum or aluminum alloy fins bent into a corrugated shape. The corrugated fins 232 are arranged in a ventilation space sandwiched between upper and lower flat tubes 231, and a valley portion and a mountain portion are in contact with a flat portion 231 a of the flat tube 231. In addition, the trough part, the peak part, and the plane part 231a are joined by brazing or the like. The headers 233a and 233b are connected to both ends of the flat tubes 231 arranged in a plurality of stages in the vertical direction. The headers 233 a and 233 b have a function of supporting the flat tube 231, a function of guiding the refrigerant to the internal flow path of the flat tube 231, and a function of collecting the refrigerant that has come out of the internal flow path. When the outdoor heat exchanger 23 functions as a refrigerant radiator, the refrigerant flowing from the first inlet / outlet 234 of the first header 233a is distributed almost evenly to each internal flow path of the uppermost flat tube 231; It flows toward the second header 233b. The refrigerant that has reached the second header 233b is evenly distributed to each internal flow path of the second-stage flat tube 231 and flows toward the first header 233a. Thereafter, the refrigerant in the odd-numbered flat tubes 231 flows toward the second header 233b, and the refrigerant in the even-numbered flat tubes 231 flows toward the first header 233a. Then, the refrigerant in the flat tube 231 at the lowest level and the even number level flows toward the first header 233a, collects at the first header 233a, and flows out from the second inlet / outlet 235 of the first header 233a. When the outdoor heat exchanger 23 functions as a refrigerant evaporator, the refrigerant flows in from the second inlet / outlet 235 of the first header 233a, and the flat tubes 231 and 231 in the opposite direction to the function as a refrigerant radiator. After flowing through the headers 233a and 233b, it flows out from the first entrance / exit 234 of the first header 233a. When the outdoor heat exchanger 23 functions as a refrigerant radiator, the refrigerant flowing in the flat tube 231 radiates heat to the airflow flowing in the ventilation space via the corrugated fins 232. Further, when the outdoor heat exchanger 23 functions as a refrigerant evaporator, the refrigerant flowing through the flat tube 231 absorbs heat from the air flow flowing through the ventilation space via the corrugated fins 232. Here, the capacity of the outdoor heat exchanger 23 is smaller than the capacity of the indoor heat exchanger 41 by using the laminated heat exchanger as described above as the outdoor heat exchanger 23. This point will be described with reference to FIG. 4 using a packaged air conditioner as an example. Here, FIG. 4 is a graph showing the outdoor heat exchanger volume / indoor heat exchanger volume ratio by capacity. In FIG. 4, ◇ is a normal type of packaged air conditioner (cross fin type outdoor heat exchanger), ◆ is an outdoor heat exchanger of package air conditioner small diameter type (stacked type outdoor heat exchanger), and △ is a normal type of room air conditioner ( Cross fin type outdoor heat exchanger), and ▲ indicate outdoor heat exchanger small diameter type (stacked type outdoor heat exchanger) of room air conditioner. According to FIG. 4, when both the outdoor heat exchanger and the indoor heat exchanger are cross fin heat exchangers, only the outdoor heat exchanger is changed to a stacked heat exchanger having equivalent heat exchanging performance. When changed, the outdoor heat exchanger capacity / indoor heat exchanger volume ratio is less than 1.0. This is because not only the volume of the laminated heat exchanger is smaller than the volume of the cross fin type outdoor heat exchanger, but also the volume of the cross fin type indoor heat exchanger 41 connected thereto. Is meant to be. For this reason, in the air conditioning apparatus 1, surplus refrigerant is generated during the cooling operation. Therefore, in the air conditioner 1, the surplus refrigerant is accommodated in the refrigerant storage tank 25. According to FIG. 4, when the outdoor heat exchanger capacity / indoor heat exchanger volume ratio is 0.3 to 0.9, it is preferable to use the refrigerant storage tank 25 that stores excess refrigerant. Even when the exchanger capacity / indoor heat exchanger volume ratio is 1.0, the use of the refrigerant storage tank 25 enables stable refrigerant control.
 膨張機構24は、冷房運転時には、冷媒貯留タンク25に一時的に貯留された冷凍サイクルにおける高圧の冷媒を冷凍サイクルにおける低圧まで減圧する機器である。また、膨張機構24は、暖房運転時には、室内熱交換器41において放熱した冷凍サイクルにおける高圧の冷媒を冷凍サイクルにおける低圧まで減圧する機器である。膨張機構24は、液冷媒管35の液側閉鎖弁27寄りの部分に設けられている。ここでは、膨張機構24として、電動膨張弁が使用されている。
 冷媒貯留タンク25は、室外熱交換器23と膨張機構24との間に設けられている。冷媒貯留タンク25は、冷房運転時に冷凍サイクルにおける高圧になり、室外熱交換器23において放熱した後の冷凍サイクルにおける高圧の冷媒を溜めることが可能な容器である。また、冷媒貯留タンク25は、暖房運転時に冷凍サイクルにおける低圧になり、膨張機構24において減圧された後の冷凍サイクルにおける低圧の冷媒を溜めることが可能な容器である。例えば、室内熱交換器41が冷媒の放熱器として機能する暖房運転時に室内熱交換器41に収容することができる液冷媒量が1100ccであり、室外熱交換器23が冷媒の放熱器として機能する冷房運転時に室外熱交換器23に収容することができる液冷媒量が800ccである場合には、冷房運転時に室外熱交換器23に収容しきれずに余った液冷媒300ccは、冷媒貯留タンク25に一時的に収容される。
The expansion mechanism 24 is a device that reduces the high-pressure refrigerant in the refrigeration cycle temporarily stored in the refrigerant storage tank 25 to the low pressure in the refrigeration cycle during the cooling operation. The expansion mechanism 24 is a device that reduces the high-pressure refrigerant in the refrigeration cycle that has radiated heat in the indoor heat exchanger 41 to the low pressure in the refrigeration cycle during heating operation. The expansion mechanism 24 is provided in a portion of the liquid refrigerant pipe 35 near the liquid side closing valve 27. Here, an electric expansion valve is used as the expansion mechanism 24.
The refrigerant storage tank 25 is provided between the outdoor heat exchanger 23 and the expansion mechanism 24. The refrigerant storage tank 25 is a container that is capable of storing high-pressure refrigerant in the refrigeration cycle that has become high pressure in the refrigeration cycle during cooling operation and radiates heat in the outdoor heat exchanger 23. The refrigerant storage tank 25 is a container capable of storing a low-pressure refrigerant in the refrigeration cycle that is low in the refrigeration cycle during heating operation and decompressed in the expansion mechanism 24. For example, the amount of liquid refrigerant that can be accommodated in the indoor heat exchanger 41 during the heating operation in which the indoor heat exchanger 41 functions as a refrigerant radiator is 1100 cc, and the outdoor heat exchanger 23 functions as a refrigerant radiator. When the amount of liquid refrigerant that can be accommodated in the outdoor heat exchanger 23 during the cooling operation is 800 cc, the remaining 300 cc of liquid refrigerant that cannot be accommodated in the outdoor heat exchanger 23 during the cooling operation is stored in the refrigerant storage tank 25. Temporarily accommodated.
 液側閉鎖弁27及びガス側閉鎖弁28は、外部の機器・配管(具体的には、液冷媒連絡管5及びガス冷媒連絡管6)との接続口に設けられた弁である。液側閉鎖弁26は、液冷媒管35の端部に設けられている。ガス側閉鎖弁27は、第2ガス冷媒管34の端部に設けられている。
 また、室外ユニット2は、室外ユニット2内に室外空気を吸入して、室外熱交換器23において冷媒と熱交換させた後に、外部に排出するための室外ファン36を有している。ここでは、室外ファン36として、室外ファンモータ37によって駆動されるプロペラファン等が使用されている。
 また、室外ユニット2は、室外ユニット2を構成する各部の動作を制御する室外側制御部38を有している。そして、室外側制御部38は、室外ユニット2の制御を行うためのマイクロコンピュータやメモリ等を有しており、室内ユニット4の室内側制御部43との間で伝送線8aを介して制御信号等のやりとりを行うことができるようになっている。すなわち、室内側制御部44と室外側制御部38と制御部38、44間を接続する伝送線8aとによって、空気調和装置1全体の運転制御を行う制御部8が構成されている。
The liquid side shut-off valve 27 and the gas side shut-off valve 28 are valves provided at connection ports with external devices and pipes (specifically, the liquid refrigerant communication pipe 5 and the gas refrigerant communication pipe 6). The liquid side closing valve 26 is provided at the end of the liquid refrigerant pipe 35. The gas side closing valve 27 is provided at the end of the second gas refrigerant pipe 34.
The outdoor unit 2 has an outdoor fan 36 for sucking outdoor air into the outdoor unit 2, exchanging heat with the refrigerant in the outdoor heat exchanger 23, and then discharging the air to the outside. Here, a propeller fan or the like driven by an outdoor fan motor 37 is used as the outdoor fan 36.
The outdoor unit 2 also has an outdoor control unit 38 that controls the operation of each unit constituting the outdoor unit 2. And the outdoor side control part 38 has a microcomputer, memory, etc. for controlling the outdoor unit 2, and controls signal between the indoor side control parts 43 of the indoor unit 4 via the transmission line 8a. Etc. can be exchanged. That is, the control part 8 which performs operation control of the whole air conditioning apparatus 1 is comprised by the transmission line 8a which connects between the indoor side control part 44, the outdoor side control part 38, and the control parts 38 and 44. FIG.
 制御部8は、各種運転設定や各種センサの検出値等に基づいて、各種機器及び弁21a、22、24、26、37、43等の動作を制御することができるようになっている。
 <冷媒連絡管>
 冷媒連絡配管5、6は、空気調和装置1を建物等の設置場所に設置する際に、現地にて施工される冷媒管であり、設置場所や室外ユニットと室内ユニットとの組み合わせ等の設置条件に応じて種々の長さや管径を有するものが使用される。
 以上のように、室外ユニット2と、室内ユニット4と、冷媒連絡管5、6とが接続されることによって、空気調和装置1の冷媒回路10が構成されている。冷媒回路10は、冷却運転としての冷房運転時に、圧縮機21、室外熱交換器23、冷媒貯留タンク25、膨張機構24、及び、室内熱交換器41の順に冷媒が流れる冷凍サイクルを行うようになっている。また、冷媒回路10は、加熱運転としての暖房運転時に、圧縮機21、室内熱交換器41、膨張機構24、冷媒貯留タンク25、及び、室外熱交換器23の順に冷媒が流れる冷凍サイクルを行うようになっている。そして、空気調和装置1は、室内側制御部44と室外側制御部38とから構成される制御部8によって、冷房運転及び暖房運転等の各種運転を行うことができるようになっている。
The controller 8 can control the operation of various devices and valves 21a, 22, 24, 26, 37, 43, and the like based on various operation settings, detection values of various sensors, and the like.
<Refrigerant communication pipe>
Refrigerant communication pipes 5 and 6 are refrigerant pipes constructed on site when the air conditioner 1 is installed at an installation location such as a building, and installation conditions such as an installation location and a combination of an outdoor unit and an indoor unit. Those having various lengths and tube diameters are used.
As described above, the refrigerant circuit 10 of the air conditioner 1 is configured by connecting the outdoor unit 2, the indoor unit 4, and the refrigerant communication pipes 5 and 6. During the cooling operation as the cooling operation, the refrigerant circuit 10 performs a refrigeration cycle in which the refrigerant flows in the order of the compressor 21, the outdoor heat exchanger 23, the refrigerant storage tank 25, the expansion mechanism 24, and the indoor heat exchanger 41. It has become. The refrigerant circuit 10 performs a refrigeration cycle in which the refrigerant flows in the order of the compressor 21, the indoor heat exchanger 41, the expansion mechanism 24, the refrigerant storage tank 25, and the outdoor heat exchanger 23 during the heating operation as the heating operation. It is like that. The air conditioner 1 can perform various operations such as a cooling operation and a heating operation by the control unit 8 including the indoor side control unit 44 and the outdoor side control unit 38.
 (2)空気調和装置の動作
 空気調和装置1は、上記のように、冷房運転、及び、暖房運転を行うことができる。以下、空気調和装置1の冷房運転時及び暖房運転時の動作について説明する。
 <暖房運転>
 暖房運転時には、切換機構22が図1の破線で示される状態、すなわち、第2ポート22bと第4ポート22dとを連通させ、かつ、第1ポート22aと第3ポート22cとを連通させる切り換えを行う。
 この冷媒回路10において、冷凍サイクルにおける低圧の冷媒は、圧縮機21に吸入され、冷凍サイクルにおける高圧になるまで圧縮された後に吐出される。
 圧縮機21から吐出された高圧の冷媒は、切換機構22、ガス側閉鎖弁28及びガス冷媒連絡管6を通じて、室内熱交換器41に送られる。
(2) Operation of Air Conditioner The air conditioner 1 can perform a cooling operation and a heating operation as described above. Hereinafter, the operation | movement at the time of air_conditionaing | cooling operation of the air conditioning apparatus 1 and heating operation is demonstrated.
<Heating operation>
During the heating operation, the switching mechanism 22 is switched to the state indicated by the broken line in FIG. 1, that is, the communication between the second port 22b and the fourth port 22d and the communication between the first port 22a and the third port 22c. Do.
In this refrigerant circuit 10, the low-pressure refrigerant in the refrigeration cycle is sucked into the compressor 21, compressed until it reaches a high pressure in the refrigeration cycle, and then discharged.
The high-pressure refrigerant discharged from the compressor 21 is sent to the indoor heat exchanger 41 through the switching mechanism 22, the gas side closing valve 28 and the gas refrigerant communication pipe 6.
 室内熱交換器41に送られた高圧の冷媒は、室内熱交換器41において、室内空気と熱交換を行って放熱する。これにより、室内空気は加熱される。ここで、室内熱交換器41の容量は、室外熱交換器23の容量よりも大きいため、暖房運転時においては、ほとんどの液冷媒が室内熱交換器41に収容されることになる。
 室内熱交換器41で放熱した高圧の冷媒は、液冷媒連絡管5及び液側閉鎖弁27を通じて、膨張機構24に送られる。
 膨張機構24に送られた冷媒は、膨張機構24によって冷凍サイクルにおける低圧まで減圧され、その後、冷媒貯留タンク25に送られて、冷媒貯留タンク25内に溜まる。そして、冷媒貯留タンク25の冷媒は、室外熱交換器23に送られる。
 室外熱交換器23に送られた低圧の冷媒は、室外熱交換器23において、室外ファン36によって供給される室外空気と熱交換を行って蒸発する。
The high-pressure refrigerant sent to the indoor heat exchanger 41 radiates heat by exchanging heat with indoor air in the indoor heat exchanger 41. Thereby, indoor air is heated. Here, since the capacity | capacitance of the indoor heat exchanger 41 is larger than the capacity | capacitance of the outdoor heat exchanger 23, most liquid refrigerants are accommodated in the indoor heat exchanger 41 at the time of heating operation.
The high-pressure refrigerant radiated by the indoor heat exchanger 41 is sent to the expansion mechanism 24 through the liquid refrigerant communication pipe 5 and the liquid side shut-off valve 27.
The refrigerant sent to the expansion mechanism 24 is depressurized to a low pressure in the refrigeration cycle by the expansion mechanism 24, and then sent to the refrigerant storage tank 25 to be accumulated in the refrigerant storage tank 25. Then, the refrigerant in the refrigerant storage tank 25 is sent to the outdoor heat exchanger 23.
The low-pressure refrigerant sent to the outdoor heat exchanger 23 evaporates by exchanging heat with outdoor air supplied by the outdoor fan 36 in the outdoor heat exchanger 23.
 室外熱交換器23で蒸発した低圧の冷媒は、切換機構22を通じて、再び、圧縮機21に吸入される。
 <冷房運転>
 冷房運転時には、切換機構22が図1の実線で示される状態、すなわち、第2ポート22bと第3ポート22cとを連通させ、かつ、第1ポート22aと第4ポート22dとを連通させる切り換えを行う。
 この冷媒回路10において、冷凍サイクルにおける低圧の冷媒は、圧縮機21に吸入され、冷凍サイクルにおける高圧になるまで圧縮された後に吐出される。
 圧縮機21から吐出された高圧の冷媒は、切換機構22を通じて、室外熱交換器23に送られる。
The low-pressure refrigerant evaporated in the outdoor heat exchanger 23 is again sucked into the compressor 21 through the switching mechanism 22.
<Cooling operation>
During the cooling operation, the switching mechanism 22 is in a state indicated by a solid line in FIG. 1, that is, switching between the second port 22b and the third port 22c and the first port 22a and the fourth port 22d. Do.
In this refrigerant circuit 10, the low-pressure refrigerant in the refrigeration cycle is sucked into the compressor 21, compressed until it reaches a high pressure in the refrigeration cycle, and then discharged.
The high-pressure refrigerant discharged from the compressor 21 is sent to the outdoor heat exchanger 23 through the switching mechanism 22.
 室外熱交換器23に送られた高圧の冷媒は、室外熱交換器23において、室外空気と熱交換を行って放熱する。
 室外熱交換器23において放熱した高圧の冷媒は、冷媒貯留タンク25に送られる。ここで、室外熱交換器23の容量は、室内熱交換器41の容量以下であるため、冷房運転時においては、室外熱交換器23が全ての液冷媒を収容することができない。このため、室外熱交換器23に収容しきれない液冷媒は冷媒貯留タンク25に溜まり、冷媒貯留タンク25は、冷凍サイクルにおける高圧の液冷媒で満たされる。冷媒貯留タンク25の液冷媒は、膨張機構24によって冷凍サイクルにおける低圧まで減圧された後に、液側閉鎖弁27及び液冷媒連絡管5を通じて、室内熱交換器41に送られる。
 室内熱交換器41に送られた低圧の冷媒は、室内熱交換器41において、室内空気と熱交換を行って蒸発する。これにより、室内空気は冷却される。
The high-pressure refrigerant sent to the outdoor heat exchanger 23 radiates heat by exchanging heat with outdoor air in the outdoor heat exchanger 23.
The high-pressure refrigerant that has radiated heat in the outdoor heat exchanger 23 is sent to the refrigerant storage tank 25. Here, since the capacity | capacitance of the outdoor heat exchanger 23 is below the capacity | capacitance of the indoor heat exchanger 41, the outdoor heat exchanger 23 cannot accommodate all the liquid refrigerants at the time of air_conditionaing | cooling operation. For this reason, liquid refrigerant that cannot be stored in the outdoor heat exchanger 23 is accumulated in the refrigerant storage tank 25, and the refrigerant storage tank 25 is filled with high-pressure liquid refrigerant in the refrigeration cycle. The liquid refrigerant in the refrigerant storage tank 25 is depressurized to a low pressure in the refrigeration cycle by the expansion mechanism 24 and then sent to the indoor heat exchanger 41 through the liquid side closing valve 27 and the liquid refrigerant communication pipe 5.
The low-pressure refrigerant sent to the indoor heat exchanger 41 evaporates by exchanging heat with indoor air in the indoor heat exchanger 41. Thereby, indoor air is cooled.
 室内熱交換器51において蒸発した低圧の冷媒は、ガス冷媒連絡管6、ガス側閉鎖弁28及び切換機構22を通じて、再び、圧縮機21に吸入される。
 (3)空気調和装置の特徴
 本実施形態の空気調和装置1には、以下のような特徴がある。
 空気調和装置1では、上記のように、冷媒としてR32を使用している。このため、圧縮機21への油戻しの問題が懸念される。また、空気調和装置1では、上記のように、室内熱交換器41がクロスフィン型熱交換器、室外熱交換器23が伝熱管として扁平管231を使用した積層型熱交換器であり、室外熱交換器23の容積が、室内熱交換器41の容積の100%以下である。このため、冷却運転時に余剰冷媒が発生し、冷媒制御に支障をきたすおそれがある。
The low-pressure refrigerant evaporated in the indoor heat exchanger 51 is again sucked into the compressor 21 through the gas refrigerant communication pipe 6, the gas side shut-off valve 28, and the switching mechanism 22.
(3) Features of the air conditioner The air conditioner 1 of the present embodiment has the following features.
In the air conditioner 1, as described above, R32 is used as the refrigerant. For this reason, there is a concern about the problem of oil return to the compressor 21. Further, in the air conditioner 1, as described above, the indoor heat exchanger 41 is a cross-fin heat exchanger, the outdoor heat exchanger 23 is a laminated heat exchanger using a flat tube 231 as a heat transfer tube, The volume of the heat exchanger 23 is 100% or less of the volume of the indoor heat exchanger 41. For this reason, surplus refrigerant is generated during the cooling operation, which may hinder refrigerant control.
 これに対して、空気調和装置1では、上記のように、室外熱交換器23と膨張機構24との間に冷媒貯留タンク25を設けるようにし、冷媒貯留タンク25が、冷房運転時に冷凍サイクルにおける高圧になり、暖房運転時に冷凍サイクルにおける低圧になるようにしている。
 このため、空気調和装置1では、圧縮機21の吸入側に冷媒貯留タンクを設ける場合に比べて、圧縮機21に冷凍機油が戻りやすくなり、圧縮機21への油戻しの問題が解消される。しかも、空気調和装置1では、室外熱交換器23の容量が室内熱交換器41の容量以下となることによって冷房運転時に発生した余剰冷媒が冷媒貯留タンク25に収容されるため、冷媒制御に支障をきたすことを防止することができる。
 これにより、空気調和装置1では、冷媒としてR32を使用しており、室外熱交換器23の容積が室内熱交換器41の容積以下であるにもかかわらず、冷房運転時に生じる余剰冷媒を収容することができるとともに、圧縮機21に冷凍機油を戻すことができる。
In contrast, in the air conditioner 1, as described above, the refrigerant storage tank 25 is provided between the outdoor heat exchanger 23 and the expansion mechanism 24, and the refrigerant storage tank 25 is in the refrigeration cycle during the cooling operation. The pressure is high, and the pressure is low in the refrigeration cycle during heating operation.
For this reason, in the air conditioner 1, compared with the case where the refrigerant storage tank is provided on the suction side of the compressor 21, the refrigeration oil is easily returned to the compressor 21, and the problem of oil return to the compressor 21 is solved. . In addition, in the air conditioner 1, since the capacity of the outdoor heat exchanger 23 is equal to or less than the capacity of the indoor heat exchanger 41, surplus refrigerant generated during the cooling operation is accommodated in the refrigerant storage tank 25, which hinders refrigerant control. Can be prevented.
Thereby, in the air conditioning apparatus 1, R32 is used as the refrigerant, and the excess refrigerant generated during the cooling operation is accommodated even though the volume of the outdoor heat exchanger 23 is equal to or less than the volume of the indoor heat exchanger 41. And the refrigerating machine oil can be returned to the compressor 21.
 (4)変形例1
 上記実施形態(図1参照)において、図5に示すように、冷媒貯留タンク25内に溜まる冷媒のガス成分を圧縮機21又は圧縮機21の吸入管31に導くバイパス管30をさらに設けるようにしてもよい。
 具体的には、例えば、暖房運転時に冷媒貯留タンク25に入る直前の冷媒には、膨張機構24を通過するときに発生したガス成分が含まれている。このため、この冷媒は、冷媒貯留タンク25に入った後、液成分とガス成分とに分離され、下部側に液冷媒が貯留され、上部側にガス冷媒が貯留されることになる。そして、冷媒貯留タンク25で分離されたガス冷媒は、バイパス管30を通じて、圧縮機21の吸入管31へ流れる。また、冷媒貯留タンク25で分離された液冷媒は、膨張機構24において減圧された後に、室外熱交換器23へ流れる。ここで、バイパス管30は、冷媒貯留タンク25の上部と吸入管31の途中部分との間を接続するように設けられている。バイパス管30の途中には、流量調整機構30aが設けられている。ここでは、流量調整機構30aとして、電動膨張弁が使用されている。尚、バイパス管30の出口は、吸入管31の途中部分に接続するのではなく、圧縮機21に直接接続するようにしてもよい。尚、流量調整機構30aは、他の機器及び弁21a、22、24、26、37、43等と同様に、制御部8によって制御される。具体的には、暖房運転時には、流量調整機構30aが開状態に制御され、冷房運転時には、流量調整機構30aが閉状態に制御される。
(4) Modification 1
In the above embodiment (see FIG. 1), as shown in FIG. 5, a bypass pipe 30 is further provided for guiding the gas component of the refrigerant stored in the refrigerant storage tank 25 to the compressor 21 or the suction pipe 31 of the compressor 21. May be.
Specifically, for example, the refrigerant immediately before entering the refrigerant storage tank 25 during the heating operation includes a gas component generated when passing through the expansion mechanism 24. For this reason, after this refrigerant enters the refrigerant storage tank 25, it is separated into a liquid component and a gas component, the liquid refrigerant is stored on the lower side, and the gas refrigerant is stored on the upper side. The gas refrigerant separated in the refrigerant storage tank 25 flows through the bypass pipe 30 to the suction pipe 31 of the compressor 21. Further, the liquid refrigerant separated in the refrigerant storage tank 25 is depressurized in the expansion mechanism 24 and then flows to the outdoor heat exchanger 23. Here, the bypass pipe 30 is provided so as to connect between the upper part of the refrigerant storage tank 25 and the middle part of the suction pipe 31. In the middle of the bypass pipe 30, a flow rate adjusting mechanism 30a is provided. Here, an electric expansion valve is used as the flow rate adjusting mechanism 30a. The outlet of the bypass pipe 30 may be directly connected to the compressor 21 instead of being connected to the middle part of the suction pipe 31. The flow rate adjusting mechanism 30a is controlled by the control unit 8 in the same manner as other devices and valves 21a, 22, 24, 26, 37, 43 and the like. Specifically, during the heating operation, the flow rate adjustment mechanism 30a is controlled to be in an open state, and during the cooling operation, the flow rate adjustment mechanism 30a is controlled to be in a closed state.
 これにより、暖房運転時には、室内熱交換器41において放熱した後に膨張機構24に送られた高圧の冷媒は、膨張機構24によって冷凍サイクルにおける低圧まで減圧され、その後、冷媒貯留タンク25に送られる。冷媒貯留タンク25に入る直前の冷媒には、膨張機構24において減圧される際に発生したガス成分が含まれているが、冷媒貯留タンク25に入った後、液成分とガス成分とに分離され、下部側に冷凍サイクルにおける液冷媒が貯留され、上部側に冷凍サイクルにおける低圧のガス冷媒が貯留される。そして、このとき、上記のように、バイパス管30の流量調整機構30aが開状態に制御されるため、冷媒貯留タンク25のガス冷媒は、バイパス管30を通じて圧縮機21の吸入管31へ向う。冷媒貯留タンク25の液冷媒は、室外熱交換器23に送られる。そして、室外熱交換器23に送られた低圧の冷媒は、室外熱交換器23において、室外ファン36によって供給される室外空気と熱交換を行って蒸発する。このとき、冷媒貯留タンク25における気液分離操作、及び、気液分離されたガス冷媒をパイパス管30を通じて圧縮機21に吸入させる操作によって、室外熱交換器23に流入する冷媒が減少している。このため、室外熱交換器23を流れる冷媒の流量が減少し、その分だけ圧力損失を小さくすることができるため、冷凍サイクルにおける減圧ロスを低減させることができる。 Thus, during the heating operation, the high-pressure refrigerant that has been radiated in the indoor heat exchanger 41 and then sent to the expansion mechanism 24 is depressurized by the expansion mechanism 24 to a low pressure in the refrigeration cycle, and then sent to the refrigerant storage tank 25. The refrigerant immediately before entering the refrigerant storage tank 25 includes a gas component generated when the expansion mechanism 24 is depressurized. After entering the refrigerant storage tank 25, the refrigerant is separated into a liquid component and a gas component. The liquid refrigerant in the refrigeration cycle is stored on the lower side, and the low-pressure gas refrigerant in the refrigeration cycle is stored on the upper side. At this time, as described above, the flow rate adjusting mechanism 30a of the bypass pipe 30 is controlled to be in the open state, so that the gas refrigerant in the refrigerant storage tank 25 goes to the suction pipe 31 of the compressor 21 through the bypass pipe 30. The liquid refrigerant in the refrigerant storage tank 25 is sent to the outdoor heat exchanger 23. The low-pressure refrigerant sent to the outdoor heat exchanger 23 evaporates in the outdoor heat exchanger 23 by exchanging heat with outdoor air supplied by the outdoor fan 36. At this time, the refrigerant flowing into the outdoor heat exchanger 23 is reduced by the gas-liquid separation operation in the refrigerant storage tank 25 and the operation of sucking the gas refrigerant separated into the compressor 21 through the bypass pipe 30. . For this reason, since the flow volume of the refrigerant | coolant which flows through the outdoor heat exchanger 23 reduces and a pressure loss can be made small by that much, the decompression loss in a refrigerating cycle can be reduced.
 一方、冷房運転時には、上記のように、バイパス管30の流量調整機構30aが閉状態に制御されるため、冷媒貯留タンク25に溜まった液冷媒は、バイパス管30に流れることはない。冷媒貯留タンク25の液冷媒は、膨張機構24によって冷凍サイクルにおける低圧まで減圧された後に、液側閉鎖弁27及び液冷媒連絡管5を通じて、室内熱交換器41に送られる。
 そして、本変形例の空気調和装置1では、上記のように、冷媒貯留タンク25内に溜まる冷媒のガス成分を圧縮機21又は圧縮機21の吸入管31に導くバイパス管30が設けられているため、上記実施形態の作用効果に加えて、以下のような作用効果を得ることができる。
 <A>
 空気調和装置1では、暖房運転時に膨張機構24において減圧された冷媒が、冷媒貯留タンク25において液成分とガス成分とに分離され、ガス成分はバイパス管30へ向うことになる。
On the other hand, during the cooling operation, the flow rate adjusting mechanism 30a of the bypass pipe 30 is controlled to be closed as described above, so that the liquid refrigerant accumulated in the refrigerant storage tank 25 does not flow to the bypass pipe 30. The liquid refrigerant in the refrigerant storage tank 25 is depressurized to a low pressure in the refrigeration cycle by the expansion mechanism 24 and then sent to the indoor heat exchanger 41 through the liquid side closing valve 27 and the liquid refrigerant communication pipe 5.
And in the air conditioning apparatus 1 of this modification, the bypass pipe 30 which guides the gas component of the refrigerant | coolant which accumulates in the refrigerant | coolant storage tank 25 to the compressor 21 or the suction pipe 31 of the compressor 21 as mentioned above is provided. Therefore, in addition to the functions and effects of the above embodiment, the following functions and effects can be obtained.
<A>
In the air conditioner 1, the refrigerant decompressed in the expansion mechanism 24 during the heating operation is separated into the liquid component and the gas component in the refrigerant storage tank 25, and the gas component goes to the bypass pipe 30.
 これにより、空気調和装置1では、暖房運転時に、蒸発に寄与しないガス成分が冷媒の蒸発器として機能する室外熱交換器23に流入しなくなるため、その分だけ、冷媒の蒸発器として機能する室外熱交換器23を流れる冷媒の流量を減少させることができ、冷凍サイクルにおける減圧ロスを低減することができる。
 <B>
 圧縮機21の運転周波数が高い場合には、冷媒貯留タンク25から気液二相状態の冷媒がバイパス管30を通じて圧縮機21または圧縮機21の吸入管31に戻り、圧縮機21に吸入されるおそれがある。
 しかし、空気調和装置1では、バイパス管30に流量調整機構30aが設けられているため、気液二相状態の冷媒の液成分が減圧されて蒸発することになる。
As a result, in the air conditioner 1, during heating operation, gas components that do not contribute to evaporation do not flow into the outdoor heat exchanger 23 that functions as a refrigerant evaporator. The flow rate of the refrigerant flowing through the heat exchanger 23 can be reduced, and the decompression loss in the refrigeration cycle can be reduced.
<B>
When the operating frequency of the compressor 21 is high, the refrigerant in the gas-liquid two-phase state returns from the refrigerant storage tank 25 to the compressor 21 or the suction pipe 31 of the compressor 21 through the bypass pipe 30 and is sucked into the compressor 21. There is a fear.
However, in the air conditioner 1, since the flow adjustment mechanism 30a is provided in the bypass pipe 30, the liquid component of the refrigerant in the gas-liquid two-phase state is decompressed and evaporated.
 これにより、空気調和装置1では、圧縮機21又は圧縮機21の吸入管31に液成分が戻ることを防止することができる。
 <C>
 また、空気調和装置1では、暖房運転時に、流量調整機構30aを通過した冷媒が、室内熱交換器41や室外熱交換器23において蒸発した後に、圧縮機21又は圧縮機21の吸入管31に向う冷媒に合流することになる。このとき、流量調整機構30aが電動膨張弁である場合には、弁開度を制御することによって、圧縮機21に吸入される直前の冷媒状態を、より最適に調整することができる。しかも、流量調整機構30aの弁開度を制御することによって、圧縮機21に戻る冷媒の流量を増減させることができるため、室内熱交換器41側の冷凍負荷に応じて冷媒の循環流量、すなわち、室内熱交換器41を流れる冷媒の流量を制御することができる。
Thereby, in the air conditioning apparatus 1, it is possible to prevent the liquid component from returning to the compressor 21 or the suction pipe 31 of the compressor 21.
<C>
In the air conditioner 1, during the heating operation, the refrigerant that has passed through the flow rate adjustment mechanism 30 a evaporates in the indoor heat exchanger 41 and the outdoor heat exchanger 23, and then enters the compressor 21 or the suction pipe 31 of the compressor 21. It will be merged with the refrigerant. At this time, when the flow rate adjustment mechanism 30a is an electric expansion valve, the refrigerant state immediately before being sucked into the compressor 21 can be adjusted more optimally by controlling the valve opening degree. Moreover, since the flow rate of the refrigerant returning to the compressor 21 can be increased or decreased by controlling the valve opening degree of the flow rate adjusting mechanism 30a, the circulation flow rate of the refrigerant according to the refrigeration load on the indoor heat exchanger 41 side, that is, The flow rate of the refrigerant flowing through the indoor heat exchanger 41 can be controlled.
 (5)変形例2
 上記変形例1では、冷媒貯留タンク25として冷媒を貯留する容器を採用しているが、これに限定されず、例えば、図6に示すようなサイクロン方式の気液分離器を採用してもよい。
 本変形例の冷媒貯留タンク25は、主として、円筒容器251、第1接続管252、第2接続管253、及び、第3接続管254を有している。
 第1接続管252は、円筒容器251の円周側壁の接線方向に連結されており、円筒容器251の内部と膨張機構24とを連絡している。第2接続管253は、円筒容器251の底壁に連結されており、円筒容器251の内部と室外熱交換器23とを連絡している。第3接続管254は、円筒容器251の上壁に連結されており、円筒容器251の内部とバイパス管30とを連絡している。
(5) Modification 2
In the first modification, a container for storing the refrigerant is employed as the refrigerant storage tank 25, but the present invention is not limited to this. For example, a cyclone type gas-liquid separator as shown in FIG. 6 may be employed. .
The refrigerant storage tank 25 of this modification mainly includes a cylindrical container 251, a first connection pipe 252, a second connection pipe 253, and a third connection pipe 254.
The first connection pipe 252 is connected in the tangential direction of the circumferential side wall of the cylindrical container 251, and communicates the inside of the cylindrical container 251 and the expansion mechanism 24. The second connection pipe 253 is connected to the bottom wall of the cylindrical container 251 and communicates the inside of the cylindrical container 251 and the outdoor heat exchanger 23. The third connection pipe 254 is connected to the upper wall of the cylindrical container 251 and connects the inside of the cylindrical container 251 and the bypass pipe 30.
 このような構成により、暖房運転時において、第1接続管252を通じて円筒容器251に流入する冷凍サイクルにおける低圧の冷媒は、円筒容器251の円周側壁の内周面251aに沿って渦を巻くように流れ、そのとき、その内周面251aに液冷媒が付着し液冷媒とガス冷媒とが効率よく分離される。
 液冷媒は重力によって降下して、下部側に溜まり、第2接続管253を通じて円筒容器251から流出する。他方、ガス冷媒は旋回しながら上昇して、上部側に溜まり、第3接続管254を通じて円筒容器251から流出する。
 以上のように、本変形例では、冷媒貯留タンク25として、サイクロン方式の気液分離器を採用しているため、気液分離を効率よく行うことができる。また、気液分離器からなる冷媒貯留タンク25が液冷媒を溜める冷媒貯留機能、及び、液成分とガス成分とを分離する機能の両方を担っており、これにより、冷媒貯留容器と気液分離器とを併設する必要がなくなるため、装置構成の簡略化に寄与する。
With such a configuration, during heating operation, the low-pressure refrigerant in the refrigeration cycle flowing into the cylindrical container 251 through the first connection pipe 252 swirls along the inner peripheral surface 251a of the circumferential side wall of the cylindrical container 251. At that time, the liquid refrigerant adheres to the inner peripheral surface 251a, and the liquid refrigerant and the gas refrigerant are efficiently separated.
The liquid refrigerant descends due to gravity, accumulates on the lower side, and flows out from the cylindrical container 251 through the second connection pipe 253. On the other hand, the gas refrigerant rises while turning, accumulates on the upper side, and flows out of the cylindrical container 251 through the third connection pipe 254.
As described above, in this modification, since the cyclone type gas-liquid separator is employed as the refrigerant storage tank 25, gas-liquid separation can be performed efficiently. In addition, the refrigerant storage tank 25 composed of a gas-liquid separator has both a refrigerant storage function for storing liquid refrigerant and a function for separating the liquid component and the gas component. This eliminates the need for a device and contributes to the simplification of the device configuration.
 (6)変形例3
 上記実施形態及び変形例1、2では、伝熱管として扁平管231を使用した室外熱交換器23の一例として、複数の扁平管231と波形フィン232とを有する積層型熱交換器が例示されている。この室外熱交換器23は、複数の扁平管231が間隔をあけて積み重なるように配列され、波形フィン232が隣接する扁平管231に挟まれている。
 しかし、室外熱交換器23は、上記実施形態及び変形例1、2における構成に限定されることはなく、例えば、図7及び図8に示すように、間隔を空けて積み重なるように配列された複数の扁平管231と、扁平管231が差し込まれる切り欠き236aが形成されたフィン236と、を有する積層型熱交換器であってもよい。
 この場合においても、上記実施形態及び変形例1、2と同様の作用効果を得ることができる。
(6) Modification 3
In the embodiment and the first and second modifications, a stacked heat exchanger having a plurality of flat tubes 231 and corrugated fins 232 is illustrated as an example of the outdoor heat exchanger 23 that uses a flat tube 231 as a heat transfer tube. Yes. The outdoor heat exchanger 23 is arranged such that a plurality of flat tubes 231 are stacked at intervals, and corrugated fins 232 are sandwiched between adjacent flat tubes 231.
However, the outdoor heat exchanger 23 is not limited to the configuration in the above embodiment and the first and second modifications, and is arranged to be stacked with an interval as shown in FIGS. 7 and 8, for example. A laminated heat exchanger having a plurality of flat tubes 231 and fins 236 formed with notches 236a into which the flat tubes 231 are inserted may be used.
Even in this case, the same effects as those of the above embodiment and the first and second modifications can be obtained.
 (7)変形例4
 上記実施形態及び変形例1、2では、伝熱管として扁平管231を使用した室外熱交換器23の一例として、複数の扁平管231と波形フィン232とを有する積層型熱交換器が例示されている。この室外熱交換器23は、複数の扁平管231が間隔をあけて積み重なるように配列され、波形フィン232が隣接する扁平管231に挟まれている。
 しかし、室外熱交換器23は、上記実施形態及び変形例1、2における構成に限定されることはなく、例えば、扁平管が蛇行形状に成形され、フィンが扁平管の互いに隣接する面の間に挟まれている構成であってもよい。
 この場合においても、上記実施形態及び変形例1、2と同様の作用効果を得ることができる。
(7) Modification 4
In the said embodiment and the modification 1, 2, the laminated heat exchanger which has the some flat tube 231 and the corrugated fin 232 is illustrated as an example of the outdoor heat exchanger 23 which uses the flat tube 231 as a heat exchanger tube. Yes. The outdoor heat exchanger 23 is arranged such that a plurality of flat tubes 231 are stacked at intervals, and corrugated fins 232 are sandwiched between adjacent flat tubes 231.
However, the outdoor heat exchanger 23 is not limited to the configuration in the above embodiment and the first and second modifications. For example, the flat tube is formed in a meandering shape, and the fin is between the adjacent surfaces of the flat tube. It may be configured to be sandwiched between.
Even in this case, the same effects as those of the above embodiment and the first and second modifications can be obtained.
 (8)変形例5
 上記実施形態及び変形例1~4では、室外熱交換器23が複数の扁平管231と、波形フィン232や切り欠き236aが形成されたフィン236と、を有する積層型熱交換器であるが、これに限定されるものではない。例えば、冷房運転時に室外熱交換器23を水で冷却するような冷凍装置の場合、室外熱交換器23および室内熱交換器41がともにクロスフィン型熱交換器であって、室外熱交換器23の伝熱管径が室内熱交換器41の伝熱管径よりも細い構成であってもよい。
 この場合においても、上記実施形態及び変形例1~4と同様の作用効果を得ることができる。
(8) Modification 5
In the above embodiment and Modifications 1 to 4, the outdoor heat exchanger 23 is a stacked heat exchanger having a plurality of flat tubes 231 and fins 236 formed with corrugated fins 232 and notches 236a. It is not limited to this. For example, in the case of a refrigeration apparatus that cools the outdoor heat exchanger 23 with water during the cooling operation, both the outdoor heat exchanger 23 and the indoor heat exchanger 41 are cross-fin heat exchangers, and the outdoor heat exchanger 23 The heat transfer tube diameter may be narrower than the heat transfer tube diameter of the indoor heat exchanger 41.
Even in this case, the same effects as those of the above-described embodiment and Modifications 1 to 4 can be obtained.
 本発明は、冷媒としてR32を使用しており冷却運転及び加熱運転を行うことが可能な冷凍装置に対して、広く適用可能である。 The present invention is widely applicable to a refrigeration apparatus that uses R32 as a refrigerant and can perform a cooling operation and a heating operation.
 1   空気調和装置(冷凍装置)
 21  圧縮機
 23  室外熱交換器
 24  膨張機構
 25  冷媒貯留タンク
 30  バイパス管
 30a 流量調整機構
 41  室内熱交換器
1 Air conditioning equipment (refrigeration equipment)
DESCRIPTION OF SYMBOLS 21 Compressor 23 Outdoor heat exchanger 24 Expansion mechanism 25 Refrigerant storage tank 30 Bypass pipe 30a Flow rate adjustment mechanism 41 Indoor heat exchanger
特開2001-194015号公報JP 2001-194015 A 特開平6-143991号公報JP-A-6-143991

Claims (9)

  1.  冷却運転時に圧縮機(21)、室外熱交換器(23)、膨張機構(24)及び室内熱交換器(41)の順に冷媒が流れ、加熱運転時に前記圧縮機、前記室内熱交換器、前記膨張機構及び前記室外熱交換器の順に冷媒が流れる冷凍装置において、
     冷媒としてR32を使用しており、
     前記室外熱交換器の容積が前記室内熱交換器の容積以下であり、
     前記室外熱交換器と前記膨張機構との間には、冷媒を貯留する冷媒貯留タンク(25)が設けられている、
    冷凍装置(1)。
    During the cooling operation, the refrigerant flows in the order of the compressor (21), the outdoor heat exchanger (23), the expansion mechanism (24), and the indoor heat exchanger (41). During the heating operation, the compressor, the indoor heat exchanger, In the refrigeration apparatus in which the refrigerant flows in the order of the expansion mechanism and the outdoor heat exchanger,
    R32 is used as a refrigerant,
    The volume of the outdoor heat exchanger is less than or equal to the volume of the indoor heat exchanger;
    Between the outdoor heat exchanger and the expansion mechanism, a refrigerant storage tank (25) for storing a refrigerant is provided.
    Refrigeration equipment (1).
  2.  前記冷媒貯留タンク(25)は、前記冷却運転時に冷凍サイクルにおける高圧になり、前記加熱運転時に冷凍サイクルにおける低圧になるように設けられている、
    請求項1に記載の冷凍装置(1)。
    The refrigerant storage tank (25) is provided so as to have a high pressure in the refrigeration cycle during the cooling operation and a low pressure in the refrigeration cycle during the heating operation.
    The refrigeration apparatus (1) according to claim 1.
  3.  前記室外熱交換器(23)は、伝熱管として扁平管を使用した熱交換器である、
    請求項1又は2に記載の冷凍装置(1)。
    The outdoor heat exchanger (23) is a heat exchanger using a flat tube as a heat transfer tube,
    The refrigeration apparatus (1) according to claim 1 or 2.
  4.  前記室外熱交換器(23)は、間隔を空けて積み重なるように複数配列された複数の前記扁平管と、隣接する前記扁平管に挟まれたフィンと、を有する熱交換器である、
    請求項3に記載の冷凍装置(1)。
    The outdoor heat exchanger (23) is a heat exchanger having a plurality of the flat tubes arranged to be stacked at intervals and fins sandwiched between the adjacent flat tubes.
    The refrigeration apparatus (1) according to claim 3.
  5.  前記室外熱交換器(23)は、間隔を空けて積み重なるように配列された複数の前記扁平管と、前記扁平管が差し込まれる切り欠きが形成されたフィンと、を有する熱交換器である、
    請求項3に記載の冷凍装置(1)。
    The outdoor heat exchanger (23) is a heat exchanger having a plurality of the flat tubes arranged so as to be stacked at intervals and fins in which notches into which the flat tubes are inserted are formed.
    The refrigeration apparatus (1) according to claim 3.
  6.  前記室外熱交換器(23)及び前記室内熱交換器(41)は、クロスフィン型熱交換器であり、
     前記室外熱交換器の伝熱管径は、前記室内熱交換器の伝熱管径よりも細く設定されている、
    請求項1又は2に記載の冷凍装置(1)。
    The outdoor heat exchanger (23) and the indoor heat exchanger (41) are cross fin heat exchangers,
    The heat transfer tube diameter of the outdoor heat exchanger is set to be thinner than the heat transfer tube diameter of the indoor heat exchanger,
    The refrigeration apparatus (1) according to claim 1 or 2.
  7.  前記冷媒貯留タンク(25)内に溜まる冷媒のガス成分を前記圧縮機(21)又は前記圧縮機の吸入側の冷媒管に導くバイパス管(30)がさらに設けられている、
    請求項1~6のいずれか1項に記載の冷凍装置(1)。
    A bypass pipe (30) that guides the gas component of the refrigerant stored in the refrigerant storage tank (25) to the compressor (21) or a refrigerant pipe on the suction side of the compressor;
    The refrigeration apparatus (1) according to any one of claims 1 to 6.
  8.  前記バイパス管(30)は、流量調整機構(30a)を有する、
    請求項7に記載の冷凍装置(1)。
    The bypass pipe (30) has a flow rate adjusting mechanism (30a).
    The refrigeration apparatus (1) according to claim 7.
  9.  前記冷媒貯留タンク(25)は、気液分離器である、
    請求項1~8のいずれか1項に記載の冷凍装置(1)。
    The refrigerant storage tank (25) is a gas-liquid separator.
    The refrigeration apparatus (1) according to any one of claims 1 to 8.
PCT/JP2013/058687 2012-03-28 2013-03-26 Refrigeration device WO2013146731A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380015601.3A CN104185765B (en) 2012-03-28 2013-03-26 Refrigerating plant
EP13768582.2A EP2848876A4 (en) 2012-03-28 2013-03-26 Refrigeration device
US14/387,394 US20150075202A1 (en) 2012-03-28 2013-03-26 Refrigeration device
KR1020147029754A KR101617574B1 (en) 2012-03-28 2013-03-26 Refrigeration device
AU2013241498A AU2013241498B2 (en) 2012-03-28 2013-03-26 Refrigeration device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-074661 2012-03-28
JP2012074661A JP5617860B2 (en) 2012-03-28 2012-03-28 Refrigeration equipment

Publications (1)

Publication Number Publication Date
WO2013146731A1 true WO2013146731A1 (en) 2013-10-03

Family

ID=49259982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058687 WO2013146731A1 (en) 2012-03-28 2013-03-26 Refrigeration device

Country Status (7)

Country Link
US (1) US20150075202A1 (en)
EP (1) EP2848876A4 (en)
JP (1) JP5617860B2 (en)
KR (1) KR101617574B1 (en)
CN (1) CN104185765B (en)
AU (1) AU2013241498B2 (en)
WO (1) WO2013146731A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014084343A1 (en) * 2012-11-30 2014-06-05 サンデン株式会社 Vehicle air-conditioning device
JP5858022B2 (en) * 2013-10-24 2016-02-10 ダイキン工業株式会社 Air conditioner
JP2015128916A (en) * 2014-01-06 2015-07-16 株式会社デンソー Refrigeration cycle device
JPWO2015111175A1 (en) * 2014-01-23 2017-03-23 三菱電機株式会社 Heat pump equipment
EP3115714B1 (en) * 2014-03-07 2018-11-28 Mitsubishi Electric Corporation Air conditioning device
CN105066501B (en) * 2015-07-22 2017-05-03 广东美的暖通设备有限公司 Outdoor unit of multi-split air conditioner and multi-split air conditioner comprising same
EP3663678A4 (en) * 2017-08-03 2020-08-05 Mitsubishi Electric Corporation Refrigerant distributor, heat exchanger, and refrigeration cycle device
CN111720591A (en) * 2019-03-18 2020-09-29 罗伯特·博世有限公司 Distribution valve and refrigeration system
JP2023125350A (en) * 2022-02-28 2023-09-07 三菱重工サーマルシステムズ株式会社 Constant temperature transport system, vehicle and control method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618063A (en) * 1992-07-02 1994-01-25 Hitachi Ltd Air-conditioner
JPH06143991A (en) 1992-11-13 1994-05-24 Calsonic Corp Condenser of automobile air conditioner
JPH0791873A (en) * 1993-09-20 1995-04-07 Hitachi Ltd Fin and tube type heat exchanger
JP2001194015A (en) 1999-10-18 2001-07-17 Daikin Ind Ltd Freezing apparatus
JP2001263859A (en) * 2000-03-17 2001-09-26 Hitachi Ltd Air conditioner
JP2007085730A (en) * 2006-12-18 2007-04-05 Mitsubishi Electric Corp Air conditioner and method of operating air conditioner
JP2008089292A (en) * 2006-09-07 2008-04-17 Daikin Ind Ltd Air conditioner
JP2009299961A (en) * 2008-06-11 2009-12-24 Daikin Ind Ltd Refrigerating device, refrigerant recovering method and compressor replacement method
JP2010019534A (en) * 2008-07-14 2010-01-28 Daikin Ind Ltd Heat exchanger

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3334331B2 (en) * 1993-11-17 2002-10-15 ダイキン工業株式会社 Air conditioner
JPH08233378A (en) * 1994-11-29 1996-09-13 Sanyo Electric Co Ltd Air conditioner
JP2000009358A (en) * 1998-06-19 2000-01-14 Fujitsu General Ltd Refrigerant circuit for refrigerating cycle and control device
JP5309424B2 (en) * 2006-03-27 2013-10-09 ダイキン工業株式会社 Refrigeration equipment
JP4859694B2 (en) * 2007-02-02 2012-01-25 三菱重工業株式会社 Multistage compressor
JP5204189B2 (en) * 2010-03-01 2013-06-05 パナソニック株式会社 Refrigeration cycle equipment

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618063A (en) * 1992-07-02 1994-01-25 Hitachi Ltd Air-conditioner
JPH06143991A (en) 1992-11-13 1994-05-24 Calsonic Corp Condenser of automobile air conditioner
JPH0791873A (en) * 1993-09-20 1995-04-07 Hitachi Ltd Fin and tube type heat exchanger
JP2001194015A (en) 1999-10-18 2001-07-17 Daikin Ind Ltd Freezing apparatus
JP2001263859A (en) * 2000-03-17 2001-09-26 Hitachi Ltd Air conditioner
JP2008089292A (en) * 2006-09-07 2008-04-17 Daikin Ind Ltd Air conditioner
JP2007085730A (en) * 2006-12-18 2007-04-05 Mitsubishi Electric Corp Air conditioner and method of operating air conditioner
JP2009299961A (en) * 2008-06-11 2009-12-24 Daikin Ind Ltd Refrigerating device, refrigerant recovering method and compressor replacement method
JP2010019534A (en) * 2008-07-14 2010-01-28 Daikin Ind Ltd Heat exchanger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2848876A4

Also Published As

Publication number Publication date
KR101617574B1 (en) 2016-05-02
AU2013241498B2 (en) 2015-12-03
EP2848876A1 (en) 2015-03-18
CN104185765A (en) 2014-12-03
JP2013204922A (en) 2013-10-07
KR20140148438A (en) 2014-12-31
JP5617860B2 (en) 2014-11-05
AU2013241498A1 (en) 2014-11-13
US20150075202A1 (en) 2015-03-19
CN104185765B (en) 2016-04-20
EP2848876A4 (en) 2016-03-30

Similar Documents

Publication Publication Date Title
JP5617860B2 (en) Refrigeration equipment
JP5403095B2 (en) Refrigeration equipment
WO2012043377A1 (en) Refrigeration circuit
US9488399B2 (en) Air conditioning apparatus
JP5212537B1 (en) Refrigeration equipment
KR20140105586A (en) Air conditioner
JP6036356B2 (en) Refrigeration equipment
WO2018225252A1 (en) Heat exchanger and refrigeration cycle device
JP2015052439A (en) Heat exchanger
JP6036357B2 (en) Air conditioner
JP5783192B2 (en) Air conditioner
JP5895683B2 (en) Refrigeration equipment
JP5765278B2 (en) Outdoor multi-type air conditioner
JP2014129961A (en) Air conditioner
JP2022054728A (en) Separator and air conditioner
JP2022054729A (en) Oil separator and air conditioner
JP2016148483A (en) Freezer unit
JP2006132804A (en) Refrigerating cycle and heat exchanger

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380015601.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768582

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14387394

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014023687

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20147029754

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013768582

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013768582

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013241498

Country of ref document: AU

Date of ref document: 20130326

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112014023687

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140924