WO2018163346A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2018163346A1
WO2018163346A1 PCT/JP2017/009419 JP2017009419W WO2018163346A1 WO 2018163346 A1 WO2018163346 A1 WO 2018163346A1 JP 2017009419 W JP2017009419 W JP 2017009419W WO 2018163346 A1 WO2018163346 A1 WO 2018163346A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
compressor
air conditioner
flow rate
heat exchanger
Prior art date
Application number
PCT/JP2017/009419
Other languages
French (fr)
Japanese (ja)
Inventor
孝史 福井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/009419 priority Critical patent/WO2018163346A1/en
Priority to JP2019504217A priority patent/JP6779361B2/en
Publication of WO2018163346A1 publication Critical patent/WO2018163346A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present invention relates to an air conditioner having a refrigerant circuit for circulating a refrigerant.
  • a control means that can vary the time for which the compressor can be held at a constant frequency for a predetermined time according to the length of the installation pipe after the compressor is started, and lubrication discharged from the compressor.
  • an air conditioner that operates to increase the operating frequency of the compressor after the oil returns to the compressor through the refrigeration cycle (see, for example, Patent Document 3).
  • JP 2009-103449 A JP 2001-201191 A Japanese Unexamined Patent Publication No. 1-6653 JP-A-6-101925
  • Patent Document 4 it is possible to ensure oil repellency corresponding to differences in operation modes of cooling and heating, and changes in outside air temperature and indoor set temperature. There was a problem that the oil-repellent property corresponding to could not be secured.
  • the present invention has been made in order to solve the above-described problems, and does not require an additional element that causes an increase in cost such as an oil separator, and the length of the refrigerant pipe that connects the outdoor unit and the indoor unit.
  • an additional element that causes an increase in cost such as an oil separator, and the length of the refrigerant pipe that connects the outdoor unit and the indoor unit.
  • the installation conditions, operating conditions, and operating conditions of the air conditioning equipment such as the height of the unit installation location and the refrigerant charge amount, ensuring the oil-repellent property to maintain a certain amount of refrigeration oil in the compressor, and improving the reliability of the air conditioning equipment It aims at obtaining the air conditioning apparatus which implement
  • the air conditioner according to the present invention is At least one room having a compressor, a four-way valve, an outdoor heat exchanger, an outdoor air blower, an outdoor air blower, an opening degree variable pressure reducing device, an indoor heat exchanger, and an indoor air blower, each of which has a variable driving frequency.
  • Air conditioning operation of the air conditioner in the air conditioner in which the unit is connected by a refrigerant pipe and the refrigerant circuit for circulating the refrigerant to the compressor, four-way valve, outdoor heat exchanger, decompression device, and indoor heat exchanger is configured.
  • a control device that controls the operation state detecting means for detecting the operation state, and the flow rate of refrigerant circulating in the refrigerant circuit based on the operation state detected by the operation state detection means, and based on a preset threshold value
  • the refrigerant flow rate determining means for determining whether or not the operating condition has a high refrigerant flow rate, and the maximum operation of the compressor when the refrigerant flow rate determining means determines that the operating condition has a refrigerant flow rate greater than a predetermined amount
  • control means for controlling so as to lower the frequency, but with a.
  • the air conditioner of the present invention estimates the refrigerant flow rate circulating through the refrigerant circuit based on the operating condition detecting means for detecting the operating condition of the air conditioner and the operating condition detected by the operating condition detecting means.
  • the refrigerant flow rate determining means for determining whether or not there are many operating conditions, and when the refrigerant flow rate determining means determines that the refrigerant flow rate is higher than a predetermined amount, the compressor flow rate Control means to control the maximum operating frequency to be low, so no additional elements such as oil separators that increase costs are required, and a certain amount or more in the compressor regardless of operating conditions and operating conditions Since it is possible to ensure the oil-repellent property of maintaining the refrigerating machine oil, it is possible to realize a highly reliable air conditioner.
  • FIG. 3 is a Ph diagram illustrating a state transition of a refrigerant in the air-conditioning apparatus according to Embodiment 1 of the present invention. It is a flowchart which shows the control action of the air conditioning apparatus which concerns on Embodiment 1 of this invention. It is a flowchart which shows the control action of the air conditioning apparatus which concerns on Embodiment 2 of this invention. It is a flowchart which shows the control action of the air conditioning apparatus which concerns on Embodiment 3 of this invention.
  • FIG. 1 is a refrigerant circuit diagram schematically showing an air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • the air conditioner 100 is an apparatus used for indoor air conditioning by performing a vapor compression refrigeration cycle operation.
  • the air conditioner 100 includes a heat source unit A, a liquid connection pipe 6 and a gas connection pipe 9 serving as a refrigerant communication pipe. And a plurality of use units B (one in the present embodiment) connected in parallel.
  • refrigerant used in the air conditioner examples include HFC refrigerants such as R410A, R407C, R404A, and R32, HFO refrigerants such as R1234yf / ze, HCFC refrigerants such as R22 and R134a, carbon dioxide (CO 2 ), and carbonized carbon.
  • HFC refrigerants such as R410A, R407C, R404A, and R32
  • HFO refrigerants such as R1234yf / ze
  • HCFC refrigerants such as R22 and R134a
  • CO 2 carbonized carbon
  • natural refrigerants such as hydrogen, helium and propane.
  • the use unit B is installed in the indoor ceiling by embedding or hanging, or wall-mounted on the indoor wall surface, and is connected to the heat source unit A via the liquid connection pipe 6 and the gas connection pipe 9 as described above. It constitutes a part of the refrigerant circuit.
  • the usage unit B constitutes an indoor side refrigerant circuit that is a part of the refrigerant circuit, and includes an indoor air blower 8 and an indoor heat exchanger 7 that is a usage side heat exchanger.
  • the indoor heat exchanger 7 is composed of a cross fin type fin-and-tube heat exchanger composed of heat transfer tubes and a large number of fins, and functions as a refrigerant evaporator during cooling operation. In the heating operation, it functions as a refrigerant condenser and heats indoor air.
  • the indoor air blower 8 is a fan capable of changing the flow rate of air supplied to the indoor heat exchanger 7, and is composed of, for example, a centrifugal fan or a multiblade fan driven by a DC motor (not shown).
  • a centrifugal fan or a multiblade fan driven by a DC motor not shown.
  • various sensors are installed in the use unit B. That is, on the liquid side of the indoor heat exchanger 7, the temperature of the refrigerant in the liquid state or the gas-liquid two-phase state (the supercooled liquid temperature Tco during the heating operation or the refrigerant temperature corresponding to the evaporation temperature Te during the cooling operation).
  • a liquid side temperature sensor 205 for detection is provided.
  • the indoor heat exchanger 7 has a gas-side temperature sensor 207 that detects the temperature of the refrigerant in the gas-liquid two-phase state (condensation temperature Tc during heating operation or refrigerant temperature corresponding to the evaporation temperature Te during cooling operation). Is provided.
  • an indoor temperature sensor 206 for detecting the temperature of the indoor air flowing into the unit is provided on the indoor air inlet side of the utilization unit B.
  • all of the liquid side temperature sensor 205, the gas side temperature sensor 207, and the room temperature sensor 206 are composed of thermistors. Operation
  • movement of the indoor air blower 8 is controlled by the operation control means (control part 30).
  • the heat source unit A is installed outdoors and is connected to the utilization unit B through the liquid connection pipe 6 and the gas connection pipe 9 and constitutes a part of the refrigerant circuit.
  • the heat source unit A includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3 as a heat source side heat exchanger, an outdoor air blower 4, a decompressor 5a, a decompressor 5b, and a receiver 11. ing.
  • the decompression devices 5a and 5b are connected to the liquid side of the heat source unit A in order to adjust the flow rate of the refrigerant flowing in the refrigerant circuit.
  • the compressor 1 is a compressor capable of varying the operating capacity (frequency), and here, a positive displacement compressor driven by a motor (not shown) controlled by an inverter is used.
  • a positive displacement compressor driven by a motor (not shown) controlled by an inverter is used.
  • the compressor 1 is only one here, it is not limited to this, According to the number of use units etc., two or more compressors may be connected in parallel. .
  • the four-way valve 2 is a valve having a function of switching the direction of refrigerant flow.
  • compression is performed so that the outdoor heat exchanger 3 functions as a refrigerant condenser compressed in the compressor 1 and the indoor heat exchanger 7 functions as a refrigerant evaporator condensed in the outdoor heat exchanger 3.
  • the discharge side of the machine 1 and the gas side of the outdoor heat exchanger 3 are connected, and the refrigerant flow path is switched so as to connect the suction side of the compressor 1 and the gas connection pipe 9 side (four-way valve 2 in FIG. 1). Dashed line).
  • the indoor heat exchanger 7 functions as a refrigerant condenser compressed in the compressor 1 and the outdoor heat exchanger 3 functions as a refrigerant evaporator condensed in the indoor heat exchanger 7.
  • 1 is connected to the discharge side of the compressor 1 and the gas connection pipe 9 side, and the refrigerant flow path is switched to connect the suction side of the compressor 1 and the gas side of the outdoor heat exchanger 3 (four-way valve 2 in FIG. 1). Solid line).
  • the outdoor heat exchanger 3 is a cross-fin type fin-and-tube type composed of a heat transfer tube whose gas side is connected to the four-way valve 2 and whose liquid side is connected to the liquid connection pipe 6 and a large number of fins. It consists of a heat exchanger and functions as a refrigerant condenser during cooling operation and as a refrigerant evaporator during heating operation.
  • the outdoor blower 4 is a fan capable of changing the flow rate of air supplied to the outdoor heat exchanger 3, and is composed of, for example, a propeller fan driven by a DC motor (not shown). Accordingly, the outdoor air is sucked into the heat source unit A, and the air heat-exchanged with the refrigerant by the outdoor heat exchanger 3 is discharged to the outside.
  • the receiver 11 is a refrigerant container that stores liquid refrigerant.
  • the receiver 11 stores liquid refrigerant that has become excessive during operation and has a gas-liquid separation function.
  • the internal heat exchanger 12 is built in the receiver 11 and heats the refrigerant circulating in the gas connection pipe 9 that connects the four-way valve 2 and the suction portion of the compressor 1 and the liquid refrigerant stored in the receiver 11.
  • Refrigerant piping is connected and configured to be replaced.
  • various sensors are installed in the heat source unit A. That is, the compressor 1 is provided with a discharge temperature sensor 201 for detecting the discharge temperature Td, and the outdoor heat exchanger 3 has a gas-liquid two-phase refrigerant temperature (condensation temperature Tc during cooling operation or A gas side temperature sensor 202 for detecting a refrigerant temperature corresponding to the evaporation temperature Te during heating operation is provided. Further, on the liquid side of the outdoor heat exchanger 3, a liquid side temperature sensor 204 for detecting the temperature of the refrigerant in the liquid state or the gas-liquid two-phase state is provided.
  • An outdoor temperature sensor 203 for detecting the temperature of the outdoor air flowing into the unit, that is, the outdoor air temperature Ta, is provided on the outdoor air inlet side of the heat source unit A.
  • the discharge temperature sensor 201, the gas side temperature sensor 202, the outdoor temperature sensor 203, and the liquid side temperature sensor 204 are all composed of a thermistor.
  • operation of the compressor 1, the four-way valve 2, the outdoor air blower 4, and the pressure reduction apparatus 5a, 5b is controlled by the operation control means (control part 30).
  • the heat source unit A and the utilization unit B are connected via the liquid connection pipe 6 and the gas connection pipe 9 to constitute the refrigerant circuit of the air conditioner.
  • the liquid connection pipe 6 and the gas connection pipe 9 are constituted by long (for example, a total length of 100 m or more) refrigerant pipe.
  • the longer the refrigerant pipe length the greater the required amount of refrigerant and the greater the amount of oil discharged from the compressor. Therefore, the oil return until the discharged refrigeration oil returns to the compressor also deteriorates. For this reason, it has an effect that the reliability can be maintained under conditions exceeding the total length of 100 m currently permitted as installation conditions.
  • the refrigerant of the air conditioner according to the length in order to perform an appropriate refrigeration cycle operation in the refrigerant circuit It is necessary to increase the filling amount.
  • the refrigerant flow rate circulating in the refrigerant circuit is relatively increased according to the refrigerant charge amount.
  • the oil circulation rate of the refrigerating machine oil which is defined by the ratio of the mass flow rate of the refrigerating machine oil to the total mass flow rate of the refrigerant and the refrigerating machine oil, is increased.
  • the configuration in the case where there is one heat source unit A will be described as an example.
  • the present invention is not limited to this, and there may be a plurality of heat source units A that are two or more. good.
  • the respective capacities may vary from large to small, or all may have the same capacity.
  • the configuration in which the heat source unit A and the utilization unit B are installed at the same height (the height difference is 0 m) will be described as an example.
  • the present invention is not limited to this, and the heat source You may be comprised by the installation conditions (for example, 30 m or more of height differences) with a large height difference of the installation place height of the unit A and the utilization unit B.
  • the greater the difference in height of the unit installation location the more the refrigeration oil in the compressor mounted on the heat source unit A is discharged together with the refrigerant into the refrigerant circuit, and the effect of the head difference as hydrodynamic energy.
  • the refrigeration oil circulates through the refrigerant circuit and becomes difficult to return to the compressor, so that the oil return property is deteriorated.
  • the height difference of 30 m currently accepted as the installation height condition is used as a guide, and the reliability can be maintained even under conditions exceeding this.
  • FIG. 2 is a control block diagram according to Embodiment 1 of the present invention.
  • FIG. 2 shows a connection configuration of the control unit 30 that performs measurement control of the air-conditioning apparatus 100 of the first embodiment, operation information connected thereto, and actuators.
  • the control unit 30 is built in the air conditioner 100, and includes a measurement unit 30a, a calculation unit 30b, a drive unit 30c, a storage unit 30d, and a determination unit 30e.
  • Operation information detected by various sensors or the like is input to the measurement unit 30a, and operation state quantities such as pressure, temperature, and frequency are measured.
  • the operation state quantity measured by the measurement unit 30a is input to the calculation unit 30b.
  • the calculation unit 30b calculates, for example, a refrigerant physical property value (saturation pressure, saturation temperature, density, etc.) using a formula given in advance based on the operation state quantity measured by the measurement unit 30a. Moreover, the calculating part 30b performs a calculation process based on the driving
  • a refrigerant physical property value saturated pressure, saturation temperature, density, etc.
  • the driving unit 30c drives a compressor, a decompression device, a blower, and the like based on the calculation result of the calculation unit 30b.
  • the storage unit 30d is a function formula or function for calculating the results obtained by the calculation unit 30b, predetermined constants, specification values of the device and its constituent elements, and physical property values (saturation pressure, saturation temperature, density, etc.) of the refrigerant.
  • a table (table) or the like is stored. These stored contents in the storage unit 30d can be referred to and rewritten as necessary.
  • the storage unit 30d further stores a control program, and the control unit 30 controls the air conditioner 100 according to the program in the storage unit 30d.
  • the determination unit 30e performs processing such as large / small comparison and determination based on the result obtained by the calculation unit 30b.
  • the measurement unit 30a, the calculation unit 30b, the drive unit 30c, and the determination unit 30e are configured by, for example, a microcomputer, and the storage unit 30d is configured by a semiconductor memory or the like.
  • control unit 30 is built in the air conditioner, but the present invention is not limited to this.
  • the main control unit is provided in the heat source unit A, and the sub-control unit having a part of the function of the control unit is provided in the use unit B, and data communication is performed between the main control unit and the sub-control unit to perform the cooperation processing.
  • a configuration, a configuration in which a control unit having all functions is installed in the use unit B, or a configuration in which the control unit is separately provided outside these units may be employed.
  • the four-way valve 2 is in a state indicated by a broken line in FIG. 1, that is, the discharge side of the compressor 1 is connected to the gas side of the outdoor heat exchanger 3, and the suction side of the compressor 1 is the indoor heat exchanger 7. It is connected to the gas side.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 reaches the outdoor heat exchanger 3 that is a condenser via the four-way valve 2, and the refrigerant is condensed and liquefied by the blowing action of the outdoor air blower 4, and the high-pressure and low-temperature refrigerant. It becomes.
  • the condensed and liquefied high-temperature and low-pressure refrigerant is decompressed by the decompression device 5 a to become a medium-pressure two-phase refrigerant, further decompressed by the decompression device 5 b via the receiver 11, and supplied to the usage unit B via the liquid connection pipe 6. Sent to the indoor heat exchanger 7.
  • the decompressed two-phase refrigerant evaporates by the blowing action of the indoor blower 8 in the indoor heat exchanger 7 that is an evaporator, and becomes a low-pressure gas refrigerant.
  • the low-pressure gas refrigerant exchanges heat with the medium-pressure two-phase refrigerant between the decompression devices 5a and 5b in the internal heat exchanger 12 via the four-way valve 2, and then is sucked into the compressor 1 again.
  • the high-temperature medium-pressure two-phase refrigerant decompressed by the decompression device 5a is saturated with the low-temperature low-pressure refrigerant circulating between the four-way valve 2 and the compressor 1 suction side. Cooled to the refrigerant (change from point D to point E in FIG. 3). At the same time, the low-pressure refrigerant is heated to become a low-pressure superheated gas refrigerant and flows into the compressor 1 (change from point G to point A in FIG. 3).
  • the enthalpy of the refrigerant flowing into the indoor heat exchanger 7 is reduced, and the enthalpy difference at the entrance and exit of the indoor heat exchanger 7 is increased.
  • the refrigerant circulation amount necessary for obtaining the predetermined capacity is reduced, and the pressure loss is reduced, thereby improving the operation efficiency COP of the refrigeration cycle.
  • the low-pressure refrigerant flowing into the compressor 1 is in a superheated gas state, a liquid back state due to an excessive inflow of liquid refrigerant into the compressor 1 is avoided.
  • the decompression device 5a controls the flow rate of the refrigerant by adjusting the opening degree so that the refrigerant subcooling degree at the outlet of the outdoor heat exchanger 3 becomes a predetermined value, it is condensed in the outdoor heat exchanger 3.
  • the liquid refrigerant is in a state having a predetermined degree of supercooling.
  • the refrigerant subcooling degree at the outlet of the outdoor heat exchanger 3 is detected by a value obtained by subtracting the gas side temperature sensor 202 (equivalent to the refrigerant condensation temperature Tc) from the detection value of the liquid side temperature sensor 204.
  • the decompression device 5b controls the flow rate of the refrigerant circulating through the indoor heat exchanger 7 by adjusting the opening degree so that the discharge refrigerant temperature of the compressor 1 becomes a predetermined value
  • the pressure reduction apparatus 5b is discharged from the compressor 1.
  • the discharged gas refrigerant is in a predetermined temperature state.
  • the discharge refrigerant temperature of the compressor 1 is detected by the compressor discharge temperature sensor 201 or the compressor shell temperature sensor 208.
  • required in the air-conditioning space in which the utilization unit B was installed flows into the indoor heat exchanger 7.
  • the four-way valve 2 is in the state indicated by the solid line in FIG. 1, that is, the discharge side of the compressor 1 is connected to the gas side of the indoor heat exchanger 7 and the suction side of the compressor 1 is connected to the outdoor heat exchanger 3. It is connected to the gas side.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 is sent to the utilization unit B via the four-way valve 2 and the gas connection pipe 9, reaches the indoor heat exchanger 7 that is a condenser, and is blown by the indoor blower 8.
  • the refrigerant condenses and becomes a high-pressure and low-temperature refrigerant.
  • the condensed and liquefied high-temperature and low-pressure refrigerant is sent to the heat source unit A via the liquid connection pipe 6 and is depressurized by the decompression device 5b to become an intermediate-pressure two-phase refrigerant, passes through the receiver 11, and is decompressed by the decompression device 5a.
  • the pressure is further reduced and sent to the outdoor heat exchanger 3.
  • the decompressed two-phase refrigerant is evaporated by the blowing action of the outdoor blower 4 in the outdoor heat exchanger 3 that is an evaporator, and becomes a low-pressure gas refrigerant.
  • the low-pressure gas refrigerant exchanges heat with the medium-pressure two-phase refrigerant between the decompression devices 5a and 5b in the internal heat exchanger 12 via the four-way valve 2, and then is sucked into the compressor 1 again.
  • the high-temperature medium-pressure two-phase refrigerant decompressed by the decompression device 5b is cooled to the saturated liquid refrigerant by the low-temperature low-pressure refrigerant circulating between the four-way valve 2 and the compressor 1 suction side (see FIG. 3 point D ⁇ change of point E).
  • the low-pressure refrigerant is heated to become a low-pressure superheated gas refrigerant and flows into the compressor 1 (change from point G to point A in FIG. 3).
  • the enthalpy of the refrigerant flowing into the indoor heat exchanger 7 is reduced, and the enthalpy difference at the entrance and exit of the indoor heat exchanger 7 is increased. Thereby, the refrigerant circulation amount necessary for obtaining a predetermined capacity is reduced, and the COP of the refrigeration cycle is improved by reducing the pressure loss.
  • the low-pressure refrigerant flowing into the compressor 1 is in a superheated gas state, a liquid back state due to an excessive inflow of liquid refrigerant into the compressor 1 is avoided.
  • the decompression device 5b controls the flow rate of the refrigerant flowing through the indoor heat exchanger 7 by adjusting the opening degree so that the degree of refrigerant supercooling at the outlet of the indoor heat exchanger 7 becomes a predetermined value
  • the liquid refrigerant condensed in the heat exchanger 7 is in a state having a predetermined degree of supercooling.
  • the refrigerant subcooling degree at the outlet of the indoor heat exchanger 7 is detected by a value obtained by subtracting the gas side temperature sensor 207 (equivalent to the refrigerant condensation temperature Tc) from the detection value of the liquid side temperature sensor 205.
  • the decompression device 5a controls the flow rate of the refrigerant circulating in the outdoor heat exchanger 3 by adjusting the opening degree so that the discharge refrigerant temperature of the compressor 1 becomes a predetermined value, it is discharged from the compressor 1.
  • the discharged gas refrigerant is in a predetermined temperature state.
  • the discharge refrigerant temperature of the compressor 1 is detected by the compressor discharge temperature sensor 201 or the compressor shell temperature sensor 208.
  • required in the air-conditioning space in which the utilization unit B was installed flows into the indoor heat exchanger 7.
  • a pressure sensor is installed on the discharge side of the compressor 1 to detect the refrigerant discharge pressure, and the discharge pressure The detected value may be converted into the saturation temperature and used as the refrigerant condensing temperature.
  • FIG. 4 is a flowchart showing a flow of activation control of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • the drive unit 30c starts the compressor 1, and the measurement unit 30a starts time t measurement (STEP 11).
  • the control value of the maximum operating frequency Fmax of the compressor 1 is set to the initial value Fmax0.
  • the operating state of the air conditioner 100 is detected by the measuring unit 30a (STEP 12).
  • an operation state detection means for example, a temperature sensor that is installed in the heat source unit A or the utilization unit B of the air conditioner 100 and measures the refrigerant temperature and the air temperature, and a sensor that detects the operation frequency of the compressor 1 (not shown). Z). Based on these sensor detection values, it is detected as an operating state quantity.
  • the refrigerant flow rate Gr circulating through the refrigerant circuit of the air conditioner 100 is detected by calculating the refrigerant flow rate Gr by the calculation unit 30b based on the detected operating state quantity (STEP 13).
  • the refrigerant flow rate Gr is calculated using, for example, the following equation.
  • Vst is the compressor stroke volume [m 3 ]
  • F is the compressor operating frequency [Hz]
  • ⁇ s is the compressor suction refrigerant density [kg / m 3 ]
  • ⁇ v is the volumetric efficiency [ ⁇ ].
  • the compressor stroke volume Vst is a specification value of the compressor that is a component of the refrigerant circuit, is stored in advance in the storage unit 30d as device information, and is used as calculation information (constant) when calculating by the calculation unit 30b.
  • the compressor suction refrigerant density ⁇ s is a refrigerant physical property value, and is a value corresponding to the operation state based on the information on the refrigerant physical property value stored in advance in the storage unit 30d and the operation state amount detected by the measurement unit 30a. Is used as calculation information when the calculation unit 30b calculates.
  • the amount of operating state required at this time can be obtained from the intake refrigerant pressure Ps and the intake refrigerant temperature Ts of the compressor.
  • a method for detecting the suction refrigerant pressure Ps for example, first, the refrigerant evaporating temperature Te is detected, and the detected pressure value is obtained by converting to a saturated pressure.
  • the refrigerant evaporating temperature Te is a detection value of the gas side temperature sensor 207 provided in the indoor heat exchanger 7 (during cooling operation) or a detection value of the gas side temperature sensor 202 provided in the outdoor heat exchanger 3 (heating operation). Time).
  • the suction refrigerant temperature Ts is a low pressure Ps (equivalent to the suction pressure of the compressor) obtained by converting the evaporation temperature Te of the refrigerant into a saturation pressure, and a high pressure Pd (equivalent to the discharge pressure of the compressor) obtained by converting the condensation temperature Tc of the refrigerant into a saturation pressure.
  • the refrigerant discharge temperature Td, the compression step of the compressor 1 can be calculated from the following equation assuming that the polytropic index n is a polytropic change.
  • Ts and Td are temperature [K]
  • Ps and Pd are pressure [MPa]
  • n is a polytropic index [-].
  • the high pressure and low pressure of the refrigerant are calculated from the condensation temperature and the evaporation temperature of the refrigerant.
  • the pressure sensors are directly installed on the suction side and the discharge side of the compressor 1 to obtain the pressure. It may be.
  • a temperature sensor may be installed on the suction side of the compressor 1 to directly detect the suction refrigerant temperature Ts.
  • the volumetric efficiency ⁇ v is calculated when the calculation unit 30b calculates a value corresponding to the operation state based on the performance characteristics of the compressor previously stored in the storage unit 30d and the operation state quantity detected by the measurement unit 30a. Used as calculation information. Since the volumetric efficiency ⁇ v mainly changes depending on the compressor frequency F and the compression ratio (ratio of the high pressure Pd and the low pressure Ps), the volumetric efficiency value corresponding to these state quantities is stored in the storage unit 30d. .
  • the determination unit 30e it is determined whether or not the refrigerant flow rate Gr detected by the calculation unit 30b is equal to or greater than a predetermined determination threshold value (predetermined value Gr0) for the refrigerant flow rate Gr (STEP 14). If the detected refrigerant flow rate Gr is equal to or greater than the predetermined value Gr0, it is determined that the refrigerant flow rate is high (STEP 14; YES), and the control value of the maximum operating frequency Fmax of the compressor 1 is lower than the current value by the drive unit 30c. Change to Fmax1 (STEP 15). If the conditions are not satisfied, it is determined that the refrigerant flow rate is not high (STEP 14; NO), and the drive unit 30c continues the operation while maintaining the current maximum operating frequency Fmax of the compressor 1 (STEP 16).
  • predetermined value Gr0 a predetermined determination threshold value for the refrigerant flow rate Gr
  • the determination threshold value (predetermined value Gr0) of the refrigerant flow rate Gr and the maximum operating frequency Fmax are set to a level at which the refrigerating machine oil is not excessively discharged from the compressor 1 into the refrigerant circuit with respect to the refrigerant flow rate Gr. Set to.
  • the determination threshold Gr0 defined by the ratio of the mass flow rate of the refrigerating machine oil to the total mass flow rate of the refrigerant and the refrigerating machine oil so that the oil circulation rate of the refrigerating machine oil is 1.5% or less, and the maximum operating frequency Set Fmax.
  • the determination unit 30e determines whether or not the predetermined time t0 has elapsed after the start of the compressor 1 (STEP 17). If the predetermined time t0 has not elapsed (STEP 17; NO), the process returns to STEP 12 and is repeated. If the predetermined time t0 has elapsed (STEP 17; YES), the start-up control ends, the maximum operating frequency Fmax of the compressor 1 is changed to the control value Fmax2 during normal operation (STEP 18), and the control flow ends.
  • control value of the maximum operating frequency Fmax of the compressor 1 is set to satisfy Fmax2> Fmax0> Fmax1.
  • Embodiment 2 The structure of the air conditioning apparatus 200 according to Embodiment 2 of the present invention will be described. In the second embodiment, the description will focus on the differences from the first embodiment, and the description of similar parts will be omitted.
  • the refrigerant circuit, the configuration of the control unit, and the basic operation of the air conditioner 200 are the same as those in the first embodiment.
  • FIG. 5 is a flowchart showing a flow of control operation at start-up in the air-conditioning apparatus 200 according to Embodiment 2 of the present invention.
  • the operation mode (cooling operation / heating operation) of the air conditioner 200 is detected by the measurement unit 30a (STEP 21), and it is determined whether or not the operation mode is the cooling operation mode (STEP 22). If the operation mode is the cooling operation mode (STEP 22; YES), the drive unit 30c sets the maximum operation frequency Fmax of the compressor 1 to the control value Fmax_c during the cooling operation (STEP 23). If it is not the cooling operation mode, that is, if it is the heating operation mode (STEP 22; NO), the drive unit 30c sets the maximum operation frequency Fmax of the compressor 1 to the control value Fmax_h during the heating operation (STEP 24). Thereafter, the compressor 1 is activated by the drive unit 30c, and the time t measurement is started by the measurement unit 30a (STEP 25).
  • the refrigerant flow rate is higher in the cooling operation in which the operation is performed in the high outside air temperature condition than in the heating operation in which the operation is performed in the low outside air temperature condition.
  • the control value of the maximum operation frequency Fmax is set so that Fmax_c during cooling operation ⁇ Fmax_h during heating operation.
  • the determination unit 30e determines whether or not the predetermined time t0 has elapsed after the start of the compressor 1 (STEP 26). If the predetermined time t0 has not elapsed (STEP 26; NO), the process returns to STEP 26 and is repeated. If the predetermined time t0 has elapsed (STEP 26; YES), the start-up control is ended, the maximum operating frequency Fmax of the compressor 1 is changed to the control value Fmax2 for normal operation (STEP 27), and the control flow is ended.
  • control value of the maximum operating frequency Fmax of the compressor 1 is set to satisfy Fmax2> Fmax_h> Fmax_c.
  • Embodiment 3 The structure of the air conditioning apparatus 300 according to Embodiment 3 of the present invention will be described. In the second embodiment, the difference from the first and second embodiments will be mainly described, and the description of the same portions will be omitted.
  • the refrigerant circuit, the configuration of the control unit, and the basic operation of the air conditioning apparatus 300 are the same as those in the first and second embodiments.
  • FIG. 6 is a flowchart showing a flow of control operation at start-up in the air-conditioning apparatus 300 according to Embodiment 3 of the present invention.
  • STEP 31 to STEP 34 are the same operations as STEP 21 to STEP 24 shown in FIG. 5, and the control value of the maximum operating frequency Fmax of the compressor 1 at the initial start-up is set to Fmax_c during the cooling operation depending on whether the operation mode is the cooling operation or the heating operation. / Set to one of Fmax_h during heating operation.
  • the control value of the maximum operating frequency Fmax of the compressor 1 set here is set as the initial value Fmax0, and the compressor 1 is started by the drive unit 30c similarly to STEP 25, and the time t measurement is started by the measurement unit 30a. (STEP 35).
  • Subsequent STEP36 to STEP42 operate in the same manner as STEP12 to STEP18 shown in FIG.
  • an additional element that causes a cost increase such as an oil separator is not required, and a certain amount or more of refrigerating machine oil is supplied into the compressor regardless of operating conditions and operating conditions. Since it becomes possible to ensure the oil-repellency to maintain, a highly reliable air conditioner can be realized.
  • the air conditioner according to the present embodiment it is possible to suppress the discharge amount of the refrigeration oil that flows out of the compressor together with the refrigerant into the refrigerant circuit by the operation operation. Refrigeration cycle performance degradation associated with storage of water can be avoided, and high performance of the air conditioner can be realized.
  • the air conditioner installation conditions such as the length of the refrigerant pipe connecting the outdoor unit and the indoor unit, the height difference of the unit installation location, and the refrigerant charging amount are not included in the compressor. Since it is possible to ensure oil-repellency that maintains a certain amount or more of refrigerating machine oil, it is possible to achieve an increase in the upper limit of the allowable range of installation conditions (such as refrigerant pipe length and height difference of equipment installation location) in the use of air conditioning equipment.

Abstract

An air conditioner comprises: an operating state detection means that detects the operating state of the air conditioner; a refrigerant flow assessment means that estimates the refrigerant flow circulating through a refrigerant circuit on the basis of the operating state detected by the operating state detection means and assesses whether operation is proceeding at a high refrigerant flow; and a control means that, in the event of the refrigerant flow assessment means assessing that operation is proceeding at a refrigerant flow exceeding a predetermined amount, performs a control so as to reduce the maximum operating frequency of a compressor until a predetermined time period has passed after the compressor has started.

Description

空気調和装置Air conditioner
 本発明は、冷媒を循環させる冷媒回路を有する空気調和装置に関するものである。 The present invention relates to an air conditioner having a refrigerant circuit for circulating a refrigerant.
 従来から、冷媒を圧縮し冷凍機油により潤滑される圧縮機、凝縮器、絞り部機構および蒸発器を有し、圧縮機と凝縮器の間の圧縮機吐出部より上部に、冷凍機油と冷媒を分離・貯留する油分離器を設置し、油分離器底面から圧縮機吸入部へ開閉弁を介して油戻し配管を接続する構成とした冷凍サイクルが提案されている(例えば、特許文献1、2参照)。 Conventionally, a compressor, a condenser, a throttle unit mechanism and an evaporator that compress refrigerant and are lubricated by refrigeration oil have been provided, and refrigeration oil and refrigerant are placed above the compressor discharge part between the compressor and the condenser. There has been proposed a refrigeration cycle in which an oil separator to be separated and stored is installed and an oil return pipe is connected from the bottom of the oil separator to the compressor suction portion via an on-off valve (for example, Patent Documents 1 and 2). reference).
 また従来技術として、圧縮機が始動した後に据付配管の長さに応じて所定時間、圧縮機を一定の周波数に保持できる時間を可変できるようにした制御手段を備え、圧縮機から吐出された潤滑油が冷凍サイクル内を通って圧縮機に戻った後に、圧縮機の運転周波数を上げるように動作する空気調和機が提案されている(例えば、特許文献3参照)。 Also, as a prior art, there is provided a control means that can vary the time for which the compressor can be held at a constant frequency for a predetermined time according to the length of the installation pipe after the compressor is started, and lubrication discharged from the compressor. There has been proposed an air conditioner that operates to increase the operating frequency of the compressor after the oil returns to the compressor through the refrigeration cycle (see, for example, Patent Document 3).
 また従来技術として、冷房または暖房の運転モードを判断するとともに、室外温度と基準温度との比較により起動周波数の上昇速度を相違させて設定し、設定された起動周波数上昇速度に応じて圧縮機を起動させた後、その周波数を目標周波数に変更させ圧縮機を運転する空気調和機の圧縮機起動制御方法が提案されている(例えば、特許文献4参照)。 In addition, as a conventional technique, the operation mode of cooling or heating is judged, and the rising speed of the starting frequency is set differently by comparing the outdoor temperature with the reference temperature, and the compressor is set according to the set starting frequency rising speed. There has been proposed a compressor activation control method for an air conditioner in which a compressor is operated by changing its frequency to a target frequency after activation (see, for example, Patent Document 4).
特開2009-103449号公報JP 2009-103449 A 特開2001-201191号公報JP 2001-201191 A 特開平1-6653号公報Japanese Unexamined Patent Publication No. 1-6653 特開平6-101925号公報JP-A-6-101925
 しかしながら、特許文献1及び特許文献2の従来技術においては、圧縮機から冷媒とともに流出する冷凍機油を高精度に圧縮機へ戻すことが可能となるため返油性は向上するが、追加要素部品として冷媒回路内を循環する冷媒と冷凍機油を分離する油分離器を必要とするため、この装置を所定の冷媒回路内に設置するためのスペースが必要となり製品本体サイズの大型化となり、製品としてはコストアップになる問題があった。
 また、冷凍サイクル中の冷媒の流れの面からは冷媒の流れを抑制して抵抗となるため、性能ロスとなる問題もあった。
However, in the prior arts of Patent Document 1 and Patent Document 2, the refrigeration oil flowing out from the compressor together with the refrigerant can be returned to the compressor with high accuracy, so that the oil return is improved. Since an oil separator that separates the refrigerant circulating in the circuit and the refrigerating machine oil is required, a space for installing this device in the predetermined refrigerant circuit is required, resulting in an increase in the size of the product body, and the cost of the product There was a problem to be up.
In addition, from the aspect of the refrigerant flow in the refrigeration cycle, since the refrigerant flow is suppressed and resistance is generated, there is a problem of performance loss.
 また、特許文献3の従来技術においては、据付配管長さのような機器据付条件の違いに対応して圧縮機への冷凍機油の返油性を確保することができるが、冷凍サイクル動作状態の変化への対応ができないという問題があった。 Moreover, in the prior art of patent document 3, although the oil return property of the refrigerating machine oil to a compressor can be ensured corresponding to the difference in equipment installation conditions like installation pipe length, the change of a refrigerating cycle operation state There was a problem that could not cope with.
 また、特許文献4の従来技術においては、冷房・暖房の運転モードの違いや、外気温・室内設定温度の変化に対応した返油性の確保は可能となるが、冷凍サイクル動作状態の経時的変化に対応した返油性の確保ができないという問題があった。 Further, in the prior art of Patent Document 4, it is possible to ensure oil repellency corresponding to differences in operation modes of cooling and heating, and changes in outside air temperature and indoor set temperature. There was a problem that the oil-repellent property corresponding to could not be secured.
 本発明は、上記のような課題を解決するためになされたもので、油分離器などコストアップ要因となる追加要素を必要とせず、かつ、室外ユニットと室内ユニットとを接続する冷媒配管長さやユニット据付場所の高低差、冷媒充填量など空調機器の据付条件や運転条件、運転状態によらず、圧縮機内に一定量以上の冷凍機油を維持する返油性を確保し、空調機器の信頼性を担保するとともに、冷媒回路内要素に冷凍機油が貯留することに伴う冷凍サイクル性能低下を回避することにより高性能化を実現する空気調和装置を得ることを目的とする。 The present invention has been made in order to solve the above-described problems, and does not require an additional element that causes an increase in cost such as an oil separator, and the length of the refrigerant pipe that connects the outdoor unit and the indoor unit. Regardless of the installation conditions, operating conditions, and operating conditions of the air conditioning equipment such as the height of the unit installation location and the refrigerant charge amount, ensuring the oil-repellent property to maintain a certain amount of refrigeration oil in the compressor, and improving the reliability of the air conditioning equipment It aims at obtaining the air conditioning apparatus which implement | achieves performance improvement by avoiding the refrigerating cycle performance fall accompanying refrigerating machine oil storing in the element in a refrigerant circuit while ensuring.
 本発明に係る空気調和装置は、
運転周波数を可変に回転駆動する圧縮機、四方弁、室外熱交換器、室外送風装置、開度可変の減圧装置を有する室外ユニットと、室内熱交換器、室内送風装置をそれぞれ有する少なくとも1つの室内ユニットとが冷媒配管で配管接続され、圧縮機、四方弁、室外熱交換器、減圧装置、室内熱交換器に冷媒を循環させる冷媒回路が構成された空気調和装置において、空気調和装置の空調運転を制御する制御装置は、その運転状態を検出する運転状態検出手段と、運転状態検出手段により検出した運転状態に基づいて、冷媒回路を循環する冷媒流量を推定し、予め設定した閾値を基に冷媒流量が多い運転条件か否かを判定する冷媒流量判定手段と、冷媒流量判定手段により冷媒流量が所定量よりも多い運転条件と判定した場合に、圧縮機の最大運転周波数を低くなるように制御する制御手段と、を備えたものである。
The air conditioner according to the present invention is
At least one room having a compressor, a four-way valve, an outdoor heat exchanger, an outdoor air blower, an outdoor air blower, an opening degree variable pressure reducing device, an indoor heat exchanger, and an indoor air blower, each of which has a variable driving frequency. Air conditioning operation of the air conditioner in the air conditioner in which the unit is connected by a refrigerant pipe and the refrigerant circuit for circulating the refrigerant to the compressor, four-way valve, outdoor heat exchanger, decompression device, and indoor heat exchanger is configured. A control device that controls the operation state detecting means for detecting the operation state, and the flow rate of refrigerant circulating in the refrigerant circuit based on the operation state detected by the operation state detection means, and based on a preset threshold value The refrigerant flow rate determining means for determining whether or not the operating condition has a high refrigerant flow rate, and the maximum operation of the compressor when the refrigerant flow rate determining means determines that the operating condition has a refrigerant flow rate greater than a predetermined amount And control means for controlling so as to lower the frequency, but with a.
 本発明の空気調和装置は、空気調和装置の運転状態を検出する運転状態検出手段と、運転状態検出手段により検出した運転状態に基づいて、冷媒回路を循環する冷媒流量を推定し、冷媒流量が多い運転条件か否かを判定する冷媒流量判定手段と、冷媒流量判定手段により冷媒流量が所定量よりも多い運転条件と判定した場合に、圧縮機の起動から所定時間経過するまでの圧縮機の最大運転周波数を低くなるように制御する制御手段とを備えたので、油分離器などコストアップ要因となる追加要素を必要とせず、かつ、運転条件や運転状態によらず圧縮機内に一定量以上の冷凍機油を維持する返油性を確保することが可能となるため、信頼性の高い空気調和装置を実現できるという効果を奏する。 The air conditioner of the present invention estimates the refrigerant flow rate circulating through the refrigerant circuit based on the operating condition detecting means for detecting the operating condition of the air conditioner and the operating condition detected by the operating condition detecting means. The refrigerant flow rate determining means for determining whether or not there are many operating conditions, and when the refrigerant flow rate determining means determines that the refrigerant flow rate is higher than a predetermined amount, the compressor flow rate Control means to control the maximum operating frequency to be low, so no additional elements such as oil separators that increase costs are required, and a certain amount or more in the compressor regardless of operating conditions and operating conditions Since it is possible to ensure the oil-repellent property of maintaining the refrigerating machine oil, it is possible to realize a highly reliable air conditioner.
本発明の実施の形態1に係る空気調和装置の冷媒回路構成図である。It is a refrigerant circuit block diagram of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置の制御装置の電気的な構成を示すブロック図である。It is a block diagram which shows the electrical structure of the control apparatus of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置の冷媒の状態遷移を示すP-h線図である。FIG. 3 is a Ph diagram illustrating a state transition of a refrigerant in the air-conditioning apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る空気調和装置の制御動作を示すフローチャートである。It is a flowchart which shows the control action of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る空気調和装置の制御動作を示すフローチャートである。It is a flowchart which shows the control action of the air conditioning apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る空気調和装置の制御動作を示すフローチャートである。It is a flowchart which shows the control action of the air conditioning apparatus which concerns on Embodiment 3 of this invention.
実施の形態1.
《機器構成》
 以下、図示実施形態により本発明を説明する。
 図1は、本発明の実施の形態1に係る空気調和装置100を概略的に示す冷媒回路図である。
 空気調和装置100は、蒸気圧縮式の冷凍サイクル運転を行うことによって、屋内の冷暖房に使用される装置であり、熱源ユニットAと、それに冷媒連絡配管となる液接続配管6及びガス接続配管9を介して並列に接続された複数台(本実施の形態では1台)の利用ユニットBとから構成されている。
Embodiment 1 FIG.
"Equipment configuration"
The present invention will be described below with reference to illustrated embodiments.
FIG. 1 is a refrigerant circuit diagram schematically showing an air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
The air conditioner 100 is an apparatus used for indoor air conditioning by performing a vapor compression refrigeration cycle operation. The air conditioner 100 includes a heat source unit A, a liquid connection pipe 6 and a gas connection pipe 9 serving as a refrigerant communication pipe. And a plurality of use units B (one in the present embodiment) connected in parallel.
 空気調和装置に用いられる冷媒としては、例えば、R410A、R407C、R404A、R32などのHFC冷媒や、R1234yf/zeなどのHFO冷媒、R22、R134aなどのHCFC冷媒、もしくは二酸化炭素(CO)や炭化水素、ヘリウム、プロパン等のような自然冷媒などがある。 Examples of the refrigerant used in the air conditioner include HFC refrigerants such as R410A, R407C, R404A, and R32, HFO refrigerants such as R1234yf / ze, HCFC refrigerants such as R22 and R134a, carbon dioxide (CO 2 ), and carbonized carbon. There are natural refrigerants such as hydrogen, helium and propane.
<利用ユニット>
 利用ユニットBは屋内の天井に埋め込みや吊り下げ等により、または屋内の壁面に壁掛け等により設置され、既述したように液接続配管6及びガス接続配管9を介して熱源ユニットAに接続されて冷媒回路の一部を構成している。
<Usage unit>
The use unit B is installed in the indoor ceiling by embedding or hanging, or wall-mounted on the indoor wall surface, and is connected to the heat source unit A via the liquid connection pipe 6 and the gas connection pipe 9 as described above. It constitutes a part of the refrigerant circuit.
 次に、利用ユニットBの詳細な構成について説明する。利用ユニットBは冷媒回路の一部である室内側冷媒回路を構成しており、室内送風装置8と、利用側熱交換器である室内熱交換器7とを備えている。 Next, the detailed configuration of the usage unit B will be described. The usage unit B constitutes an indoor side refrigerant circuit that is a part of the refrigerant circuit, and includes an indoor air blower 8 and an indoor heat exchanger 7 that is a usage side heat exchanger.
 室内熱交換器7は、ここでは伝熱管と多数のフィンとにより構成されるクロスフィン式のフィン・アンド・チューブ型熱交換器からなり、冷房運転時には冷媒の蒸発器として機能して室内の空気を冷却し、暖房運転時には冷媒の凝縮器として機能して室内の空気を加熱する。 Here, the indoor heat exchanger 7 is composed of a cross fin type fin-and-tube heat exchanger composed of heat transfer tubes and a large number of fins, and functions as a refrigerant evaporator during cooling operation. In the heating operation, it functions as a refrigerant condenser and heats indoor air.
 室内送風装置8は、室内熱交換器7に供給する空気の流量を可変することが可能なファンであり、例えば、DCモータ(図示せず)によって駆動される遠心ファンや多翼ファン等から構成されており、これによって利用ユニットB内に室内空気を吸入し、室内熱交換器7により冷媒との間で熱交換した空気を供給空気として室内に供給する機能を有する。 The indoor air blower 8 is a fan capable of changing the flow rate of air supplied to the indoor heat exchanger 7, and is composed of, for example, a centrifugal fan or a multiblade fan driven by a DC motor (not shown). Thus, indoor air is sucked into the use unit B, and the air heat exchanged with the refrigerant by the indoor heat exchanger 7 is supplied to the room as supply air.
 また、利用ユニットBには、各種センサが設置されている。すなわち、室内熱交換器7の液側には、液状態または気液二相状態の冷媒の温度(暖房運転時における過冷却液温度Tcoまたは冷房運転時における蒸発温度Teに対応する冷媒温度)を検出する液側温度センサ205が設けられている。また、室内熱交換器7には、気液二相状態の冷媒の温度(暖房運転時における凝縮温度Tcまたは冷房運転時における蒸発温度Teに対応する冷媒温度)を検出するガス側温度センサ207が設けられている。さらに利用ユニットBの室内空気の吸入口側には、ユニット内に流入する室内空気の温度を検出する室内温度センサ206が設けられている。なお、ここでは液側温度センサ205、ガス側温度センサ207、及び室内温度センサ206はいずれもサーミスタから構成されている。室内送風装置8の動作は、運転制御手段(制御部30)によって制御されるようになっている。 In addition, various sensors are installed in the use unit B. That is, on the liquid side of the indoor heat exchanger 7, the temperature of the refrigerant in the liquid state or the gas-liquid two-phase state (the supercooled liquid temperature Tco during the heating operation or the refrigerant temperature corresponding to the evaporation temperature Te during the cooling operation). A liquid side temperature sensor 205 for detection is provided. The indoor heat exchanger 7 has a gas-side temperature sensor 207 that detects the temperature of the refrigerant in the gas-liquid two-phase state (condensation temperature Tc during heating operation or refrigerant temperature corresponding to the evaporation temperature Te during cooling operation). Is provided. Further, an indoor temperature sensor 206 for detecting the temperature of the indoor air flowing into the unit is provided on the indoor air inlet side of the utilization unit B. Here, all of the liquid side temperature sensor 205, the gas side temperature sensor 207, and the room temperature sensor 206 are composed of thermistors. Operation | movement of the indoor air blower 8 is controlled by the operation control means (control part 30).
<熱源ユニット>
 熱源ユニットAは、屋外に設置されており、液接続配管6及びガス接続配管9を介して利用ユニットBに接続されており、冷媒回路の一部を構成している。
<Heat source unit>
The heat source unit A is installed outdoors and is connected to the utilization unit B through the liquid connection pipe 6 and the gas connection pipe 9 and constitutes a part of the refrigerant circuit.
 次に、熱源ユニットAの詳細な構成について説明する。熱源ユニットAは、圧縮機1と、四方弁2と、熱源側熱交換器としての室外熱交換器3と、室外送風装置4と、減圧装置5a、減圧装置5bと、レシーバ11と、を備えている。 Next, the detailed configuration of the heat source unit A will be described. The heat source unit A includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3 as a heat source side heat exchanger, an outdoor air blower 4, a decompressor 5a, a decompressor 5b, and a receiver 11. ing.
 減圧装置5a及び5bは、冷媒回路内を流れる冷媒の流量調整等を行うために、熱源ユニットAの液側に接続配置されている。 The decompression devices 5a and 5b are connected to the liquid side of the heat source unit A in order to adjust the flow rate of the refrigerant flowing in the refrigerant circuit.
 圧縮機1は、運転容量(周波数)を可変させることが可能な圧縮機であり、ここではインバータにより制御されるモータ(図示せず)によって駆動される容積式圧縮機を用いている。なお、圧縮機1は、ここでは1台のみであるが、これに限定されず、利用ユニットの接続台数等に応じて、2台以上の圧縮機が並列に接続されたものであってもよい。 The compressor 1 is a compressor capable of varying the operating capacity (frequency), and here, a positive displacement compressor driven by a motor (not shown) controlled by an inverter is used. In addition, although the compressor 1 is only one here, it is not limited to this, According to the number of use units etc., two or more compressors may be connected in parallel. .
 四方弁2は、冷媒の流れの方向を切り換える機能を有する弁である。冷房運転時には、室外熱交換器3を圧縮機1において圧縮される冷媒の凝縮器として、かつ室内熱交換器7を室外熱交換器3において凝縮される冷媒の蒸発器として機能させるために、圧縮機1の吐出側と室外熱交換器3のガス側とを接続するとともに、圧縮機1の吸入側とガス接続配管9側とを接続するように冷媒流路を切り換える(図1の四方弁2の破線)。暖房運転時には、室内熱交換器7を圧縮機1において圧縮される冷媒の凝縮器として、かつ室外熱交換器3を室内熱交換器7において凝縮される冷媒の蒸発器として機能させるために、圧縮器1の吐出側とガス接続配管9側とを接続するとともに、圧縮機1の吸入側と室外熱交換器3のガス側とを接続するように冷媒流路を切り換える(図1の四方弁2の実線)。 The four-way valve 2 is a valve having a function of switching the direction of refrigerant flow. During the cooling operation, compression is performed so that the outdoor heat exchanger 3 functions as a refrigerant condenser compressed in the compressor 1 and the indoor heat exchanger 7 functions as a refrigerant evaporator condensed in the outdoor heat exchanger 3. The discharge side of the machine 1 and the gas side of the outdoor heat exchanger 3 are connected, and the refrigerant flow path is switched so as to connect the suction side of the compressor 1 and the gas connection pipe 9 side (four-way valve 2 in FIG. 1). Dashed line). During the heating operation, compression is performed so that the indoor heat exchanger 7 functions as a refrigerant condenser compressed in the compressor 1 and the outdoor heat exchanger 3 functions as a refrigerant evaporator condensed in the indoor heat exchanger 7. 1 is connected to the discharge side of the compressor 1 and the gas connection pipe 9 side, and the refrigerant flow path is switched to connect the suction side of the compressor 1 and the gas side of the outdoor heat exchanger 3 (four-way valve 2 in FIG. 1). Solid line).
 室外熱交換器3は、そのガス側が四方弁2に接続され、その液側が液接続配管6に接続された伝熱管と多数のフィンとにより構成されるクロスフィン式のフィン・アンド・チューブ型の熱交換器からなり、冷房運転時には冷媒の凝縮器として機能し、暖房運転時には冷媒の蒸発器として機能する。 The outdoor heat exchanger 3 is a cross-fin type fin-and-tube type composed of a heat transfer tube whose gas side is connected to the four-way valve 2 and whose liquid side is connected to the liquid connection pipe 6 and a large number of fins. It consists of a heat exchanger and functions as a refrigerant condenser during cooling operation and as a refrigerant evaporator during heating operation.
 室外送風装置4は、室外熱交換器3に供給する空気の流量を可変することが可能なファンであり、例えば、DCモータ(図示せず)によって駆動されるプロペラファンから構成されており、これによって熱源ユニットA内に室外空気を吸入し、室外熱交換器3により冷媒との間で熱交換した空気を室外に排出する機能を有する。 The outdoor blower 4 is a fan capable of changing the flow rate of air supplied to the outdoor heat exchanger 3, and is composed of, for example, a propeller fan driven by a DC motor (not shown). Accordingly, the outdoor air is sucked into the heat source unit A, and the air heat-exchanged with the refrigerant by the outdoor heat exchanger 3 is discharged to the outside.
 レシーバ11は液冷媒を貯留する冷媒容器であり、運転中に余剰となった液冷媒を貯留するとともに気液分離機能を合わせて有している。内部熱交換器12はレシーバ11内部に内蔵され、四方弁2と圧縮機1の吸入部とを接続するガス接続配管9を循環する冷媒と、レシーバ11内に貯留されている液冷媒とを熱交換するように冷媒配管が接続されて構成される。 The receiver 11 is a refrigerant container that stores liquid refrigerant. The receiver 11 stores liquid refrigerant that has become excessive during operation and has a gas-liquid separation function. The internal heat exchanger 12 is built in the receiver 11 and heats the refrigerant circulating in the gas connection pipe 9 that connects the four-way valve 2 and the suction portion of the compressor 1 and the liquid refrigerant stored in the receiver 11. Refrigerant piping is connected and configured to be replaced.
 また、熱源ユニットAには、各種センサが設置されている。すなわち、圧縮機1には、吐出温度Tdを検出する吐出温度センサ201が設けられているとともに、室外熱交換器3には気液二相状態の冷媒の温度(冷房運転時における凝縮温度Tcまたは暖房運転時における蒸発温度Teに対応する冷媒温度)を検出するガス側温度センサ202が設けられている。さらに室外熱交換器3の液側には、液状態または気液二相状態の冷媒の温度を検出する液側温度センサ204が設けられている。また熱源ユニットAの室外空気の吸入口側には、ユニット内に流入する室外空気の温度すなわち外気温度Taを検出する室外温度センサ203が設けられている。なお、ここでは吐出温度センサ201、ガス側温度センサ202、及び室外温度センサ203、液側温度センサ204はいずれもサーミスタから構成されている。なお、圧縮機1、四方弁2、室外送風装置4、減圧装置5a、5bの動作は、運転制御手段(制御部30)によって制御されるようになっている。 In addition, various sensors are installed in the heat source unit A. That is, the compressor 1 is provided with a discharge temperature sensor 201 for detecting the discharge temperature Td, and the outdoor heat exchanger 3 has a gas-liquid two-phase refrigerant temperature (condensation temperature Tc during cooling operation or A gas side temperature sensor 202 for detecting a refrigerant temperature corresponding to the evaporation temperature Te during heating operation is provided. Further, on the liquid side of the outdoor heat exchanger 3, a liquid side temperature sensor 204 for detecting the temperature of the refrigerant in the liquid state or the gas-liquid two-phase state is provided. An outdoor temperature sensor 203 for detecting the temperature of the outdoor air flowing into the unit, that is, the outdoor air temperature Ta, is provided on the outdoor air inlet side of the heat source unit A. Here, the discharge temperature sensor 201, the gas side temperature sensor 202, the outdoor temperature sensor 203, and the liquid side temperature sensor 204 are all composed of a thermistor. In addition, operation | movement of the compressor 1, the four-way valve 2, the outdoor air blower 4, and the pressure reduction apparatus 5a, 5b is controlled by the operation control means (control part 30).
 以上のように、熱源ユニットAと利用ユニットBとが液接続配管6とガス接続配管9を介して接続されて、空気調和装置の冷媒回路が構成されている。本実施の形態では、液接続配管6とガス接続配管9は長尺(例えば全長100m以上)の冷媒配管で構成される。この冷媒配管長が長くなるほど必要な冷媒量も増えるにつれて、圧縮機からの油排出量も増大するため、排出された冷凍機油が圧縮機に戻ってくるまでの返油性も悪化します。そのため、据え付け条件として現在許容されている全長100mを目安として、それを超える条件にも信頼性を維持できる効果を有するものである。 As described above, the heat source unit A and the utilization unit B are connected via the liquid connection pipe 6 and the gas connection pipe 9 to constitute the refrigerant circuit of the air conditioner. In the present embodiment, the liquid connection pipe 6 and the gas connection pipe 9 are constituted by long (for example, a total length of 100 m or more) refrigerant pipe. The longer the refrigerant pipe length, the greater the required amount of refrigerant and the greater the amount of oil discharged from the compressor. Therefore, the oil return until the discharged refrigeration oil returns to the compressor also deteriorates. For this reason, it has an effect that the reliability can be maintained under conditions exceeding the total length of 100 m currently permitted as installation conditions.
 ここで、熱源ユニットAと利用ユニットBとを接続する冷媒配管の長さが長くなる場合には、冷媒回路において適正な冷凍サイクル動作をさせるために、その長さに応じて空気調和装置の冷媒充填量を増加させる必要がある。冷媒充填量に応じて冷媒回路を循環する冷媒流量は相対的に増加する。 Here, when the length of the refrigerant pipe connecting the heat source unit A and the utilization unit B becomes long, the refrigerant of the air conditioner according to the length in order to perform an appropriate refrigeration cycle operation in the refrigerant circuit It is necessary to increase the filling amount. The refrigerant flow rate circulating in the refrigerant circuit is relatively increased according to the refrigerant charge amount.
 一般的な圧縮機の特性として、冷媒流量増大により圧縮機内潤滑のために充填されている冷凍機油が冷媒回路内へ冷媒とともに排出されやすくなる。つまり、冷媒と冷凍機油を合わせた全質量流量に対する冷凍機油の質量流量の比で定義される、冷凍機油の油循環率が増大する。 As a general compressor characteristic, refrigeration oil filled for lubrication in the compressor is easily discharged into the refrigerant circuit together with the refrigerant due to an increase in the refrigerant flow rate. That is, the oil circulation rate of the refrigerating machine oil, which is defined by the ratio of the mass flow rate of the refrigerating machine oil to the total mass flow rate of the refrigerant and the refrigerating machine oil, is increased.
 なお、本実施の形態では、熱源ユニットAが1台の場合の構成を例に説明するが、本発明はこれに限定されるものではなく、熱源ユニットAが2台以上の複数であっても良い。また、熱源ユニットAと利用ユニットBのいずれも複数のユニットの場合にそれぞれの容量が大から小まで異なっても、全てが同一容量でも良い。 In the present embodiment, the configuration in the case where there is one heat source unit A will be described as an example. However, the present invention is not limited to this, and there may be a plurality of heat source units A that are two or more. good. Further, in the case where both the heat source unit A and the utilization unit B are a plurality of units, the respective capacities may vary from large to small, or all may have the same capacity.
 また、本実施の形態では熱源ユニットAと利用ユニットBの据付場所の高さが同じ(高低差0m)場合の構成を例に説明するが、本発明はこれに限定されるものではなく、熱源ユニットAと利用ユニットBの据付場所高さの高低差が大きい設置条件(例えば高低差30m以上)で構成されても良い。 In the present embodiment, the configuration in which the heat source unit A and the utilization unit B are installed at the same height (the height difference is 0 m) will be described as an example. However, the present invention is not limited to this, and the heat source You may be comprised by the installation conditions (for example, 30 m or more of height differences) with a large height difference of the installation place height of the unit A and the utilization unit B. FIG.
 一般的に、ユニット据付場所の高低差が大きくなるほど、熱源ユニットAに搭載される圧縮機内の冷凍機油が冷媒回路内へ冷媒とともに大量に排出されると、流体力学的エネルギーとしてのヘッド差の影響を受けて、冷凍機油が冷媒回路を循環して圧縮機へ戻りにくくなるため返油性が悪化する。そのため、据え付け高さ条件として現在許容されている高低差30mを目安として、それを超える条件にも信頼性を維持できる効果を有するものである。 In general, the greater the difference in height of the unit installation location, the more the refrigeration oil in the compressor mounted on the heat source unit A is discharged together with the refrigerant into the refrigerant circuit, and the effect of the head difference as hydrodynamic energy. In response to this, the refrigeration oil circulates through the refrigerant circuit and becomes difficult to return to the compressor, so that the oil return property is deteriorated. For this reason, the height difference of 30 m currently accepted as the installation height condition is used as a guide, and the reliability can be maintained even under conditions exceeding this.
 図2は本発明の実施の形態1に係る制御ブロック図である。
 図2には、本実施の形態1の空気調和装置100の計測制御を行う制御部30及びこれに接続される運転情報、アクチュエータ類の接続構成を表している。
FIG. 2 is a control block diagram according to Embodiment 1 of the present invention.
FIG. 2 shows a connection configuration of the control unit 30 that performs measurement control of the air-conditioning apparatus 100 of the first embodiment, operation information connected thereto, and actuators.
 制御部30は、空気調和装置100に内蔵されており、測定部30aと、演算部30bと、駆動部30cと、記憶部30dと、判定部30eとを備えている。 The control unit 30 is built in the air conditioner 100, and includes a measurement unit 30a, a calculation unit 30b, a drive unit 30c, a storage unit 30d, and a determination unit 30e.
 測定部30aには、各種センサ類等により検出された運転情報が入力され、圧力や温度、周波数等の運転状態量の測定を行う。測定部30aで計測された運転状態量は演算部30bに入力される。 Operation information detected by various sensors or the like is input to the measurement unit 30a, and operation state quantities such as pressure, temperature, and frequency are measured. The operation state quantity measured by the measurement unit 30a is input to the calculation unit 30b.
 演算部30bは、測定部30aで測定された運転状態量に基づき、予め与えられた式等を用いて例えば冷媒物性値(飽和圧力、飽和温度、密度など)を演算する。また、演算部30bは測定部30aで測定された運転状態量に基づき、演算処理を行う。 The calculation unit 30b calculates, for example, a refrigerant physical property value (saturation pressure, saturation temperature, density, etc.) using a formula given in advance based on the operation state quantity measured by the measurement unit 30a. Moreover, the calculating part 30b performs a calculation process based on the driving | running state amount measured by the measurement part 30a.
 駆動部30cは、演算部30bの演算結果に基づき、圧縮機、減圧装置、送風装置、等を駆動する。 The driving unit 30c drives a compressor, a decompression device, a blower, and the like based on the calculation result of the calculation unit 30b.
 記憶部30dは、演算部30bによって得られた結果や予め定められた定数、機器及びその構成要素の仕様値、冷媒の物性値(飽和圧力、飽和温度、密度等)を計算する関数式や関数表(テーブル)などを記憶する。記憶部30d内のこれらの記憶内容は、必要に応じて参照、書き換えることが可能である。記憶部30dには、更に制御プログラムが記憶されており、記憶部30d内のプログラムに従って制御部30が空気調和装置100を制御する。 The storage unit 30d is a function formula or function for calculating the results obtained by the calculation unit 30b, predetermined constants, specification values of the device and its constituent elements, and physical property values (saturation pressure, saturation temperature, density, etc.) of the refrigerant. A table (table) or the like is stored. These stored contents in the storage unit 30d can be referred to and rewritten as necessary. The storage unit 30d further stores a control program, and the control unit 30 controls the air conditioner 100 according to the program in the storage unit 30d.
 判定部30eは、演算部30bによって得られた結果に基づいて大小の比較、判定等の処理を行う。 The determination unit 30e performs processing such as large / small comparison and determination based on the result obtained by the calculation unit 30b.
 測定部30a、演算部30b、駆動部30c及び判定部30eは例えばマイコンにより構成され、記憶部30dは半導体メモリ等によって構成される。 The measurement unit 30a, the calculation unit 30b, the drive unit 30c, and the determination unit 30e are configured by, for example, a microcomputer, and the storage unit 30d is configured by a semiconductor memory or the like.
 なお、本実施の形態の構成例では制御部30を空気調和装置に内蔵する構成としたが、本発明はこれに限るものではない。熱源ユニットAにメイン制御部を、利用ユニットBに制御部の機能の一部を持つサブ制御部を設けて、メイン制御部とサブ制御部との間でデータ通信を行うことにより連携処理を行う構成や、利用ユニットBに全ての機能を持つ制御部を設置する構成、あるいはこれらの外部に制御部を別置する形態等としてもよい。 In the configuration example of the present embodiment, the control unit 30 is built in the air conditioner, but the present invention is not limited to this. The main control unit is provided in the heat source unit A, and the sub-control unit having a part of the function of the control unit is provided in the use unit B, and data communication is performed between the main control unit and the sub-control unit to perform the cooperation processing. A configuration, a configuration in which a control unit having all functions is installed in the use unit B, or a configuration in which the control unit is separately provided outside these units may be employed.
《空気調和装置の基本運転動作》
 続いて、本実施の形態1の空気調和装置100の各運転モードにおける動作を説明する。まず、冷房運転の動作について図1及び図3を用いて説明する。
<Basic operation of air conditioner>
Subsequently, operations in each operation mode of the air-conditioning apparatus 100 according to Embodiment 1 will be described. First, the cooling operation will be described with reference to FIGS. 1 and 3.
 冷房運転時は四方弁2が図1の破線で示される状態、すなわち、圧縮機1の吐出側が室外熱交換器3のガス側に接続され、かつ圧縮機1の吸入側が室内熱交換器7のガス側に接続された状態となっている。 During the cooling operation, the four-way valve 2 is in a state indicated by a broken line in FIG. 1, that is, the discharge side of the compressor 1 is connected to the gas side of the outdoor heat exchanger 3, and the suction side of the compressor 1 is the indoor heat exchanger 7. It is connected to the gas side.
 圧縮機1から吐出した高温高圧のガス冷媒は、四方弁2を経由して凝縮器である室外熱交換器3へ至り、室外送風装置4の送風作用により冷媒は凝縮液化し、高圧低温の冷媒となる。凝縮液化した高温低圧の冷媒は減圧装置5aで減圧されて中圧二相冷媒となって、レシーバ11を経由し、減圧装置5bでさらに減圧され、液接続配管6を経由して利用ユニットBに送られ、室内熱交換器7へ送られる。減圧された二相冷媒は蒸発器である室内熱交換器7にて室内送風装置8の送風作用により蒸発し、低圧のガス冷媒となる。そして、低圧ガス冷媒は四方弁2を経由して、内部熱交換器12にて減圧装置5a、5bとの間の中圧二相冷媒と熱交換した後に、再び圧縮機1へ吸入される。 The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 reaches the outdoor heat exchanger 3 that is a condenser via the four-way valve 2, and the refrigerant is condensed and liquefied by the blowing action of the outdoor air blower 4, and the high-pressure and low-temperature refrigerant. It becomes. The condensed and liquefied high-temperature and low-pressure refrigerant is decompressed by the decompression device 5 a to become a medium-pressure two-phase refrigerant, further decompressed by the decompression device 5 b via the receiver 11, and supplied to the usage unit B via the liquid connection pipe 6. Sent to the indoor heat exchanger 7. The decompressed two-phase refrigerant evaporates by the blowing action of the indoor blower 8 in the indoor heat exchanger 7 that is an evaporator, and becomes a low-pressure gas refrigerant. The low-pressure gas refrigerant exchanges heat with the medium-pressure two-phase refrigerant between the decompression devices 5a and 5b in the internal heat exchanger 12 via the four-way valve 2, and then is sucked into the compressor 1 again.
 レシーバ11に内設された内部熱交換器12では減圧装置5aで減圧された高温の中圧二相冷媒が、四方弁2と圧縮機1吸入側の間を循環する低温の低圧冷媒により飽和液冷媒まで冷却される(図3の点D→点Eの変化)。これと同時に、低圧冷媒は過熱されて低圧の過熱ガス冷媒となって圧縮機1へ流入する(図3の点G→点Aの変化)。この内部熱交換器12における熱交換作用により、室内熱交換器7に流入する冷媒のエンタルピが小さくなり、室内熱交換器7の出入口のエンタルピ差が大きくなる。これにより、所定能力を得るために必要な冷媒循環量が小さくなり、圧力損失を低減することで、冷凍サイクルの運転効率COPを向上させる。またそれと同時に、圧縮機1へ流入する低圧冷媒は過熱ガス状態となるため、圧縮機1への液冷媒過剰流入による液バック状態を回避する。 In the internal heat exchanger 12 provided in the receiver 11, the high-temperature medium-pressure two-phase refrigerant decompressed by the decompression device 5a is saturated with the low-temperature low-pressure refrigerant circulating between the four-way valve 2 and the compressor 1 suction side. Cooled to the refrigerant (change from point D to point E in FIG. 3). At the same time, the low-pressure refrigerant is heated to become a low-pressure superheated gas refrigerant and flows into the compressor 1 (change from point G to point A in FIG. 3). Due to the heat exchange action in the internal heat exchanger 12, the enthalpy of the refrigerant flowing into the indoor heat exchanger 7 is reduced, and the enthalpy difference at the entrance and exit of the indoor heat exchanger 7 is increased. As a result, the refrigerant circulation amount necessary for obtaining the predetermined capacity is reduced, and the pressure loss is reduced, thereby improving the operation efficiency COP of the refrigeration cycle. At the same time, since the low-pressure refrigerant flowing into the compressor 1 is in a superheated gas state, a liquid back state due to an excessive inflow of liquid refrigerant into the compressor 1 is avoided.
 ここで、減圧装置5aは室外熱交換器3の出口における冷媒過冷却度が所定値になるように開度を調整して冷媒の流量を制御しているため、室外熱交換器3において凝縮された液冷媒は、所定の過冷却度を有する状態となる。室外熱交換器3の出口における冷媒過冷却度は、液側温度センサ204の検出値からガス側温度センサ202(冷媒の凝縮温度Tc相当)を引いた値で検出する。 Here, since the decompression device 5a controls the flow rate of the refrigerant by adjusting the opening degree so that the refrigerant subcooling degree at the outlet of the outdoor heat exchanger 3 becomes a predetermined value, it is condensed in the outdoor heat exchanger 3. The liquid refrigerant is in a state having a predetermined degree of supercooling. The refrigerant subcooling degree at the outlet of the outdoor heat exchanger 3 is detected by a value obtained by subtracting the gas side temperature sensor 202 (equivalent to the refrigerant condensation temperature Tc) from the detection value of the liquid side temperature sensor 204.
 また、減圧装置5bは圧縮機1の吐出冷媒温度が所定値になるように開度を調整して室内熱交換器7を循環する冷媒の流量を制御しているため、圧縮機1より吐出された吐出ガス冷媒は、所定の温度状態となる。圧縮機1の吐出冷媒温度は、圧縮機吐出温度センサ201もしくは圧縮機シェル温度センサ208で検出する。このように、室内熱交換器7には利用ユニットBが設置された空調空間において要求される運転負荷に応じた流量の冷媒が流れている。 Further, since the decompression device 5b controls the flow rate of the refrigerant circulating through the indoor heat exchanger 7 by adjusting the opening degree so that the discharge refrigerant temperature of the compressor 1 becomes a predetermined value, the pressure reduction apparatus 5b is discharged from the compressor 1. The discharged gas refrigerant is in a predetermined temperature state. The discharge refrigerant temperature of the compressor 1 is detected by the compressor discharge temperature sensor 201 or the compressor shell temperature sensor 208. Thus, the refrigerant | coolant of the flow volume according to the driving | running load requested | required in the air-conditioning space in which the utilization unit B was installed flows into the indoor heat exchanger 7. FIG.
 次に、暖房運転の動作について図1及び図3を用いて説明する。 Next, the heating operation will be described with reference to FIGS. 1 and 3.
 暖房運転時は四方弁2が図1の実線で示される状態、すなわち、圧縮機1の吐出側が室内熱交換器7のガス側に接続され、かつ圧縮機1の吸入側が室外熱交換器3のガス側に接続された状態となっている。 During the heating operation, the four-way valve 2 is in the state indicated by the solid line in FIG. 1, that is, the discharge side of the compressor 1 is connected to the gas side of the indoor heat exchanger 7 and the suction side of the compressor 1 is connected to the outdoor heat exchanger 3. It is connected to the gas side.
 圧縮機1から吐出した高温高圧のガス冷媒は、四方弁2及びガス接続配管9を経由して利用ユニットBへ送られ、凝縮器である室内熱交換器7へ至り、室内送風装置8の送風作用により冷媒は凝縮液化し、高圧低温の冷媒となる。凝縮液化した高温低圧の冷媒は、液接続配管6を経由して熱源ユニットAに送られ、減圧装置5bで減圧されて中圧二相冷媒となって、レシーバ11を経由し、減圧装置5aでさらに減圧され、室外熱交換器3へ送られる。減圧された二相冷媒は蒸発器である室外熱交換器3にて室外送風装置4の送風作用により蒸発し、低圧のガス冷媒となる。そして、低圧ガス冷媒は四方弁2を経由して、内部熱交換器12にて減圧装置5a、5bとの間の中圧二相冷媒と熱交換した後に、再び圧縮機1へ吸入される。 The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 is sent to the utilization unit B via the four-way valve 2 and the gas connection pipe 9, reaches the indoor heat exchanger 7 that is a condenser, and is blown by the indoor blower 8. By the action, the refrigerant condenses and becomes a high-pressure and low-temperature refrigerant. The condensed and liquefied high-temperature and low-pressure refrigerant is sent to the heat source unit A via the liquid connection pipe 6 and is depressurized by the decompression device 5b to become an intermediate-pressure two-phase refrigerant, passes through the receiver 11, and is decompressed by the decompression device 5a. The pressure is further reduced and sent to the outdoor heat exchanger 3. The decompressed two-phase refrigerant is evaporated by the blowing action of the outdoor blower 4 in the outdoor heat exchanger 3 that is an evaporator, and becomes a low-pressure gas refrigerant. The low-pressure gas refrigerant exchanges heat with the medium-pressure two-phase refrigerant between the decompression devices 5a and 5b in the internal heat exchanger 12 via the four-way valve 2, and then is sucked into the compressor 1 again.
 内部熱交換器12では減圧装置5bで減圧された高温の中圧二相冷媒が、四方弁2と圧縮機1吸入側の間を循環する低温の低圧冷媒により飽和液冷媒まで冷却される(図3の点D→点Eの変化)。これと同時に、低圧冷媒は過熱されて低圧の過熱ガス冷媒となって圧縮機1へ流入する(図3の点G→点Aの変化)。この内部熱交換器12における熱交換作用により、室内熱交換器7に流入する冷媒のエンタルピが小さくなり、室内熱交換器7の出入口のエンタルピ差が大きくなる。これにより、所定能力を得るために必要な冷媒循環量が小さくなり、圧力損失を低減することで、冷凍サイクルのCOPを向上させる。またそれと同時に、圧縮機1へ流入する低圧冷媒は過熱ガス状態となるため、圧縮機1への液冷媒過剰流入による液バック状態を回避する。 In the internal heat exchanger 12, the high-temperature medium-pressure two-phase refrigerant decompressed by the decompression device 5b is cooled to the saturated liquid refrigerant by the low-temperature low-pressure refrigerant circulating between the four-way valve 2 and the compressor 1 suction side (see FIG. 3 point D → change of point E). At the same time, the low-pressure refrigerant is heated to become a low-pressure superheated gas refrigerant and flows into the compressor 1 (change from point G to point A in FIG. 3). Due to the heat exchange action in the internal heat exchanger 12, the enthalpy of the refrigerant flowing into the indoor heat exchanger 7 is reduced, and the enthalpy difference at the entrance and exit of the indoor heat exchanger 7 is increased. Thereby, the refrigerant circulation amount necessary for obtaining a predetermined capacity is reduced, and the COP of the refrigeration cycle is improved by reducing the pressure loss. At the same time, since the low-pressure refrigerant flowing into the compressor 1 is in a superheated gas state, a liquid back state due to an excessive inflow of liquid refrigerant into the compressor 1 is avoided.
 ここで、減圧装置5bは室内熱交換器7の出口における冷媒過冷却度が所定値になるように開度を調整して室内熱交換器7を流れる冷媒の流量を制御しているため、室内熱交換器7において凝縮された液冷媒は、所定の過冷却度を有する状態となる。室内熱交換器7の出口における冷媒過冷却度は、液側温度センサ205の検出値からガス側温度センサ207(冷媒の凝縮温度Tc相当)を引いた値で検出する。 Here, since the decompression device 5b controls the flow rate of the refrigerant flowing through the indoor heat exchanger 7 by adjusting the opening degree so that the degree of refrigerant supercooling at the outlet of the indoor heat exchanger 7 becomes a predetermined value, The liquid refrigerant condensed in the heat exchanger 7 is in a state having a predetermined degree of supercooling. The refrigerant subcooling degree at the outlet of the indoor heat exchanger 7 is detected by a value obtained by subtracting the gas side temperature sensor 207 (equivalent to the refrigerant condensation temperature Tc) from the detection value of the liquid side temperature sensor 205.
 また、減圧装置5aは圧縮機1の吐出冷媒温度が所定値になるように開度を調整して室外熱交換器3を循環する冷媒の流量を制御しているため、圧縮機1より吐出された吐出ガス冷媒は所定の温度状態となる。圧縮機1の吐出冷媒温度は、圧縮機吐出温度センサ201もしくは圧縮機シェル温度センサ208で検出する。このように、室内熱交換器7には利用ユニットBが設置された空調空間において要求される運転負荷に応じた流量の冷媒が流れている。 Further, since the decompression device 5a controls the flow rate of the refrigerant circulating in the outdoor heat exchanger 3 by adjusting the opening degree so that the discharge refrigerant temperature of the compressor 1 becomes a predetermined value, it is discharged from the compressor 1. The discharged gas refrigerant is in a predetermined temperature state. The discharge refrigerant temperature of the compressor 1 is detected by the compressor discharge temperature sensor 201 or the compressor shell temperature sensor 208. Thus, the refrigerant | coolant of the flow volume according to the driving | running load requested | required in the air-conditioning space in which the utilization unit B was installed flows into the indoor heat exchanger 7. FIG.
 なお、ここでは冷媒の凝縮温度として各熱交換器に設置された温度センサの検出値を用いたが、圧縮機1の吐出側に圧力センサを設置して冷媒の吐出圧力を検出し、吐出圧力の検出値を飽和温度換算して冷媒の凝縮温度として用いてもよい。 Although the detection value of the temperature sensor installed in each heat exchanger is used here as the refrigerant condensation temperature, a pressure sensor is installed on the discharge side of the compressor 1 to detect the refrigerant discharge pressure, and the discharge pressure The detected value may be converted into the saturation temperature and used as the refrigerant condensing temperature.
《空気調和装置の起動制御方法》
 本実施の形態1の空気調和装置100における起動時の制御動作について図4に基づいて説明する。図4は、本発明の実施の形態1に係る空気調和装置100の起動制御の流れを示すフローチャートである。
<< Start-up control method of air conditioner >>
A control operation at start-up in the air-conditioning apparatus 100 according to Embodiment 1 will be described with reference to FIG. FIG. 4 is a flowchart showing a flow of activation control of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
 フロー開始後、駆動部30cにて圧縮機1を起動するとともに、測定部30aにて時間t計測を開始する(STEP11)。この時、圧縮機1の最大運転周波数Fmaxの制御値は初期値Fmax0に設定する。 After starting the flow, the drive unit 30c starts the compressor 1, and the measurement unit 30a starts time t measurement (STEP 11). At this time, the control value of the maximum operating frequency Fmax of the compressor 1 is set to the initial value Fmax0.
 次に、測定部30aにて空気調和装置100の運転状態を検出する(STEP12)。運転状態の検出手段としては例えば、空気調和装置100の熱源ユニットAもしくは利用ユニットBに設置され、冷媒温度や空気温度を測定する温度センサと、圧縮機1の運転周波数を検出するセンサ(図示せず)を用いる。これらのセンサ検出値に基づいて運転状態量として検出する。 Next, the operating state of the air conditioner 100 is detected by the measuring unit 30a (STEP 12). As an operation state detection means, for example, a temperature sensor that is installed in the heat source unit A or the utilization unit B of the air conditioner 100 and measures the refrigerant temperature and the air temperature, and a sensor that detects the operation frequency of the compressor 1 (not shown). Z). Based on these sensor detection values, it is detected as an operating state quantity.
 続いて、検出した運転状態量を基に演算部30bにて冷媒流量Grを算出することで空気調和装置100の冷媒回路を循環する冷媒流量Grを検出する(STEP13)。ここで冷媒流量Grは、例えば下記式を用いて算出する。 Subsequently, the refrigerant flow rate Gr circulating through the refrigerant circuit of the air conditioner 100 is detected by calculating the refrigerant flow rate Gr by the calculation unit 30b based on the detected operating state quantity (STEP 13). Here, the refrigerant flow rate Gr is calculated using, for example, the following equation.
Figure JPOXMLDOC01-appb-M000001
                       (1)
Figure JPOXMLDOC01-appb-M000001
(1)
 ここで、Vstは圧縮機のストロークボリューム[m]、Fは圧縮機の運転周波数[Hz]、ρsは圧縮機の吸入冷媒密度[kg/m]、ηvは体積効率[―]である。圧縮機の運転周波数Fは測定部30aにて検出した運転状態量を用いる。圧縮機ストロークボリュームVstは冷媒回路の構成要素である圧縮機の仕様値であり、機器情報として予め記憶部30dに記憶させておき、演算部30bで演算する時に演算情報(定数)として用いる。 Here, Vst is the compressor stroke volume [m 3 ], F is the compressor operating frequency [Hz], ρs is the compressor suction refrigerant density [kg / m 3 ], and ηv is the volumetric efficiency [−]. . As the operating frequency F of the compressor, the operating state quantity detected by the measuring unit 30a is used. The compressor stroke volume Vst is a specification value of the compressor that is a component of the refrigerant circuit, is stored in advance in the storage unit 30d as device information, and is used as calculation information (constant) when calculating by the calculation unit 30b.
 圧縮機吸入冷媒密度ρsは冷媒物性値であり、記憶部30dに予め記憶させておいた冷媒物性値の情報と、測定部30aで検出した運転状態量に基づいて、その運転状態に対応する値を演算部30bで演算する時に演算情報として用いる。この時に必要な運転状態量としては、圧縮機の吸入冷媒圧力Ps、吸入冷媒温度Tsから求めることができる。吸入冷媒圧力Psの検出方法としては例えば、まず冷媒の蒸発温度Teを検出し、その検出値から飽和圧力換算することで求める。冷媒の蒸発温度Teは室内熱交換器7に設けられたガス側温度センサ207の検出値(冷房運転時)、もしくは室外熱交換器3に設けられたガス側温度センサ202の検出値(暖房運転時)を用いる。 The compressor suction refrigerant density ρs is a refrigerant physical property value, and is a value corresponding to the operation state based on the information on the refrigerant physical property value stored in advance in the storage unit 30d and the operation state amount detected by the measurement unit 30a. Is used as calculation information when the calculation unit 30b calculates. The amount of operating state required at this time can be obtained from the intake refrigerant pressure Ps and the intake refrigerant temperature Ts of the compressor. As a method for detecting the suction refrigerant pressure Ps, for example, first, the refrigerant evaporating temperature Te is detected, and the detected pressure value is obtained by converting to a saturated pressure. The refrigerant evaporating temperature Te is a detection value of the gas side temperature sensor 207 provided in the indoor heat exchanger 7 (during cooling operation) or a detection value of the gas side temperature sensor 202 provided in the outdoor heat exchanger 3 (heating operation). Time).
 吸入冷媒温度Tsは、冷媒の蒸発温度Teを飽和圧力換算した低圧圧力Ps(圧縮機の吸入圧力相当)と、冷媒の凝縮温度Tcを飽和圧力換算した高圧圧力Pd(圧縮機の吐出圧力相当)と、冷媒の吐出温度Tdとを用いて、圧縮機1の圧縮工程はポリトロープ指数nのポリトロープ変化と仮定して、下記式より算出することができる。 The suction refrigerant temperature Ts is a low pressure Ps (equivalent to the suction pressure of the compressor) obtained by converting the evaporation temperature Te of the refrigerant into a saturation pressure, and a high pressure Pd (equivalent to the discharge pressure of the compressor) obtained by converting the condensation temperature Tc of the refrigerant into a saturation pressure. And the refrigerant discharge temperature Td, the compression step of the compressor 1 can be calculated from the following equation assuming that the polytropic index n is a polytropic change.
Figure JPOXMLDOC01-appb-M000002
                        (1)
Figure JPOXMLDOC01-appb-M000002
(1)
 ここで、Ts、Tdは温度[K]、Ps、Pdは圧力[MPa]、nはポリトロープ指数[―]である。ポリトロープ指数は一定値(例えばn=1.2)としてもよいが、Ps、Pdの関数として定義することで、より精度よく圧縮機吸入冷媒温度Tsを推測することができる。 Here, Ts and Td are temperature [K], Ps and Pd are pressure [MPa], and n is a polytropic index [-]. The polytropic index may be a constant value (for example, n = 1.2), but by defining it as a function of Ps and Pd, the compressor intake refrigerant temperature Ts can be estimated more accurately.
 なお、冷媒の高圧圧力や低圧圧力を算出するのに、ここでは冷媒の凝縮温度や蒸発温度より換算しているが、圧縮機1の吸入側、吐出側に直接圧力センサを設置して求めるようにしてもよい。また、圧縮機1の吸入側に温度センサを設置し、吸入冷媒温度Tsを直接検出してももちろんよい。 Here, the high pressure and low pressure of the refrigerant are calculated from the condensation temperature and the evaporation temperature of the refrigerant. However, the pressure sensors are directly installed on the suction side and the discharge side of the compressor 1 to obtain the pressure. It may be. Of course, a temperature sensor may be installed on the suction side of the compressor 1 to directly detect the suction refrigerant temperature Ts.
 体積効率ηvは、記憶部30dに予め記憶させておいた圧縮機の性能特性と、測定部30aで検出した運転状態量に基づいて、その運転状態に対応する値を演算部30bで演算する時に演算情報として用いる。体積効率ηvは、主に圧縮機周波数F、圧縮比(高圧圧力Pdと低圧圧力Psの比)により変化するため、それらの状態量に対応した体積効率の値を記憶部30dに記憶しておく。 The volumetric efficiency ηv is calculated when the calculation unit 30b calculates a value corresponding to the operation state based on the performance characteristics of the compressor previously stored in the storage unit 30d and the operation state quantity detected by the measurement unit 30a. Used as calculation information. Since the volumetric efficiency ηv mainly changes depending on the compressor frequency F and the compression ratio (ratio of the high pressure Pd and the low pressure Ps), the volumetric efficiency value corresponding to these state quantities is stored in the storage unit 30d. .
 続いて、判定部30eにおいて、演算部30bで検出した冷媒流量Grが予め設定しておいた冷媒流量Grの判定閾値(所定値Gr0)以上かどうか判定する(STEP14)。検出した冷媒流量Grが所定値Gr0以上であれば、冷媒流量が多い条件であると判断し(STEP14;YES)、駆動部30cで圧縮機1の最大運転周波数Fmaxの制御値を現状よりも低いFmax1に変更する(STEP15)。条件を満たしていなければ、冷媒流量が多い条件ではないと判断し(STEP14;NO)、駆動部30cは圧縮機1の最大運転周波数Fmaxを現状維持のまま運転を継続する(STEP16)。 Subsequently, in the determination unit 30e, it is determined whether or not the refrigerant flow rate Gr detected by the calculation unit 30b is equal to or greater than a predetermined determination threshold value (predetermined value Gr0) for the refrigerant flow rate Gr (STEP 14). If the detected refrigerant flow rate Gr is equal to or greater than the predetermined value Gr0, it is determined that the refrigerant flow rate is high (STEP 14; YES), and the control value of the maximum operating frequency Fmax of the compressor 1 is lower than the current value by the drive unit 30c. Change to Fmax1 (STEP 15). If the conditions are not satisfied, it is determined that the refrigerant flow rate is not high (STEP 14; NO), and the drive unit 30c continues the operation while maintaining the current maximum operating frequency Fmax of the compressor 1 (STEP 16).
 ここで、前述の冷媒流量Grの判定閾値(所定値Gr0)、及び、最大運転周波数Fmaxは、冷媒流量Grに対して圧縮機1から冷凍機油が冷媒回路内に過剰に排出されないレベルとなるように設定する。例えば、冷媒と冷凍機油を合わせた全質量流量に対する冷凍機油の質量流量の比で定義される、冷凍機油の油循環率が1.5%以下となるように判定閾値Gr0、及び、最大運転周波数Fmaxを設定する。 Here, the determination threshold value (predetermined value Gr0) of the refrigerant flow rate Gr and the maximum operating frequency Fmax are set to a level at which the refrigerating machine oil is not excessively discharged from the compressor 1 into the refrigerant circuit with respect to the refrigerant flow rate Gr. Set to. For example, the determination threshold Gr0 defined by the ratio of the mass flow rate of the refrigerating machine oil to the total mass flow rate of the refrigerant and the refrigerating machine oil so that the oil circulation rate of the refrigerating machine oil is 1.5% or less, and the maximum operating frequency Set Fmax.
 次に、空気調和装置100の起動制御を終了するか否か判断するために、判定部30eにおいて圧縮機1起動後時間tが所定時間t0経過したかどうか判定する(STEP17)。所定時間t0経過していなければ(STEP17;NO)、STEP12へ戻って繰り返す。所定時間t0を経過していれば(STEP17;YES)、起動制御は終了となり、圧縮機1の最大運転周波数Fmaxを通常運転時の制御値Fmax2に変更し(STEP18)、制御フローを終了する。 Next, in order to determine whether or not the start control of the air conditioner 100 is to be terminated, it is determined in the determination unit 30e whether or not the predetermined time t0 has elapsed after the start of the compressor 1 (STEP 17). If the predetermined time t0 has not elapsed (STEP 17; NO), the process returns to STEP 12 and is repeated. If the predetermined time t0 has elapsed (STEP 17; YES), the start-up control ends, the maximum operating frequency Fmax of the compressor 1 is changed to the control value Fmax2 during normal operation (STEP 18), and the control flow ends.
 ここで、圧縮機1の最大運転周波数Fmaxの制御値はFmax2>Fmax0>Fmax1となるように設定する。 Here, the control value of the maximum operating frequency Fmax of the compressor 1 is set to satisfy Fmax2> Fmax0> Fmax1.
実施の形態2.
 本発明の実施の形態2に係る空気調和装置200の構成について説明する。なお、この実施の形態2では実施の形態1との相違点を中心に説明し、同様の箇所については説明を割愛する。空気調和装置200の冷媒回路、制御部の構成、基本運転動作は実施の形態1と同様である。
Embodiment 2. FIG.
The structure of the air conditioning apparatus 200 according to Embodiment 2 of the present invention will be described. In the second embodiment, the description will focus on the differences from the first embodiment, and the description of similar parts will be omitted. The refrigerant circuit, the configuration of the control unit, and the basic operation of the air conditioner 200 are the same as those in the first embodiment.
《空気調和装置の起動制御方法》
 本実施の形態2の空気調和装置200における起動時の制御動作について図5に基づいて説明する。図5は、本発明の実施の形態2に係る空気調和装置200における起動時の制御動作の流れを示すフローチャートである。
<< Start-up control method of air conditioner >>
A control operation at startup in the air-conditioning apparatus 200 according to Embodiment 2 will be described with reference to FIG. FIG. 5 is a flowchart showing a flow of control operation at start-up in the air-conditioning apparatus 200 according to Embodiment 2 of the present invention.
 フロー開始後、測定部30aにて空気調和装置200の運転モード(冷房運転/暖房運転)を検出し(STEP21)、運転モードが冷房運転モードか否かを判定する(STEP22)。運転モードが冷房運転モードであれば(STEP22;YES)、駆動部30cは圧縮機1の最大運転周波数Fmaxを冷房運転時の制御値Fmax_cに設定する(STEP23)。冷房運転モードでない場合、つまり暖房運転モードであれば(STEP22;NO)、駆動部30cは圧縮機1の最大運転周波数Fmaxを暖房運転時の制御値Fmax_hに設定する(STEP24)。その後、駆動部30cにて圧縮機1を起動するとともに、測定部30aにて時間t計測を開始する(STEP25)。 After starting the flow, the operation mode (cooling operation / heating operation) of the air conditioner 200 is detected by the measurement unit 30a (STEP 21), and it is determined whether or not the operation mode is the cooling operation mode (STEP 22). If the operation mode is the cooling operation mode (STEP 22; YES), the drive unit 30c sets the maximum operation frequency Fmax of the compressor 1 to the control value Fmax_c during the cooling operation (STEP 23). If it is not the cooling operation mode, that is, if it is the heating operation mode (STEP 22; NO), the drive unit 30c sets the maximum operation frequency Fmax of the compressor 1 to the control value Fmax_h during the heating operation (STEP 24). Thereafter, the compressor 1 is activated by the drive unit 30c, and the time t measurement is started by the measurement unit 30a (STEP 25).
 ここで、一般的な空気調和装置の冷凍サイクル動作状態として、低外気温条件での運転となる暖房運転時よりも、高外気温条件での運転となる冷房運転時の方が冷媒流量は多くなる。したがって、最大運転周波数Fmaxの制御値は冷房運転時Fmax_c<暖房運転時Fmax_hとなるように設定する。 Here, as a refrigeration cycle operation state of a general air conditioner, the refrigerant flow rate is higher in the cooling operation in which the operation is performed in the high outside air temperature condition than in the heating operation in which the operation is performed in the low outside air temperature condition. Become. Therefore, the control value of the maximum operation frequency Fmax is set so that Fmax_c during cooling operation <Fmax_h during heating operation.
 次に、空気調和装置200の起動制御を終了するか否か判断するために、判定部30eにおいて圧縮機1起動後時間tが所定時間t0経過したかどうか判定する(STEP26)。所定時間t0経過していなければ(STEP26;NO)、STEP26へ戻って繰り返す。所定時間t0を経過していれば(STEP26;YES)、起動制御は終了となり、圧縮機1の最大運転周波数Fmaxを通常運転の制御値Fmax2に変更し(STEP27)、制御フローを終了する。 Next, in order to determine whether or not the start control of the air conditioner 200 is to be ended, it is determined in the determination unit 30e whether or not the predetermined time t0 has elapsed after the start of the compressor 1 (STEP 26). If the predetermined time t0 has not elapsed (STEP 26; NO), the process returns to STEP 26 and is repeated. If the predetermined time t0 has elapsed (STEP 26; YES), the start-up control is ended, the maximum operating frequency Fmax of the compressor 1 is changed to the control value Fmax2 for normal operation (STEP 27), and the control flow is ended.
 ここで、圧縮機1の最大運転周波数Fmaxの制御値はFmax2>Fmax_h>Fmax_cとなるように設定する。 Here, the control value of the maximum operating frequency Fmax of the compressor 1 is set to satisfy Fmax2> Fmax_h> Fmax_c.
 なお、ここでは運転モードによる冷媒流量判定の場合を説明したが、実施の形態1で説明したような冷媒流量Grの検出値に基づいた冷媒流量判定+運転モードによる冷媒流量判定での制御動作としてもよい。具体的な制御動作については次の実施の形態にて説明する。 In addition, although the case of the refrigerant | coolant flow rate determination by operation mode was demonstrated here, as control operation by the refrigerant | coolant flow rate determination + refrigerant | coolant flow rate determination by operation mode as demonstrated in Embodiment 1 based on the detected value of the refrigerant | coolant flow rate Gr. Also good. A specific control operation will be described in the next embodiment.
実施の形態3.
 本発明の実施の形態3に係る空気調和装置300の構成について説明する。なお、この実施の形態2では実施の形態1及び2との相違点を中心に説明し、同様の箇所については説明を割愛する。空気調和装置300の冷媒回路、制御部の構成、基本運転動作は実施の形態1及び2と同様である。
Embodiment 3 FIG.
The structure of the air conditioning apparatus 300 according to Embodiment 3 of the present invention will be described. In the second embodiment, the difference from the first and second embodiments will be mainly described, and the description of the same portions will be omitted. The refrigerant circuit, the configuration of the control unit, and the basic operation of the air conditioning apparatus 300 are the same as those in the first and second embodiments.
《空気調和装置の起動制御方法》
 本実施の形態3の空気調和装置300における起動時の制御動作について図6に基づいて説明する。図6は、本発明の実施の形態3に係る空気調和装置300における起動時の制御動作の流れを示すフローチャートである。
<< Start-up control method of air conditioner >>
A control operation at start-up in the air-conditioning apparatus 300 of the third embodiment will be described with reference to FIG. FIG. 6 is a flowchart showing a flow of control operation at start-up in the air-conditioning apparatus 300 according to Embodiment 3 of the present invention.
 STEP31~STEP34は図5に示すSTEP21~STEP24と同様の動作であり、運転モードが冷房運転/暖房運転のいずれかによって、起動初期における圧縮機1の最大運転周波数Fmaxの制御値を冷房運転時Fmax_c/暖房運転時Fmax_hのいずれかに設定する。ここで設定された圧縮機1の最大運転周波数Fmaxの制御値を初期値Fmax0として、STEP25と同様に駆動部30cにて圧縮機1を起動するとともに、測定部30aにて時間t計測を開始する(STEP35)。以降のSTEP36~STEP42は図4に示すSTEP12~STEP18と同様の動作となる。 STEP 31 to STEP 34 are the same operations as STEP 21 to STEP 24 shown in FIG. 5, and the control value of the maximum operating frequency Fmax of the compressor 1 at the initial start-up is set to Fmax_c during the cooling operation depending on whether the operation mode is the cooling operation or the heating operation. / Set to one of Fmax_h during heating operation. The control value of the maximum operating frequency Fmax of the compressor 1 set here is set as the initial value Fmax0, and the compressor 1 is started by the drive unit 30c similarly to STEP 25, and the time t measurement is started by the measurement unit 30a. (STEP 35). Subsequent STEP36 to STEP42 operate in the same manner as STEP12 to STEP18 shown in FIG.
《作用効果》
 本実施の形態に係る空気調和装置によれば、油分離器などコストアップ要因となる追加要素を必要とせず、かつ、運転条件や運転状態によらず、圧縮機内に一定量以上の冷凍機油を維持する返油性を確保することが可能となるため、信頼性の高い空気調和装置を実現できる。
<Effect>
According to the air conditioner according to the present embodiment, an additional element that causes a cost increase such as an oil separator is not required, and a certain amount or more of refrigerating machine oil is supplied into the compressor regardless of operating conditions and operating conditions. Since it becomes possible to ensure the oil-repellency to maintain, a highly reliable air conditioner can be realized.
 本実施の形態に係る空気調和装置によれば、運転動作により圧縮機から冷媒とともに流出する冷凍機油の冷媒回路内への排出量を抑制することが可能となるため、冷媒回路内要素に冷凍機油が貯留することに伴う冷凍サイクル性能低下を回避でき、空気調和装置の高性能化を実現できる。 According to the air conditioner according to the present embodiment, it is possible to suppress the discharge amount of the refrigeration oil that flows out of the compressor together with the refrigerant into the refrigerant circuit by the operation operation. Refrigeration cycle performance degradation associated with storage of water can be avoided, and high performance of the air conditioner can be realized.
 本実施の形態に係る空気調和装置によれば、室外ユニットと室内ユニットとを接続する冷媒配管長さやユニット据付場所の高低差、冷媒充填量などの空調機器の据付条件によらず、圧縮機内に一定量以上の冷凍機油を維持する返油性を確保することが可能となるため、空調機器の使用における据付条件(冷媒配管長や機器据付場所の高低差など)の許容範囲上限拡大が実現できる。 In the air conditioner according to the present embodiment, the air conditioner installation conditions such as the length of the refrigerant pipe connecting the outdoor unit and the indoor unit, the height difference of the unit installation location, and the refrigerant charging amount are not included in the compressor. Since it is possible to ensure oil-repellency that maintains a certain amount or more of refrigerating machine oil, it is possible to achieve an increase in the upper limit of the allowable range of installation conditions (such as refrigerant pipe length and height difference of equipment installation location) in the use of air conditioning equipment.
《冷却装置の変形例》
 本発明の特徴事項を各実施の形態において説明したが、例えば、冷媒の流路構成(配管接続)、圧縮機・熱交換器・膨張弁等の冷媒回路要素の構成、等の内容は、各実施の形態で説明した内容に限定されるものではなく、本発明の技術の範囲内で適宜変更が可能である。
《Cooling device modification》
The features of the present invention have been described in each embodiment. For example, the refrigerant flow path configuration (piping connection), the configuration of refrigerant circuit elements such as a compressor, a heat exchanger, and an expansion valve, etc. The present invention is not limited to the contents described in the embodiments, and can be appropriately changed within the scope of the technology of the present invention.
 1 圧縮機、2 四方弁、3 室外熱交換器、4 室外送風装置、5a 減圧装置、5b 減圧装置、6 液接続配管、7 室内熱交換器、8 室内送風装置、9 ガス接続配管、11 レシーバ、12 内部熱交換器、30 制御部、30a 測定部、30b 演算部、30c 駆動部、30d 記憶部、30e 判定部、201 吐出温度センサ、202 ガス側温度センサ、203 室外温度センサ、204 液側温度センサ、205 液側温度センサ、206 室内温度センサ、207 ガス側温度センサ、208 圧縮機シェル温度センサ、A 熱源ユニット、B 利用ユニット。 1 compressor, 2 way valve, 3 outdoor heat exchanger, 4 outdoor blower, 5a decompressor, 5b decompressor, 6 liquid connection pipe, 7 indoor heat exchanger, 8 indoor blower, 9 gas connection pipe, 11 receiver , 12 Internal heat exchanger, 30 control unit, 30a measurement unit, 30b calculation unit, 30c drive unit, 30d storage unit, 30e determination unit, 201 discharge temperature sensor, 202 gas side temperature sensor, 203 outdoor temperature sensor, 204 liquid side Temperature sensor, 205 liquid side temperature sensor, 206 indoor temperature sensor, 207 gas side temperature sensor, 208 compressor shell temperature sensor, A heat source unit, B use unit.

Claims (7)

  1.  運転周波数を可変に回転駆動する圧縮機、四方弁、室外熱交換器、室外送風装置、開度可変の減圧装置を有する室外ユニットと、室内熱交換器、室内送風装置を有する少なくとも1つの室内ユニットと、前記室外ユニットと前記室内ユニットが冷媒配管で配管接続され、前記圧縮機、前記四方弁、前記室外熱交換器、前記減圧装置及び前記室内熱交換器が順次接続され冷媒が循環する冷媒回路と、からなる空気調和装置において、前記空気調和装置の空調運転を制御する制御装置は、前記空気調和装置の運転状態を検出する運転状態検出手段と、前記運転状態検出手段により検出した運転状態に基づいて、前記冷媒回路を循環する冷媒流量を推定し、予め設定した閾値を基に冷媒流量が多い運転か否かを判定する冷媒流量判定手段と、前記冷媒流量判定手段により冷媒流量が所定量よりも多い運転と判定した場合に、前記圧縮機の最大運転周波数を低く設定する制御手段とを備えたことを特徴とする空気調和装置。 At least one indoor unit having a compressor, a four-way valve, an outdoor heat exchanger, an outdoor air blower, an outdoor fan having a variable opening degree, an indoor heat exchanger, and an indoor fan that rotatively drives the operating frequency A refrigerant circuit in which the outdoor unit and the indoor unit are connected by a refrigerant pipe, and the compressor, the four-way valve, the outdoor heat exchanger, the decompression device, and the indoor heat exchanger are sequentially connected to circulate the refrigerant. In the air conditioner comprising: the control device for controlling the air conditioning operation of the air conditioner is an operation state detection means for detecting an operation state of the air conditioner; and an operation state detected by the operation state detection means. Based on the refrigerant flow rate determining means for estimating the flow rate of refrigerant circulating through the refrigerant circuit and determining whether or not the operation is performed with a high refrigerant flow rate based on a preset threshold value; If the refrigerant flow rate is determined to greater driving than the predetermined amount by medium flow determining means, the air conditioner being characterized in that a control means for setting lower maximum operating frequency of the compressor.
  2.  前記運転状態検出手段は、前記冷媒回路における高圧側の冷媒圧力を検出する高圧冷媒圧力検出手段と、前記冷媒回路における低圧側の冷媒圧力を検出する低圧冷媒圧力検出手段と、前記圧縮機の吸入冷媒温度を検出する吸入温度検出手段と、前記圧縮機の運転周波数を検出する圧縮機周波数検出手段と、を有し、前記制御装置は、前記運転状態検出手段により検出した運転状態検出値を用いて前記冷媒回路を循環する冷媒流量を推定する冷媒流量推定手段を備えたことを特徴とする請求項1記載の空気調和装置。 The operating state detecting means includes a high pressure refrigerant pressure detecting means for detecting a high pressure refrigerant pressure in the refrigerant circuit, a low pressure refrigerant pressure detecting means for detecting a low pressure refrigerant pressure in the refrigerant circuit, and suction of the compressor. An intake temperature detecting means for detecting a refrigerant temperature; and a compressor frequency detecting means for detecting an operating frequency of the compressor, wherein the control device uses the operating state detection value detected by the operating state detecting means. The air conditioner according to claim 1, further comprising a refrigerant flow rate estimating means for estimating a flow rate of refrigerant circulating through the refrigerant circuit.
  3.  前記運転状態検出手段は、前記冷媒回路が冷房運転もしくは暖房運転のいずれかの運転モードであるかを検出する運転モード検出手段を有し、前記運転モード検出手段により冷房運転モードであると検出された場合に、前記冷媒流量判定手段は冷媒流量が多い運転と判定することを特徴とする請求項1または2記載の空気調和装置。 The operation state detection means has an operation mode detection means for detecting whether the refrigerant circuit is in a cooling operation mode or a heating operation mode, and is detected by the operation mode detection means as being in the cooling operation mode. 3. The air conditioner according to claim 1, wherein the refrigerant flow determination unit determines that the operation is performed with a large refrigerant flow.
  4.  前記制御手段は、前記圧縮機の起動から所定時間経過するまでの間、前記圧縮機の最大運転周波数を低く設定することを特徴とする請求項1~3のいずれかに記載の空気調和装置。 The air conditioning apparatus according to any one of claims 1 to 3, wherein the control means sets the maximum operating frequency of the compressor low until a predetermined time elapses after the compressor is started.
  5.  前記冷媒回路には冷媒とともに封入された冷凍機油を有し、前記制御手段は、前記冷媒と前記冷凍機油を合わせた全質量流量に対する前記冷凍機油の質量流量の比で定義される前記冷凍機油の油循環率が1.5%以下となるように、前記圧縮機の最大運転周波数を設定することを特徴とする請求項1~4のいずれかに記載の空気調和装置。 The refrigerant circuit has refrigerating machine oil enclosed with a refrigerant, and the control means is configured to control the refrigerating machine oil defined by a ratio of a mass flow rate of the refrigerating machine oil to a total mass flow rate of the refrigerant and the refrigerating machine oil. The air conditioner according to any one of claims 1 to 4, wherein a maximum operation frequency of the compressor is set so that an oil circulation rate is 1.5% or less.
  6.  前記室外ユニットと前記室内ユニットとを接続する冷媒配管は、全長100m以上の長尺の冷媒配管であることを特徴とする請求項1~5のいずれかに記載の空気調和装置。 The air conditioner according to any one of claims 1 to 5, wherein the refrigerant pipe connecting the outdoor unit and the indoor unit is a long refrigerant pipe having a total length of 100 m or more.
  7.  前記室外ユニットと前記室内ユニットの据付位置高さは、高低差30m以上であることを特徴とする請求項1~6のいずれかに記載の空気調和装置。 The air conditioner according to any one of claims 1 to 6, characterized in that the installation position height of the outdoor unit and the indoor unit has a height difference of 30 m or more.
PCT/JP2017/009419 2017-03-09 2017-03-09 Air conditioner WO2018163346A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/009419 WO2018163346A1 (en) 2017-03-09 2017-03-09 Air conditioner
JP2019504217A JP6779361B2 (en) 2017-03-09 2017-03-09 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/009419 WO2018163346A1 (en) 2017-03-09 2017-03-09 Air conditioner

Publications (1)

Publication Number Publication Date
WO2018163346A1 true WO2018163346A1 (en) 2018-09-13

Family

ID=63448729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009419 WO2018163346A1 (en) 2017-03-09 2017-03-09 Air conditioner

Country Status (2)

Country Link
JP (1) JP6779361B2 (en)
WO (1) WO2018163346A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812938A (en) * 1981-07-17 1983-01-25 Hitachi Ltd Method of controlling air conditioner
JP2007248001A (en) * 2006-03-17 2007-09-27 Mitsubishi Electric Corp Refrigeration air conditioner

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4063023B2 (en) * 2002-09-12 2008-03-19 株式会社デンソー Vapor compression refrigerator
JP4946840B2 (en) * 2006-12-08 2012-06-06 ダイキン工業株式会社 Refrigeration equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812938A (en) * 1981-07-17 1983-01-25 Hitachi Ltd Method of controlling air conditioner
JP2007248001A (en) * 2006-03-17 2007-09-27 Mitsubishi Electric Corp Refrigeration air conditioner

Also Published As

Publication number Publication date
JPWO2018163346A1 (en) 2019-11-07
JP6779361B2 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
JP6366742B2 (en) Air conditioner
JP5745637B2 (en) Refrigeration cycle equipment
JP7186845B2 (en) air conditioner
US10145595B2 (en) Refrigeration cycle apparatus
KR101355689B1 (en) Air conditioning system and accumulator thereof
JP5094801B2 (en) Refrigeration cycle apparatus and air conditioner
JP3719246B2 (en) Refrigeration apparatus and refrigerant amount detection method for refrigeration apparatus
JP5956743B2 (en) Air conditioner
JP4767199B2 (en) Air conditioning system operation control method and air conditioning system
JP5908183B1 (en) Air conditioner
JP2014159893A (en) Air conditioner
JP6239092B2 (en) Air conditioner
JP5871723B2 (en) Air conditioner and control method thereof
JP6758506B2 (en) Air conditioner
WO2019102538A1 (en) Air conditioner
JP6537629B2 (en) Air conditioner
KR20210026645A (en) Air conditioner and control method thereof
JP6410935B2 (en) Air conditioner
WO2018163346A1 (en) Air conditioner
JPWO2019198175A1 (en) Refrigeration cycle equipment
KR20070077639A (en) Multi air-conditioner and its control method
JP2015087020A (en) Refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899851

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019504217

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17899851

Country of ref document: EP

Kind code of ref document: A1