JP3893676B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP3893676B2
JP3893676B2 JP19539997A JP19539997A JP3893676B2 JP 3893676 B2 JP3893676 B2 JP 3893676B2 JP 19539997 A JP19539997 A JP 19539997A JP 19539997 A JP19539997 A JP 19539997A JP 3893676 B2 JP3893676 B2 JP 3893676B2
Authority
JP
Japan
Prior art keywords
heat exchanger
temperature
outdoor heat
outside air
defrosting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19539997A
Other languages
Japanese (ja)
Other versions
JPH10103818A (en
Inventor
砂穂 舟越
啓夫 中村
博志 小暮
素生 森本
英範 横山
昭二 ▲高▼久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19539997A priority Critical patent/JP3893676B2/en
Publication of JPH10103818A publication Critical patent/JPH10103818A/en
Application granted granted Critical
Publication of JP3893676B2 publication Critical patent/JP3893676B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To eliminate unnecessary defrosting operation by a method wherein a defrost prohibition time is changed according to an outside air temperature, and a defrost starting outdoor heat-exchanger temperature is changed according to an outside air temperature and the rotational speed of a compressor. SOLUTION: A control device 8 starts a defrost prohibition timer wherein a defrost prohibition time is increased with the decrease of an outside air temperature, and reads an outside air temperature detected by an outside temperature sensor 7, an outdoor heat-exchanger temperature detected by an outdoor heat- exchanger temperature sensor 6, and the number of revolutions of a compressor detected by a rotational speed sensor 13. An outside heat-exchanger temperature when defrosting is started is calculated, and when the value of a defrosting prohibition time timer elapses and exceeds a given time (a defrost prohibition time) and an outdoor heat-exchanger temperature is reduced to a value lower than temperature at which defrosting is started, a four-way valve 5 is switched from a heating cycle to a cooling cycle and enters defrost operation. When the defrost operation is completed, a defrost operation time timer is reset and a defrost prohibition time timer is also reset.

Description

【0001】
【発明の属する技術分野】
本発明はヒートポンプ式空気調和装置に係り、特に暖房運転時における室外熱交換器の除霜制御に関する。
【0002】
【従来の技術】
最近の冷暖房ルームエアコンは、暖房時の更なる暖房能力が要求されてきている。この暖房時における暖房能力低下につながる原因の一つとして、室外機内に設置され暖房時に蒸発器として作用する室外熱交換器の温度が低下してこの室外熱交換器に空気中の水分が付着して氷結してしまう状態、いわゆる着霜状態を解除するための制御である除霜制御(デフロスト制御)が挙げられる。この除霜制御は、冷凍サイクルにおける冷媒の流れを暖房時とは逆にして、圧縮機から吐出される高温高圧のガス冷媒を、着霜した室外熱交換器に流し込み霜を溶かすものである。この除霜制御を実行している期間は室内側熱交換器には膨張弁を介して低温低圧の2相流状態の冷媒が流入してくるので、室内ファンを停止させ室温が低下することを防止している。すなわち、除霜運転期間中は室内を暖房することができない問題がある。従って、むやみに除霜運転に入らないようにする必要がある。
【0003】
さて、それほど着霜していないにも拘わらず除霜運転に入ることを防止するためには、室外熱交換器に霜センサを取り付けて暖房能力が所定割合低下する着霜状況を把握して、除霜運転の開始タイミングを決定することが考えられるが、この霜センサは性能や価格の面で採用することができない。また、利用者が目視して着霜状況を把握して手動で除霜運転を開始させることも考えられるが、非常に不便である。
【0004】
さらに、除霜制御を実行する理由は着霜による暖房能力(室内機の冷媒吸込み温度と吹き出し温度との差に室外機の圧縮機回転数、冷媒の比熱、冷媒密度を積算することにより演算することは可能である)の低下(室外熱交換器の能力の低下)を回復させるものであることから、エアコンの暖房能力を逐次監視して、この能力が所定割合低下したときに除霜運転を開始させる制御系を構築することも考えられる。しかし、エアコンの暖房能力は、例えば、室内ファンの回転数の低下など他の様々な要因によって左右され、この能力の低下が着霜によるものであることを一義的に導き出す制御系を構築することは難しいという問題があった。
【0005】
ところで、室外熱交換器に霜が着くと、フィン表面の熱伝達率が減少し吸熱量が低下するので、冷媒は十分に蒸発しきらずにガス液混合冷媒が圧縮機入口(吸い込み口)に向かう。このため、圧縮機に液冷媒が吸い込まれてシリンダ内で蒸発するので温度が低下し、この結果圧縮機の出口冷媒温度(吐出冷媒温度)も低下する。圧縮機吐出冷媒温度が低下したことをセンサにより感知すると、制御系は元に戻すように膨張弁を絞る。この膨張弁が絞られたことにより圧縮機吸込み圧力が低下し、室外熱交換器の温度が低下する。この室外熱交換器の温度の低下をセンシングすることによって、着霜と判断し除霜運転を実行することが知られている。例えば特開昭55−160248号公報や特開昭61−153332号公報に記載の例では、室外熱交換器温度と外気温度との差が一定値以上になったときに除霜を行うものである。
【0006】
このように室外熱交換器の温度を検出して除霜制御を実行するものでは、例えば、制御上の要請によって圧縮機回転数が高くなった場合、圧縮機前後の圧力差が大きくなり、室外熱交換器の圧力が低下し室外熱交換器温度も低下するので、着霜量が少ないにも拘わらず除霜運転が開始されてしまう場合があり、また、室内ファンの風量が増した場合、室内熱交換器の能力が大きくなることで、凝縮温度が下がり、室内熱交換器の圧力が低下して膨張弁の吐出圧も低下することで室外熱交換器の温度が低下してしまい、着霜量が少ないにも拘わらず除霜運転が開始されてしまう場合がある。
【0007】
この問題を解決するため、特開昭60−169038号公報には、デフロスト禁止タイマを設け不要な除霜運転に突入することを禁止することが記載されている。
【0008】
【発明が解決しようとする課題】
上記従来技術においては、タイマの設定時間が短いと上記の除霜運転にはいる回数が多くなり、結果的に暖房能力の低下につながるため、時間の設定が難しいという問題がある。また、除霜運転の開始タイミングは室外熱交換器に取り付けられた温度センサの精度に左右されるという問題もある。
【0009】
さらに、除霜運転の判定を外気温と室外熱交換器温度との差に基づいて行った場合、雪のためや霜が成長するなどして外気温検出器と室外熱交換器が熱的に接続されてしまうと、正確な判定がなされなくなると云う問題がある。
【0010】
本発明の第1の目的は、極力不要な除霜運転をなくすことができる空気調和装置を提供することにある。本発明の第2の目的は、外気温検出器が室外熱交換器と熱的に接続されてしまった場合でも除霜運転の判定を行いうる空気調和装置を提供することにある。
【0011】
【課題を解決するための手段】
上記第1の目的は、圧縮機と、この圧縮機に接続された室内熱交換器と、この室内熱交換器に減圧手段を介して接続された室外熱交換器と、前記室外熱交換器の温度を検知する室外熱交換器温度検知手段と、前記圧縮機から吐出された冷媒を前記室内熱交換器、前記室外熱交換器の順に通流させて前記圧縮機に吸入させる運転時、前記室外熱交換器温度検知手段の出力に基づいて前記冷媒通流方向を逆転させる指令を発生する逆転指令発生手段と、外気温度を検知する外気温度検知手段と、この外気温度に応じて変化する設定時間を計時する計時手段と、前記設定時間が経過し、前記逆転指令が発生しているとき前記冷媒通流方向を逆転させる手段とを備えた空気調和装置において、前記逆転指令発生手段は、前記圧縮機から吐出された冷媒を前記室内熱交換器、前記室外熱交換器の順に流通させて前記圧縮機に吸入させる運転開始時、又は逆転運転終了後、設定時間経過したときの前記外気温度を記憶する手段を備え、前記外気温度検知手段から出力された外気温度と、前記記憶された外気温度と前記外気温度検知手段から出力された外気温度との差とに基づいて除霜開始室外熱交換器温度を演算し、この演算された除霜開始室外熱交換器温度よりも前記室外熱交換器温度検知手段の出力が小さくなった場合前記冷媒通流方向を逆転させる指令を発生することにより達成される。
【0012】
また、上記第2の目的は、圧縮機と、この圧縮機に接続された室内熱交換器と、この室内熱交換器に減圧手段を介して接続された室外熱交換器と、前記室外熱交換器の温度を検知する室外熱交換器温度検知手段と、前記室外熱交換器に近接する位置に設けられて外気温度を検知する外気温度検知手段と、前記圧縮機から吐出された冷媒を前記室内熱交換器、前記室外熱交換器の順に通流させて前記圧縮機に吸入させる運転時、前記室外熱交換器温度検知手段の出力と前記外気温度検知手段の出力との差が設定値より小さくなったとき、前記冷媒通流方向を逆転させる手段とを備えることにより達成される。
【0014】
【発明の実施の形態】
以下、本発明を図面に示す実施の形態により説明する。図1は本発明の一実施の形態(第1の実施の形態)の空気調和装置の構成の概略を表す。暖房運転時、圧縮機1、室内熱交換器2、電動膨張弁等の減圧手段である膨張機構3、室外熱交換器4、及び四方弁5は冷媒配管により順次接続され、冷凍サイクルが構成される。制御装置8にはマイクロコンピュータが搭載されており、圧縮機1、室内ファン11、室外ファン12、電動膨張弁3、四方弁5等の制御を行う。圧縮機1の回転数はインバータ9によって可変に制御できるようになっており、吸い込み空気温度センサ10の検知した吸い込み空気温度等に基づいて、制御装置8はインバータ9への周波数指令を出力する。
【0015】
暖房運転時においては、四方弁5は図1の実線で表された接続状態を保っており、冷媒は図1の実線の矢印の方向に流れて暖房サイクルを構成する。除霜運転時には四方弁は破線の接続状態に切り替えられ、冷媒は破線の矢印の方向に流れて冷房サイクルとなると同時に、室内送風機11及び室外送風機12は減速または停止される。室外熱交換器4の冷媒配管には室外熱交換器温度センサ6が取り付けてあり、室外熱交換器4の冷媒温度を検知する。また、室外熱交換器4の吸気側に取り付けられた外気温度センサ7は外気温度を検知する。
【0016】
制御装置8は、室外熱交換器温度センサ6の検知した温度である室外熱交換器温度、外気温度センサ7の検知した温度である外気温度および回転数センサ13の検知した圧縮機1の回転数に基づいて除霜運転の開始を決定する。なお、圧縮機1の回転数をセンシングする代わりに、制御装置の圧縮機回転数の指令値を用いてもよい。
【0017】
図2に除霜制御のアルゴリズムを示す。ステップ101において、制御装置8が有するマイクロコンピュータは外気温度Toを読み込み、ステップ102において、下式(1)により外気温度Toに対応した除霜禁止時間τdcを計算する。除霜禁止時間が経過するまでは、除霜運転を行わない。
【0018】
τdc=A・To+B (1)
上式中のA、Bは適当な定数で、外気温度が低いほど除霜禁止時間が長くなるようA<0とする。除霜禁止時間には、上限値および下限値を設け、式(1)の値が上限値を越える場合には除霜禁止時間は上限値とし、式(1)の値が下限値を下回る場合には除霜禁止時間は下限値とする。
【0019】
ステップ103で制御装置8に設けられた除霜禁止時間タイマをスタートする。ステップ104において、制御装置8は、外気温度センサ7により検知された外気温度To 、室外熱交換器温度センサ6により検知された室外熱交換器温度Teおよび回転数センサ13により検知された圧縮機回転数Nを読み込む。圧縮機回転数のかわりに、インバータに周波数検出回路を設け、その周波数を用いてもよい。また、インバータ周波数指令値でも構わない。次に、次式(2)により除霜を開始するときの室外熱交換器温度(除霜開始室外熱交換器温度)Tedを計算する(ステップ105)。
【0020】
ed=a・To+b・N+c ……(2)
ここで、a、b、cは定数で、a>0、b<0である。
【0021】
Tedには上限値および下限値を設けておき、式(2)の値が上限値以上のときは上限値とし、下限値以下の場合は下限値とする。圧縮機回転数、室外熱交換器温度および外気温度については、一時的な変動や急激な変動の影響を避けるため、数回のサンプリングの平均値を用いて式(2)の計算を行った方がよい。また、数回のサンプリングの値がある一定範囲に入っているときのみそれらのデータを有効とする方法もある。
【0022】
次に、ステップ106において、除霜禁止時間タイマの値τが所定時間τdc(除霜禁止時間)を経過したかどうかを判断し、所定時間経過したならば、ステップ107において、室外熱交換器温度TeがTed以下に下がったかどうかを判断する。室外熱交換器に霜が付着するにつれて室外熱交換器温度は低下し、室外熱交換器温度TeがTed以下に下がったならば、ステップ108において四方弁5を暖房サイクルから冷房サイクルに切り替え、除霜運転に入る。
【0023】
ステップ109において、除霜運転時間タイマをスタートし、ステップ110において、除霜運転時間τdfが所定時間τdfmaxを越えたならば、除霜運転を終了する(ステップ112)。すなわち、四方弁を暖房運転に切り替える。また、τdfが所定時間τdfmaxを越えていない場合でも、ステップ111において室外熱交換器温度Teが一定温度Teh以上に上昇した場合には、除霜運転を終了する。Tehは除霜開始時の室外熱交換器温度や外気温度によって変えても良い。除霜運転を終了したならば、除霜運転時間タイマをリセットし(ステップ113)、さらに除霜禁止時間タイマもリセットする(ステップ114)。
【0024】
図3に、本実施の形態の除霜制御における外気温度と除霜禁止時間との関係を示す。外気温度が低いときには外気の絶対湿度は低いので、除霜間隔あるいは除霜禁止時間は長く設定し、逆に外気温度が高いときには外気の絶対湿度が高いので除霜禁止時間を短く設定している。また、除霜禁止時間には上限値と下限値を設けている。上限値を設けたのは、万一、着霜が進んで霜の多い状態のときに停電等によって停止して、すぐに再運転したような場合、上記タイマがリセットされ、その時点から新たに計時を開始するので、室外熱交換器に過剰に着霜して暖房能力の著しく低下することがないようにするためである。
【0025】
また、下限値を設けたのは、例えば下限値を0にすると前述したように室外熱交換器温度による除霜運転開始タイミングが優先されてしまい思わぬ除霜運転が開始されてしまうので下限値を0にする(すなわち下限値を設けない)ことはできないからであり、更に外気温度センサが正常に外気温度を計測できず本来の外気温よりも高い方に計測してしまう場合、例えば、外気温が低いが日当たりの良いところに外気温センサがある場合などは、太陽光線で加熱されて着霜の生じない比較的高い温度であるように誤計測してしまい、除霜運転がまったく行われなくなることを避けるためである。また、外気温度センサに着霜した場合も、外気温度センサが正常に動作せず出力に誤差を生じるが、全く除霜運転が行われないようなことを避けることができる。
【0026】
この上限値は−5℃以下の温度で70分、下限値は0℃以上の温度で45分になるように設定されている。また、図3に示す上限値と下限値の間の外気温に対する禁止時間の傾きは、想定する最も着霜しやすい条件、すなわち、湿度90%、圧縮機回転数8000rpmの条件で暖房運転開始時(暖房能力100%)から暖房能力が88%までに低下するまでの禁止時間を各外気温度毎に算出し、線でつないだものである。
【0027】
しかし、通常このような条件下での運転はあまりないので、多くの場合は除霜が必要とされる前に禁止時間が先にタイムアップしてしまい、その後室外熱交換器温度の低下による除霜運転開始指令が出され、除霜運転が開始される。しかも、何らかの原因によって急激に室外熱交換器の温度が低下した場合や室外熱交換器温度センサの出力の誤差により温度低下があったと判断されてしまう場合などは、直に除霜運転開始指令がだされてしまうが、下限値を設定したことによって、着霜していないにも拘わらず除霜運転が開始されることを防ぐことができる。
【0028】
なお、上記実施の形態では、禁止時間を外気温により算出したが、外気湿度を用いても、また外気温および外気湿度を用いても同様の効果を得ることができる。
【0029】
上記図2に示した実施の形態では、ステップ106にて除霜禁止時間が経過してからステップ107において室外熱交換器温度に基づく除霜開始の有無を判断しているが、室外熱交換器温度に基づく除霜開始の有無を判断し、除霜の必要があるときに除霜禁止時間が経過しているか否かを判断しても同様の効果を得ることができる。以下説明する実施の形態においても同様である。
【0030】
次に、本実施の形態の除霜制御における除霜開始条件について説明する。図4及び図5は、上述の式(2)を図に示したものである。図4に圧縮機回転数Nをパラメータとして、外気温度Toと除霜開始室外熱交換器温度Tedとの関係を示す。図5に外気温度Toをパラメータとして、圧縮機回転数Nと除霜開始室外熱交換器温度Tedとの関係を示す。
【0031】
図4において、N1、N2、N3は異なった圧縮機の回転数を表し、N1<N2<N3である。図4では、便宜上、3種類の回転数についてのみ示した。実際には回転数はもっと細かく変化するが、考え方は同様である。図5において、To1、To2、To3は異なる外気温度を表し、To1>To2>To3である。図5では、便宜上、3種類の外気温度についてのみ示した。実際には外気温度は連続的に変化するが、考え方は同様である。
【0032】
除霜運転は、室外熱交換器温度が図4または図5におけるそれぞれの条件に対応した実線(制御線)よりも低下したときに行う。図4に示すように、外気温度が低いほど除霜開始室外熱交換器温度を低く、外気温度が高いほど除霜開始室外熱交換器温度を高く設定する。これは、同じ着霜量であっても外気温度が低いほど冷媒の蒸発温度が低くなるため、外気温度が低いほど低い室外熱交換器温度で除霜を行うようにしないと、着霜量が少ないうちに除霜運転に入ってしまって、無駄な電力の消費と快適感の低下が生じるためである。逆に、外気温度が高いときには冷媒の蒸発温度が高くなるため、高い室外熱交換器温度で除霜を行うようにしないと、着霜量が過剰になり除霜運転に時間がかかるようになって、消費電力の増加や室内温度の低下を招くことになるためである。
【0033】
また、図5に示すように、圧縮機回転数が高いほど除霜開始室外熱交換器温度が低く、圧縮機回転数が低いほど除霜開始室外熱交換器温度が高くなるようにする。これは、外気温度が同じ場合には、同じ着霜量であっても回転数が高いほど冷媒の蒸発温度が低くなるため、回転数が高いほど低い室外熱交換器温度で除霜を行うようにしないと、着霜量が少ないうちに除霜運転に入ってしまって、無駄な電力の消費と室温低下による不快感が生じるためである。逆に、圧縮機回転数が低いときには冷媒の蒸発温度が高くなるため、高い室外熱交換器温度で除霜を行うようにしないと着霜量が過剰になり、除霜運転に時間がかかるようになって、消費電力の増加や室内温度の低下を招くことになるためである。
【0034】
また、図4に示すように、除霜開始室外熱交換器温度Tedには上限値および下限値を定め、Tedの値が下限値Te1以下のときはTe1とし、上限値Te2以上のときはTe2とした。上限値を設けた理由は、室外熱交換器温度がある温度以上では着霜が起こらないためである。下限値を設けた理由は、室外熱交換器温度がある温度以下になったときは着霜が進行している可能性が高く、また、外気温度センサに霜が付着して、外気温度センサが正常に作動していないような場合でも、室外熱交換器への着霜により下限値まで室外熱交換器温度が低下すれば除霜運転が行われるので、まったく除霜運転が行われずに暖房能力が著しく低下することを避けられる。ちなみに、上限値Te2は圧縮機回転数N3の場合が外気温5℃以上、圧縮機回転数N1の場合が外気温2℃以上で室外熱交換器温度−4℃に設定し、下限値Te1は圧縮機回転数N1の場合が外気温度−10℃以下で、圧縮機回転数N3の場合が外気温度−7℃以下で室外熱交換器温度−19℃に設定している。
【0035】
多量に雪が降っているような状況においては、外気温度センサの位置が室外熱交換器に近接している場合は、外気温度センサと室外熱交換器との間に雪や霜が詰まり、この雪や霜を介して熱伝達が行われ、外気温度が室外熱交換器温度に近くなってしまうことが生じる場合がある。このような場合、外気温度センサから室外熱交換器への熱伝導により外気温度が実際よりも低く検知されて、多量に室外熱交換器に着霜しても除霜運転に入らない恐れがある。これを避けるためには、外気温度Toと室外熱交換器温度Teとの差がある一定値dTよりも小さいとき、すなわち、
o−Te<dT (3)
(dTは定数)
が成立するときには、運転開始後の所定時間(除霜禁止時間)τdcあるいは除霜運転終了後の所定時間(除霜禁止時間)τdcを経過後ならば除霜運転を行うようにする。上記一定値dTは2〜3℃程度の設定値でよい。除霜禁止時間経過時に外気温度Toと室外熱交換器温度Teとの差がある一定値dTよりも小さいときには、外気温度を用いずに、室外熱交換器温度がある温度以下に低下したならば、除霜運転に切り替えるようにしてもよい。また、外気温度と室外熱交換器温度との差を用いる代わりに、外気温度の一定時間内の低下量を用いてもよい。ある時間内に外気温度が所定量以上低下しているときには、外気温度センサと室外熱交換器との間に霜が付着していると判断して、除霜運転を行う。
【0036】
以上のような除霜制御を行うことにより、着霜が少ない状態で除霜運転に入ったり、過剰に室外熱交換器に着霜したりすることがないので、無駄な電力を消費したり、室温が低下して快適感が損なわれたりすることがない。室外熱交換器温度の検出誤差が大きい場合でも、外気温度に応じて最低限除霜運転を行わない除霜禁止時間を変化させているので、無駄な除霜運転を避けることができ、電力を無駄に消費したり、室温が低下して快適感が損なわれることを防止できる。また、外気温度センサと室外熱交換器との間に雪や霜が詰まった場合にも、適切に除霜運転を行うことができるので、暖房能力が著しく低下するようなことはない。圧縮機の回転数は様々な要因で変化するので、除霜後又は暖房運転開始からどの圧縮機の回転数を取り込むのかの判断が困難である。そこで、圧縮機の回転数を制御に取り込まずに、外気温度と室外熱交換器温度のみを用いることもできるが、このときに外気温度が低いほど圧縮機回転数が高いとして、図4の一点鎖線で示したような制御を行うことにより、圧縮機回転数を取り込んだ場合に近い効果を得ることができる。この場合、図4では制御線を直線で表したが、折れ線や他の曲線を用いることにより、さらに効果を上げることもできる。以下に示す実施の形態においても必ずしも圧縮機回転数の要素を取り入れる必要はない。
【0037】
以上本実施の形態によれば、外気温度が低いほど、同じ相対湿度であっても絶対湿度は低くなるので、暖房時の室外熱交換器への着霜速度は遅くなることを利用して、室外熱交換器の温度で着霜を判断することに加えて、外気温度が低いほど除霜禁止時間を長くしておけば、除霜の必要のない最低限の時間は除霜を行うことがないので、室外熱交換器温度センサの検出誤差が大きかったり、取り付け状態にばらつきがあった場合でも、無駄な除霜運転が避けられるため、無駄な電力を消費したり、室温が低下して快適感が損なわれたりすることがない。
【0038】
また、外気温度によって除霜禁止時間を変化させることにより、室外熱交換器温度センサの検出誤差が大きかったり、取り付け状態が悪かった場合に対しても最低限の除霜を行わない時間が保証されるだけでなく、外気温度と圧縮機回転数によって除霜を開始するときの室外熱交換器温度を決めているので、より適切なタイミングで除霜運転が行われる。また、除霜を開始する室外熱交換器温度に上限値を設けているので、熱交換器の表面温度が高く霜が着かないようなときには、除霜運転は行われない。さらに、除霜を開始する室外熱交換器温度に下限値を設けているので、例えば雪が降っていて、外気温度センサと室外熱交換器の間に雪がたまって外気温度が正しく検出されていないような場合でも、ある程度の着霜量において除霜運転が行われるので、暖房能力が著しく低下するようなことはない。
【0039】
さらに、除霜禁止時間に上限値および下限値を設けるようにしたので、万一、停電等によって停止して、すぐ再運転したような場合でも、室外熱交換器に過剰に着霜して暖房能力の著しい低下を招いたりすることはない。また、外気温度センサに着霜した場合など、外気温度センサが正常に動作していない場合でも、まったく除霜運転が行われないようなことは避けられる。
【0040】
また、外気温度と室外熱交換器温度との差が所定の値以下であるときにも除霜運転を行うようにした。これは、例えば雪が降っていて、前記のように外気温度センサと室外熱交換器との間に雪がたまって外気温度が正しく検出されていないような場合を判別できるので、そのような場合にも、適切に除霜運転が行われる。
【0041】
図6に参考例として空気調和装置の構成を示す。この実施の形態では、第1の実施の形態の構成の他に外気湿度センサ14を設けてある。他の構成は、第1の実施の形態と同様なので説明を省略する。図7に本実施の形態の除霜制御アルゴリズムを示す。ステップ202で制御装置8が有するマイクロコンピュータは外気温度To 、室外熱交換器温度Te 、圧縮機回転数Nおよび外気湿度RHo を読み込む。次に、下式(4)により除霜運転を開始するときの室外熱交換器温度(除霜開始室外熱交換器温度)Tedを計算する(ステップ203)。
【0042】
ed=a・To+b・N+c・RHo+d (4)
ここで、a、b、c、dは定数で、a>0、b<0、c>0である。
【0043】
外気湿度が高いほど、高い室外熱交換器温度で除霜運転を行うようにする(すなわち、c>0とする)。外気湿度が高いほど着霜量が多く、しかも、蒸発温度が高くなるからである。第1の実施の形態と同様、Tedには上限値および下限値を設ける。
【0044】
ステップ204で除霜禁止時間を経過しているかどうかを判断し、ステップ205において室外熱交換器温度TeがTed以下に下がったならば、四方弁を暖房サイクルから冷房サイクルに切り替え、除霜運転に入る。以下の部分は第1の実施の形態と同様である。
【0045】
外気湿度センサを設けた場合は、暖房運転開始後または直前の除霜運転終了後、除霜運転を行わない除霜禁止時間を外気湿度によって変化させてもよい。例えば、次式(5)によって除霜禁止時間τdcを設定する。
【0046】
τdc=(A・To2 +B・To + C)・RHo+D (5)
ここで、Toは外気温度、RHoは外気の相対湿度、A、B、C、Dは定数である。
【0047】
本実施の形態では、外気温度、圧縮機回転数、室外熱交換器温度の他に、外気湿度の影響を除霜開始の判断に用いているので、より精度の高い着霜の検知ができるため、消費電力の低減および暖房時快適感の向上に大きな効果がある。
【0048】
図8にさらに他の実施の形態(第の実施の形態)における除霜制御のアルゴリズムを示す。本実施の形態の構成は第1の実施の形態(図1)と同様である。図8において、ステップ302で外気温度To、室外熱交換器温度Te、圧縮機回転数Nを読み込み、ステップ303で経過時間τがある設定された時間τs のときには、ステップ304で外気温度および圧縮機回転数を記憶しておく。
【0049】
前記設定された時間τsは、除霜禁止時間よりも短く、暖房能力がピークに近い時間で、10分ないし20分に設定する。このときの外気温度をTo1、圧縮機回転数をN1とする。ステップ305において、除霜禁止時間が過ぎていれば、ステップ306で次式(6)により除霜開始室外熱交換器温度を計算する。
【0050】
ed=a・To+b・N+c +d・ΔTo+e・ΔN (6)
ΔTo=To−To1
ΔN=N−N1
ここで、a、b、c、d、eは定数、a>0、b<0である。
【0051】
この除霜開始室外熱交換器温度の計算式(6)において、
右辺の第1項(a・To )から第3項(c)は、第1の実施の形態と同様である。右辺の第4項(d・ΔTo )は、外気温度の変化による除霜開始室外熱交換器温度の補正項で、外気温度が変化した場合、着霜の速さが変化するので、その影響を補正する。第5項(e・ΔN)は、圧縮機回転数の変化による除霜開始室外熱交換器温度の補正項で、圧縮機回転数が変化した場合、やはり着霜の速さが変化するので、その影響を補正する。
【0052】
第4項(d・ΔTo )または第5項(e・ΔN)のいずれか一方のみを付加してもよい。また、第2の実施の形態や第3の実施の形態についても、同様の補正項を付加することができる。ここで、暖房運転開始または除霜運転終了後、一定時間τs経過したときの外気温度と圧縮機回転数を用いて補正を行ったが、測定値のばらつきを考慮した場合、τs経過時から数回サンプリングした値の平均値を用いるとよい。
【0053】
また、除霜開始判定時の圧縮機回転数、室外熱交換器温度および外気温度についても、一時的な変動や急激な変動の影響を避けるため、数回のサンプリングの平均値を用いて式(6)の計算を行うとよい。さらに、外気温のみの補正を残して圧縮機回転数による補正を外してもほぼ同様の効果を期待することができる。
【0054】
本実施の形態によれば、外気温度や圧縮機回転数が大きく変化した場合でも、より適切な着霜量となる除霜開始室外熱交換器温度において除霜運転が行われるので、さらに消費電力は低減され、また、除霜運転時の室温低下を押さえられて快適感が向上する。
【0055】
本実施の形態においても、第1の実施の形態と同様に除霜禁止時間を設けて、除霜禁止時間を外気温度によって変化させることにより、室外熱交換器温度の検出誤差が大きい場合でも、最低限の除霜運転間隔が確保でき、頻繁な除霜運転による快適感の低下を避けることができる。
【0056】
本実施の形態によれば、暖房運転開始後または除霜運転終了後一定時間経過したときの外気温度と圧縮機回転数とを制御装置に記憶しておき、除霜開始室外熱交換器温度を、暖房運転開始後または除霜運転終了後一定時間経過したときと除霜開始判定時との外気温度の差と、暖房運転開始後または除霜運転終了後一定時間経過したときと除霜開始判定時との圧縮機回転数により補正するようにした。この補正により、外気温度が大きく変化した場合や、圧縮機の回転数が大きく変化した場合でも、室外熱交換器への着霜速度の変化の影響を適切に補正できるので、さらに適切なタイミングで除霜運転が行われ、消費電力が低減され、暖房時の快適感が向上する。
【0057】
図9に参考例として除霜制御のアルゴリズムを示す。本実施の形態の装置の構成は第1の実施の形態(図1)と同様である。本実施の形態の除霜制御においては、暖房運転開始後または除霜運転終了後一定時間経過したときからの室外熱交換器温度の変化量により除霜開始を判定する。
【0058】
図9のステップ402において外気温度To、室外熱交換器温度Teおよび圧縮機回転数Nを読み込み、ステップ403で運転開始後または直前の除霜運転終了後の経過時間τがある設定された時間τsになったときに、ステップ404で室外熱交温度と外気温度と圧縮機回転数とを記憶しておく。τsは、除霜禁止時間よりも短く、暖房能力がピークに近い時間で、10分ないし20分に設定する。このときの室外熱交換器温度をTe1、外気温度をTo1、圧縮機回転数をN1とする。ステップ405において、除霜禁止時間が過ぎているときには、ステップ406で次式(7)により除霜開始室外熱交換器温度変化量ΔTedを計算する。
【0059】
ΔTed= a・ΔTo+ b・ΔN+c (7)
ΔTo=To−To1
ΔN=N−N1
ここで、a、b、cは定数。
【0060】
ΔTedの計算式において、右辺の第1項(a・ΔTo )は、外気温度の変化による項で、外気温度が変化した場合、着霜の速さが変化するので、その影響を表す。第2項(b・ΔN)は、圧縮機回転数の変化による項で、圧縮機回転数が変化した場合、やはり着霜の速さが変化するので、その影響を表す。ステップ407において、室外熱交換器温度変化量ΔTe=Te−Te1がΔTed以下になったならば、ステップ408で四方弁を暖房サイクルから冷房サイクルに切り替え、除霜運転に入る。室外熱交換器温度変化量ΔTeの符号は負で、この数値が小さいほど変化量の絶対値は大きいことに注意する。
【0061】
以下の手順は、第1の実施の形態と同様なので説明を省略する。ここで、暖房運転開始または除霜運転終了後、一定時間τs経過したときの外気温度と圧縮機回転数とを用いて式(7)の計算を行ったが、測定値のばらつきを考慮した場合、τs経過時から数回サンプリングした値の平均値を用いるとよい。また、除霜開始判定時の圧縮機回転数、室外熱交換器温度および外気温度についても、一時的な変動や急激な変動の影響を避けるため、数回のサンプリングの平均値を用いて式(7)の計算を行うとよい。
【0062】
本実施の形態によれば、室外熱交換器の温度低下量を用いた判定において、外気温度や圧縮機回転数の変化量の影響を入れているので、適切な着霜量となる除霜開始室外熱交換器温度において除霜運転が行われ、消費電力の低減、除霜運転時室温低下の防止による快適感の向上に効果がある。また、本実施の形態では、室外熱交換器温度の変化量を用いて除霜判定を行っているので、室外熱交換器温度センサの取り付け状態にばらつきがあったり、室外熱交換器温度センサの検出誤差が大きい場合でも、温度変化としての誤差は小さく、適切に除霜が行われる。また、外気温度や圧縮機回転数についても変化量を用いているので、絶対値の誤差は相殺されて精度が向上する。また、室外熱交換器温度の変化量を用いることにより、機種が変わっても除霜開始判定条件のパラメータを変更する必要がないか、あってもわずかの変更で済むという利点もある。
【0063】
本実施の形態においても、第1の実施の形態と同様に、除霜禁止時間を設けて、除霜禁止時間を外気温度によって変化させることにより、室外熱交換器温度の検出誤差が大きい場合でも、最低限の除霜運転間隔が確保でき、頻繁な除霜運転による快適感の低下を避けることができる。
【0064】
以上本実施の形態によれば、暖房運転時に、暖房運転開始後または除霜運転終了後一定時間経過したときの室外熱交換器温度と外気温度と制御装置の設定した圧縮機回転数とを制御装置に記憶しておき、暖房運転開始後または除霜運転終了後一定時間経過したときから除霜開始判定時までの室外熱交換器温度変化量が、設定した除霜開始室外熱交換器温度変化量以上になったときに除霜運転を行うようにし、このときの除霜開始室外熱交換器温度変化量は、暖房運転開始後または除霜運転終了後一定時間経過したときから除霜開始判定時までの外気温度の変化量と、暖房運転開始後または除霜運転終了後一定時間経過したときから除霜開始判定時までの圧縮機回転数の変化量とに基づいて設定するようにしたが、このように、室外熱交換器温度、圧縮機回転数、外気温度のそれぞれの変化量を用いて除霜開始を判断することにより、センサの絶対値の誤差の影響が回避され、精度よく除霜開始の時期を決定することができる。
【0065】
図10に参考例として除霜制御のアルゴリズムを示す。本装置の構成は第1の実施の形態(図1)と同様である。本実施の形態の除霜制御においては、前述の参考例と同様に、暖房運転開始後または除霜運転終了後一定時間経過したときからの室外熱交換器温度の変化量により除霜開始を判定する。図10において、ステップ502で外気温度To 、室外熱交換器温度Te 、圧縮機回転数Nを読み込み、ステップ503で経過時間τがある設定された時間τs のときには、ステップ504で室外熱交換器温度と外気温度と圧縮機回転数とを記憶しておく。時間τs は、除霜禁止時間よりも短い時間で、暖房能力がピークに近いときを設定する。このときの室外熱交換器温度をTe1、外気温度をTo1、圧縮機回転数をN1 とする。ステップ505において、除霜禁止時間が過ぎていれば、ステップ506で次式(8)により除霜開始室外熱交換器温度変化量ΔTedを計算する。
【0066】
ΔTed= a・ΔTo+ b・ΔN + c + d・To + e・N (8)
ΔTo=To−To1
ΔN=N−N1
ここで、a、b、c、d、eは定数。
【0067】
ΔTedの計算式(8)において、右辺の第1項(a・ΔTo)から第3項(c)は第4の実施の形態と同様で、第1項(a・ΔTo)は外気温度の変化による項、第2項(b・ΔN)は圧縮機回転数の変化による項を表す。第4項(d・To )および第5項(e・N)は、除霜開始判定時における外気温度および圧縮機回転数が除霜開始室外熱交換器温度変化量に与える影響を表す。これらの項を付加することにより、第4の実施の形態よりもさらに正確に着霜状態を判定できる。ステップ507において、室外熱交換器温度変化量ΔTe=Te−Te1がΔTed以下になったならば、ステップ508で四方弁を暖房サイクルから冷房サイクルに切り替え、除霜運転に入る。室外熱交換器温度変化量ΔTeの符号は負で、この数値が小さいほど変化量の絶対値は大きいことに注意する。
【0068】
以下の手順は、第1の実施の形態と同様なので説明を省略する。ここで、暖房運転開始または除霜運転終了後、一定時間τs を経過したときの外気温度と圧縮機回転数を用いて式(8)の計算を行ったが、測定値のばらつきを考慮した場合、τs経過時から数回サンプリングした値の平均値を用いるとよい。また、除霜開始判定時の圧縮機回転数、室外熱交換器温度および外気温度についても、一時的な変動や急激な変動の影響を避けるため、数回のサンプリングの平均値を用いて式(8)の計算を行うとよい。
【0069】
本実施の形態によれば、室外熱交換器の温度低下量を用いた判定において、外気温度の変化量、圧縮機回転数の変化量、除霜開始判定時の外気温度、および除霜開始判定時の圧縮機回転数の影響を考慮しているので、より厳密な着霜量の評価に基づいた除霜開始の決定に基づいた適切な除霜運転が行われ、消費電力の低減、除霜運転時室温低下の防止による快適感の向上に効果がある。また、室外熱交温度の変化量を用いることにより、機種が変わっても除霜開始判定条件のパラメータを変更する必要がない若しくはわずかの変更で済むという利点もある。
【0070】
本実施の形態においても、第1の実施の形態と同様に、除霜禁止時間を設けて、除霜禁止時間を外気温度によって変化させることにより、室外熱交換器温度の検出誤差が大きい場合でも、最低限の除霜運転間隔が確保でき、頻繁な除霜運転による快適感の低下を避けることができる。
【0071】
本実施の形態よれば、除霜運転を行うときの室外熱交換器の温度変化量を、外気温度の変化量と、圧縮機回転数の変化量と、除霜開始判定時の外気温度と、除霜開始判定時の圧縮機回転数とによって定めているので、より厳密な着霜量の評価に基づいた除霜開始の決定を行うことができる。
【0072】
また、暖房運転開始後または除霜運転終了後、所定時間除霜運転を行わない除霜禁止時間を設け、外気温度と外気湿度とに基づいて前記除霜禁止時間を設定しているので、最低限除霜運転を行わない時間がより適切に設定される。
【0073】
【発明の効果】
以上詳細に説明したように、本発明の空気調和装置によれば、外気温度に応じて除霜禁止時間を変化させ、また、外気温度および圧縮機回転数に応じて除霜開始室外熱交換器温度を変化させるので、着霜量が適切な時点で除霜運転が行われるため、消費電力の低減および室温低下の防止による快適感向上に効果がある。また、降雪等により室外熱交換器温度センサに霜が付着した場合や、室外熱交温度センサの据えつけ状態がばらついていた場合でも、適切に除霜運転が行われる。
【図面の簡単な説明】
【図1】 本発明の一実施の形態の空気調和装置の構成を表す図。
【図2】 本発明の除霜制御のアルゴリズムを示す図。
【図3】 除霜制御における外気温度と除霜禁止時間との関係を表す図。
【図4】 本発明の除霜制御における外気温度と除霜開始室外熱交換器温度との関係を示す図。
【図5】 本発明の除霜制御における圧縮機回転数と除霜開始室外熱交換器温度との関係を示す図。
【図6】 参考例における空気調和装置の構成を表す図。
【図7】 参考例の除霜制御のアルゴリズムを示す図。
【図8】 本発明の第の実施の形態における除霜制御のアルゴリズムを示す図。
【図9】 参考例における除霜制御のアルゴリズムを示す図。
【図10】 参考例における除霜制御のアルゴリズムを示す図。
【符号の説明】
1…圧縮機、2…室内熱交換器、3…膨張機構、4…室外熱交換器、5…四方弁、6…室外熱交換器温度センサ、7…外気温度センサ、8…制御装置、13…回転数センサ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat pump air conditioner, and more particularly to defrosting control of an outdoor heat exchanger during heating operation.
[0002]
[Prior art]
Recent air conditioning room air conditioners have been required to have further heating capacity during heating. One of the causes that lead to a decrease in heating capacity during heating is that the temperature of the outdoor heat exchanger that is installed in the outdoor unit and acts as an evaporator during heating decreases, and moisture in the air adheres to the outdoor heat exchanger. Defrosting control (defrost control), which is a control for releasing a so-called frosting state, that is, a so-called frosting state. In this defrosting control, the refrigerant flow in the refrigeration cycle is reversed from that during heating, and the high-temperature and high-pressure gas refrigerant discharged from the compressor is poured into the frosted outdoor heat exchanger to melt the frost. During this period of defrosting control, low-temperature and low-pressure two-phase refrigerant flows into the indoor heat exchanger via the expansion valve, so that the indoor fan is stopped and the room temperature decreases. It is preventing. That is, there is a problem that the room cannot be heated during the defrosting operation period. Therefore, it is necessary not to enter into the defrosting operation unnecessarily.
[0003]
Now, in order to prevent entering into the defrosting operation although it is not so frosted, attach a frost sensor to the outdoor heat exchanger and grasp the frosting situation in which the heating capacity decreases by a predetermined rate, Although it is conceivable to determine the start timing of the defrosting operation, this frost sensor cannot be used in terms of performance or price. In addition, it is conceivable that the user visually recognizes the frost formation state and starts the defrosting operation manually, but it is very inconvenient.
[0004]
Furthermore, the reason for executing the defrosting control is calculated by integrating the heating capacity by frost formation (the difference between the refrigerant suction temperature and the outlet temperature of the indoor unit and the compressor rotation speed of the outdoor unit, the specific heat of the refrigerant, and the refrigerant density). It is possible to recover the decline (decrease in the capacity of the outdoor heat exchanger), so the heating capacity of the air conditioner is monitored one by one and the defrosting operation is performed when this capacity drops by a predetermined percentage. It is also possible to construct a control system to be started. However, the heating capacity of an air conditioner is influenced by various other factors such as a decrease in the rotational speed of the indoor fan, and a control system that uniquely derives that the decrease in capacity is due to frost formation is to be constructed. There was a problem that was difficult.
[0005]
By the way, when frost forms on the outdoor heat exchanger, the heat transfer coefficient on the fin surface decreases and the heat absorption decreases, so that the refrigerant does not evaporate sufficiently and the gas-liquid mixed refrigerant goes to the compressor inlet (suction port). . For this reason, the liquid refrigerant is sucked into the compressor and evaporated in the cylinder, so that the temperature is lowered. As a result, the outlet refrigerant temperature (discharge refrigerant temperature) of the compressor is also lowered. When the sensor senses that the refrigerant discharge refrigerant temperature has fallen, the control system throttles the expansion valve to restore it. When the expansion valve is throttled, the compressor suction pressure decreases, and the temperature of the outdoor heat exchanger decreases. It is known that by sensing a decrease in the temperature of the outdoor heat exchanger, frost formation is determined and defrosting operation is performed. For example, in the examples described in JP-A-55-160248 and JP-A-61-153332, defrosting is performed when the difference between the outdoor heat exchanger temperature and the outdoor air temperature becomes a certain value or more. is there.
[0006]
In this way, when the temperature of the outdoor heat exchanger is detected and the defrost control is executed, for example, when the compressor speed increases due to a control request, the pressure difference before and after the compressor increases, Since the pressure of the heat exchanger decreases and the outdoor heat exchanger temperature also decreases, the defrosting operation may start despite the small amount of frost formation, and when the air volume of the indoor fan increases, As the capacity of the indoor heat exchanger increases, the condensation temperature decreases, the pressure of the indoor heat exchanger decreases, and the discharge pressure of the expansion valve also decreases. There are cases where the defrosting operation is started despite the small amount of frost.
[0007]
In order to solve this problem, Japanese Patent Application Laid-Open No. 60-169038 describes that a defrost prohibit timer is provided to prohibit entry into an unnecessary defrosting operation.
[0008]
[Problems to be solved by the invention]
In the above prior art, if the set time of the timer is short, the number of times the defrosting operation is performed increases, resulting in a decrease in the heating capacity, and there is a problem that it is difficult to set the time. There is also a problem that the start timing of the defrosting operation depends on the accuracy of the temperature sensor attached to the outdoor heat exchanger.
[0009]
Furthermore, when the defrosting operation is determined based on the difference between the outside air temperature and the outdoor heat exchanger temperature, the outside air temperature detector and the outdoor heat exchanger are When connected, there is a problem that accurate determination cannot be made.
[0010]
  A first object of the present invention is to provide an air conditioner that can eliminate a defrosting operation that is unnecessary as much as possible.is there. Second of the present inventionAn object of the present invention is to provide an air conditioner that can determine the defrosting operation even when the outdoor air temperature detector is thermally connected to the outdoor heat exchanger.
[0011]
[Means for Solving the Problems]
  The first object is to provide a compressor, an indoor heat exchanger connected to the compressor, an outdoor heat exchanger connected to the indoor heat exchanger via a decompression means, and the outdoor heat exchanger. An outdoor heat exchanger temperature detecting means for detecting the temperature, and an operation in which the refrigerant discharged from the compressor is passed through the indoor heat exchanger and the outdoor heat exchanger in this order to be sucked into the compressor. Based on the output of the heat exchanger temperature detecting means, a reverse command generating means for generating a command for reversing the refrigerant flow direction, an outside air temperature detecting means for detecting the outside air temperature, and a set time that changes in accordance with the outside air temperature The air conditioner comprises: time measuring means for timing the refrigerant; and means for reversing the refrigerant flow direction when the set time has elapsed and the reverse rotation command is generated. Refrigerant discharged from the machine Means for storing the outside air temperature when a set time has elapsed after the start of operation in which the indoor heat exchanger and the outdoor heat exchanger are circulated in order and sucked into the compressor, or after completion of the reverse rotation operation, The outside air temperature output from the temperature detecting means, the stored outside air temperature, and the outside air temperature output from the outside air temperature detecting means;The defrost start outdoor heat exchanger temperature is calculated on the basis of the difference between the defrost start outdoor heat exchanger temperature and the calculated defrost start outdoor heat exchanger temperature.Output of the outdoor heat exchanger temperature detection meansWhen becomes smallerThis is achieved by generating a command to reverse the refrigerant flow direction.
[0012]
  The second object is to provide a compressor, an indoor heat exchanger connected to the compressor, an outdoor heat exchanger connected to the indoor heat exchanger via a decompression means, and the outdoor heat exchange. Outdoor heat exchanger temperature detection means for detecting the temperature of the vessel;An outside air temperature detecting means for detecting an outside air temperature provided at a position close to the outdoor heat exchanger;During the operation in which the refrigerant discharged from the compressor is passed through the indoor heat exchanger and the outdoor heat exchanger in this order and sucked into the compressor, the output of the outdoor heat exchanger temperature detecting meansWhen the difference from the output of the outside air temperature detection means becomes smaller than the set value,And a means for reversing the refrigerant flow direction.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below with reference to embodiments shown in the drawings. FIG. 1 schematically shows the configuration of an air conditioner according to an embodiment (first embodiment) of the present invention. During the heating operation, the compressor 1, the indoor heat exchanger 2, the expansion mechanism 3, which is a decompression means such as an electric expansion valve, the outdoor heat exchanger 4, and the four-way valve 5 are sequentially connected by a refrigerant pipe to constitute a refrigeration cycle. The The control device 8 is equipped with a microcomputer and controls the compressor 1, the indoor fan 11, the outdoor fan 12, the electric expansion valve 3, the four-way valve 5, and the like. The rotation speed of the compressor 1 can be variably controlled by the inverter 9, and the control device 8 outputs a frequency command to the inverter 9 based on the intake air temperature detected by the intake air temperature sensor 10.
[0015]
During the heating operation, the four-way valve 5 maintains the connection state represented by the solid line in FIG. 1, and the refrigerant flows in the direction of the solid line arrow in FIG. 1 to constitute a heating cycle. At the time of the defrosting operation, the four-way valve is switched to the broken line connection state, and the refrigerant flows in the direction of the broken line arrow to enter the cooling cycle, and at the same time, the indoor blower 11 and the outdoor blower 12 are decelerated or stopped. An outdoor heat exchanger temperature sensor 6 is attached to the refrigerant pipe of the outdoor heat exchanger 4 and detects the refrigerant temperature of the outdoor heat exchanger 4. An outside air temperature sensor 7 attached to the intake side of the outdoor heat exchanger 4 detects the outside air temperature.
[0016]
The controller 8 detects the outdoor heat exchanger temperature that is the temperature detected by the outdoor heat exchanger temperature sensor 6, the outdoor temperature that is the temperature detected by the outdoor air temperature sensor 7, and the rotational speed of the compressor 1 that is detected by the rotational speed sensor 13. The start of the defrosting operation is determined based on the above. Instead of sensing the rotation speed of the compressor 1, a command value for the compressor rotation speed of the control device may be used.
[0017]
FIG. 2 shows an algorithm for defrosting control. In step 101, the microcomputer included in the control device 8 detects the outside air temperature T.oIn step 102, the outside air temperature T is calculated by the following equation (1).oDefrosting prohibition time τ corresponding todcCalculate The defrosting operation is not performed until the defrosting prohibition time has elapsed.
[0018]
τdc= ATo+ B (1)
A and B in the above formula are appropriate constants, and A <0 so that the defrosting prohibition time becomes longer as the outside air temperature is lower. The defrosting prohibition time is provided with an upper limit value and a lower limit value. When the value of formula (1) exceeds the upper limit value, the defrosting prohibition time is set as the upper limit value, and when the value of formula (1) is lower than the lower limit value. The defrosting prohibition time is the lower limit.
[0019]
In step 103, a defrosting prohibition time timer provided in the control device 8 is started. In step 104, the control device 8 detects the outside air temperature T detected by the outside air temperature sensor 7.o The outdoor heat exchanger temperature T detected by the outdoor heat exchanger temperature sensor 6eThen, the compressor rotational speed N detected by the rotational speed sensor 13 is read. Instead of the compressor rotational speed, a frequency detection circuit may be provided in the inverter and the frequency may be used. Further, an inverter frequency command value may be used. Next, outdoor heat exchanger temperature (defrosting start outdoor heat exchanger temperature) T when defrosting is started by the following equation (2)edIs calculated (step 105).
[0020]
Ted= A ・ To+ B · N + c (2)
Here, a, b, and c are constants, and a> 0 and b <0.
[0021]
An upper limit value and a lower limit value are set for Ted. When the value of Equation (2) is equal to or higher than the upper limit value, the upper limit value is set. For the compressor rotation speed, outdoor heat exchanger temperature, and outside air temperature, the formula (2) is calculated using the average value of several samplings in order to avoid the effects of temporary fluctuations and sudden fluctuations. Is good. There is also a method of validating those data only when the values of several samplings are within a certain range.
[0022]
Next, in step 106, the value τ of the defrost prohibition time timer is set to the predetermined time τ.dcIt is determined whether (defrosting prohibition time) has elapsed, and if a predetermined time has elapsed, in step 107, the outdoor heat exchanger temperature TeIs TedJudge whether it fell below. As frost adheres to the outdoor heat exchanger, the outdoor heat exchanger temperature decreases and the outdoor heat exchanger temperature TeIs TedIf it falls below, in Step 108, the four-way valve 5 is switched from the heating cycle to the cooling cycle, and the defrosting operation is started.
[0023]
In step 109, the defrosting operation time timer is started. In step 110, the defrosting operation time τdfIs the predetermined time τdfmaxIf it exceeds, defrosting operation is terminated (step 112). That is, the four-way valve is switched to the heating operation. ΤdfIs the predetermined time τdfmaxEven if it does not exceed, the outdoor heat exchanger temperature T in step 111eIs constant temperature TehWhen it rises above, the defrosting operation is terminated. TehMay be changed according to the outdoor heat exchanger temperature or the outside air temperature at the start of defrosting. If the defrosting operation is completed, the defrosting operation time timer is reset (step 113), and the defrosting prohibition time timer is also reset (step 114).
[0024]
In FIG. 3, the relationship between the external temperature in the defrost control of this Embodiment and a defrost prohibition time is shown. Since the absolute humidity of the outside air is low when the outside air temperature is low, the defrosting interval or the defrosting prohibition time is set long. Conversely, when the outside air temperature is high, the absolute humidity of the outside air is high, so the defrosting prohibition time is set short. . In addition, an upper limit value and a lower limit value are provided for the defrost prohibition time. In the unlikely event that frosting has progressed and there is a lot of frost, the upper limit will be set if it is stopped due to a power failure, etc. This is because the timing is started so that the outdoor heat exchanger is not excessively frosted and the heating capacity is not significantly reduced.
[0025]
In addition, the lower limit value is provided because, for example, when the lower limit value is set to 0, the defrosting operation start timing due to the outdoor heat exchanger temperature is prioritized and the unexpected defrosting operation is started as described above. If the outside air temperature sensor cannot normally measure the outside air temperature and measures higher than the original outside air temperature, for example, outside When there is an outside air temperature sensor in a place where the temperature is low but the sunlight is good, the defrosting operation is not performed at all because it is measured with a relatively high temperature that is heated by sunlight and does not cause frost formation. This is to avoid disappearance. Further, even when the outside temperature sensor is frosted, the outside temperature sensor does not operate normally and an error occurs in the output, but it is possible to avoid that the defrosting operation is not performed at all.
[0026]
This upper limit value is set to be 70 minutes at a temperature of −5 ° C. or lower, and the lower limit value is set to 45 minutes at a temperature of 0 ° C. or higher. In addition, the slope of the prohibition time with respect to the outside air temperature between the upper limit value and the lower limit value shown in FIG. 3 is the most likely frost formation condition, that is, when the heating operation is started under the conditions of 90% humidity and 8000 rpm of the compressor. The prohibition time until the heating capacity drops to 88% from (heating capacity 100%) is calculated for each outside air temperature and connected by a line.
[0027]
However, since there is usually not much operation under such conditions, in many cases, the prohibition time is timed up before defrosting is required, and then the removal due to a decrease in the outdoor heat exchanger temperature is performed. A frost operation start command is issued, and the defrost operation is started. In addition, when the temperature of the outdoor heat exchanger suddenly decreases for some reason, or when it is determined that the temperature has decreased due to an error in the output of the outdoor heat exchanger temperature sensor, the defrosting operation start command is immediately issued. However, by setting the lower limit value, it is possible to prevent the defrosting operation from being started even though frost is not formed.
[0028]
In the above embodiment, the prohibition time is calculated based on the outside air temperature. However, the same effect can be obtained even if the outside air humidity is used or the outside air temperature and the outside air humidity are used.
[0029]
In the embodiment shown in FIG. 2, after the defrosting prohibition time has elapsed in step 106, it is determined whether or not defrosting has started based on the outdoor heat exchanger temperature in step 107. The same effect can be obtained even if it is determined whether or not defrosting is started based on the temperature, and whether or not the defrosting prohibition time has elapsed when defrosting is necessary. The same applies to the embodiments described below.
[0030]
Next, the defrost start conditions in the defrost control of this Embodiment are demonstrated. 4 and 5 show the above equation (2). FIG. 4 shows the outside air temperature T with the compressor speed N as a parameter.oAnd defrosting start outdoor heat exchanger temperature TedShows the relationship. FIG. 5 shows the outside air temperature ToAs parameters, compressor rotation speed N and defrosting start outdoor heat exchanger temperature TedShows the relationship.
[0031]
In FIG. 4, N1, N2, NThreeRepresents the number of revolutions of the different compressors, N1<N2<NThreeIt is. In FIG. 4, only three types of rotation speed are shown for convenience. Actually, the rotational speed changes more finely, but the idea is the same. In FIG.o1, To2, To3Represents different outside temperatures, To1> To2> To3It is. In FIG. 5, only three types of outside air temperatures are shown for convenience. Actually, the outside air temperature changes continuously, but the idea is the same.
[0032]
The defrosting operation is performed when the outdoor heat exchanger temperature falls below the solid line (control line) corresponding to each condition in FIG. 4 or FIG. As shown in FIG. 4, the lower the outside air temperature, the lower the defrost start outdoor heat exchanger temperature, and the higher the outside air temperature, the higher the defrost start outdoor heat exchanger temperature. This is because even if the frost amount is the same, the lower the outside air temperature, the lower the evaporation temperature of the refrigerant. Therefore, the lower the outside air temperature, the lower the outside heat exchanger temperature, the lower the outside heat exchanger temperature. This is because the defrosting operation is started while the amount is low, resulting in wasteful power consumption and a decrease in comfort. On the other hand, when the outside air temperature is high, the refrigerant evaporating temperature is high, so unless the defrosting is performed at a high outdoor heat exchanger temperature, the amount of frost formation becomes excessive and the defrosting operation takes time. As a result, the power consumption increases and the room temperature decreases.
[0033]
As shown in FIG. 5, the higher the compressor speed, the lower the defrost start outdoor heat exchanger temperature, and the lower the compressor speed, the higher the defrost start outdoor heat exchanger temperature. This is because, when the outside air temperature is the same, the refrigerant evaporating temperature decreases as the rotational speed increases even if the amount of frost formation is the same. Therefore, defrosting is performed at a lower outdoor heat exchanger temperature as the rotational speed increases. Otherwise, the defrosting operation is started while the amount of frost formation is small, resulting in unpleasant sensation due to wasteful power consumption and a decrease in room temperature. On the other hand, when the compressor speed is low, the evaporation temperature of the refrigerant becomes high, so if the defrosting is not performed at a high outdoor heat exchanger temperature, the amount of frost formation will be excessive and it will take time for the defrosting operation. As a result, the power consumption increases and the room temperature decreases.
[0034]
Moreover, as shown in FIG. 4, the defrost start outdoor heat exchanger temperature TedDefines an upper and lower limit, and TedIs the lower limit Te1T whene1And upper limit Te2Te2It was. The reason why the upper limit value is provided is that frost formation does not occur above the outdoor heat exchanger temperature. The reason why the lower limit is set is that when the outdoor heat exchanger temperature falls below a certain temperature, there is a high possibility that frost formation has progressed. Even if it does not operate normally, defrosting operation is performed if the outdoor heat exchanger temperature falls to the lower limit due to frost formation on the outdoor heat exchanger, so the heating capacity is not performed at all. Can be prevented from significantly decreasing. By the way, upper limit Te2Is the compressor speed NThreeIn the case of outside temperature 5 ° C or higher, compressor rotation speed N1If the outdoor temperature is 2 ℃ or higher and the outdoor heat exchanger temperature is set to -4 ℃, the lower limit Te1Is the compressor speed N1In the case of the outside air temperature -10 ° C or less and the compressor rotation speed NThreeIn this case, the outdoor air temperature is set to -19 ° C or lower and the outdoor heat exchanger temperature is set to -19 ° C.
[0035]
In situations where a large amount of snow is falling, if the outside air temperature sensor is close to the outdoor heat exchanger, snow or frost is clogged between the outside air temperature sensor and the outdoor heat exchanger. In some cases, heat transfer is performed via frost or frost, and the outside air temperature may be close to the outdoor heat exchanger temperature. In such a case, the outdoor temperature may be detected lower than the actual temperature due to heat conduction from the outdoor temperature sensor to the outdoor heat exchanger, and even if a large amount of frost is formed on the outdoor heat exchanger, the defrosting operation may not be started. . To avoid this, the outside air temperature ToAnd outdoor heat exchanger temperature TeIs smaller than a certain value dT, that is,
To-Te<DT (3)
(DT is a constant)
Is established, the predetermined time after starting operation (defrosting prohibition time) τdcOr the predetermined time (defrosting prohibition time) τ after the end of the defrosting operationdcAfter the elapse of time, the defrosting operation is performed. The constant value dT may be a set value of about 2 to 3 ° C. Outside temperature T when defrosting prohibition time has elapsedoAnd outdoor heat exchanger temperature TeWhen the difference between and the outdoor heat exchanger temperature falls below a certain temperature without using the outside air temperature, it may be switched to the defrosting operation. Further, instead of using the difference between the outside air temperature and the outdoor heat exchanger temperature, the amount of decrease in the outside air temperature within a certain time may be used. When the outside air temperature has decreased by a predetermined amount or more within a certain period of time, it is determined that frost has adhered between the outside temperature sensor and the outdoor heat exchanger, and the defrosting operation is performed.
[0036]
By performing the defrost control as described above, the defrosting operation is not performed with little frost formation, and the outdoor heat exchanger is not excessively defrosted. The room temperature will not drop and comfort will not be impaired. Even when the detection error of the outdoor heat exchanger temperature is large, the defrosting prohibition time during which the defrosting operation is not performed at least is changed according to the outside air temperature, so that unnecessary defrosting operation can be avoided and power can be saved. It is possible to prevent wasteful consumption and a loss of comfort due to a drop in room temperature. Further, even when snow or frost is clogged between the outdoor air temperature sensor and the outdoor heat exchanger, the defrosting operation can be performed appropriately, so that the heating capacity is not significantly reduced. Since the rotation speed of the compressor changes due to various factors, it is difficult to determine which compressor rotation speed is taken in after defrosting or from the start of heating operation. Therefore, it is possible to use only the outside air temperature and the outdoor heat exchanger temperature without taking into account the rotation speed of the compressor. At this time, the lower the outside air temperature, the higher the rotation speed of the compressor. By performing the control as indicated by the chain line, it is possible to obtain an effect close to the case where the compressor rotational speed is taken in. In this case, although the control line is represented by a straight line in FIG. 4, the effect can be further improved by using a broken line or another curve. Also in the embodiment described below, it is not always necessary to incorporate the compressor rotation speed factor.
[0037]
As described above, according to the present embodiment, the lower the outside air temperature, the lower the absolute humidity even at the same relative humidity, so that the frosting rate to the outdoor heat exchanger during heating is reduced. In addition to judging frost formation based on the temperature of the outdoor heat exchanger, if the defrosting prohibition time is increased as the outside air temperature is lower, defrosting can be performed for the minimum time when defrosting is not required. Therefore, even if the detection error of the outdoor heat exchanger temperature sensor is large or the mounting state varies, useless defrosting operation can be avoided. The feeling is not impaired.
[0038]
In addition, by changing the defrosting prohibition time according to the outside air temperature, the minimum defrosting time is guaranteed even when the detection error of the outdoor heat exchanger temperature sensor is large or the mounting condition is bad. In addition, since the outdoor heat exchanger temperature when starting defrosting is determined by the outside air temperature and the compressor rotation speed, the defrosting operation is performed at a more appropriate timing. Moreover, since the upper limit is provided in the outdoor heat exchanger temperature which starts defrosting, when the surface temperature of a heat exchanger is high and frost does not adhere, defrosting operation is not performed. Furthermore, since the lower limit value is set for the outdoor heat exchanger temperature at which the defrosting is started, for example, it is snowing, so that the outdoor air temperature is not correctly detected due to the accumulation of snow between the outdoor air temperature sensor and the outdoor heat exchanger. Even in such a case, since the defrosting operation is performed with a certain amount of frost formation, the heating capacity is not significantly reduced.
[0039]
In addition, since the upper and lower limits are set for the defrosting prohibition time, even if the system is stopped due to a power failure, etc. and restarted immediately, the outdoor heat exchanger will be excessively frozen and heated. There will be no significant loss of ability. Further, even when the outside air temperature sensor is not operating normally, such as when the outside air temperature sensor is frosted, it is possible to avoid that the defrosting operation is not performed at all.
[0040]
The defrosting operation is also performed when the difference between the outside air temperature and the outdoor heat exchanger temperature is equal to or less than a predetermined value. This is because, for example, it is possible to determine the case where it is snowing and the outside temperature is not correctly detected due to the accumulation of snow between the outside temperature sensor and the outdoor heat exchanger as described above. The defrosting operation is appropriately performed.
[0041]
  FIG.Empty as a reference exampleThe structure of an air conditioning apparatus is shown. In this embodiment, an outside air humidity sensor 14 is provided in addition to the configuration of the first embodiment. Since other configurations are the same as those of the first embodiment, the description thereof is omitted. FIG. 7 shows the defrost control algorithm of the present embodiment. In step 202, the microcomputer included in the control device 8 determines the outside temperature To , Outdoor heat exchanger temperature Te , Compressor rotation speed N and outside humidity RHo Is read. Next, outdoor heat exchanger temperature (defrosting start outdoor heat exchanger temperature) T when defrosting operation is started by the following equation (4)edIs calculated (step 203).
[0042]
Ted= A ・ To+ B ・ N + c ・ RHo+ D (4)
Here, a, b, c, d are constants, and a> 0, b <0, c> 0.
[0043]
As the outdoor air humidity is higher, the defrosting operation is performed at a higher outdoor heat exchanger temperature (that is, c> 0). This is because the higher the outside air humidity, the greater the amount of frost formation and the higher the evaporation temperature. As in the first embodiment, TedIs provided with an upper limit and a lower limit.
[0044]
In step 204, it is determined whether the defrosting prohibition time has elapsed. In step 205, the outdoor heat exchanger temperature TeIs TedIf it falls below, the four-way valve is switched from the heating cycle to the cooling cycle, and the defrosting operation is started. The following parts are the same as those in the first embodiment.
[0045]
When the outside air humidity sensor is provided, the defrosting prohibition time during which the defrosting operation is not performed may be changed depending on the outside air humidity after the start of the heating operation or after the end of the immediately preceding defrosting operation. For example, the defrosting prohibition time τ by the following equation (5)dcSet.
[0046]
τdc= (A ・ To2 + B ・ To + C) ・ RHo+ D (5)
Where ToIs the outside temperature, RHoIs the relative humidity of the outside air, and A, B, C, D are constants.
[0047]
In the present embodiment, in addition to the outside air temperature, the compressor rotation speed, and the outdoor heat exchanger temperature, the influence of the outside air humidity is used for the determination of the start of defrosting, so frost formation can be detected with higher accuracy. It has a great effect on reducing power consumption and improving comfort during heating.
[0048]
  FIG. 8 shows still another embodiment (first2Of the defrosting control in the embodiment). The configuration of this embodiment is the same as that of the first embodiment (FIG. 1). In FIG. 8, in step 302, the outside air temperature To, Outdoor heat exchanger temperature Te, The compressor rotation speed N is read, and the set time τ that has elapsed time τ in step 303s In this case, the outside air temperature and the compressor rotation speed are stored in step 304.
[0049]
The set time τsIs shorter than the defrosting prohibition time and the heating capacity is close to the peak, and is set to 10 minutes to 20 minutes. The outside air temperature at this time is To1, The compressor speed is N1And In step 305, if the defrosting prohibition time has passed, in step 306, the defrosting start outdoor heat exchanger temperature is calculated by the following equation (6).
[0050]
Ted= A ・ To+ B · N + c + d · ΔTo+ E · ΔN (6)
ΔTo= To-To1
ΔN = N−N1
Here, a, b, c, d, and e are constants, and a> 0 and b <0.
[0051]
In this defrosting start outdoor heat exchanger temperature calculation formula (6),
The first term on the right side (aTo ) To the third term (c) are the same as those in the first embodiment. The fourth term on the right side (d · ΔTo ) Is a correction term for the defrosting start outdoor heat exchanger temperature due to a change in the outside air temperature. When the outside air temperature changes, the speed of frost formation changes, and the influence thereof is corrected. The fifth term (e · ΔN) is a correction term for the defrosting start outdoor heat exchanger temperature due to the change in the compressor rotational speed. When the compressor rotational speed is changed, the speed of frosting also changes. The effect is corrected.
[0052]
Fourth term (d · ΔTo ) Or the fifth term (e · ΔN) may be added. Similar correction terms can be added to the second embodiment and the third embodiment. Here, after the start of the heating operation or the end of the defrosting operation, τsThe correction was made using the outside air temperature and the compressor rotation speed at the time of elapse.sAn average value of values sampled several times from the elapsed time may be used.
[0053]
In addition, with respect to the compressor rotation speed, outdoor heat exchanger temperature, and outdoor air temperature at the start of defrosting determination, an equation (( The calculation of 6) should be performed. Furthermore, the same effect can be expected even if the correction based on the compressor speed is removed while leaving only the correction of the outside air temperature.
[0054]
According to the present embodiment, even when the outside air temperature or the compressor rotation speed changes greatly, the defrosting operation is performed at the defrosting start outdoor heat exchanger temperature at which the frosting amount becomes more appropriate. In addition, a decrease in room temperature during the defrosting operation is suppressed, and a feeling of comfort is improved.
[0055]
Even in the present embodiment, by providing a defrosting prohibition time as in the first embodiment and changing the defrosting prohibition time according to the outside air temperature, even when the detection error of the outdoor heat exchanger temperature is large, A minimum defrosting operation interval can be secured, and a decrease in comfort due to frequent defrosting operations can be avoided.
[0056]
According to the present embodiment, the outside air temperature and the compressor rotational speed when a certain time has elapsed after the start of the heating operation or after the completion of the defrost operation are stored in the control device, and the defrost start outdoor heat exchanger temperature is stored. The difference between the outside air temperature when a certain time has elapsed after the start of heating operation or after the completion of the defrosting operation, and when the fixed time has elapsed after the start of heating operation or after the completion of the defrosting operation Correction was made according to the compressor speed with time. With this correction, even if the outside air temperature changes greatly or the rotation speed of the compressor changes greatly, the effect of changes in the frosting speed on the outdoor heat exchanger can be corrected appropriately, so that the timing can be further improved. A defrosting operation is performed, power consumption is reduced, and a comfortable feeling during heating is improved.
[0057]
  FIG.As a reference exampleThe algorithm of frost control is shown. The configuration of the apparatus of the present embodiment is the same as that of the first embodiment (FIG. 1). In the defrost control of the present embodiment, the start of defrosting is determined based on the amount of change in the outdoor heat exchanger temperature after a certain period of time has elapsed after the start of heating operation or after the end of defrosting operation.
[0058]
In step 402 of FIG. 9, the outside air temperature To, Outdoor heat exchanger temperature TeAnd the compressor rotation speed N is read, and a set time τ with an elapsed time τ after the start of operation in step 403 or after the end of the previous defrost operationsIn step 404, the outdoor heat exchange temperature, the outside air temperature, and the compressor rotational speed are stored. τsIs shorter than the defrosting prohibition time and the heating capacity is close to the peak, and is set to 10 minutes to 20 minutes. The outdoor heat exchanger temperature at this time is Te1, To1, The compressor speed is N1And In step 405, when the defrosting prohibition time has passed, in step 406, the defrosting start outdoor heat exchanger temperature change amount ΔT according to the following equation (7):edCalculate
[0059]
ΔTed= A · ΔTo+ B · ΔN + c (7)
ΔTo= To-To1
ΔN = N−N1
Here, a, b, and c are constants.
[0060]
ΔTedIn the calculation formula, the first term on the right side (a · ΔTo ) Is a term due to a change in the outside air temperature. When the outside air temperature changes, the speed of frost formation changes, and thus represents the influence. The second term (b · ΔN) is a term due to a change in the compressor rotational speed. When the compressor rotational speed changes, the speed of frost formation also changes, and represents the influence. In step 407, the outdoor heat exchanger temperature change ΔTe= Te-Te1Is ΔTedIf it becomes below, in step 408, the four-way valve is switched from the heating cycle to the cooling cycle, and the defrosting operation is started. Outdoor heat exchanger temperature change ΔTeNote that the sign of is negative, and the smaller the value, the greater the absolute value of the change.
[0061]
Since the following procedure is the same as that of the first embodiment, the description thereof is omitted. Here, after the start of the heating operation or the end of the defrosting operation, τsThe calculation of the equation (7) was performed using the outside air temperature and the compressor rotation speed when elapsed.sAn average value of values sampled several times from the elapsed time may be used. In addition, with respect to the compressor rotation speed, outdoor heat exchanger temperature, and outdoor air temperature at the start of defrosting determination, an equation (( The calculation of 7) should be performed.
[0062]
According to the present embodiment, in the determination using the temperature decrease amount of the outdoor heat exchanger, the influence of the outside air temperature and the amount of change in the compressor rotation speed is included, so that the defrosting start with an appropriate amount of frost formation The defrosting operation is performed at the outdoor heat exchanger temperature, which is effective in reducing power consumption and improving comfort by preventing a decrease in room temperature during the defrosting operation. Further, in this embodiment, since the defrost determination is performed using the amount of change in the outdoor heat exchanger temperature, there is a variation in the mounting state of the outdoor heat exchanger temperature sensor, or the outdoor heat exchanger temperature sensor Even when the detection error is large, the error as a temperature change is small, and defrosting is performed appropriately. Further, since the amount of change is also used for the outside air temperature and the compressor rotational speed, the absolute value error is offset and the accuracy is improved. Further, by using the amount of change in the outdoor heat exchanger temperature, there is an advantage that even if the model is changed, there is no need to change the parameter of the defrosting start determination condition, or even a slight change is required.
[0063]
Even in the present embodiment, similarly to the first embodiment, by providing a defrosting prohibition time and changing the defrosting prohibition time according to the outside air temperature, even when the detection error of the outdoor heat exchanger temperature is large. A minimum defrosting operation interval can be secured, and a decrease in comfort due to frequent defrosting operations can be avoided.
[0064]
As described above, according to the present embodiment, during the heating operation, the outdoor heat exchanger temperature, the outdoor air temperature, and the compressor rotation speed set by the control device when a certain period of time has elapsed after the start of the heating operation or after the completion of the defrosting operation are controlled. Stored in the device, the amount of change in outdoor heat exchanger temperature from when a certain time has elapsed after the start of heating operation or after the completion of defrost operation until the defrost start determination time is the set defrost start outdoor heat exchanger temperature change The defrosting operation is performed when the amount exceeds the amount, and the defrosting start outdoor heat exchanger temperature change amount at this time is the defrosting start determination after a certain time has elapsed after the heating operation starts or after the defrosting operation ends. It was set based on the amount of change in the outside air temperature until the time and the amount of change in the compressor speed from the time when the defrosting operation was determined after a certain period of time after the heating operation was started or after the defrosting operation was completed. , Thus, outdoor heat exchanger temperature By determining the start of defrosting using the respective changes in the compressor speed and the outside air temperature, the influence of the error in the absolute value of the sensor can be avoided, and the timing for starting the defrosting can be determined with high accuracy. .
[0065]
  FIG.As a reference exampleThe algorithm of frost control is shown.Main packageThe configuration of the device is the same as that of the first embodiment (FIG. 1). In the defrost control of the present embodiment,Reference example aboveSimilarly, the start of defrosting is determined based on the amount of change in the outdoor heat exchanger temperature after a certain period of time has elapsed after the start of heating operation or the end of defrosting operation. In FIG. 10, outside air temperature T in step 502o , Outdoor heat exchanger temperature Te , The compressor rotation speed N is read, and the set time τ that has elapsed time τ in step 503s In step S504, the outdoor heat exchanger temperature, the outside air temperature, and the compressor rotational speed are stored. Time τs Sets a time shorter than the defrosting prohibition time and when the heating capacity is close to the peak. The outdoor heat exchanger temperature at this time is Te1, To1, The compressor speed is N1 And In step 505, if the defrosting prohibition time has passed, in step 506, the defrosting start outdoor heat exchanger temperature change amount ΔT according to the following equation (8):edCalculate
[0066]
ΔTed= A · ΔTo+ B · ΔN + c + d · To + EN (8)
ΔTo= To-To1
ΔN = N−N1
Here, a, b, c, d, and e are constants.
[0067]
ΔTedIn the calculation formula (8), the first term on the right side (a · ΔTo) To the third term (c) are the same as those of the fourth embodiment, and the first term (a · ΔT)o) Represents a term due to a change in outside air temperature, and the second term (b · ΔN) represents a term due to a change in compressor rotation speed. Item 4 (d · To ) And the fifth term (e · N) represent the influence of the outside air temperature and the compressor rotation speed at the time of defrosting start determination on the defrosting start outdoor heat exchanger temperature change amount. By adding these terms, the frosting state can be determined more accurately than in the fourth embodiment. In step 507, the outdoor heat exchanger temperature change ΔTe= Te-Te1Is ΔTedIf it becomes below, in step 508, the four-way valve is switched from the heating cycle to the cooling cycle, and the defrosting operation is started. Outdoor heat exchanger temperature change ΔTeNote that the sign of is negative, and the smaller the value, the greater the absolute value of the change.
[0068]
Since the following procedure is the same as that of the first embodiment, the description thereof is omitted. Here, after the start of the heating operation or the end of the defrosting operation, τs (8) was calculated using the outside air temperature and the compressor rotation speed when lapsed, but when taking into account variations in measured values, τsAn average value of values sampled several times from the elapsed time may be used. In addition, with respect to the compressor rotation speed, outdoor heat exchanger temperature, and outdoor air temperature at the start of defrosting determination, an equation (( The calculation of 8) should be performed.
[0069]
According to the present embodiment, in the determination using the amount of decrease in the temperature of the outdoor heat exchanger, the amount of change in the outside air temperature, the amount of change in the compressor rotation speed, the outside air temperature at the start of defrosting determination, and the defrosting start determination Considering the effect of compressor rotation speed at the time, appropriate defrosting operation based on the determination of defrosting start based on more rigorous frost formation evaluation is performed, reducing power consumption, defrosting It is effective in improving comfort by preventing a drop in room temperature during operation. Further, by using the amount of change in the outdoor heat exchange temperature, there is an advantage that even if the model is changed, it is not necessary to change the parameter of the defrosting start determination condition or only a slight change is required.
[0070]
Even in the present embodiment, similarly to the first embodiment, by providing a defrosting prohibition time and changing the defrosting prohibition time according to the outside air temperature, even when the detection error of the outdoor heat exchanger temperature is large. A minimum defrosting operation interval can be secured, and a decrease in comfort due to frequent defrosting operations can be avoided.
[0071]
According to the present embodiment, the temperature change amount of the outdoor heat exchanger when performing the defrosting operation, the change amount of the outside air temperature, the change amount of the compressor rotation speed, the outside air temperature at the time of starting the defrosting, and Since it determines with the rotation speed of the compressor at the time of a defrost start determination, the determination of the defrost start based on more exact evaluation of the amount of frost formation can be performed.
[0072]
In addition, after the start of the heating operation or after the completion of the defrosting operation, the defrosting prohibition time during which the defrosting operation is not performed for a predetermined time is provided and the defrosting prohibition time is set based on the outside air temperature and the outside air humidity. The time when the limited defrosting operation is not performed is set more appropriately.
[0073]
【The invention's effect】
As described above in detail, according to the air conditioner of the present invention, the defrosting prohibition time is changed according to the outside air temperature, and the defrosting start outdoor heat exchanger is changed according to the outside air temperature and the compressor rotational speed. Since the temperature is changed, the defrosting operation is performed when the amount of frost formation is appropriate, which is effective in reducing power consumption and preventing a decrease in room temperature. Further, even when frost adheres to the outdoor heat exchanger temperature sensor due to snowfall or the like, or when the installation state of the outdoor heat exchanger temperature sensor varies, the defrosting operation is appropriately performed.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a configuration of an air conditioner according to an embodiment of the present invention.
FIG. 2 is a diagram showing an algorithm for defrosting control according to the present invention.
FIG. 3 is a diagram illustrating a relationship between an outside air temperature and a defrost prohibition time in defrost control.
FIG. 4 is a diagram showing the relationship between the outside air temperature and the defrosting start outdoor heat exchanger temperature in the defrosting control of the present invention.
FIG. 5 is a diagram showing a relationship between a compressor rotation speed and a defrost start outdoor heat exchanger temperature in the defrost control of the present invention.
[Fig. 6]Reference exampleThe figure showing the structure of the air conditioning apparatus in FIG.
[Fig. 7]Reference exampleThe figure which shows the algorithm of the defrost control of.
FIG. 8 shows the first of the present invention.2The figure which shows the algorithm of the defrost control in embodiment of this.
FIG. 9Reference exampleThe figure which shows the algorithm of the defrost control in.
FIG. 10Reference exampleThe figure which shows the algorithm of the defrost control in.
[Explanation of symbols]
  DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Indoor heat exchanger, 3 ... Expansion mechanism, 4 ... Outdoor heat exchanger, 5 ... Four-way valve, 6 ... Outdoor heat exchanger temperature sensor, 7 ... Outside temperature sensor, 8 ... Control apparatus, 13 ... rotational speed sensor.

Claims (2)

圧縮機と、この圧縮機に接続された室内熱交換器と、この室内熱交換器に減圧手段を介して接続された室外熱交換器と、前記室外熱交換器の温度を検知する室外熱交換器温度検知手段と、前記圧縮機から吐出された冷媒を前記室内熱交換器、前記室外熱交換器の順に通流させて前記圧縮機に吸入させる運転時、前記室外熱交換器温度検知手段の出力に基づいて前記冷媒通流方向を逆転させる指令を発生する逆転指令発生手段と、外気温度を検知する外気温度検知手段と、この外気温度に応じて変化する設定時間を計時する計時手段と、前記設定時間が経過し、前記逆転指令が発生しているとき前記冷媒通流方向を逆転させる手段とを備えた空気調和装置において、前記逆転指令発生手段は、前記圧縮機から吐出された冷媒を前記室内熱交換器、前記室外熱交換器の順に流通させて前記圧縮機に吸入させる運転開始時、又は逆転運転終了後、設定時間経過したときの前記外気温度を記憶する手段を備え、前記外気温度検知手段から出力された外気温度と、前記記憶された外気温度と前記外気温度検知手段から出力された外気温度との差とに基づいて除霜開始室外熱交換器温度を演算し、この演算された除霜開始室外熱交換器温度よりも前記室外熱交換器温度検知手段の出力が小さくなった場合前記冷媒通流方向を逆転させる指令を発生するものである空気調和装置。A compressor, an indoor heat exchanger connected to the compressor, an outdoor heat exchanger connected to the indoor heat exchanger via decompression means, and an outdoor heat exchange for detecting the temperature of the outdoor heat exchanger The temperature of the outdoor heat exchanger is detected when the refrigerant discharged from the compressor is allowed to flow in the order of the indoor heat exchanger and the outdoor heat exchanger and sucked into the compressor. A reverse command generating means for generating a command to reverse the refrigerant flow direction based on the output, an outside air temperature detecting means for detecting the outside air temperature, and a time measuring means for measuring a set time that changes in accordance with the outside air temperature; Means for reversing the refrigerant flow direction when the set time has elapsed and the reverse rotation command is generated, wherein the reverse rotation command generation means is configured to supply the refrigerant discharged from the compressor. The indoor heat exchanger A means for storing the outside air temperature when a set time has elapsed after the start of operation in which the outdoor heat exchanger is circulated in order and sucked into the compressor, or after completion of the reverse rotation operation, and output from the outside air temperature detection means; The defrost start outdoor heat exchanger temperature is calculated based on the outside air temperature and the difference between the stored outside temperature and the outside air temperature output from the outside air temperature detection means, and the calculated defrost start outdoor temperature is calculated. An air conditioner that generates a command to reverse the refrigerant flow direction when the output of the outdoor heat exchanger temperature detection means becomes smaller than the heat exchanger temperature. 圧縮機と、この圧縮機に接続された室内熱交換器と、この室内熱交換器に減圧手段を介して接続された室外熱交換器と、前記室外熱交換器の温度を検知する室外熱交換器温度検知手段と、前記室外熱交換器に近接する位置に設けられて外気温度を検知する外気温度検知手段と、前記圧縮機から吐出された冷媒を前記室内熱交換器、前記室外熱交換器の順に通流させて前記圧縮機に吸入させる運転時、前記室外熱交換器温度検知手段の出力と前記外気温度検知手段の出力との差が設定値より小さくなったとき、前記冷媒通流方向を逆転させる手段とを備えた空気調和装置。  A compressor, an indoor heat exchanger connected to the compressor, an outdoor heat exchanger connected to the indoor heat exchanger via decompression means, and an outdoor heat exchange for detecting the temperature of the outdoor heat exchanger Temperature detection means, outdoor temperature detection means for detecting the outside air temperature provided at a position close to the outdoor heat exchanger, refrigerant discharged from the compressor, the indoor heat exchanger, the outdoor heat exchanger When the difference between the output of the outdoor heat exchanger temperature detecting means and the output of the outside air temperature detecting means becomes smaller than a set value during operation in which the compressor is sucked and sucked into the compressor, the refrigerant flow direction An air conditioner comprising means for reversing the rotation.
JP19539997A 1996-08-08 1997-07-22 Air conditioner Expired - Fee Related JP3893676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19539997A JP3893676B2 (en) 1996-08-08 1997-07-22 Air conditioner

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP20958996 1996-08-08
JP8-209589 1996-08-08
JP19539997A JP3893676B2 (en) 1996-08-08 1997-07-22 Air conditioner

Publications (2)

Publication Number Publication Date
JPH10103818A JPH10103818A (en) 1998-04-24
JP3893676B2 true JP3893676B2 (en) 2007-03-14

Family

ID=26509090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19539997A Expired - Fee Related JP3893676B2 (en) 1996-08-08 1997-07-22 Air conditioner

Country Status (1)

Country Link
JP (1) JP3893676B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106871368A (en) * 2017-03-13 2017-06-20 珠海格力电器股份有限公司 The control method of air-conditioner set, device and air-conditioner set

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3593592B2 (en) * 1999-09-30 2004-11-24 株式会社日立製作所 Air conditioner
JP4265188B2 (en) * 2002-09-24 2009-05-20 三菱電機株式会社 Air conditioner
WO2007013382A1 (en) * 2005-07-26 2007-02-01 Mitsubishi Electric Corporation Refrigerating air conditioner
JP4986443B2 (en) * 2005-12-06 2012-07-25 シャープ株式会社 Air conditioner
JP2008170064A (en) * 2007-01-11 2008-07-24 Daikin Ind Ltd Air conditioner
JP5076811B2 (en) * 2007-11-01 2012-11-21 パナソニック株式会社 Air conditioner
JP5442291B2 (en) * 2009-03-30 2014-03-12 株式会社日本クライメイトシステムズ Air conditioner for vehicles
JP5088586B2 (en) * 2009-11-18 2012-12-05 ダイキン工業株式会社 Air conditioner outdoor unit
JP5367633B2 (en) * 2010-04-15 2013-12-11 株式会社コロナ Geothermal heat pump device
WO2013171971A1 (en) * 2012-05-16 2013-11-21 パナソニック株式会社 Heating system control method and heating system
JP5581354B2 (en) * 2012-06-15 2014-08-27 リンナイ株式会社 Thermal equipment
JP2014034371A (en) * 2012-08-10 2014-02-24 Honda Motor Co Ltd Vehicle air conditioner
JP2014202367A (en) * 2013-04-01 2014-10-27 株式会社デンソー Refrigeration cycle device
JP6486335B2 (en) * 2014-04-22 2019-03-20 日立ジョンソンコントロールズ空調株式会社 Air conditioner and its defrosting operation method
CN104006591B (en) * 2014-05-28 2016-07-13 美的集团股份有限公司 The defrosting control method of dehumidifier and device
JP2016161256A (en) * 2015-03-04 2016-09-05 株式会社富士通ゼネラル Air conditioner
JP2018035981A (en) * 2016-08-30 2018-03-08 日立ジョンソンコントロールズ空調株式会社 Air conditioner
JP6807710B2 (en) * 2016-11-14 2021-01-06 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioner
CN107228451A (en) * 2017-05-17 2017-10-03 青岛海尔空调器有限总公司 Air conditioner defrosting control method
JP7164994B2 (en) * 2018-08-27 2022-11-02 サンデン株式会社 Vehicle air conditioner
CN111457553B (en) * 2020-04-17 2022-02-22 宁波奥克斯电气股份有限公司 Air conditioner defrosting control method and device, air conditioner and storage medium
CN112032929B (en) * 2020-08-31 2021-04-30 珠海格力电器股份有限公司 Air conditioner defrosting control method and device
CN112963941A (en) * 2021-03-18 2021-06-15 宁波奥克斯电气股份有限公司 Air conditioner, control method thereof and defrosting control device
CN113357782B (en) * 2021-06-07 2023-01-13 青岛海尔空调器有限总公司 Air conditioner control method, device and equipment
DE102022106854A1 (en) 2022-03-23 2023-09-28 ait-deutschland GmbH METHOD FOR CONTROLLING THE DEFROST OF AN EVAPORATOR OF A REFRIGERANT CIRCUIT

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106871368A (en) * 2017-03-13 2017-06-20 珠海格力电器股份有限公司 The control method of air-conditioner set, device and air-conditioner set

Also Published As

Publication number Publication date
JPH10103818A (en) 1998-04-24

Similar Documents

Publication Publication Date Title
JP3893676B2 (en) Air conditioner
JP5471873B2 (en) Air conditioner
JP4642100B2 (en) Heat pump equipment
JP6843227B2 (en) Dehumidifier
JP2009024957A (en) Air conditioner
CN115095955B (en) Air conditioner and defrosting control method thereof
JP2007155299A (en) Air conditioner
JP3849467B2 (en) Air conditioner
JP2003222396A (en) Heat pump type water heater
JP2002130876A (en) Controller for air conditioner
KR100270723B1 (en) Air conditioner
JP4265188B2 (en) Air conditioner
JPS6038544A (en) Changine-over method of heat pump to/from defrosting operation
JP4178447B2 (en) Heat pump water heater
JPH0443173B2 (en)
JP4156097B2 (en) Air conditioner
JPH0684834B2 (en) Defroster for air conditioner
JPH0684832B2 (en) Defroster for air conditioner
JPS62125244A (en) Air conditioner
JPH07167473A (en) Defrosting operation controller for air conditioner
JPH0684835B2 (en) Defroster for air conditioner
KR20030023046A (en) Control method for air conditioner
JPS6317955Y2 (en)
JPH0684833B2 (en) Defroster for air conditioner
JP2575063B2 (en) Air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060217

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061023

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees