JP5367633B2 - Geothermal heat pump device - Google Patents

Geothermal heat pump device Download PDF

Info

Publication number
JP5367633B2
JP5367633B2 JP2010094111A JP2010094111A JP5367633B2 JP 5367633 B2 JP5367633 B2 JP 5367633B2 JP 2010094111 A JP2010094111 A JP 2010094111A JP 2010094111 A JP2010094111 A JP 2010094111A JP 5367633 B2 JP5367633 B2 JP 5367633B2
Authority
JP
Japan
Prior art keywords
heat exchanger
heat
refrigerant
temperature
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010094111A
Other languages
Japanese (ja)
Other versions
JP2011226660A (en
Inventor
真典 上田
豪 宮尾
敦 倉繁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corona Corp
Original Assignee
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corona Corp filed Critical Corona Corp
Priority to JP2010094111A priority Critical patent/JP5367633B2/en
Publication of JP2011226660A publication Critical patent/JP2011226660A/en
Application granted granted Critical
Publication of JP5367633B2 publication Critical patent/JP5367633B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a geothermal heat pump device, capable of precisely carrying out ice melting operation, by accurately deciding the freeze of a coolant pipe of a heat source side heat exchanging side functioning as an evaporator during load operation. <P>SOLUTION: The geothermal heat pump device includes a timer unit 24 for timing a predetermined unit time when the detected temperature of the coolant temperature detector 10 for detecting the coolant temperature the heat source side heat exchanger side 7 is &le;0 &deg;C and the detected temperature of the outdoor air temperature detector 11 is higher than the detected temperature of the coolant temperature detector 10 during the load operation, an additional value determiner 25 for deciding the additional value according to the temperature difference between the detected temperature of the coolant temperature detector 10 and the detected temperature of the outdoor air temperature detector 11 every predetermined unit time, and the accumulator 26 for accumulating the additive value decided in the additive value determiner 25, the coolant tube 8 in the heat source side heat exchanger 7 side is determined to be freezed and the ice melting operation for flowing high temperature coolant through the coolant pipe 8 and melting ice in the heat source side heat exchanger 7 side is carried out when the accumulated value in the accumulator 26 reaches to a preset set value during the load operation. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

この発明は、年間を通じて温度が比較的安定している地中熱をヒートポンプを介して利用する地中熱ヒートポンプ装置に関するものである。   The present invention relates to a geothermal heat pump device that uses geothermal heat whose temperature is relatively stable throughout the year through a heat pump.

従来この種の地中熱ヒートポンプ装置においては、図11に示すように、圧縮機101、負荷側熱交換器102、膨張弁103、熱源側熱交換器104を冷媒配管105で環状に接続したヒートポンプ回路106と、地盤G中に埋設された地中熱交換器107と、地中熱交換器107と熱源側熱交換器104との間を熱媒配管108で環状に接続した地中熱循環回路109と、地中熱循環回路109に熱媒として不凍液を循環させる地中熱循環ポンプ110とを備え、年間を通じて温度が比較的安定している地中熱を地中熱交換器107により採熱し、熱源側熱交換器104を蒸発器、負荷側熱交換器102を凝縮器として機能させて、負荷側で被空調空間の空気を加熱する暖房運転や給湯水を加熱する沸き上げ運転等の負荷運転を行うものがあった。(例えば、特許文献1参照。)   Conventionally, in this type of geothermal heat pump device, as shown in FIG. 11, a heat pump in which a compressor 101, a load side heat exchanger 102, an expansion valve 103, and a heat source side heat exchanger 104 are annularly connected by a refrigerant pipe 105. The circuit 106, the underground heat exchanger 107 buried in the ground G, and the underground heat circulation circuit in which the underground heat exchanger 107 and the heat source side heat exchanger 104 are annularly connected by the heat medium pipe 108. 109 and a geothermal circulation pump 110 that circulates the antifreeze liquid as a heat medium in the geothermal circulation circuit 109, and the geothermal heat that is relatively stable throughout the year is collected by the geothermal heat exchanger 107. The load such as the heating operation for heating the air in the air-conditioned space on the load side and the boiling operation for heating hot water by causing the heat source side heat exchanger 104 to function as an evaporator and the load side heat exchanger 102 as a condenser Things to drive There was. (For example, refer to Patent Document 1.)

この従来の地中熱ヒートポンプ装置は、前記負荷運転を継続して行い、地中熱交換器107により地盤G中からの採熱を続けると、時間の経過に伴い地盤G中の温度が低下していく。特に、寒冷地で冬場に24時間暖房運転を行うような場合には、それが顕著に現れる。   In this conventional geothermal heat pump device, if the load operation is continuously performed and heat is continuously collected from the ground G by the geothermal heat exchanger 107, the temperature in the ground G decreases with time. To go. In particular, when heating operation is performed for 24 hours in a cold region in winter, it appears remarkably.

前記負荷運転が継続して行われ、地盤G中の温度が低下し、それにより地中熱交換器107から熱源側熱交換器104に流入する不凍液の温度が低くなり、例えば2℃程度になった場合、熱源側熱交換器104を流れる冷媒の温度は0℃またはマイナス域になっている。   The load operation is continuously performed, and the temperature in the ground G is lowered, whereby the temperature of the antifreeze liquid flowing from the underground heat exchanger 107 into the heat source side heat exchanger 104 is lowered, for example, about 2 ° C. In this case, the temperature of the refrigerant flowing through the heat source side heat exchanger 104 is 0 ° C. or a minus region.

そうすると、膨張弁103から圧縮機101に至るまでの熱源側熱交換器104側の冷媒配管105、つまり、低圧側の冷媒配管105も同じくマイナス域となり、低圧側の冷媒配管105の表面に外気中の水分が氷結し、時間の経過に伴い徐々に氷が成長して積層していくこととなる。   Then, the refrigerant pipe 105 on the heat source side heat exchanger 104 side from the expansion valve 103 to the compressor 101, that is, the low-pressure side refrigerant pipe 105 is also in a negative region, and the outside air is in the surface of the low-pressure side refrigerant pipe 105. The water of the ice freezes, and the ice gradually grows and stacks with time.

ところが、低圧側の冷媒配管105が氷結し、氷が成長して積層したとしても、熱源側熱交換器104での熱交換能力は低下することがなく、前記負荷運転を継続することについては何ら問題が生じることはなかった。   However, even if the refrigerant pipe 105 on the low-pressure side freezes and the ice grows and is stacked, the heat exchange capacity in the heat source side heat exchanger 104 does not decrease, and there is nothing about continuing the load operation. There was no problem.

しかし、低圧側の冷媒配管105が氷結し、その氷が成長し積層し過ぎると、氷がヒートポンプ回路106を内蔵している筐体や筐体内の仕切板等に干渉し、それによる押力が低圧側の冷媒配管105にかかって冷媒配管105が損傷するおそれがあり、また、膨張弁103等の機能部品も氷結して損傷するおそれがあり、さらに、成長した氷が筐体に筐体内の仕切板等に接触すると、圧縮機101の振動が氷を介して筐体に伝わり、騒音を発生するという問題が生じることを本願出願人は知見した。   However, if the refrigerant pipe 105 on the low-pressure side freezes, and the ice grows and is excessively stacked, the ice interferes with the housing containing the heat pump circuit 106, the partition plate in the housing, etc., and the pressing force is thereby reduced. There is a possibility that the refrigerant pipe 105 may be damaged by being applied to the refrigerant pipe 105 on the low pressure side, and functional parts such as the expansion valve 103 may be frozen and damaged. The applicant of the present application has found that when contacting with a partition plate or the like, the vibration of the compressor 101 is transmitted to the casing through ice to generate noise.

そこで、本願出願人は、先に下記の特許文献2にて、負荷運転中に、低圧側の冷媒配管に設けた冷媒温度センサの検出する冷媒温度が零度以下、且つ、外気温度センサの検出する外気温度が冷媒温度センサの検出する冷媒温度より高い時の時間を計測し、その計測時間が予め設定した設定時間に到達したら、低圧側の冷媒配管が氷結していると判断し、低圧側の冷媒配管に高温冷媒を流して解氷する解氷運転を行う地中熱ヒートポンプ装置を提供した。   Accordingly, the applicant of the present application previously described in Patent Document 2 below, during the load operation, the refrigerant temperature detected by the refrigerant temperature sensor provided in the refrigerant pipe on the low-pressure side is equal to or less than zero degrees, and is detected by the outside temperature sensor. Measure the time when the outside air temperature is higher than the refrigerant temperature detected by the refrigerant temperature sensor, and if the measured time reaches the preset time, determine that the low-pressure side refrigerant pipe is frozen, A geothermal heat pump device that performs a de-icing operation in which a high-temperature refrigerant is allowed to flow through a refrigerant pipe to provide ice is provided.

特開2009−236403号公報JP 2009-236403 A 特願2010−51278号Japanese Patent Application No. 2010-512278

しかし、本願発明者らは、試行を繰り返した結果、低圧側の冷媒配管に設けた冷媒温度センサの検出する冷媒温度が零度以下、且つ、外気温度センサの検出する外気温度が冷媒温度センサの検出する冷媒温度より高い時の時間を計測した計測時間が同じであっても、低圧側の冷媒配管の氷の積層度合、つまり、氷の厚みにばらつきがあることを知見した。それにより、計測時間が設定時間に到達した際に、無駄に解氷運転を行ってしまうという問題が生じたり、また、解氷運転を行っても氷が解け残ってしまうという問題が生じたりすることが予想された。   However, as a result of repeated trials, the inventors of the present application have found that the refrigerant temperature detected by the refrigerant temperature sensor provided in the refrigerant pipe on the low-pressure side is less than zero degrees and the outside air temperature detected by the outside air temperature sensor is detected by the refrigerant temperature sensor. It has been found that even when the measurement time when the temperature is higher than the refrigerant temperature to be measured is the same, the degree of ice stacking in the refrigerant pipe on the low-pressure side, that is, the thickness of the ice varies. As a result, when the measurement time reaches the set time, there is a problem that the ice-free operation is performed wastefully, or the ice is not melted even if the ice-free operation is performed. It was expected.

そこで、本発明は、無駄に解氷運転を行うことがなく、また、解氷運転を行っても氷が解け残ることがなく、低圧側の冷媒配管の氷結を正確に判断し、必要なタイミングで精度良く解氷運転を行うことができる地中熱ヒートポンプ装置を提供することを目的とするものである。   Therefore, the present invention does not wastefully perform ice-free operation, and ice does not remain unmelted even after ice-free operation, and accurately determines icing of the refrigerant pipe on the low-pressure side, and the necessary timing. An object of the present invention is to provide a geothermal heat pump device that can perform ice-breaking operation with high accuracy.

この発明は上記課題を解決するために、特に請求項1ではその構成を、圧縮機、負荷側熱交換器、減圧手段、熱源側熱交換器を冷媒配管で環状に接続したヒートポンプ回路と、地中に埋設された地中熱交換器と、該地中熱交換器と前記熱源側熱交換器との間を熱媒配管で環状に接続した地中熱循環回路と、該地中熱循環回路に熱媒を循環させる地中熱循環ポンプと、前記熱源側熱交換器側の冷媒の温度を検出する冷媒温度検出手段と、外気温度を検出する外気温度検出手段とを備え、前記地中熱交換器により地中熱を採熱し、前記熱源側熱交換器を蒸発器として機能させると共に、前記負荷側熱交換器を凝縮器として機能させて負荷側を加熱する負荷運転を行う地中熱ヒートポンプ装置において、前記負荷運転中に、前記冷媒温度検出手段の検出する冷媒温度が零度以下、且つ、前記外気温度検出手段の検出する外気温度が前記冷媒温度検出手段の検出する冷媒温度より高い時に所定の単位時間を計時する計時手段と、前記所定の単位時間毎に前記冷媒温度検出手段の検出する冷媒温度と前記外気温度検出手段の検出する外気温度との温度差に応じた加算値を決定する加算値決定手段と、前記加算値決定手段で決定した加算値を積算する積算手段と、前記積算手段での積算値が予め設定した設定値に到達したら、前記熱源側熱交換器側の冷媒配管が氷結していると判断する氷結判断手段とを設け、前記氷結判断手段によって前記熱源側熱交換器側の冷媒配管が氷結していると判断された場合は、前記熱源側熱交換器側の冷媒配管に高温冷媒を流して解氷する解氷運転を行うものとした。   In order to solve the above-mentioned problems, the present invention is particularly configured in claim 1 with a heat pump circuit in which a compressor, a load-side heat exchanger, a pressure reducing means, and a heat-source-side heat exchanger are connected in an annular shape with a refrigerant pipe, A ground heat exchanger embedded in the ground, a ground heat circulation circuit in which the ground heat exchanger and the heat source side heat exchanger are annularly connected by a heat medium pipe, and the ground heat circulation circuit A ground heat circulation pump that circulates the heat medium, a refrigerant temperature detection means that detects a temperature of the refrigerant on the heat source side heat exchanger side, and an outside air temperature detection means that detects an outside air temperature, and the underground heat A geothermal heat pump that collects geothermal heat with an exchanger and causes the heat source side heat exchanger to function as an evaporator and performs load operation to heat the load side by causing the load side heat exchanger to function as a condenser In the apparatus, during the load operation, the refrigerant temperature detecting means Time measuring means for measuring a predetermined unit time when the temperature of the refrigerant to be discharged is equal to or lower than zero degrees and the outside air temperature detected by the outside air temperature detecting means is higher than the refrigerant temperature detected by the refrigerant temperature detecting means; and the predetermined unit time An addition value determining means for determining an added value corresponding to a temperature difference between the refrigerant temperature detected by the refrigerant temperature detecting means and the outside air temperature detected by the outside air temperature detecting means, and the addition determined by the added value determining means. An accumulating means for accumulating values, and an icing determination means for determining that the refrigerant pipe on the heat source side heat exchanger side is frozen when the integrated value in the accumulating means reaches a preset set value, When it is determined by the icing determination means that the refrigerant pipe on the heat source side heat exchanger side is frozen, an ice thawing operation is performed in which the high temperature refrigerant flows through the refrigerant pipe on the heat source side heat exchanger side to defrost. To do .

また、請求項2では、請求項1記載の地中熱ヒートポンプ装置において、前記圧縮機の動作状態を検出し、その動作状態に応じて前記加算値決定手段により決定された加算値を補正する補正手段を設け、前記積算手段は前記補正手段で補正した加算値を積算するものとした。   Moreover, in Claim 2, in the geothermal heat pump apparatus according to Claim 1, an operation state of the compressor is detected, and a correction for correcting the addition value determined by the addition value determining means according to the operation state. Means are provided, and the integrating means integrates the added values corrected by the correcting means.

また、請求項3では、圧縮機、負荷側熱交換器、減圧手段、熱源側熱交換器を冷媒配管で環状に接続したヒートポンプ回路と、地中に埋設された地中熱交換器と、該地中熱交換器と前記熱源側熱交換器との間を熱媒配管で環状に接続した地中熱循環回路と、該地中熱循環回路に熱媒を循環させる地中熱循環ポンプと、前記熱源側熱交換器側の冷媒の温度を検出する冷媒温度検出手段と、外気温度を検出する外気温度検出手段とを備え、前記地中熱交換器により地中熱を採熱し、前記熱源側熱交換器を蒸発器として機能させると共に、前記負荷側熱交換器を凝縮器として機能させて負荷側を加熱する負荷運転を行う地中熱ヒートポンプ装置において、前記負荷運転中に、前記冷媒温度検出手段の検出する冷媒温度が零度以下、且つ、前記外気温度検出手段の検出する外気温度が前記冷媒温度検出手段の検出する冷媒温度より高い時に所定の単位時間を計時する計時手段と、前記圧縮機の動作状態を検出し、前記所定の単位時間毎に前記圧縮機の動作状態に応じた加算値を決定する加算値決定手段と、前記加算値決定手段で決定した加算値を積算する積算手段と、前記積算手段での積算値が予め設定した設定値に到達したら、前記熱源側熱交換器側の冷媒配管が氷結していると判断する氷結判断手段とを設け、前記氷結判断手段によって前記熱源側熱交換器側の冷媒配管が氷結していると判断された場合は、前記熱源側熱交換器側の冷媒配管に高温冷媒を流して解氷する解氷運転を行うものとした。   Further, in claim 3, a heat pump circuit in which a compressor, a load-side heat exchanger, a pressure reducing means, a heat source-side heat exchanger are connected in a ring shape with a refrigerant pipe, an underground heat exchanger embedded in the ground, A ground heat circulation circuit in which a ground heat exchanger and the heat source side heat exchanger are annularly connected by a heat medium pipe, a ground heat circulation pump that circulates the heat medium in the ground heat circulation circuit, and A refrigerant temperature detecting means for detecting the temperature of the refrigerant on the heat source side heat exchanger side, and an outside air temperature detecting means for detecting an outside air temperature, collecting ground heat by the underground heat exchanger, In the geothermal heat pump apparatus that performs load operation in which the heat exchanger functions as an evaporator and the load side heat exchanger functions as a condenser to heat the load side, the refrigerant temperature detection is performed during the load operation. The refrigerant temperature detected by the means is less than zero degrees and the outside air temperature A time measuring means for measuring a predetermined unit time when an outside air temperature detected by the detecting means is higher than a refrigerant temperature detected by the refrigerant temperature detecting means; an operating state of the compressor is detected; An addition value determining means for determining an addition value according to the operating state of the compressor, an integration means for integrating the addition value determined by the addition value determination means, and an integration value in the integration means to a preset set value When the temperature reaches, the freezing determination means for determining that the refrigerant pipe on the heat source side heat exchanger side is frozen is provided, and the freezing determination means determines that the refrigerant pipe on the heat source side heat exchanger side is frozen. In such a case, the deicing operation is performed in which the high-temperature refrigerant is allowed to flow through the refrigerant pipe on the heat source side heat exchanger side to defrost.

また、請求項4では、請求項1から3の何れか一項に記載の地中熱ヒートポンプ装置において、前記冷媒温度検出手段の代わりに、前記熱源側熱交換器から流出し前記地中熱交換器に流入する熱媒の温度を検出する地中往き温度検出手段を設けたものとした。   Moreover, in Claim 4, in the underground heat pump apparatus as described in any one of Claim 1 to 3, it flows out of the said heat source side heat exchanger instead of the said refrigerant | coolant temperature detection means, and the said underground heat exchange Underground temperature detection means for detecting the temperature of the heat medium flowing into the vessel was provided.

この発明の請求項1によれば、負荷運転中に、氷結判断手段によって熱源側熱交換器側の冷媒配管が氷結していると判断された場合は、熱源側熱交換器側の冷媒配管に高温冷媒を流して解氷する解氷運転を行うので、熱源側熱交換器側の冷媒配管の氷結に起因する冷媒配管や膨張弁等の機能部品の損傷を未然に防止することができると共に、熱源側熱交換器側の冷媒配管の氷結に起因する騒音の発生を未然に防止することができるものである。   According to claim 1 of the present invention, when it is determined by the icing determination means that the refrigerant pipe on the heat source side heat exchanger side is frozen during the load operation, the refrigerant pipe on the heat source side heat exchanger side is connected to the refrigerant pipe on the heat source side heat exchanger side. Since the deicing operation is performed to defrost by flowing a high-temperature refrigerant, it is possible to prevent damage to the functional components such as the refrigerant piping and the expansion valve due to freezing of the refrigerant piping on the heat source side heat exchanger side, Generation of noise due to icing of the refrigerant piping on the heat source side heat exchanger side can be prevented in advance.

さらに、計時手段によって熱源側熱交換器側の冷媒配管の氷結条件がそろった時に所定の単位時間計時し、加算値決定手段によって所定の単位時間毎に冷媒温度と外気温度との温度差に応じた加算値を決定し、積算手段によって加算値決定手段で決定した加算値を積算し、氷結判断手段は、積算手段での積算値が予め設定した設定値に到達したら、熱源側熱交換器側の冷媒配管が氷結していると判断するので、熱源側熱交換器側の冷媒配管の氷の積層スピードに影響を与える冷媒温度と外気温度との温度差を考慮した加算値を用いて、より正確に熱源側熱交換器側の冷媒配管の氷の積層度合を推定することができ、必要なタイミングで精度良く解氷運転を行うことができるものである。   Further, when the icing conditions of the refrigerant pipe on the heat source side heat exchanger are met by the time measuring means, the time is measured for a predetermined unit time, and according to the temperature difference between the refrigerant temperature and the outside air temperature every predetermined unit time by the addition value determining means. The addition value determined by the addition value determination means is integrated by the integration means, and the icing determination means is configured to set the integrated value in the integration means to the heat source side heat exchanger side when the integration value reaches a preset set value. It is determined that the refrigerant pipe is frozen, so an additional value that takes into account the temperature difference between the refrigerant temperature and the outside air temperature, which affects the ice stacking speed of the refrigerant pipe on the heat source side heat exchanger side, is used. It is possible to accurately estimate the ice stacking degree of the refrigerant pipe on the heat source side heat exchanger side, and to perform the ice-breaking operation with high accuracy at the necessary timing.

また、請求項2によれば、圧縮機の動作状態を検出し、その動作状態に応じて、加算値決定手段で決定された加算値を補正する補正手段を設け、積算手段は補正手段で補正された加算値を積算することで、圧縮機の動作状態から熱源側熱交換器側の冷媒配管を流れる冷媒の循環流量を推定し、その冷媒の循環流量から熱源側熱交換器側の冷媒配管が周囲から吸熱する吸熱量を考慮した補正が加算値に加えられるので、より一層高精度に熱源側熱交換器側の冷媒配管の氷の積層度合を推定することができるものである。   According to a second aspect of the present invention, there is provided a correcting means for detecting the operating state of the compressor and correcting the added value determined by the added value determining means according to the operating state, and the integrating means is corrected by the correcting means. By integrating the added values, the circulation flow rate of the refrigerant flowing through the refrigerant piping on the heat source side heat exchanger side is estimated from the operating state of the compressor, and the refrigerant piping on the heat source side heat exchanger side is estimated from the circulation flow rate of the refrigerant Since the correction in consideration of the amount of heat absorbed from the surroundings is added to the added value, it is possible to estimate the ice stacking degree of the refrigerant pipe on the heat source side heat exchanger side with higher accuracy.

また、請求項3によれば、負荷運転中に、氷結判断手段によって熱源側熱交換器側の冷媒配管が氷結していると判断された場合は、熱源側熱交換器側の冷媒配管に高温冷媒を流して解氷する解氷運転を行うので、熱源側熱交換器側の冷媒配管の氷結に起因する冷媒配管や膨張弁等の機能部品の損傷を未然に防止することができると共に、熱源側熱交換器側の冷媒配管の氷結に起因する騒音の発生を未然に防止することができるものである。   According to the third aspect of the present invention, when it is determined by the icing determination means that the refrigerant pipe on the heat source side heat exchanger side is frozen during the load operation, the refrigerant pipe on the heat source side heat exchanger side has a high temperature. Since the deicing operation is performed by flowing the refrigerant to defrost, it is possible to prevent damage to the functional parts such as the refrigerant pipe and the expansion valve due to the freezing of the refrigerant pipe on the heat source side heat exchanger side, and Generation of noise due to icing of the refrigerant pipe on the side heat exchanger side can be prevented in advance.

さらに、計時手段によって熱源側熱交換器側の冷媒配管の氷結条件がそろった時に所定の単位時間計時し、加算値決定手段は、圧縮機の動作状態から熱源側熱交換器側の冷媒配管を流れる冷媒の循環流量を推定し、その冷媒の循環流量から熱源側熱交換器側の冷媒配管が周囲から吸熱する吸熱量を考慮して、所定の単位時間毎に圧縮機の動作状態に応じた加算値を決定する。そして、積算手段によって加算値決定手段で決定した加算値を積算し、氷結判断手段は、積算手段での積算値が予め設定した設定値に到達したら、熱源側熱交換器側の冷媒配管が氷結していると判断するので、熱源側熱交換器側の冷媒配管の氷の積層スピードに影響を与える圧縮機の動作状態を考慮した加算値を用いて、より正確に熱源側熱交換器側の冷媒配管の氷の積層度合を推定することができ、必要なタイミングで精度良く解氷運転を行うことができるものである。   Further, when the icing conditions of the refrigerant pipe on the heat source side heat exchanger side are met by the time measuring means, the unit time is measured for a predetermined unit time, and the addition value determining means determines the refrigerant pipe on the heat source side heat exchanger side from the operating state of the compressor. Estimating the circulating flow rate of the flowing refrigerant, and taking into account the amount of heat absorbed from the surroundings by the refrigerant piping on the heat source side heat exchanger side from the circulating flow rate of the refrigerant, according to the operating state of the compressor every predetermined unit time Determine the addition value. Then, the addition value determined by the addition value determination means is integrated by the integration means, and the icing determination means, when the integrated value in the integration means reaches a preset value, the refrigerant pipe on the heat source side heat exchanger side is frozen. Therefore, the heat source side heat exchanger side can be used more accurately by using an added value that takes into account the operating state of the compressor that affects the ice stacking speed of the refrigerant piping on the heat source side heat exchanger side. It is possible to estimate the ice stacking degree of the refrigerant pipe, and to perform the ice-breaking operation with high accuracy at the necessary timing.

また、請求項4によれば、冷媒温度検出手段の代わりに、熱源側熱交換器から流出し地中熱交換器に流入する熱媒の温度を検出する地中往き温度検出手段を設け、熱源側熱交換器の冷媒温度と近似した温度である熱源側熱交換器から流出した熱媒の温度を検出することで、地中往き温度検出手段の検出する熱媒の温度から熱源側熱交換器側の冷媒温度を推定でき、熱源側熱交換器側の冷媒配管の氷結の判断を確実に行うことができるものである。   According to the fourth aspect of the present invention, instead of the refrigerant temperature detecting means, the underground temperature detecting means for detecting the temperature of the heat medium flowing out from the heat source side heat exchanger and flowing into the underground heat exchanger is provided, and the heat source By detecting the temperature of the heat medium flowing out from the heat source side heat exchanger, which is a temperature approximate to the refrigerant temperature of the side heat exchanger, the heat source side heat exchanger is detected from the temperature of the heat medium detected by the underground temperature detecting means. Side refrigerant temperature can be estimated, and the determination of icing of the refrigerant piping on the heat source side heat exchanger side can be made reliably.

この発明の第1の実施形態の概略構成図。1 is a schematic configuration diagram of a first embodiment of the present invention. 同第1の実施形態の要部ブロック図。The principal part block diagram of the 1st Embodiment. 同第1の実施形態の解氷運転時の動作を示すフローチャート。The flowchart which shows the operation | movement at the time of ice-melting driving | operation of the 1st embodiment. この発明の第2の実施形態の要部ブロック図。The principal part block diagram of 2nd Embodiment of this invention. 同第2の実施形態の解氷運転時の動作を示すフローチャート。The flowchart which shows the operation | movement at the time of ice-melting operation | movement of the said 2nd Embodiment. この発明の第3の実施形態の要部ブロック図。The principal part block diagram of 3rd Embodiment of this invention. 同第3の実施形態の解氷運転時の動作を示すフローチャート。The flowchart which shows the operation | movement at the time of ice-melting driving | operation of the 3rd embodiment. この発明の第1から第3の実施形態における他のヒートポンプ回路概略図。The other heat pump circuit schematic in the 1st-3rd embodiment of this invention. この発明の第1から第3の実施形態におけるさらに他のヒートポンプ回路概略図。FIG. 5 is still another heat pump circuit schematic diagram in the first to third embodiments of the present invention. この発明の第1から第3の実施形態における他の概略構成図。The other schematic block diagram in the 1st-3rd embodiment of this invention. 従来の地中熱ヒートポンプ装置の概略構成図。The schematic block diagram of the conventional geothermal heat pump apparatus.

次に、この発明の第1の実施形態の地中熱ヒートポンプ装置を図1および図2に基づき説明する。
図1のように、本実施形態の地中熱ヒートポンプ装置は、大きく分けてヒートポンプユニット1と、地中熱交換部2と、負荷熱交換部3とから構成されるものである。
Next, a geothermal heat pump device according to a first embodiment of the present invention will be described with reference to FIGS. 1 and 2.
As shown in FIG. 1, the geothermal heat pump device of the present embodiment is roughly composed of a heat pump unit 1, a geothermal heat exchange unit 2, and a load heat exchange unit 3.

前記ヒートポンプユニット1は、冷媒を圧縮する能力可変の圧縮機4と、圧縮機4から吐出された高温冷媒を流通させこの高温冷媒と負荷熱交換部3の負荷側の熱媒との熱交換を行う凝縮器としての負荷側熱交換器5と、負荷側熱交換器5から流出する冷媒を減圧する減圧手段としての膨張弁6と、膨張弁6からの減圧した低温冷媒を流通させこの低温冷媒と地中熱交換部2の熱源側の熱媒との熱交換を行う蒸発器としての熱源側熱交換器7とを備え、これらを冷媒配管8で環状に接続しヒートポンプ回路9を形成しているものである。なお、ヒートポンプユニット1の冷媒としては、二酸化炭素冷媒やHFC冷媒等の任意の冷媒を用いることができるものである。また、10は膨張弁6から圧縮機4に至るまでの熱源側熱交換器7側の冷媒配管8、つまり低圧側の冷媒配管8に設けられ、低圧側の冷媒配管8の表面温度または低圧側の冷媒配管8を流れる冷媒の温度を検出する冷媒温度検出手段としての冷媒温度センサであり、11は外気温度を検出する外気温度検出手段としての外気温度センサである。ここでの外気温度とは、ヒートポンプユニット1外の外気温度およびヒートポンプユニット1内の雰囲気温度を含む表現とする。   The heat pump unit 1 circulates a variable capacity compressor 4 for compressing refrigerant and a high-temperature refrigerant discharged from the compressor 4 to exchange heat between the high-temperature refrigerant and the load-side heat medium of the load heat exchange unit 3. A load-side heat exchanger 5 as a condenser to be performed, an expansion valve 6 as a decompression means for decompressing the refrigerant flowing out from the load-side heat exchanger 5, and a decompressed low-temperature refrigerant from the expansion valve 6 are circulated. And a heat source side heat exchanger 7 as an evaporator for exchanging heat with the heat medium on the heat source side of the underground heat exchanging section 2, and these are connected in a ring shape with a refrigerant pipe 8 to form a heat pump circuit 9. It is what. In addition, as a refrigerant | coolant of the heat pump unit 1, arbitrary refrigerant | coolants, such as a carbon dioxide refrigerant | coolant and a HFC refrigerant | coolant, can be used. Further, 10 is provided in the refrigerant pipe 8 on the heat source side heat exchanger 7 side from the expansion valve 6 to the compressor 4, that is, the refrigerant pipe 8 on the low pressure side, and the surface temperature or the low pressure side of the refrigerant pipe 8 on the low pressure side. Reference numeral 11 denotes a refrigerant temperature sensor as refrigerant temperature detection means for detecting the temperature of the refrigerant flowing through the refrigerant pipe 8, and reference numeral 11 denotes an outside air temperature sensor as outside air temperature detection means for detecting the outside air temperature. Here, the outside air temperature is an expression including the outside air temperature outside the heat pump unit 1 and the ambient temperature inside the heat pump unit 1.

前記地中熱交換部2は、熱源側熱交換器7と、熱源側熱交換器7の冷媒を加熱する熱源として地盤G中に埋設され互いに並列に接続された複数の地中熱交換器12と、熱源側熱交換器7と地中熱交換器12との間を熱媒配管13で環状に接続する地中熱循環回路14と、地中熱循環回路14に熱媒である不凍液を循環させる回転数可変の地中熱循環ポンプ15とを備えているものである。   The underground heat exchanger 2 includes a heat source side heat exchanger 7 and a plurality of underground heat exchangers 12 embedded in the ground G as heat sources for heating the refrigerant of the heat source side heat exchanger 7 and connected in parallel to each other. And a ground heat circulation circuit 14 that connects the heat source side heat exchanger 7 and the ground heat exchanger 12 in a ring shape with a heat medium pipe 13, and an antifreeze that is a heat medium circulates in the ground heat circulation circuit 14. And a geothermal circulation pump 15 having a variable rotation speed.

ここで、前記地中熱交換部2では、後述する負荷運転を行う際に、地中熱交換器12によって地盤G中から地中熱を採熱し、その熱を帯びた熱媒が地中熱循環ポンプ15により熱源側熱交換器7に供給される。そして、熱源側熱交換器7にて冷媒と熱媒とが対向して流れて熱交換が行われ、地中熱交換器12にて採熱された地中熱がヒートポンプユニット1の冷媒側に汲み上げられ、熱源側熱交換器7は蒸発器として機能するものとなる。   Here, in the underground heat exchanging section 2, when performing the load operation described later, the underground heat exchanger 12 collects the underground heat from the ground G, and the heat medium having the heat is the underground heat. The heat is supplied to the heat source side heat exchanger 7 by the circulation pump 15. Then, the refrigerant and the heat medium flow oppositely in the heat source side heat exchanger 7 to perform heat exchange, and the underground heat collected by the underground heat exchanger 12 is transferred to the refrigerant side of the heat pump unit 1. The heat source side heat exchanger 7 is pumped up and functions as an evaporator.

前記負荷熱交換部3は、負荷側に熱を与える負荷側熱交換器5と、被空調空間を加熱する床暖房パネル等の負荷端末16と、負荷側熱交換器5と負荷端末16を循環可能に環状に接続する負荷側循環回路17と、負荷側循環回路17に加熱用循環液を循環させる負荷側循環ポンプ18と、負荷端末16毎に分岐した負荷側循環回路17に各々設けられ、その開閉により負荷端末16への加熱用循環液の供給を制御する熱動弁19(19a、19b)とを備えているものである。なお、20は負荷側循環回路17に設けられ負荷側熱交換器5から負荷端末16に流入する加熱用循環液の温度を検出する負荷往き温度センサである。   The load heat exchanging unit 3 circulates through a load side heat exchanger 5 that applies heat to the load side, a load terminal 16 such as a floor heating panel that heats the air-conditioned space, and the load side heat exchanger 5 and the load terminal 16. A load-side circulation circuit 17 that is connected in an annular manner, a load-side circulation pump 18 that circulates the circulating fluid for heating in the load-side circulation circuit 17, and a load-side circulation circuit 17 that branches for each load terminal 16. A thermal valve 19 (19a, 19b) for controlling the supply of the circulating fluid for heating to the load terminal 16 by opening and closing is provided. Reference numeral 20 denotes a load forward temperature sensor that is provided in the load-side circulation circuit 17 and detects the temperature of the circulating fluid for heating flowing into the load terminal 16 from the load-side heat exchanger 5.

前記負荷端末16によって加熱される被空調空間には、リモコン(図示せず)が各々設置されており、このリモコンにより被空調空間の加熱の指示がなされると、圧縮機4及び及び地中熱循環ポンプ15及び負荷側循環ポンプ18の駆動が開始され、熱源側熱交換器7を蒸発器として機能させると共に、負荷側熱交換器5を凝縮器として機能させて負荷側を加熱する負荷運転としての暖房運転が行われる。この暖房運転の際、負荷側熱交換器5では冷媒と加熱用循環液とが対向して流れて熱交換が行われ、負荷側熱交換器5にて加熱された加熱用循環液は、熱動弁19を介して負荷端末16に送られ、リモコンにより指示を受けた被空調空間を加熱するものである。   A remote control (not shown) is installed in each air-conditioned space heated by the load terminal 16. When the remote controller instructs to heat the air-conditioned space, the compressor 4 and the underground heat are provided. As the driving of the circulation pump 15 and the load side circulation pump 18 is started, the heat source side heat exchanger 7 functions as an evaporator, and the load side heat exchanger 5 functions as a condenser to heat the load side. The heating operation is performed. During the heating operation, in the load-side heat exchanger 5, the refrigerant and the circulating fluid for heating flow to face each other to exchange heat, and the circulating fluid for heating heated in the load-side heat exchanger 5 The air-conditioned space that is sent to the load terminal 16 through the valve 19 and receives an instruction from the remote controller is heated.

21は冷媒温度センサ10、外気温度センサ11、負荷往き温度センサ20の入力や前記リモコンからの信号を受けて、圧縮機4、膨張弁6、地中熱循環ポンプ15、負荷側循環ポンプ18の各アクチュエータの駆動を制御するマイコンを有する制御手段である。   21 receives the input of the refrigerant temperature sensor 10, the outside air temperature sensor 11, the load going temperature sensor 20, and the signal from the remote controller, and the compressor 4, the expansion valve 6, the underground heat circulation pump 15, and the load side circulation pump 18 It is a control means which has the microcomputer which controls the drive of each actuator.

前記制御手段21は、前記暖房運転中に熱源側熱交換器7側の冷媒配管8が氷結しているか否かを判断する氷結判断手段22と、前記暖房運転中に冷媒温度センサ10の検出する冷媒温度が零度以下、且つ、外気温度センサ11の検出する外気温度が冷媒温度センサ10の検出する冷媒温度より高いという氷結条件が成立するか否かを判定する氷結条件判定手段23と、前記暖房運転中に冷媒温度センサ10の検出する冷媒温度が零度以下、且つ、外気温度センサ11の検出する外気温度が冷媒温度センサ10の検出する冷媒温度より高いことを検知した時に所定の単位時間を計時する計時手段24と、計時手段24の計時する所定の単位時間毎に冷媒温度センサ10の検出する冷媒温度と外気温度センサ11の検出する外気温度との温度差に応じた加算値を決定する第1加算値決定手段25と、第1加算値決定手段25で決定した加算値を積算する第1積算手段26と、前記暖房運転を中断し後述する解氷運転を開始する基準となる第1設定値を記憶する第1記憶手段27とを備えているものである。なお、前記第1設定値は予め試験等を行って導き出し設定された値である。   The control means 21 detects whether or not the refrigerant pipe 8 on the heat source side heat exchanger 7 side is frozen during the heating operation, and the refrigerant temperature sensor 10 detects whether or not the refrigerant temperature sensor 10 is in the heating operation. The icing condition determining means 23 for determining whether or not an icing condition that the refrigerant temperature is equal to or lower than zero degrees and the outside air temperature detected by the outside air temperature sensor 11 is higher than the refrigerant temperature detected by the refrigerant temperature sensor 10 is satisfied; During operation, a predetermined unit time is counted when it is detected that the refrigerant temperature detected by the refrigerant temperature sensor 10 is equal to or lower than zero degrees and the outside air temperature detected by the outside air temperature sensor 11 is higher than the refrigerant temperature detected by the refrigerant temperature sensor 10. Temperature difference between the refrigerant temperature detected by the refrigerant temperature sensor 10 and the outside air temperature detected by the outside air temperature sensor 11 for each predetermined unit time counted by the timer means 24. A first addition value determining means 25 for determining a corresponding addition value, a first integration means 26 for integrating the addition value determined by the first addition value determining means 25, and a de-icing operation to be described later by interrupting the heating operation. And a first storage means 27 for storing a first set value as a reference for starting. The first set value is a value derived and set in advance by performing a test or the like.

ここで、前記氷結判断手段22は、暖房運転中に、第1積算手段26により積算された積算値と第1記憶手段27により記憶された第1設定値とを比較し、その積算値が第1設定値に到達した時に、膨張弁6から圧縮機4に至るまでの熱源側熱交換器7側の冷媒配管8が氷結している、つまり、熱源側熱交換器7側の冷媒配管8表面に氷が積層していると判断するものであり、氷結判断手段22が熱源側熱交換器7側の冷媒配管8が氷結していると判断すると、前記制御手段21は、地中熱循環ポンプ15および負荷側循環ポンプ18を停止して、暖房運転を一時中断し、膨張弁6の開度を全開または暖房運転時よりも大きくして圧縮機4から吐出される高温冷媒を熱源側熱交換器7側の冷媒配管8内に流して熱源側熱交換器7側の冷媒配管8表面に積層した氷を解氷する解氷運転を行うものである。なお、解氷運転は一定時間行われ、この一定時間は熱源側熱交換器7側の冷媒配管8の氷を解かすのに必要な時間を予め試験等により導き出し設定したものである。   Here, the icing determination means 22 compares the accumulated value accumulated by the first accumulation means 26 with the first set value stored by the first storage means 27 during the heating operation, and the accumulated value is the first value. When the set value is reached, the refrigerant pipe 8 on the heat source side heat exchanger 7 side from the expansion valve 6 to the compressor 4 is frozen, that is, the surface of the refrigerant pipe 8 on the heat source side heat exchanger 7 side. If the icing determination means 22 determines that the refrigerant pipe 8 on the heat source side heat exchanger 7 side is icing, the control means 21 is connected to the underground heat circulation pump. 15 and the load-side circulation pump 18 are stopped, the heating operation is temporarily interrupted, the opening degree of the expansion valve 6 is fully opened or larger than that during the heating operation, and the high-temperature refrigerant discharged from the compressor 4 is exchanged on the heat source side. Refrigerant pipe 8 on the heat source side heat exchanger 7 side after flowing into the refrigerant pipe 8 on the side of the heat exchanger 7 The ice was laminated on the surface and performs thawing operation to thaw. Note that the ice-removal operation is performed for a certain time, and this certain time is obtained by setting in advance a time necessary for melting the ice in the refrigerant pipe 8 on the heat source side heat exchanger 7 side by a test or the like.

また、前記第1加算値決定手段25は、冷媒温度センサ10の検出する冷媒温度と外気温度センサ11の検出する外気温度との温度差に応じた加算値を決定するもので、この加算値は、所定の単位時間当たりに熱源側熱交換器7側の冷媒配管8に積層する氷の厚さの目安としての数値であり、冷媒温度センサ10の検出する冷媒温度と外気温度センサ11の検出する外気温度との温度差が大きい程、大きな加算値を決定するものである。これは、前記温度差が大きい程、熱源側熱交換器7側の冷媒配管8表面に氷が積層するスピードが速くなるためである。そのため、第1加算値決定手段25には、温度差が大きい程、大きな加算値を決定するように、温度差毎に加算値を対応させたデータテーブル等が予め記憶されているものである。   The first addition value determining means 25 determines an addition value corresponding to the temperature difference between the refrigerant temperature detected by the refrigerant temperature sensor 10 and the outside air temperature detected by the outside air temperature sensor 11. , A numerical value as a measure of the thickness of ice stacked on the refrigerant pipe 8 on the heat source side heat exchanger 7 side per predetermined unit time, detected by the refrigerant temperature sensor 10 and the outside air temperature sensor 11 The larger the temperature difference from the outside air temperature, the larger the added value is determined. This is because the larger the temperature difference is, the faster the ice is stacked on the surface of the refrigerant pipe 8 on the heat source side heat exchanger 7 side. For this reason, the first added value determining means 25 stores in advance a data table or the like in which the added value is associated with each temperature difference so that the larger added value is determined as the temperature difference is larger.

次に、図1および図2に示す第1の実施形態の暖房運転中の解氷運転の動作について図3に示すフローチャートに基づき説明する。
前記リモコンにより負荷端末16による被空調空間の暖房の指示がなされると、前記制御手段21は圧縮機4、地中熱循環ポンプ15、負荷側循環ポンプ18の駆動を開始させ、暖房運転が開始される。ここで、暖房運転開始時において、地中熱循環ポンプ15は予め設定された一定回転数で駆動を開始させるものである。暖房運転が開始されると、負荷側熱交換器5では負荷側循環ポンプ18により循環される加熱用循環液と圧縮機4から吐出された高温高圧の冷媒とが熱交換され、加熱された加熱用循環液が負荷端末16に供給され被空調空間を加熱すると共に、熱源側熱交換器7では、地中熱循環ポンプ15により循環され地中熱交換器12を介して地中熱を採熱した熱媒と膨張弁6から吐出された低温低圧の冷媒とが熱交換され、地中熱により冷媒を加熱し蒸発させるものである。
Next, the operation of the ice-melting operation during the heating operation of the first embodiment shown in FIGS. 1 and 2 will be described based on the flowchart shown in FIG.
When the load terminal 16 instructs the heating of the air-conditioned space by the remote controller, the control means 21 starts driving the compressor 4, the geothermal circulation pump 15, and the load-side circulation pump 18, and the heating operation is started. Is done. Here, at the start of the heating operation, the underground heat circulation pump 15 starts to be driven at a preset constant rotation speed. When the heating operation is started, the load-side heat exchanger 5 exchanges heat between the circulating fluid for heating circulated by the load-side circulation pump 18 and the high-temperature and high-pressure refrigerant discharged from the compressor 4, and is heated. The circulating fluid for use is supplied to the load terminal 16 to heat the air-conditioned space, and in the heat source side heat exchanger 7, it is circulated by the underground heat circulation pump 15 and collects the underground heat through the underground heat exchanger 12. The heat medium and the low-temperature and low-pressure refrigerant discharged from the expansion valve 6 are heat-exchanged, and the refrigerant is heated and evaporated by underground heat.

前記暖房運転中に、氷結条件判定手段23は、冷媒温度センサ10の検出する冷媒温度が零度以下、且つ、外気温度センサ11の検出する外気温度が冷媒温度センサ10の検出する冷媒温度より高いか否か、つまり、前記氷結条件が成立するか否かを判定し(ステップS1)、氷結条件が成立すると判定したら、計時手段24により所定の単位時間、例えば1時間の計時を開始させ、所定の単位時間が経過したか否かを判断し(ステップS2)、所定の単位時間が経過したと判断すると、第1加算値決定手段25は、その時の冷媒温度センサ10の検出する冷媒温度と外気温度センサ11の検出する外気温度とを参照し、その温度差(=外気温度−冷媒温度)を算出して、その温度差に応じた加算値を決定し(ステップS3)、第1積算手段26は、第1加算値決定手段25で決定した加算値を積算し、(ステップS4)、氷結判断手段22は、第1積算手段26で積算された積算値と第1記憶手段27により記憶された第1設定値とを比較し、その積算値が第1設定値に到達したか否かを判断し(ステップS5)、積算値が第1設定値に到達していないと判断した場合、再び前記ステップS1の処理に戻るものである。   During the heating operation, the icing condition determination means 23 determines whether the refrigerant temperature detected by the refrigerant temperature sensor 10 is equal to or lower than zero degrees and the outside air temperature detected by the outside air temperature sensor 11 is higher than the refrigerant temperature detected by the refrigerant temperature sensor 10. In other words, it is determined whether or not the icing condition is satisfied (step S1), and if it is determined that the icing condition is satisfied, the time measuring unit 24 starts measuring a predetermined unit time, for example, 1 hour, It is determined whether or not the unit time has elapsed (step S2), and if it is determined that the predetermined unit time has elapsed, the first addition value determining means 25 detects the refrigerant temperature and the outside air temperature detected by the refrigerant temperature sensor 10 at that time. The temperature difference (= outside air temperature−refrigerant temperature) is calculated with reference to the outside air temperature detected by the sensor 11, an added value corresponding to the temperature difference is determined (step S 3), and the first integrating means 6 integrates the addition value determined by the first addition value determination means 25 (step S4), and the icing determination means 22 is stored in the first storage means 27 with the integration value integrated by the first integration means 26. The first set value is compared, and it is determined whether or not the integrated value has reached the first set value (step S5). When it is determined that the integrated value has not reached the first set value, The process returns to step S1.

そして、第1積算手段26の積算値が第1記憶手段27に記憶された第1設定値に到達するまでステップS1〜ステップS5までの処理を繰り返して、ステップS5の処理において、氷結判断手段22が、第1積算手段26の積算値が第1記憶手段27に記憶された第1設定値に到達したと判断した場合、制御手段21は、地中熱循環ポンプ15および負荷側循環ポンプ18を停止して、暖房運転を一時中断し、膨張弁6の開度を例えば全開にして圧縮機4から吐出される高温冷媒を熱源側熱交換器7側の冷媒配管8内に流して熱源側熱交換器7側の冷媒配管8表面に積層した氷を解氷する解氷運転を開始するものである(ステップS6)。   Then, the processes from step S1 to step S5 are repeated until the integrated value of the first integrating means 26 reaches the first set value stored in the first storage means 27. In the process of step S5, the icing determination means 22 is repeated. However, when it is determined that the integrated value of the first integrating means 26 has reached the first set value stored in the first storage means 27, the control means 21 causes the geothermal circulation pump 15 and the load-side circulation pump 18 to be turned on. The heating operation is stopped, the heating operation is temporarily interrupted, the opening degree of the expansion valve 6 is fully opened, for example, and the high-temperature refrigerant discharged from the compressor 4 flows into the refrigerant pipe 8 on the heat source side heat exchanger 7 side to heat the heat source side heat. The de-icing operation for de-icing the ice stacked on the surface of the refrigerant pipe 8 on the exchanger 7 side is started (step S6).

前記ステップS6で、制御手段21は解氷運転を開始すると、一定時間、例えば5分が経過したか否かを判断し(ステップS7)、一定時間が経過したと判断すると、解氷運転を終了し(ステップS8)、解氷運転が終了すると第1積算手段26の積算値が零にクリアーされると共に、地中熱循環ポンプ15および負荷側循環ポンプ18の駆動を開始させ暖房運転を再開するものである。   In step S6, the control means 21 determines whether or not a certain time, for example, 5 minutes has elapsed when the ice-breaking operation is started (step S7). If it is determined that the certain time has elapsed, the ice-breaking operation is terminated. (Step S8) When the ice melting operation is completed, the integrated value of the first integrating means 26 is cleared to zero, and the driving of the geothermal circulation pump 15 and the load-side circulation pump 18 is started to resume the heating operation. Is.

一方、前記ステップS1で、氷結条件判定手段23により氷結条件が成立しないと判定された場合は、第1積算手段26はそれまで積算した積算値を保持記憶し(ステップS9)、再び前記ステップS1の処理に戻るものであり、前記第1積算手段26の積算値が第1記憶手段27に記憶された第1設定値に到達するまでステップS1〜ステップS5までの処理を繰り返し行っている途中で、前記ステップS1で、氷結条件判定手段23により氷結条件が成立しないと判定された場合も、前記ステップS9で第1積算手段26はそれまで積算した積算値を保持記憶し、再び前記ステップS1の処理に戻るものである。   On the other hand, if it is determined in step S1 that the icing condition determining means 23 does not satisfy the icing condition, the first integrating means 26 holds and stores the integrated value integrated so far (step S9), and again in step S1. In the middle of repeating the processing from step S1 to step S5 until the integrated value of the first integrating means 26 reaches the first set value stored in the first storage means 27. Even when it is determined in step S1 that the icing condition determining means 23 does not satisfy the icing condition, the first integrating means 26 holds and stores the integrated value accumulated so far in step S9, and again in step S1. Return to processing.

なお、暖房運転が停止された場合は、第1積算手段26はそれまで積算した積算値を保持記憶し、再び暖房運転が開始された時は、第1積算手段26に保持記憶した積算値から積算を開始するものである。   When the heating operation is stopped, the first integrating means 26 holds and stores the integrated value accumulated so far, and when the heating operation is started again, the first integrated means 26 starts from the integrated value held and stored in the first integrating means 26. Accumulation starts.

以上説明した暖房運転中の解氷運転において、暖房運転中に、氷結判断手段22によって熱源側熱交換器7側の冷媒配管8が氷結していると判断された場合は、解氷運転を行うので、氷結に起因する冷媒配管8や膨張弁6等の機能部品の損傷を未然に防止することができると共に、氷結に起因する騒音の発生を未然に防止することができるものである。   In the deicing operation during the heating operation described above, when the icing determination means 22 determines that the refrigerant pipe 8 on the heat source side heat exchanger 7 side is frozen during the heating operation, the deicing operation is performed. Therefore, it is possible to prevent damage to functional components such as the refrigerant pipe 8 and the expansion valve 6 due to freezing, and to prevent generation of noise due to freezing.

また、前記ステップS2で、計時手段24によって熱源側熱交換器7側の冷媒配管8の氷結条件がそろった時に所定の単位時間を計時し、前記ステップS3で、第1加算値決定手段25によって所定の単位時間毎に冷媒温度と外気温度との温度差に応じた加算値を決定し、前記ステップS4で、第1積算手段26によって第1加算値決定手段25で決定した加算値を積算し、前記ステップS5で、氷結判断手段22は、第1積算手段26での積算値が予め設定した第1設定値に到達したと判断したら、熱源側熱交換器7側の冷媒配管8が氷結していると判断することで、熱源側熱交換器7側の冷媒配管8の氷の積層スピードに影響を与える冷媒温度と外気温度との温度差を考慮した加算値を用いて、より正確に熱源側熱交換器7側の冷媒配管8の氷の積層度合を推定することができ、無駄な解氷運転を行うことがなく、また、熱源側熱交換器7側の冷媒配管8表面に氷が積層し過ぎる前に、必要なタイミングで精度良く解氷運転を行うことができるものである。また、無駄な解氷運転を行わないことにより、暖房出力を安定させることができ、COPの低下を抑制することができるものである。   In step S2, a predetermined unit time is counted when the icing conditions of the refrigerant pipe 8 on the heat source side heat exchanger 7 side are met by the time counting unit 24. In step S3, the first addition value determining unit 25 An addition value corresponding to the temperature difference between the refrigerant temperature and the outside air temperature is determined every predetermined unit time, and the addition value determined by the first addition value determination unit 25 is integrated by the first integration unit 26 in step S4. In step S5, when the icing determination means 22 determines that the integrated value in the first integrating means 26 has reached the preset first set value, the refrigerant pipe 8 on the heat source side heat exchanger 7 side is frozen. By using the addition value considering the temperature difference between the refrigerant temperature and the outside air temperature that affects the ice stacking speed of the refrigerant pipe 8 on the heat source side heat exchanger 7 side, the heat source is more accurately determined. Refrigerant piping on the side heat exchanger 7 side It is possible to estimate the degree of ice stacking of the ice, without performing unnecessary ice-breaking operation, and at a necessary timing before ice is excessively stacked on the surface of the refrigerant pipe 8 on the heat source side heat exchanger 7 side. The ice-breaking operation can be performed with high accuracy. Further, by not performing useless ice-melting operation, the heating output can be stabilized, and the decrease in COP can be suppressed.

また、本実施形態では、前記ステップS2での所定の単位時間を1時間としたが、所定の単位時間を2時間や5時間としてもよく、また1分や1秒としてもよいものであり、所定の単位時間が短く設定される程、熱源側熱交換器7の冷媒配管8の氷の積層度合を推定する正確さが増すものである。   In the present embodiment, the predetermined unit time in step S2 is 1 hour. However, the predetermined unit time may be 2 hours or 5 hours, or may be 1 minute or 1 second. As the predetermined unit time is set shorter, the accuracy of estimating the ice stacking degree of the refrigerant pipe 8 of the heat source side heat exchanger 7 increases.

また、前記ステップS3にて、第1加算値決定手段25は、所定の単位時間経過時の冷媒温度センサ10の検出する冷媒温度と外気温度センサ11の検出する外気温度とを参照し、その温度差(=外気温度−冷媒温度)を算出し、その算出した温度差に応じた加算値を決定するようにしたが、前記ステップS1で氷結条件が成立した時点で、冷媒温度と外気温度を参照して、その温度差を算出すると共に、所定の単位時間経過時の冷媒温度と外気温度を参照して、その温度差を算出し、算出した双方の温度差の平均をとって、その平均温度差に応じた加算値を第1積算手段26に積算する加算値としてもよいものである。   In step S3, the first addition value determining means 25 refers to the refrigerant temperature detected by the refrigerant temperature sensor 10 and the outside air temperature detected by the outside air temperature sensor 11 when a predetermined unit time has elapsed, and the temperature is detected. The difference (= outside air temperature−refrigerant temperature) is calculated, and an addition value corresponding to the calculated temperature difference is determined. When the icing condition is satisfied in step S1, the refrigerant temperature and the outside air temperature are referred to. Then, the temperature difference is calculated, the temperature difference is calculated with reference to the refrigerant temperature and the outside air temperature when a predetermined unit time has elapsed, and the average of the calculated temperature differences is calculated. An addition value corresponding to the difference may be used as an addition value integrated in the first integration means 26.

また、前記ステップS3にて、第1加算値決定手段25が、所定の単位時間経過時の冷媒温度センサ10の検出する冷媒温度と外気温度センサ11の検出する外気温度とを参照した際、冷媒温度と外気温度との関係が、例えば、冷媒温度が−1℃で外気温度が−2℃で、外気温度−冷媒温度で算出される温度差が、温度差≦0であった場合は、熱源側熱交換器7側の冷媒配管8の氷の積層には影響を与えないとして加算値を0に決定し、前記ステップS4で、第1積算手段26にて0を積算するようにしてもよく、また、第1加算値決定手段25が、所定の単位時間経過時の冷媒温度センサ10の検出する冷媒温度と外気温度センサ11の検出する外気温度とを参照した際、冷媒温度と外気温度との温度差が、温度差≦0であっても、例えば、前記ステップS1で氷結条件が成立した時点で、冷媒温度が−1℃、外気温度が1℃、温度差が2℃であり、所定の単位時間経過時に、冷媒温度が−1℃、外気温度が−2℃、温度差が−1℃である場合は、算出した双方の温度差の平均をとって、平均温度差=(2−1)/2=0.5が0より大きい場合は、平均温度差に応じた加算値を決定し、前記ステップS4で、第1積算手段26にてその加算値を積算するようにしてもよいものである。   In addition, when the first addition value determining means 25 refers to the refrigerant temperature detected by the refrigerant temperature sensor 10 and the outside air temperature detected by the outside air temperature sensor 11 when a predetermined unit time has elapsed in step S3, the refrigerant When the relationship between the temperature and the outside air temperature is, for example, the refrigerant temperature is −1 ° C., the outside air temperature is −2 ° C., and the temperature difference calculated by the outside air temperature−the refrigerant temperature is temperature difference ≦ 0, the heat source The addition value may be determined as 0 on the assumption that the ice stack of the refrigerant pipe 8 on the side heat exchanger 7 side is not affected, and 0 may be integrated by the first integration means 26 in the step S4. In addition, when the first addition value determining means 25 refers to the refrigerant temperature detected by the refrigerant temperature sensor 10 and the outside air temperature detected by the outside air temperature sensor 11 when a predetermined unit time has elapsed, the refrigerant temperature and the outside air temperature are calculated. Even if the temperature difference is equal to or less than 0, for example, When the icing condition is established in step S1, the refrigerant temperature is -1 ° C, the outside air temperature is 1 ° C, the temperature difference is 2 ° C, and when a predetermined unit time elapses, the refrigerant temperature is -1 ° C and the outside air temperature is -2 ° C, when the temperature difference is -1 ° C, take the average of the calculated temperature differences, and if the average temperature difference = (2-1) / 2 = 0.5 is greater than 0, average An addition value corresponding to the temperature difference may be determined, and the addition value may be integrated by the first integration means 26 in step S4.

また、前記ステップS7において、制御手段21は予め設定した一定時間が経過したと判断したら、前記ステップS8で解氷運転を終了するようにしてしているが、制御手段21は、解氷運転中に冷媒温度センサ10の検出する検出温度が、予め試験等により導き出し設定された所定温度に達したら、解氷運転を終了するようにしてもよい。これは、冷媒温度センサ10が熱源側熱交換器7側の冷媒配管8の表面温度を検出するものであった場合、解氷運転中に低圧側の冷媒配管8に氷が張っている状態だと、冷媒温度センサ10の検出する検出温度はあまり上昇せず、低圧側の冷媒配管8の氷が解けてくると、徐々に冷媒温度センサ10の検出する検出温度が上昇するからであり、解氷運転を終了する所定温度を予め試験等により導き出し設定しておけば、低圧側の冷媒配管8表面に氷が解け残ることなく解氷運転を終了することができるものである。   In step S7, when the control means 21 determines that a predetermined time has elapsed, the ice-breaking operation is terminated in step S8. When the detected temperature detected by the refrigerant temperature sensor 10 reaches a predetermined temperature that is previously derived and set by a test or the like, the ice-breaking operation may be terminated. When the refrigerant temperature sensor 10 detects the surface temperature of the refrigerant pipe 8 on the heat source side heat exchanger 7 side, ice is stretched on the low-pressure side refrigerant pipe 8 during the ice-breaking operation. This is because the detected temperature detected by the refrigerant temperature sensor 10 does not rise so much and the detected temperature detected by the refrigerant temperature sensor 10 gradually increases as the ice in the refrigerant pipe 8 on the low-pressure side melts. If the predetermined temperature at which the ice operation is finished is derived and set by a test or the like in advance, the ice removal operation can be completed without the ice remaining on the surface of the refrigerant pipe 8 on the low pressure side.

次に、図1および図4に示す本発明の第2の実施形態について説明するが、この実施形態は先に説明した第1の実施形態と同一部分については同一符号を付し説明を一部省略し、相違する構成や動作について説明すると、28は圧縮機4の動作状態、すなわち、圧縮機4の駆動周波数または駆動電流値等を検出し、その動作状態を示す検出値に応じて前記第1加算値決定手段25により決定された加算値を補正する補正手段であり、本実施形態では、前記第1積算手段26は補正手段28で補正された加算値を積算するものである。   Next, a second embodiment of the present invention shown in FIG. 1 and FIG. 4 will be described. In this embodiment, the same parts as those of the first embodiment described above are denoted by the same reference numerals, and a part of the description will be given. Omitted and the different configuration and operation will be described. Numeral 28 detects the operating state of the compressor 4, that is, the driving frequency or driving current value of the compressor 4, and the second is detected according to the detected value indicating the operating state. 1 is a correction means for correcting the addition value determined by the addition value determination means 25. In the present embodiment, the first integration means 26 integrates the addition value corrected by the correction means 28.

また、前記補正手段28は、第1加算値決定手段25により決定された加算値に対して、圧縮機4の動作状態を示す駆動周波数や駆動電流値等の検出値に応じた補正係数を掛けて加算値を補正するものであり、圧縮機4の検出値が大きい程、加算値を増やす方向に大きく補正するようしている。これは、圧縮機4の検出値が大きい程、ヒートポンプ回路9を循環する冷媒の循環流量が大きくなり、それに伴い、熱源側熱交換器7側の冷媒配管8を流れる冷媒の循環流量も大きくなり、熱源側熱交換器7側の冷媒配管8が周囲から吸熱する吸熱量が増大し、熱源側熱交換器7側の冷媒配管8表面に氷が積層するスピードが速くなるためである。そのため、前記補正手段28には、圧縮機4の検出値が大きい程、第1加算値決定手段25により決定された加算値を増やす方向に補正するように、検出値毎に補正係数を対応させたデータテーブル等が予め記憶されているものである。なお、補正係数は加算値を増やす方向に補正する値だけでなく、加算値を減らす方向に補正する値を含んでいてもよいものである。   The correction unit 28 multiplies the addition value determined by the first addition value determination unit 25 by a correction coefficient corresponding to a detection value such as a drive frequency or a drive current value indicating the operation state of the compressor 4. Thus, the larger the detected value of the compressor 4 is, the larger the corrected value is corrected. This is because as the detected value of the compressor 4 is larger, the circulating flow rate of the refrigerant circulating in the heat pump circuit 9 is increased, and accordingly, the circulating flow rate of the refrigerant flowing through the refrigerant pipe 8 on the heat source side heat exchanger 7 side is also increased. This is because the amount of heat absorbed by the refrigerant pipe 8 on the heat source side heat exchanger 7 side from the surroundings increases, and the speed at which ice is stacked on the surface of the refrigerant pipe 8 on the heat source side heat exchanger 7 side increases. Therefore, the correction means 28 is associated with a correction coefficient for each detected value so that the larger the detected value of the compressor 4 is, the more the added value determined by the first added value determining means 25 is corrected. A data table or the like is stored in advance. Note that the correction coefficient may include not only a value to be corrected to increase the added value but also a value to be corrected to decrease the added value.

次に、図1および図4に示す第2の実施形態の暖房運転中の解氷運転の動作について図5に示すフローチャートに基づき説明する。
前記リモコンにより負荷端末16による被空調空間の暖房の指示がなされると、前記制御手段21は圧縮機4、地中熱循環ポンプ15、負荷側循環ポンプ18の駆動を開始させ、暖房運転が開始される。ここで、暖房運転開始時において、地中熱循環ポンプ15は予め設定された一定回転数で駆動を開始させるものである。暖房運転が開始されると、負荷側熱交換器5では負荷側循環ポンプ18により循環される加熱用循環液と圧縮機4から吐出された高温高圧の冷媒とが熱交換され、加熱された加熱用循環液が負荷端末16に供給され被空調空間を加熱すると共に、熱源側熱交換器7では、地中熱循環ポンプ15により循環され地中熱交換器12を介して地中熱を採熱した熱媒と膨張弁6から吐出された低温低圧の冷媒とが熱交換され、地中熱により冷媒を加熱し蒸発させるものである。
Next, the operation of the ice-melting operation during the heating operation of the second embodiment shown in FIGS. 1 and 4 will be described based on the flowchart shown in FIG.
When the load terminal 16 instructs the heating of the air-conditioned space by the remote controller, the control means 21 starts driving the compressor 4, the geothermal circulation pump 15, and the load-side circulation pump 18, and the heating operation is started. Is done. Here, at the start of the heating operation, the underground heat circulation pump 15 starts to be driven at a preset constant rotation speed. When the heating operation is started, the load-side heat exchanger 5 exchanges heat between the circulating fluid for heating circulated by the load-side circulation pump 18 and the high-temperature and high-pressure refrigerant discharged from the compressor 4, and is heated. The circulating fluid for use is supplied to the load terminal 16 to heat the air-conditioned space, and in the heat source side heat exchanger 7, it is circulated by the underground heat circulation pump 15 and collects the underground heat through the underground heat exchanger 12. The heat medium and the low-temperature and low-pressure refrigerant discharged from the expansion valve 6 are heat-exchanged, and the refrigerant is heated and evaporated by underground heat.

前記暖房運転中に、氷結条件判定手段23は、冷媒温度センサ10の検出する冷媒温度が零度以下、且つ、外気温度センサ11の検出する外気温度が冷媒温度センサ10の検出する冷媒温度より高いか否か、つまり、前記氷結条件が成立するか否かを判定し(ステップS10)、氷結条件が成立すると判定したら、計時手段24により所定の単位時間、例えば1時間の計時を開始させ、所定の単位時間が経過したか否かを判断し(ステップS11)、所定の単位時間が経過したと判断すると、第1加算値決定手段25は、その時の冷媒温度センサ10の検出する冷媒温度と外気温度センサ11の検出する外気温度とを参照し、その温度差(=外気温度−冷媒温度)を算出して、その温度差に応じた加算値を決定し(ステップS12)、補正手段28は、その時の圧縮機4の動作状態、例えば圧縮機4の駆動周波数を検出し、その検出値に応じた補正係数を第1加算値決定手段25が決定した加算値に掛けて加算値を補正し(ステップS13)、第1積算手段26は、補正手段28で補正した加算値を積算し、(ステップS14)、氷結判断手段22は、第1積算手段26で積算された積算値と第1記憶手段27により記憶された第1設定値とを比較し、その積算値が第1設定値に到達したか否かを判断し(ステップS15)、積算値が第1設定値に到達していないと判断した場合、再び前記ステップS10の処理に戻るものである。   During the heating operation, the icing condition determination means 23 determines whether the refrigerant temperature detected by the refrigerant temperature sensor 10 is equal to or lower than zero degrees and the outside air temperature detected by the outside air temperature sensor 11 is higher than the refrigerant temperature detected by the refrigerant temperature sensor 10. In other words, it is determined whether or not the icing condition is satisfied (step S10). When it is determined that the icing condition is satisfied, the time measuring unit 24 starts measuring a predetermined unit time, for example, 1 hour. It is determined whether or not the unit time has elapsed (step S11), and if it is determined that the predetermined unit time has elapsed, the first addition value determining means 25 detects the refrigerant temperature and the outside air temperature detected by the refrigerant temperature sensor 10 at that time. The temperature difference (= outside air temperature−refrigerant temperature) is calculated with reference to the outside air temperature detected by the sensor 11, and an addition value corresponding to the temperature difference is determined (step S12). 28 detects the operation state of the compressor 4 at that time, for example, the drive frequency of the compressor 4, and multiplies the addition value determined by the first addition value determination means 25 by the correction coefficient corresponding to the detected value to obtain the addition value. Correction (step S13), the first integration means 26 integrates the addition value corrected by the correction means 28 (step S14), and the icing determination means 22 calculates the integrated value integrated by the first integration means 26 and the first integration value. The first set value stored in the first storage means 27 is compared to determine whether or not the integrated value has reached the first set value (step S15), and the integrated value has reached the first set value. If it is determined that there is not, the process returns to step S10 again.

そして、第1積算手段26の積算値が第1記憶手段27に記憶された第1設定値に到達するまでステップS10〜ステップS15までの処理を繰り返して、ステップS15の処理において、氷結判断手段22が、第1積算手段26の積算値が第1記憶手段27に記憶された第1設定値に到達したと判断した場合、制御手段21は、地中熱循環ポンプ15および負荷側循環ポンプ18を停止して、暖房運転を一時中断し、膨張弁6の開度を例えば全開にして圧縮機4から吐出される高温冷媒を熱源側熱交換器7側の冷媒配管8内に流して熱源側熱交換器7側の冷媒配管8表面に積層した氷を解氷する解氷運転を開始するものである(ステップS16)。   Then, the processes from step S10 to step S15 are repeated until the integrated value of the first integrating means 26 reaches the first set value stored in the first storage means 27, and in the process of step S15, the icing determination means 22 However, when it is determined that the integrated value of the first integrating means 26 has reached the first set value stored in the first storage means 27, the control means 21 causes the geothermal circulation pump 15 and the load-side circulation pump 18 to be turned on. The heating operation is stopped, the heating operation is temporarily interrupted, the opening degree of the expansion valve 6 is fully opened, for example, and the high-temperature refrigerant discharged from the compressor 4 flows into the refrigerant pipe 8 on the heat source side heat exchanger 7 side to heat the heat source side heat. The de-icing operation for de-icing the ice stacked on the surface of the refrigerant pipe 8 on the exchanger 7 side is started (step S16).

前記ステップS16で、制御手段21は解氷運転を開始すると、一定時間、例えば5分が経過したか否かを判断し(ステップS17)、一定時間が経過したと判断すると、解氷運転を終了し(ステップS18)、解氷運転が終了すると第1積算手段26の積算値が零にクリアーされると共に、地中熱循環ポンプ15および負荷側循環ポンプ18の駆動を開始させ暖房運転を再開するものである。   In step S16, the control means 21 determines whether or not a certain time, for example, 5 minutes has elapsed when the ice-breaking operation is started (step S17). If it is determined that the certain time has elapsed, the ice-breaking operation is terminated. (Step S18) When the ice melting operation is completed, the integrated value of the first integrating means 26 is cleared to zero, and the driving of the geothermal circulation pump 15 and the load-side circulation pump 18 is started to resume the heating operation. Is.

一方、前記ステップS10で、氷結条件判定手段23により氷結条件が成立しないと判定された場合は、第1積算手段26はそれまで積算した積算値を保持記憶し(ステップS19)、再び前記ステップS10の処理に戻るものであり、前記第1積算手段26の積算値が第1記憶手段27に記憶された第1設定値に到達するまでステップS10〜ステップS15までの処理を繰り返し行っている途中で、前記ステップS10で、氷結条件判定手段23により氷結条件が成立しないと判定された場合も、前記ステップS19で第1積算手段26はそれまで積算した積算値を保持記憶し、再び前記ステップS10の処理に戻るものである。   On the other hand, if it is determined in step S10 that the icing condition determining means 23 does not satisfy the icing condition, the first integrating means 26 holds and stores the integrated value accumulated so far (step S19), and again in step S10. In the middle of repeatedly performing the processing from step S10 to step S15 until the integrated value of the first integrating means 26 reaches the first set value stored in the first storage means 27. Even if it is determined in step S10 that the icing condition determining means 23 does not hold the icing condition, the first integrating means 26 holds and stores the integrated value accumulated so far in step S19, and again in step S10. Return to processing.

なお、暖房運転が停止された場合は、第1積算手段26はそれまで積算した積算値を保持記憶し、再び暖房運転が開始された時は、第1積算手段26に保持記憶した積算値から積算を開始するものである。   When the heating operation is stopped, the first integrating means 26 holds and stores the integrated value accumulated so far, and when the heating operation is started again, the first integrated means 26 starts from the integrated value held and stored in the first integrating means 26. Accumulation starts.

以上説明した暖房運転中の解氷運転の中で、本実施形態の特徴的な部分において、前記ステップS13で、補正手段28は、圧縮機4の動作状態から熱源側熱交換器7側の冷媒配管8を流れる冷媒の循環流量を推定し、その冷媒の循環流量から熱源側熱交換器7側の冷媒配管8が周囲から吸熱する吸熱量を考慮した補正を、第1加算値決定手段25で決定された加算値に加え、ステップS14で、第1積算手段26は補正手段28で補正された加算値を積算するので、より一層高精度に熱源側熱交換器7側の冷媒配管8の氷の積層度合を推定することができるものである。   In the deicing operation during the heating operation described above, in the characteristic part of the present embodiment, in step S13, the correction means 28 determines the refrigerant on the heat source side heat exchanger 7 side from the operating state of the compressor 4. The first addition value determination means 25 estimates the circulation flow rate of the refrigerant flowing through the pipe 8 and takes into account the amount of heat absorbed by the refrigerant pipe 8 on the heat source side heat exchanger 7 side from the surroundings based on the circulation flow rate of the refrigerant. In addition to the determined addition value, in step S14, the first integration means 26 integrates the addition value corrected by the correction means 28, so that the ice in the refrigerant pipe 8 on the heat source side heat exchanger 7 side can be further accurately detected. It is possible to estimate the degree of lamination.

次に、図1および図6に示す本発明の第3の実施形態について説明するが、この実施形態は先に説明した第1の実施形態と同一部分については同一符号を付し説明を一部省略し、相違する構成や動作について説明する。   Next, a third embodiment of the present invention shown in FIGS. 1 and 6 will be described. In this embodiment, the same parts as those of the first embodiment described above are denoted by the same reference numerals, and a part of the description will be given. Omitted and different configurations and operations will be described.

前記制御手段21は、前記暖房運転中に熱源側熱交換器7側の冷媒配管8が氷結しているか否かを判断する氷結判断手段22と、前記暖房運転中に冷媒温度センサ10の検出する冷媒温度が零度以下、且つ、外気温度センサ11の検出する外気温度が冷媒温度センサ10の検出する冷媒温度より高いという氷結条件が成立するか否かを判定する氷結条件判定手段23と、前記暖房運転中に冷媒温度センサ10の検出する冷媒温度が零度以下、且つ、外気温度センサ11の検出する外気温度が冷媒温度センサ10の検出する冷媒温度より高いことを検知した時に所定の単位時間を計時する計時手段24と、圧縮機4の動作状態、すなわち、圧縮機4の駆動周波数または駆動電流値等を検出し、計時手段24の計時する所定の単位時間毎に圧縮機4の動作状態を示す検出値に応じた加算値を決定する第2加算値決定手段29と、第2加算値決定手段29で決定した加算値を積算する第2積算手段30と、前記暖房運転を中断し後述する解氷運転を開始する基準となる第2設定値を記憶する第2記憶手段31とを備えているものである。なお、前記第2設定値は予め試験等を行って導き出し設定された値である。   The control means 21 detects whether or not the refrigerant pipe 8 on the heat source side heat exchanger 7 side is frozen during the heating operation, and the refrigerant temperature sensor 10 detects whether or not the refrigerant temperature sensor 10 is in the heating operation. The icing condition determining means 23 for determining whether or not an icing condition that the refrigerant temperature is equal to or lower than zero degrees and the outside air temperature detected by the outside air temperature sensor 11 is higher than the refrigerant temperature detected by the refrigerant temperature sensor 10 is satisfied; During operation, a predetermined unit time is counted when it is detected that the refrigerant temperature detected by the refrigerant temperature sensor 10 is equal to or lower than zero degrees and the outside air temperature detected by the outside air temperature sensor 11 is higher than the refrigerant temperature detected by the refrigerant temperature sensor 10. The time measuring means 24 and the operating state of the compressor 4, that is, the driving frequency or driving current value of the compressor 4 are detected, and the compressor is measured every predetermined unit time measured by the time measuring means 24. A second addition value determination means 29 for determining an addition value corresponding to the detected value indicating the operating state of the second, a second integration means 30 for integrating the addition value determined by the second addition value determination means 29, and the heating operation. And a second storage means 31 for storing a second set value serving as a reference for interrupting and starting an ice melting operation described later. The second set value is a value that is derived and set by conducting a test or the like in advance.

ここで、前記氷結判断手段22は、暖房運転中に、第2積算手段30により積算された積算値と第2記憶手段31により記憶された第2設定値とを比較し、その積算値が第2設定値に到達した時に、膨張弁6から圧縮機4に至るまでの熱源側熱交換器7側の冷媒配管8が氷結している、つまり、熱源側熱交換器7側の冷媒配管8表面に氷が積層していると判断するものであり、氷結判断手段22が熱源側熱交換器7側の冷媒配管8が氷結していると判断すると、前記制御手段21は、地中熱循環ポンプ15および負荷側循環ポンプ18を停止して、暖房運転を一時中断し、膨張弁6の開度を全開または暖房運転時よりも大きくして圧縮機4から吐出される高温冷媒を熱源側熱交換器7側の冷媒配管8内に流して熱源側熱交換器7側の冷媒配管8表面に積層した氷を解氷する解氷運転を行うものである。なお、解氷運転は一定時間行われ、この一定時間は熱源側熱交換器7側の冷媒配管8の氷を解かすのに必要な時間を予め試験等により導き出し設定したものである。   Here, the icing determination means 22 compares the accumulated value accumulated by the second accumulation means 30 with the second set value stored by the second storage means 31 during the heating operation, and the accumulated value is the first value. 2 When the set value is reached, the refrigerant pipe 8 on the heat source side heat exchanger 7 side from the expansion valve 6 to the compressor 4 is frozen, that is, the surface of the refrigerant pipe 8 on the heat source side heat exchanger 7 side. If the icing determination means 22 determines that the refrigerant pipe 8 on the heat source side heat exchanger 7 side is icing, the control means 21 is connected to the underground heat circulation pump. 15 and the load-side circulation pump 18 are stopped, the heating operation is temporarily interrupted, the opening degree of the expansion valve 6 is fully opened or larger than that during the heating operation, and the high-temperature refrigerant discharged from the compressor 4 is exchanged on the heat source side. Refrigerant pipe 8 on the heat source side heat exchanger 7 side after flowing into the refrigerant pipe 8 on the side of the heat exchanger 7 The ice was laminated on the surface and performs thawing operation to thaw. Note that the ice-removal operation is performed for a certain time, and this certain time is obtained by setting in advance a time necessary for melting the ice in the refrigerant pipe 8 on the heat source side heat exchanger 7 side by a test or the like.

また、前記第2加算値決定手段29は、圧縮機4の動作状態を示す駆動周波数や駆動電流値等の検出値に応じた加算値を決定するもので、この加算値は、所定の単位時間当たりに熱源側熱交換器7側の冷媒配管8に積層する氷の厚さの目安としての数値であり、圧縮機4の検出値が大きい程、大きな加算値に決定するようにしている。これは、圧縮機4の検出値が大きい程、ヒートポンプ回路9を循環する冷媒の循環流量が大きくなり、それに伴い、熱源側熱交換器7側の冷媒配管8を流れる冷媒の循環流量も大きくなり、熱源側熱交換器7側の冷媒配管8が周囲から吸熱する吸熱量が増大し、熱源側熱交換器7側の冷媒配管8表面に氷が積層するスピードが速くなるためである。そのため、第2加算値決定手段29には、圧縮機4の検出値が大きい程、大きな加算値を決定するように、検出値毎に加算値を対応させたデータテーブル等が予め記憶されているものである。   The second addition value determining means 29 determines an addition value corresponding to a detection value such as a drive frequency or a drive current value indicating the operation state of the compressor 4, and this addition value is a predetermined unit time. It is a numerical value as a measure of the thickness of ice stacked on the refrigerant pipe 8 on the heat source side heat exchanger 7 side, and the larger the detected value of the compressor 4, the larger the added value is determined. This is because as the detected value of the compressor 4 is larger, the circulating flow rate of the refrigerant circulating in the heat pump circuit 9 is increased, and accordingly, the circulating flow rate of the refrigerant flowing through the refrigerant pipe 8 on the heat source side heat exchanger 7 side is also increased. This is because the amount of heat absorbed by the refrigerant pipe 8 on the heat source side heat exchanger 7 side from the surroundings increases, and the speed at which ice is stacked on the surface of the refrigerant pipe 8 on the heat source side heat exchanger 7 side increases. Therefore, the second addition value determining means 29 stores in advance a data table or the like in which the addition value is associated with each detection value so that the larger the detection value of the compressor 4 is, the larger the addition value is determined. Is.

次に、図1および図6に示す第3の実施形態の暖房運転中の解氷運転の動作について図7に示すフローチャートに基づき説明する。
前記リモコンにより負荷端末16による被空調空間の暖房の指示がなされると、前記制御手段21は圧縮機4、地中熱循環ポンプ15、負荷側循環ポンプ18の駆動を開始させ、暖房運転が開始される。ここで、暖房運転開始時において、地中熱循環ポンプ15は予め設定された一定回転数で駆動を開始させるものである。暖房運転が開始されると、負荷側熱交換器5では負荷側循環ポンプ18により循環される加熱用循環液と圧縮機4から吐出された高温高圧の冷媒とが熱交換され、加熱された加熱用循環液が負荷端末16に供給され被空調空間を加熱すると共に、熱源側熱交換器7では、地中熱循環ポンプ15により循環され地中熱交換器12を介して地中熱を採熱した熱媒と膨張弁6から吐出された低温低圧の冷媒とが熱交換され、地中熱により冷媒を加熱し蒸発させるものである。
Next, the operation of the ice-melting operation during the heating operation of the third embodiment shown in FIGS. 1 and 6 will be described based on the flowchart shown in FIG.
When the load terminal 16 instructs the heating of the air-conditioned space by the remote controller, the control means 21 starts driving the compressor 4, the geothermal circulation pump 15, and the load-side circulation pump 18, and the heating operation is started. Is done. Here, at the start of the heating operation, the underground heat circulation pump 15 starts to be driven at a preset constant rotation speed. When the heating operation is started, the load-side heat exchanger 5 exchanges heat between the circulating fluid for heating circulated by the load-side circulation pump 18 and the high-temperature and high-pressure refrigerant discharged from the compressor 4, and is heated. The circulating fluid for use is supplied to the load terminal 16 to heat the air-conditioned space, and in the heat source side heat exchanger 7, it is circulated by the underground heat circulation pump 15 and collects the underground heat through the underground heat exchanger 12. The heat medium and the low-temperature and low-pressure refrigerant discharged from the expansion valve 6 are heat-exchanged, and the refrigerant is heated and evaporated by underground heat.

前記暖房運転中に、氷結条件判定手段23は、冷媒温度センサ10の検出する冷媒温度が零度以下、且つ、外気温度センサ11の検出する外気温度が冷媒温度センサ10の検出する冷媒温度より高いか否か、つまり、前記氷結条件が成立するか否かを判定し(ステップS20)、氷結条件が成立すると判定したら、計時手段24により所定の単位時間、例えば1時間の計時を開始させ、所定の単位時間が経過したか否かを判断し(ステップS21)、所定の単位時間が経過したと判断すると、第2加算値決定手段29は、所定の単位時間経過時の圧縮機4の動作状態を示す検出値、例えば圧縮機4の駆動周波数を検出し、その検出値に応じた加算値を決定し(ステップS22)、第2積算手段30は、第2加算値決定手段29で決定した加算値を積算し、(ステップS23)、氷結判断手段22は、第2積算手段30で積算された積算値と第2記憶手段31により記憶された第2設定値とを比較し、その積算値が第2設定値に到達したか否かを判断し(ステップS24)、積算値が第2設定値に到達していないと判断した場合、再び前記ステップS20の処理に戻るものである。   During the heating operation, the icing condition determination means 23 determines whether the refrigerant temperature detected by the refrigerant temperature sensor 10 is equal to or lower than zero degrees and the outside air temperature detected by the outside air temperature sensor 11 is higher than the refrigerant temperature detected by the refrigerant temperature sensor 10. No, that is, whether or not the icing condition is satisfied (step S20). If it is determined that the icing condition is satisfied, the time measuring unit 24 starts measuring a predetermined unit time, for example, 1 hour, It is determined whether or not the unit time has elapsed (step S21), and if it is determined that the predetermined unit time has elapsed, the second addition value determining means 29 determines the operation state of the compressor 4 when the predetermined unit time has elapsed. The detected value, for example, the drive frequency of the compressor 4 is detected, an addition value corresponding to the detected value is determined (step S22), and the second integration means 30 is the addition determined by the second addition value determination means 29 (Step S23), the icing determination means 22 compares the integrated value integrated by the second integrating means 30 with the second set value stored by the second storage means 31, and the integrated value is It is determined whether or not the second set value has been reached (step S24). If it is determined that the integrated value has not reached the second set value, the process returns to step S20 again.

そして、第2積算手段30の積算値が第2記憶手段31に記憶された第2設定値に到達するまでステップS20〜ステップS24までの処理を繰り返して、ステップS24の処理において、氷結判断手段22が、第2積算手段30の積算値が第2記憶手段31に記憶された第2設定値に到達したと判断した場合、制御手段21は、地中熱循環ポンプ15および負荷側循環ポンプ18を停止して、暖房運転を一時中断し、膨張弁6の開度を例えば全開にして圧縮機4から吐出される高温冷媒を熱源側熱交換器7側の冷媒配管8内に流して熱源側熱交換器7側の冷媒配管8表面に積層した氷を解氷する解氷運転を開始するものである(ステップS25)。   Then, the process from step S20 to step S24 is repeated until the integrated value of the second integration means 30 reaches the second set value stored in the second storage means 31, and in the process of step S24, the icing determination means 22 However, when it is determined that the integrated value of the second integration means 30 has reached the second set value stored in the second storage means 31, the control means 21 causes the underground heat circulation pump 15 and the load-side circulation pump 18 to The heating operation is stopped, the heating operation is temporarily interrupted, the opening degree of the expansion valve 6 is fully opened, for example, and the high-temperature refrigerant discharged from the compressor 4 flows into the refrigerant pipe 8 on the heat source side heat exchanger 7 side to heat the heat source side heat. The de-icing operation for de-icing the ice stacked on the surface of the refrigerant pipe 8 on the exchanger 7 side is started (step S25).

前記ステップS25で、制御手段21は解氷運転を開始すると、一定時間、例えば5分が経過したか否かを判断し(ステップS26)、一定時間が経過したと判断すると、解氷運転を終了し(ステップS27)、解氷運転が終了すると第2積算手段30の積算値が零にクリアーされると共に、地中熱循環ポンプ15および負荷側循環ポンプ18の駆動を開始させ暖房運転を再開するものである。   In step S25, the control means 21 determines whether or not a certain time, for example, 5 minutes has elapsed when the ice-breaking operation is started (step S26). If it is determined that the certain time has elapsed, the ice-breaking operation is terminated. (Step S27) When the ice melting operation is completed, the integrated value of the second integrating means 30 is cleared to zero, and the driving of the geothermal circulation pump 15 and the load-side circulation pump 18 is started to resume the heating operation. Is.

一方、前記ステップS20で、氷結条件判定手段23により氷結条件が成立しないと判定された場合は、第2積算手段30はそれまで積算した積算値を保持記憶し(ステップS28)、再び前記ステップS20の処理に戻るものであり、前記第2積算手段30の積算値が第2記憶手段31に記憶された第2設定値に到達するまでステップS20〜ステップS24までの処理を繰り返し行っている途中で、前記ステップS20で、氷結条件判定手段23により氷結条件が成立しないと判定された場合も、前記ステップS28で第2積算手段30はそれまで積算した積算値を保持記憶し、再び前記ステップS20の処理に戻るものである。   On the other hand, if it is determined in step S20 that the icing condition determining means 23 does not satisfy the icing condition, the second integrating means 30 holds and stores the integrated value accumulated so far (step S28), and again in step S20. In the middle of repeatedly performing the processing from step S20 to step S24 until the integrated value of the second integrating means 30 reaches the second set value stored in the second storage means 31. Even if it is determined in step S20 that the icing condition determining means 23 does not hold the icing condition, the second integrating means 30 holds and stores the integrated value accumulated so far in step S28, and again in step S20. Return to processing.

なお、暖房運転が停止された場合は、第2積算手段30はそれまで積算した積算値を保持記憶し、再び暖房運転が開始された時は、第2積算手段30に保持記憶した積算値から積算を開始するものである。   When the heating operation is stopped, the second integrating means 30 holds and stores the integrated value accumulated so far, and when the heating operation is started again, the second integrating means 30 starts from the integrated value held and stored in the second integrating means 30. Accumulation starts.

以上説明した暖房運転中の解氷運転において、暖房運転中に、氷結判断手段22によって熱源側熱交換器7側の冷媒配管8が氷結していると判断された場合は、解氷運転を行うので、氷結に起因する冷媒配管8や膨張弁6等の機能部品の損傷を未然に防止することができると共に、氷結に起因する騒音の発生を未然に防止することができるものである。   In the deicing operation during the heating operation described above, when the icing determination means 22 determines that the refrigerant pipe 8 on the heat source side heat exchanger 7 side is frozen during the heating operation, the deicing operation is performed. Therefore, it is possible to prevent damage to functional components such as the refrigerant pipe 8 and the expansion valve 6 due to freezing, and to prevent generation of noise due to freezing.

また、前記ステップS21で、計時手段24によって熱源側熱交換器7側の冷媒配管8の氷結条件がそろった時に所定の単位時間を計時し、前記ステップS22で、第2加算値決定手段29は、圧縮機4の動作状態を示す検出値から熱源側熱交換器7側の冷媒配管8を流れる冷媒の循環流量を推定し、その冷媒の循環流量から熱源側熱交換器7側の冷媒配管8が周囲から吸熱する吸熱量を考慮して、計時手段24の計時した所定の単位時間毎に圧縮機4の動作状態を示す検出値に応じた加算値を決定し、前記ステップS23で、第2積算手段30によって第2加算値決定手段29で決定した加算値を積算し、前記ステップS24で、氷結判断手段22は、第2積算手段30での積算値が予め設定した第2設定値に到達したと判断したら、熱源側熱交換器7側の冷媒配管8が氷結していると判断することで、熱源側熱交換器7側の冷媒配管8の氷の積層スピードに影響を与える圧縮機4の動作状態を考慮した加算値を用いて、より正確に熱源側熱交換器7側の冷媒配管8の氷の積層度合を推定することができ、無駄な解氷運転を行うことがなく、また、熱源側熱交換器7側の冷媒配管8表面に氷が積層し過ぎる前に、必要なタイミングで精度良く解氷運転を行うことができるものである。また、無駄な解氷運転を行わないことにより、暖房出力を安定させることができ、COPの低下を抑制することができるものである。   In step S21, a predetermined unit time is counted when the icing conditions of the refrigerant pipe 8 on the heat source side heat exchanger 7 side are met by the time counting unit 24. In step S22, the second addition value determining unit 29 Then, the circulation flow rate of the refrigerant flowing through the refrigerant pipe 8 on the heat source side heat exchanger 7 side is estimated from the detected value indicating the operation state of the compressor 4, and the refrigerant pipe 8 on the heat source side heat exchanger 7 side is estimated from the circulation flow rate of the refrigerant. In consideration of the amount of heat absorbed from the surroundings, an addition value corresponding to the detected value indicating the operating state of the compressor 4 is determined every predetermined unit time counted by the time measuring means 24. In step S23, the second value is determined. The addition value determined by the second addition value determination unit 29 is integrated by the integration unit 30, and in step S24, the icing determination unit 22 reaches the second set value set in advance by the integration value in the second integration unit 30. Heat source Addition considering the operating state of the compressor 4 that affects the ice stacking speed of the refrigerant pipe 8 on the heat source side heat exchanger 7 side by judging that the refrigerant pipe 8 on the heat exchanger 7 side is frozen. By using the value, it is possible to estimate the ice stacking degree of the refrigerant pipe 8 on the heat source side heat exchanger 7 side more accurately, without performing useless ice-breaking operation, and the heat source side heat exchanger 7 Before the ice is excessively stacked on the surface of the refrigerant pipe 8 on the side, the ice-breaking operation can be accurately performed at a necessary timing. Further, by not performing useless ice-melting operation, the heating output can be stabilized, and the decrease in COP can be suppressed.

また、本実施形態では、前記ステップS21での所定の単位時間を1時間としたが、所定の単位時間を2時間や5時間としてもよく、また1分や1秒としてもよいものであり、所定の単位時間が短く設定される程、熱源側熱交換器7の冷媒配管8の氷の積層度合を推定する正確さが増すものである。   In the present embodiment, the predetermined unit time in step S21 is 1 hour, but the predetermined unit time may be 2 hours or 5 hours, or may be 1 minute or 1 second. As the predetermined unit time is set shorter, the accuracy of estimating the ice stacking degree of the refrigerant pipe 8 of the heat source side heat exchanger 7 increases.

また、前記ステップS22にて、第2加算値決定手段29は、所定の単位時間経過時の圧縮機4の動作状態を示す検出値、例えば圧縮機4の駆動周波数を検出し、その検出値に応じた加算値を決定するようにしたが、前記ステップS20で氷結条件が成立した時点で、圧縮機4の動作状態を示す検出値を検出すると共に、所定の単位時間経過時の圧縮機4の動作状態を示す検出値を検出し、検出した双方の検出値の平均をとって、その平均検出値に応じた加算値を第2積算手段30に積算する加算値としてもよいものである。   In step S22, the second addition value determining means 29 detects a detection value indicating the operating state of the compressor 4 when a predetermined unit time has elapsed, for example, the driving frequency of the compressor 4, and uses the detected value as the detection value. The corresponding addition value is determined. When the icing condition is established in step S20, a detection value indicating the operating state of the compressor 4 is detected, and the compressor 4 at the time when a predetermined unit time has elapsed. The detected value indicating the operating state is detected, the average of both detected values is averaged, and the added value corresponding to the average detected value may be added to the second integrating means 30.

また、前記ステップS26において、制御手段21は予め設定した一定時間が経過したと判断したら、前記ステップS27で解氷運転を終了するようにしてしているが、制御手段21は、解氷運転中に冷媒温度センサ10の検出する検出温度が、予め試験等により導き出し設定された所定温度に達したら、解氷運転を終了するようにしてもよい。これは、冷媒温度センサ10が熱源側熱交換器7側の冷媒配管8の表面温度を検出するものであった場合、解氷運転中に低圧側の冷媒配管8に氷が張っている状態だと、冷媒温度センサ10の検出する検出温度はあまり上昇せず、低圧側の冷媒配管8の氷が解けてくると、徐々に冷媒温度センサ10の検出する検出温度が上昇するからであり、解氷運転を終了する所定温度を予め試験等により導き出し設定しておけば、低圧側の冷媒配管8表面に氷が解け残ることなく解氷運転を終了することができるものである。   In step S26, when the control means 21 determines that a predetermined time has elapsed, the ice-breaking operation is terminated in step S27. However, the control means 21 is in the ice-breaking operation. When the detected temperature detected by the refrigerant temperature sensor 10 reaches a predetermined temperature that is previously derived and set by a test or the like, the ice-breaking operation may be terminated. When the refrigerant temperature sensor 10 detects the surface temperature of the refrigerant pipe 8 on the heat source side heat exchanger 7 side, ice is stretched on the low-pressure side refrigerant pipe 8 during the ice-breaking operation. This is because the detected temperature detected by the refrigerant temperature sensor 10 does not rise so much and the detected temperature detected by the refrigerant temperature sensor 10 gradually increases as the ice in the refrigerant pipe 8 on the low-pressure side melts. If the predetermined temperature at which the ice operation is finished is derived and set by a test or the like in advance, the ice removal operation can be completed without the ice remaining on the surface of the refrigerant pipe 8 on the low pressure side.

なお、本発明は先に説明した第1から第3の実施形態に限定されるものでなく、第1から第3の実施形態では、解氷運転時に膨張弁6を全開にして圧縮機4から吐出される高温冷媒を熱源側熱交換器7に流すようにしたが、図8に示すように、ヒートポンプ回路9に負荷側熱交換器5および膨張弁6をバイパスするバイパス管32と、そのバイパス管32を開閉する開閉弁33とを設け、解氷運転時に開閉弁33を開弁して、圧縮機4から吐出される高温冷媒を熱源側熱交換器7に直接流入させて、熱源側熱交換器7に高温冷媒を流すようにしてもよく、さらに、図9に示すように、ヒートポンプ回路9に、暖房運転時は熱源側熱交換器7を蒸発器として機能させると共に、負荷側熱交換器5を凝縮器として機能させ負荷側を加熱し、解氷運転時は熱源側熱交換器7を凝縮器として機能させると共に、負荷側熱交換器5を蒸発器として機能させ熱源側を加熱するように切り換える四方弁34を設け、解氷運転時に熱源側熱交換器7を凝縮器として機能させるように四方弁34を切り換え、図中の点線矢印で示したように、圧縮機4から吐出される高温冷媒を熱源側熱交換器7に直接流入させて、熱源側熱交換器7に高温冷媒を流すようにしてもよいものである。   The present invention is not limited to the first to third embodiments described above. In the first to third embodiments, the expansion valve 6 is fully opened during the ice-breaking operation and the compressor 4 is used. Although the discharged high-temperature refrigerant flows through the heat source side heat exchanger 7, as shown in FIG. 8, the bypass pipe 32 bypassing the load side heat exchanger 5 and the expansion valve 6 in the heat pump circuit 9, and its bypass An on-off valve 33 for opening and closing the pipe 32 is opened, and the on-off valve 33 is opened during the ice-breaking operation so that the high-temperature refrigerant discharged from the compressor 4 flows directly into the heat source side heat exchanger 7 to A high-temperature refrigerant may be allowed to flow through the exchanger 7, and as shown in FIG. 9, the heat pump circuit 9 causes the heat source side heat exchanger 7 to function as an evaporator during heating operation, and load side heat exchange. Function as a condenser, heat the load side, In some cases, the heat source side heat exchanger 7 is made to function as a condenser, and the load side heat exchanger 5 is made to function as an evaporator so that the heat source side is heated so that the heat source side is heated. The four-way valve 34 is switched so that the compressor 7 functions as a condenser, and the high-temperature refrigerant discharged from the compressor 4 is caused to flow directly into the heat source side heat exchanger 7 as shown by the dotted arrows in FIG. A high-temperature refrigerant may be allowed to flow through the side heat exchanger 7.

また、本発明は先に説明した第1から第3の実施形態に限定されるものでなく、第1から第3の実施形態では、地盤G中に埋設された複数の地中熱交換器12は互いに並列に接続されているが、複数の地中熱交換器12を互いに直列に接続してもよく、さらに、地中熱交換器12を複数埋設せず、地盤G中から所望の採熱ができるのであれば、地中熱交換器12を1本だけ埋設したものであってもよい。   The present invention is not limited to the first to third embodiments described above. In the first to third embodiments, a plurality of underground heat exchangers 12 embedded in the ground G are used. Are connected in parallel with each other, but a plurality of underground heat exchangers 12 may be connected in series with each other, and a desired heat collection from the ground G without embedding a plurality of underground heat exchangers 12. If it is possible, only one underground heat exchanger 12 may be embedded.

また、本発明は先に説明した第1から第3の実施形態に限定されるものでなく、第1から第3の実施形態では、床暖房パネル等の負荷端末16により被空調空間である室内を加熱する熱媒循環式の暖房運転を負荷運転としたが、被空調空間である室内に負荷側熱交換器5を有する室内機(図示せず)を設け、この室内機内で圧縮機4から吐出された高温冷媒を室内空気と直接熱交換し、送風により室内を加熱する暖房運転を負荷運転としてもよいものであり、また、負荷端末16を給湯等に使用する湯水を貯湯する貯湯タンク(図示せず)とし、貯湯タンク内の湯水を沸き上げる沸き上げ運転を負荷運転としてもよいものであり、本発明の要旨を変更しない範囲で様々な変形が可能であり、これを妨げるものではない。   In addition, the present invention is not limited to the first to third embodiments described above, and in the first to third embodiments, the room is an air-conditioned space by the load terminal 16 such as a floor heating panel. Although the heating medium circulation type heating operation for heating the vehicle is a load operation, an indoor unit (not shown) having a load-side heat exchanger 5 is provided in a room that is an air-conditioned space. Heating operation in which the discharged high-temperature refrigerant directly exchanges heat with room air and heats the room by blowing air may be used as load operation, and a hot water storage tank (for storing hot water used for hot water supply or the like by the load terminal 16) The heating operation for boiling hot water in the hot water storage tank may be a load operation, and various modifications are possible without departing from the scope of the present invention, and this is not disturbed. .

また、本発明は先に説明した第1から第3の実施形態に限定されるものでなく、第1から第3の実施形態では、氷結判断手段22は、冷媒温度センサ10の検出する冷媒温度に基づき、熱源側熱交換器7の冷媒配管8が氷結しているか否かの判断を行っているが、図17に示すように、冷媒温度センサ10の代わりに、熱源側熱交換器7から流出し地中熱交換器12に流入する地中熱循環回路14の熱媒の温度を検出する地中往き温度検出手段としての地中往き温度センサ35を設け、氷結判断手段22は、この地中往き温度センサ35の検出する熱媒温度と外気温度センサ11の検出する外気温度に基づき、熱源側熱交換器7の冷媒配管8が氷結しているか否かの判断を行うようにしてもよい。これは、熱源側熱交換器7から流出する熱媒の温度が熱源側熱交換器7に流入する冷媒温度に近似した温度であり、その熱媒温度から熱源側熱交換器7側の冷媒温度を推定できるためであり、氷結判断手段22は、地中往き温度センサ35の検出する熱媒温度を利用して、熱源側熱交換器7の冷媒配管8の氷結の判断を確実に行うことができるものである。   Further, the present invention is not limited to the first to third embodiments described above, and in the first to third embodiments, the icing determination means 22 is the refrigerant temperature detected by the refrigerant temperature sensor 10. Based on the above, it is determined whether or not the refrigerant pipe 8 of the heat source side heat exchanger 7 is frozen. As shown in FIG. 17, instead of the refrigerant temperature sensor 10, the heat source side heat exchanger 7 An underground temperature sensor 35 is provided as an underground temperature detecting means for detecting the temperature of the heat medium of the underground heat circulation circuit 14 that flows out and flows into the underground heat exchanger 12. Based on the heat medium temperature detected by the middle temperature sensor 35 and the outside air temperature detected by the outside air temperature sensor 11, it may be determined whether or not the refrigerant pipe 8 of the heat source side heat exchanger 7 is frozen. . This is a temperature in which the temperature of the heat medium flowing out from the heat source side heat exchanger 7 approximates the refrigerant temperature flowing into the heat source side heat exchanger 7, and the refrigerant temperature on the heat source side heat exchanger 7 side from the heat medium temperature. The icing determination means 22 can reliably determine the icing of the refrigerant pipe 8 of the heat source side heat exchanger 7 by using the heat medium temperature detected by the underground temperature sensor 35. It can be done.

4 圧縮機
5 負荷側熱交換器
6 膨張弁
7 熱源側熱交換器
8 冷媒配管
9 ヒートポンプ回路
10 冷媒温度センサ
11 外気温度センサ
12 地中熱交換器
13 熱媒配管
14 地中熱循環回路
15 地中熱循環ポンプ
22 氷結判断手段
24 計時手段
25 第1加算値決定手段
26 第1積算手段
28 補正手段
29 第2加算値決定手段
30 第2積算手段
35 地中往き温度センサ
DESCRIPTION OF SYMBOLS 4 Compressor 5 Load side heat exchanger 6 Expansion valve 7 Heat source side heat exchanger 8 Refrigerant piping 9 Heat pump circuit 10 Refrigerant temperature sensor 11 Outside air temperature sensor 12 Ground heat exchanger 13 Heat medium piping 14 Ground heat circulation circuit 15 Ground Medium heat circulation pump 22 Freezing determination means 24 Timekeeping means 25 First addition value determination means 26 First integration means 28 Correction means 29 Second addition value determination means 30 Second integration means 35 Underground temperature sensor

Claims (4)

圧縮機、負荷側熱交換器、減圧手段、熱源側熱交換器を冷媒配管で環状に接続したヒートポンプ回路と、地中に埋設された地中熱交換器と、該地中熱交換器と前記熱源側熱交換器との間を熱媒配管で環状に接続した地中熱循環回路と、該地中熱循環回路に熱媒を循環させる地中熱循環ポンプと、前記熱源側熱交換器側の冷媒の温度を検出する冷媒温度検出手段と、外気温度を検出する外気温度検出手段とを備え、前記地中熱交換器により地中熱を採熱し、前記熱源側熱交換器を蒸発器として機能させると共に、前記負荷側熱交換器を凝縮器として機能させて負荷側を加熱する負荷運転を行う地中熱ヒートポンプ装置において、前記負荷運転中に、前記冷媒温度検出手段の検出する冷媒温度が零度以下、且つ、前記外気温度検出手段の検出する外気温度が前記冷媒温度検出手段の検出する冷媒温度より高い時に所定の単位時間を計時する計時手段と、前記所定の単位時間毎に前記冷媒温度検出手段の検出する冷媒温度と前記外気温度検出手段の検出する外気温度との温度差に応じた加算値を決定する加算値決定手段と、前記加算値決定手段で決定した加算値を積算する積算手段と、前記積算手段での積算値が予め設定した設定値に到達したら、前記熱源側熱交換器側の冷媒配管が氷結していると判断する氷結判断手段とを設け、前記氷結判断手段によって前記熱源側熱交換器側の冷媒配管が氷結していると判断された場合は、前記熱源側熱交換器側の冷媒配管に高温冷媒を流して解氷する解氷運転を行うようにしたことを特徴とする地中熱ヒートポンプ装置。   A compressor, a load-side heat exchanger, a decompression means, a heat pump circuit in which a heat source-side heat exchanger is annularly connected by a refrigerant pipe, an underground heat exchanger embedded in the ground, the underground heat exchanger, A ground heat circulation circuit that is annularly connected to the heat source side heat exchanger with a heat medium pipe, a ground heat circulation pump that circulates the heat medium in the ground heat circulation circuit, and the heat source side heat exchanger side A refrigerant temperature detecting means for detecting the temperature of the refrigerant and an outside air temperature detecting means for detecting the outside air temperature, collecting underground heat by the underground heat exchanger, and using the heat source side heat exchanger as an evaporator In the geothermal heat pump device that performs the load operation that causes the load side heat exchanger to function as a condenser and heats the load side, the refrigerant temperature detected by the refrigerant temperature detecting means during the load operation Less than zero degree and detected by the outside air temperature detecting means Time measuring means for measuring a predetermined unit time when the air temperature is higher than the refrigerant temperature detected by the refrigerant temperature detecting means, the refrigerant temperature detected by the refrigerant temperature detecting means for each predetermined unit time, and the outside air temperature detecting means An addition value determining means for determining an added value according to a temperature difference from the detected outside air temperature, an integrating means for integrating the added value determined by the added value determining means, and an integrated value in the integrating means are preset. When the set value is reached, there is provided icing judgment means for judging that the refrigerant pipe on the heat source side heat exchanger side is frozen, and the refrigerant pipe on the heat source side heat exchanger side is frozen by the icing judgment means. If it is determined that the heat source is in the ground, the ground heat heat pump device is configured to perform a deicing operation in which a high-temperature refrigerant flows through the refrigerant pipe on the heat source side heat exchanger side to perform ice melting. 請求項1記載の地中熱ヒートポンプ装置において、前記圧縮機の動作状態を検出し、その動作状態に応じて前記加算値決定手段により決定された加算値を補正する補正手段を設け、前記積算手段は前記補正手段で補正した加算値を積算するようにした地中熱ヒートポンプ装置。   2. The underground heat pump apparatus according to claim 1, further comprising a correcting unit that detects an operating state of the compressor and corrects the addition value determined by the adding value determining unit according to the operating state, and the integrating unit. Is a geothermal heat pump device that integrates the added values corrected by the correcting means. 圧縮機、負荷側熱交換器、減圧手段、熱源側熱交換器を冷媒配管で環状に接続したヒートポンプ回路と、地中に埋設された地中熱交換器と、該地中熱交換器と前記熱源側熱交換器との間を熱媒配管で環状に接続した地中熱循環回路と、該地中熱循環回路に熱媒を循環させる地中熱循環ポンプと、前記熱源側熱交換器側の冷媒の温度を検出する冷媒温度検出手段と、外気温度を検出する外気温度検出手段とを備え、前記地中熱交換器により地中熱を採熱し、前記熱源側熱交換器を蒸発器として機能させると共に、前記負荷側熱交換器を凝縮器として機能させて負荷側を加熱する負荷運転を行う地中熱ヒートポンプ装置において、前記負荷運転中に、前記冷媒温度検出手段の検出する冷媒温度が零度以下、且つ、前記外気温度検出手段の検出する外気温度が前記冷媒温度検出手段の検出する冷媒温度より高い時に所定の単位時間を計時する計時手段と、前記圧縮機の動作状態を検出し、前記所定の単位時間毎に前記圧縮機の動作状態に応じた加算値を決定する加算値決定手段と、前記加算値決定手段で決定した加算値を積算する積算手段と、前記積算手段での積算値が予め設定した設定値に到達したら、前記熱源側熱交換器側の冷媒配管が氷結していると判断する氷結判断手段とを設け、前記氷結判断手段によって前記熱源側熱交換器側の冷媒配管が氷結していると判断された場合は、前記熱源側熱交換器側の冷媒配管に高温冷媒を流して解氷する解氷運転を行うようにしたことを特徴とする地中熱ヒートポンプ装置。   A compressor, a load-side heat exchanger, a decompression means, a heat pump circuit in which a heat source-side heat exchanger is annularly connected by a refrigerant pipe, an underground heat exchanger embedded in the ground, the underground heat exchanger, A ground heat circulation circuit that is annularly connected to the heat source side heat exchanger with a heat medium pipe, a ground heat circulation pump that circulates the heat medium in the ground heat circulation circuit, and the heat source side heat exchanger side A refrigerant temperature detecting means for detecting the temperature of the refrigerant and an outside air temperature detecting means for detecting the outside air temperature, collecting underground heat by the underground heat exchanger, and using the heat source side heat exchanger as an evaporator In the geothermal heat pump device that performs the load operation that causes the load side heat exchanger to function as a condenser and heats the load side, the refrigerant temperature detected by the refrigerant temperature detecting means during the load operation Less than zero degree and detected by the outside air temperature detecting means Time measuring means for measuring a predetermined unit time when the air temperature is higher than the refrigerant temperature detected by the refrigerant temperature detecting means, and detecting the operating state of the compressor, and operating the compressor every predetermined unit time An addition value determining means for determining an addition value according to the above, an integration means for integrating the addition value determined by the addition value determination means, and when the integrated value at the integration means reaches a preset set value, the heat source An icing determining means for determining that the refrigerant pipe on the side heat exchanger side is frozen, and when the icing determining means determines that the refrigerant pipe on the heat source side heat exchanger side is frozen, A geothermal heat pump apparatus characterized in that a deicing operation is performed in which a high-temperature refrigerant is allowed to flow through a refrigerant pipe on the heat source side heat exchanger side to perform ice melting. 請求項1から3の何れか一項に記載の地中熱ヒートポンプ装置において、前記冷媒温度検出手段の代わりに、前記熱源側熱交換器から流出し前記地中熱交換器に流入する熱媒の温度を検出する地中往き温度検出手段を設けた地中熱ヒートポンプ装置。   The underground heat heat pump device according to any one of claims 1 to 3, wherein a heat medium that flows out of the heat source side heat exchanger and flows into the underground heat exchanger instead of the refrigerant temperature detection means. A geothermal heat pump device provided with underground temperature detecting means for detecting temperature.
JP2010094111A 2010-04-15 2010-04-15 Geothermal heat pump device Expired - Fee Related JP5367633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010094111A JP5367633B2 (en) 2010-04-15 2010-04-15 Geothermal heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010094111A JP5367633B2 (en) 2010-04-15 2010-04-15 Geothermal heat pump device

Publications (2)

Publication Number Publication Date
JP2011226660A JP2011226660A (en) 2011-11-10
JP5367633B2 true JP5367633B2 (en) 2013-12-11

Family

ID=45042211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010094111A Expired - Fee Related JP5367633B2 (en) 2010-04-15 2010-04-15 Geothermal heat pump device

Country Status (1)

Country Link
JP (1) JP5367633B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111609665A (en) * 2020-05-15 2020-09-01 珠海格力电器股份有限公司 Defrosting control method and device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108720A (en) * 2011-11-24 2013-06-06 Panasonic Corp Refrigeration cycle device and hot water producing device with the same
JP2015230153A (en) * 2014-06-06 2015-12-21 三菱電機株式会社 Air conditioner
CN114322111B (en) * 2021-11-30 2023-08-08 海信空调有限公司 Air conditioner outdoor unit and control method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159059A (en) * 1984-12-27 1986-07-18 松下電器産業株式会社 Controller for refrigerant flow of heat pump type air conditioner
JPH0684833B2 (en) * 1987-02-13 1994-10-26 ダイキン工業株式会社 Defroster for air conditioner
JPH0510654A (en) * 1991-07-05 1993-01-19 Matsushita Refrig Co Ltd Defrosting control device of refrigerator
JPH0861813A (en) * 1994-08-22 1996-03-08 Matsushita Electric Ind Co Ltd Refrigerating cycle for heat pump
JP3893676B2 (en) * 1996-08-08 2007-03-14 株式会社日立製作所 Air conditioner
JPH1194367A (en) * 1997-09-19 1999-04-09 Kubota Corp Heat pump system utilizing underground heat
JPH11159891A (en) * 1997-11-27 1999-06-15 Kubota Corp Geothermal heat pump system
JP3932913B2 (en) * 2002-01-29 2007-06-20 ダイキン工業株式会社 Heat pump water heater
JP2008170064A (en) * 2007-01-11 2008-07-24 Daikin Ind Ltd Air conditioner
JP2009236403A (en) * 2008-03-27 2009-10-15 Denso Corp Geothermal use heat pump device
JP5519339B2 (en) * 2010-03-09 2014-06-11 株式会社コロナ Geothermal heat pump device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111609665A (en) * 2020-05-15 2020-09-01 珠海格力电器股份有限公司 Defrosting control method and device
CN111609665B (en) * 2020-05-15 2021-12-07 珠海格力电器股份有限公司 Defrosting control method and device

Also Published As

Publication number Publication date
JP2011226660A (en) 2011-11-10

Similar Documents

Publication Publication Date Title
JP5092829B2 (en) Air conditioner
RU2672995C1 (en) System and method of autonomous and uninterrupted defrosting
JP6137461B2 (en) Air conditioner
JP5121747B2 (en) Geothermal heat pump device
WO2010109689A1 (en) Heat pump type hot water supply device
JP6887979B2 (en) Refrigerant leakage determination device, refrigeration device equipped with this refrigerant leakage determination device, and refrigerant leakage determination method
JP4760974B2 (en) Refrigeration equipment
JP2012207803A (en) Control method of air conditioner
JP2013104606A (en) Refrigeration cycle apparatus and hot water producing apparatus
JP5367633B2 (en) Geothermal heat pump device
JP2011094840A (en) Heat pump device
JPWO2014102934A1 (en) Heat pump hot water heater
KR102085832B1 (en) Air Conditioner And Control Method For The Same
JP6103212B2 (en) Air conditioner
JP6137462B2 (en) Air conditioner
JP5763361B2 (en) Geothermal heat pump device
JP5781836B2 (en) Method and apparatus for defrosting air refrigerant refrigeration system
JP5519339B2 (en) Geothermal heat pump device
JP6465332B2 (en) Heat pump hot water supply system
JP5682552B2 (en) Heat pump water heater
JP6896054B2 (en) Heat source system
JP2014031930A (en) Refrigeration cycle device
JP6208086B2 (en) Combined heat source heat pump device
JP2012083066A (en) Air conditioning apparatus
JP4996974B2 (en) Refrigeration apparatus, air conditioner and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130911

R150 Certificate of patent or registration of utility model

Ref document number: 5367633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees