JPS6127665B2 - - Google Patents

Info

Publication number
JPS6127665B2
JPS6127665B2 JP52134465A JP13446577A JPS6127665B2 JP S6127665 B2 JPS6127665 B2 JP S6127665B2 JP 52134465 A JP52134465 A JP 52134465A JP 13446577 A JP13446577 A JP 13446577A JP S6127665 B2 JPS6127665 B2 JP S6127665B2
Authority
JP
Japan
Prior art keywords
circuit
temperature
outdoor
evaporation temperature
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52134465A
Other languages
Japanese (ja)
Other versions
JPS5467252A (en
Inventor
Yoshiaki Katayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Kogyo Co Ltd filed Critical Daikin Kogyo Co Ltd
Priority to JP13446577A priority Critical patent/JPS5467252A/en
Publication of JPS5467252A publication Critical patent/JPS5467252A/en
Publication of JPS6127665B2 publication Critical patent/JPS6127665B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は空気熱源式ヒートポンプ冷凍装置に係
り、特に暖房運転の際に発生し易い着霜を可及的
に抑えて安定した加熱サイクル運転を果し得る着
霜防止制御機構を備えた冷凍装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air heat source type heat pump refrigeration system, and provides anti-frost control that can achieve stable heating cycle operation by suppressing as much as possible frost formation, which tends to occur particularly during heating operation. The present invention relates to a refrigeration device equipped with a mechanism.

従来のこの種冷凍装置における着霜防止運転
は、外気温度或いは蒸発温度等が低下したとき
に、ホツトガスをバイパスする等の手段によつて
蒸発圧力を上昇せしめるのが一般的であるが、
かゝる手段によつたのでは、除霜運転中は暖房運
転が停止することから、冷凍能力の低下が大きい
問題があり、しかも着霜があつて始めて除霜させ
る方式であるから着霜の積極的な防止策とは云え
ず、また、無駄な除霜運転が行われるのを避ける
ことが至難であるなどの欠点があつた。
Conventional anti-frost operation in this type of refrigeration equipment generally involves increasing the evaporation pressure by bypassing hot gas or the like when the outside air temperature or evaporation temperature drops.
If such a method is used, there is a problem in that the heating operation is stopped during the defrosting operation, resulting in a significant decrease in the refrigerating capacity.Furthermore, since the method defrosts only after frost has formed, it is difficult to actively prevent the formation of frost. It cannot be said to be a practical preventive measure, and it has the disadvantage that it is extremely difficult to avoid wasteful defrosting operations.

本発明は上記の事実に対処して、従来装置が有
する欠陥を悉く排除することが可能な新規構造の
冷凍装置を提供しようとして成されたものであ
り、第2図に構成が示される如く、特に室外ユニ
ツトの吸込空気の温度、湿度を計測し、さらに暖
房運転中の室外コイルの蒸発温度および吐出圧力
をそれぞれ計測して、室外フアン、室内フアンの
一斉風量制御とホツトガスを暖房時に室外コイル
に流させるホツトガスバイパス回路の導通とを選
択して行わせるべく設けた制御回路の入力要素と
なしており、さらに前記制御回路は、外気温度、
相対湿度により定まる各空気状態に対応する着霜
しない蒸発温度の下限値をあらかじめ設定して記
憶させておく記憶回路と、計測した外気温度およ
び相対湿度から室外ユニツト設置個所の空気状態
を求めて、該空気状態に対応する着霜しない蒸発
温度の下限値を前記記憶回路の記憶情報の中から
求める演算回路と、この求められた蒸発温度下限
値と運転中の室外コイルの実際の蒸発温度とを比
較して、運転中の蒸発温度の方が低いときに出力
を発する比較回路と、この比較回路が出力を発し
ていて、かつ圧縮機の吐出圧が保護用としての高
圧々力開閉器の設定値に比して低い場合に、その
圧力差が所定値以上であれば室外フアンを高風
量、室内フアンを低風量に一斉制御し、一方、前
記圧力差が所定値未満であればホツトガスバイパ
ス回路を導通する出力を発する出力回路とから構
成したものであつて、運転態様が着霜を来しやす
い状態になると夫々の運転状況に応じた制御を行
わせて蒸発温度を上げることにより着霜を未然に
防止することが可能である。
The present invention has been made to address the above-mentioned facts and to provide a refrigeration system with a new structure that can eliminate all the defects of conventional systems, and as shown in FIG. In particular, it measures the temperature and humidity of the intake air of the outdoor unit, and also measures the evaporation temperature and discharge pressure of the outdoor coil during heating operation, allowing simultaneous air volume control of the outdoor fan and indoor fan, and hot gas being sent to the outdoor coil during heating. It is an input element of a control circuit provided to select and conduct conduction of the hot gas bypass circuit to be caused to flow, and the control circuit further controls external temperature,
A memory circuit that presets and stores the lower limit of evaporation temperature without frosting corresponding to each air condition determined by relative humidity, and the air condition at the location where the outdoor unit is installed is determined from the measured outside air temperature and relative humidity. an arithmetic circuit that calculates a lower limit value of evaporation temperature that does not form frost corresponding to the air condition from the information stored in the memory circuit; In comparison, there is a comparison circuit that outputs an output when the evaporation temperature during operation is lower, and a high-pressure force switch setting that is used to protect the discharge pressure of the compressor while this comparison circuit is outputting an output. If the pressure difference is higher than a predetermined value, the outdoor fans are controlled to high air volume and the indoor fans are controlled to low air volume. On the other hand, if the pressure difference is less than the predetermined value, hot gas bypass is performed. It consists of an output circuit that generates an output that conducts the circuit, and when the operating conditions become prone to frost formation, the system performs control according to each operating condition to increase the evaporation temperature to prevent frost formation. It is possible to prevent this from happening.

以下、本発明の1実施例を添付図面にもとづき
詳細に説明する。
Hereinafter, one embodiment of the present invention will be described in detail based on the accompanying drawings.

第1図は本発明装置例に係る冷媒配管系統図で
あり、圧縮機1、四路切換弁2、室外コイル3、
膨脹弁4、室内コイル5によつて公知の空気熱源
式可逆冷凍サイクルを構成しており、一点鎖線で
区画した左半部が室外ユニツトイを、右半部が室
内ユニツトロとなつている。
FIG. 1 is a refrigerant piping system diagram according to an example of the device of the present invention, including a compressor 1, a four-way switching valve 2, an outdoor coil 3,
The expansion valve 4 and the indoor coil 5 constitute a known air heat source type reversible refrigeration cycle, and the left half divided by a dashed line is an outdoor unit, and the right half is an indoor unit.

図中8は室外コイル3用のフアン、9は室内コ
イル5用のフアンであり、図示しないが両フアン
8,9は段階的或は無段階的な回転制御を行つて
風量を夫々可変調節することができるものであ
る。
In the figure, 8 is a fan for the outdoor coil 3, and 9 is a fan for the indoor coil 5. Although not shown, both fans 8 and 9 perform stepwise or stepless rotation control to variably adjust the air volume. It is something that can be done.

上述の回路構成になる冷凍装置は、四路切換弁
2と室内コイル5を連絡する配管31(暖房時ガ
ス管となる)の途中と膨脹弁4と室外コイル3と
を連絡する配管32(暖房時液管となる)の途中
とを電磁開閉弁7を介設して有するホツトガスバ
イパス回路6により連絡し、室内コイル5と膨脹
弁4の直列回路に対して並列関係となるバイパス
管路を形成している。
The refrigeration system having the circuit configuration described above has a pipe 31 (which becomes a gas pipe during heating) that connects the four-way switching valve 2 and the indoor coil 5, and a pipe 32 (which serves as a gas pipe during heating) that connects the expansion valve 4 and the outdoor coil 3. A hot gas bypass circuit 6 with an electromagnetic on-off valve 7 interposed between the hot gas bypass pipe 6 and the middle of the pipe (which becomes a liquid pipe) is connected to the hot gas bypass circuit 6 which has an electromagnetic on-off valve 7 interposed. is forming.

室外ユニツトイには、過負荷保護装置としての
高圧々力開閉器10と、圧縮機1の吐出圧力を検
知する圧力検知器11と、吸込空気の温度及び湿
度を検知する温度検知器12及び湿度検知器13
を検出要素として夫々適当個所に配設しており、
さらに蒸発温度検知器14を室外コイル3に添着
して設けている。
The outdoor unit toy includes a high-pressure force switch 10 as an overload protection device, a pressure sensor 11 that detects the discharge pressure of the compressor 1, a temperature sensor 12 that detects the temperature and humidity of the suction air, and a humidity sensor. Vessel 13
are placed at appropriate locations as detection elements,
Further, an evaporation temperature detector 14 is attached to the outdoor coil 3.

この冷凍装置の運転を掌る電気回路には、通常
の冷房制御及び暖房制御を行う主回路の他に着霜
運転防止用制御回路を設けているが、該制御回路
は演算回路と、比較回路と、出力回路とからなつ
ており、前記高圧圧力開閉器10と各検知器1
1,12,13,14とで夫々検知した検知信号
を入力要素として、室外フアン8及び室内フアン
9の一斉風量制御とホツトガスバイパス回路6の
導通とを選択して行わせる構成を基本となしてお
り、第2図にブロツク示されている通りである。
The electric circuit that controls the operation of this refrigeration system is equipped with a control circuit for preventing frost formation in addition to the main circuit that performs normal cooling and heating control, and this control circuit consists of a calculation circuit and a comparison circuit. and an output circuit, the high pressure switch 10 and each detector 1.
The basic configuration is such that the simultaneous air volume control of the outdoor fan 8 and the indoor fan 9 and the conduction of the hot gas bypass circuit 6 are selectively performed using the detection signals detected by the fans 1, 12, 13, and 14 as input elements. This is as shown in the block diagram in FIG.

即ち、先ず演算回路は、温度検知器12及び湿
度検知器3の両検知信号から室外ユニツトイを設
置した個所の空気状態に対応する着霜しない蒸発
温度の下限値をあらかじめ設定して記憶し得る機
能を有している。
That is, first, the arithmetic circuit has a function of being able to preset and store the lower limit value of the evaporation temperature that does not form frost, which corresponds to the air condition at the location where the outdoor unit is installed, based on the detection signals from both the temperature detector 12 and the humidity detector 3. have.

なお、前記蒸発器として作用する室外コイル3
の蒸発温度の下限値は以下述べる如き実験を行う
ことによりあらかじめ求めておくものである。
Note that the outdoor coil 3 that acts as the evaporator
The lower limit of the evaporation temperature is determined in advance by conducting experiments as described below.

すなわち、一定の仕様の冷凍装置を、個々の外
気温度、個々の相対湿度から種々組み合わせによ
り得られた所定の外気温度および相対湿度の空気
状態毎に一定時間暖房運転を行い、この一定時間
経過時に室外コイルの通風抵抗が所定値を超えな
いように蒸発温度を制御するものである。
In other words, a refrigeration system with a certain specification is operated for a certain period of time for each air condition of a predetermined outside air temperature and relative humidity obtained by various combinations of individual outside air temperatures and individual relative humidity, and after this certain period of time has elapsed, The evaporation temperature is controlled so that the ventilation resistance of the outdoor coil does not exceed a predetermined value.

この蒸発温度の制御は、例えば前記冷凍装置に
圧縮機の吐出ガス管と蒸発器となる室外コイルの
入口配管との間にホツトガスバイパス管を設けて
このバイパス管に開度可変の開閉弁を介設し、開
閉弁の開度を制御することにより行う。
This evaporation temperature can be controlled, for example, by installing a hot gas bypass pipe in the refrigeration system between the discharge gas pipe of the compressor and the inlet pipe of the outdoor coil that becomes the evaporator, and installing an on-off valve with a variable opening degree in the bypass pipe. This is done by intervening and controlling the opening degree of the on-off valve.

以上のようにして所定の外気温度および相対湿
度の空気状態に対応する着霜しない蒸発温度の下
限値を求め、しかも種々の外気温度および相対湿
度の空気状態毎に下限値を求めることが可能であ
る。
As described above, it is possible to find the lower limit of the evaporation temperature that does not form frost corresponding to the air condition of a given outside temperature and relative humidity, and also to find the lower limit for each air condition of various outside air temperatures and relative humidity. be.

また、前記室外コイル3の温度条件としては蒸
発温度以外にフイン表面温度、分流管温度、吸入
管温度等膨脹弁出口から圧縮機入口までの低圧部
の任意の個所の温度であつても良く、さらに吸入
圧力から換算した温度値を利用してもよい。
In addition, the temperature condition of the outdoor coil 3 may be the temperature at any point in the low pressure section from the expansion valve outlet to the compressor inlet, such as the fin surface temperature, branch pipe temperature, suction pipe temperature, etc., in addition to the evaporation temperature. Furthermore, a temperature value converted from the suction pressure may be used.

次に比較回路は、上記蒸発温度下限値と運転中
の蒸発温度とを比較して、運転中の蒸発温度が低
い場合に出力を出すよう形成させている。
Next, the comparison circuit is configured to compare the lower limit value of the evaporation temperature with the evaporation temperature during operation, and output an output when the evaporation temperature during operation is low.

さらに、出力回路は前記比較回路が出力を発し
た条件と、前記圧力検知器11で検出した吐出圧
が高圧々力開閉器10の設定値に比して低いこと
の条件とが併存したときは、室外フアン8,9に
制御出力を発するか又はホツトガスバイパス回路
6に導通のための出力を発する如き選択的出力を
出すように回路構成されている。
Furthermore, when the condition under which the comparison circuit issues an output and the condition under which the discharge pressure detected by the pressure detector 11 is lower than the set value of the high-pressure force switch 10 coexist, the output circuit is activated. The circuit is configured to output a selective output such as outputting a control output to the outdoor fans 8 and 9 or outputting an output for conducting to the hot gas bypass circuit 6.

叙上の構成になる冷凍装置の着霜防止制御運転
について、第1図乃至第3図を参照しつつ以下説
明する。
The anti-frost control operation of the refrigeration system having the above configuration will be described below with reference to FIGS. 1 to 3.

冷凍装置を暖房サイクルにて運転している場合
を通して温度検知器12及び湿度検知器13によ
つて、外気の温度及び湿度を計測15する。
The temperature and humidity of the outside air are measured 15 by the temperature detector 12 and the humidity detector 13 throughout the period when the refrigeration system is operated in the heating cycle.

そして、この外気温・湿度から前記演算回路に
よつて着霜限界蒸発温度即ち蒸発温度下限値を算
出16し記憶しておく。
Then, the frosting limit evaporation temperature, that is, the lower limit value of the evaporation temperature is calculated 16 by the arithmetic circuit from the outside temperature and humidity and is stored.

外気温・湿度の計測と相前後して蒸発温度検知
器14と圧力検知器11とにより運転中の装置に
おける蒸発温度と吐出圧力を夫々計測17する。
Before and after measuring the outside temperature and humidity, the evaporation temperature and discharge pressure in the operating apparatus are measured 17 using the evaporation temperature detector 14 and the pressure detector 11, respectively.

次いで前記比較回路によつて、蒸発温度と前記
着霜限界蒸発温度とを比較18し、蒸発温度≧着
霜限界であるか蒸発温度<着霜限界蒸発温度であ
るかで異る指令を発する。
Next, the comparison circuit compares the evaporation temperature with the frosting limit evaporation temperature 18, and issues a different command depending on whether the evaporation temperature≧the frosting limit or the evaporation temperature<the frosting limit evaporation temperature.

蒸発温度≧着霜限界蒸発温度であると、これに
対応する出力によつて、次に吐出圧力が高圧々力
開閉器10の設定圧力値よりも高いか否かを比較
し、その結果、吐出圧力>設定圧力であれば、次
に吐出圧力が設定圧力に対して所定値以上の圧力
差を有して余裕があるかどうかを前記出力回路で
判別19して、余裕がある場合で、かつホツトガ
スバイパス回路6が全閉状態にあること20の条
件で、また判別19の結果、余裕がないことの条
件で、室内フアン9が最高速状態であるかどうか
を知り21、最高速でなければ室内フアン9を増
速させ22、一方、最高速状態であれば、次に室
外フアン8が最低速状態であるかどうかを知り2
3、最低速状態でなければ室内フアン9を減速さ
せる24。
If the evaporation temperature ≧ the frost formation limit evaporation temperature, then the corresponding output is used to compare whether or not the discharge pressure is higher than the set pressure value of the high-pressure force switch 10, and as a result, the discharge pressure is If pressure > set pressure, then the output circuit determines 19 whether the discharge pressure has a pressure difference of more than a predetermined value with respect to the set pressure and there is a margin, and if there is a margin, and Under the condition 20 that the hot gas bypass circuit 6 is fully closed, and under the condition that there is no margin as a result of determination 19, it is determined whether the indoor fan 9 is in the maximum speed condition 21, and it must be at the maximum speed. For example, the speed of the indoor fan 9 is increased 22, and if it is in the highest speed state, then it is determined whether the outdoor fan 8 is in the lowest speed state or not.
3. If it is not in the lowest speed state, the indoor fan 9 is decelerated 24.

前記出力回路での判別19結果が余裕があると
きで、かつホツトガスバイパス回路6が開通して
いるとき即ち除霜運転中であるときには、前記電
磁開閉弁7を閉成させる25。
When the result of the determination 19 in the output circuit is that there is a margin, and when the hot gas bypass circuit 6 is open, that is, when the defrosting operation is in progress, the electromagnetic on-off valve 7 is closed 25.

かゝる制御を行わせることによつて、蒸発温度
を適正に保持しながら室内コイル5の熱交換能力
を増大して、着霜を生じない状態下での高効率な
暖房運転を行なうことができる。
By performing such control, the heat exchange capacity of the indoor coil 5 can be increased while maintaining the evaporation temperature appropriately, and highly efficient heating operation can be performed under conditions that do not cause frost formation. can.

一方、蒸発温度<着霜限界蒸発温度であると
(この場合は着霜し易い状態である)、吐出圧力が
高圧々力開閉器10の設定圧力値よりも高いか否
かを比較しその結果吐出圧力>設定圧力であれ
ば、次に吐出圧力が設定圧力に対し余裕があるか
どうかを前記出力回路で判別19して、余裕があ
る場合で、かつ室外フアン8が最高速状態26で
あり、室内フアン9が最低速状態27であるとホ
ツトガスバイパス回路6の電磁開閉弁7を開放さ
せる。
On the other hand, if the evaporation temperature is less than the frost formation limit evaporation temperature (in this case, it is a state where frost formation is likely to occur), the result is compared to see whether the discharge pressure is higher than the set pressure value of the high pressure force switch 10. If the discharge pressure is greater than the set pressure, then the output circuit determines whether the discharge pressure has a margin with respect to the set pressure (19), and if there is a margin, and the outdoor fan 8 is in the highest speed state 26. When the indoor fan 9 is in the lowest speed state 27, the electromagnetic on-off valve 7 of the hot gas bypass circuit 6 is opened.

一方、吐出圧力が設定圧力に対し余裕がないと
きには、室外フアン8、室内フアン9の各送風能
力には関係なく直ちに前記電磁開閉弁7を開放2
8させる。
On the other hand, when the discharge pressure does not have a margin with respect to the set pressure, the electromagnetic on-off valve 7 is immediately opened 2 regardless of the air blowing capacity of the outdoor fan 8 and the indoor fan 9.
Make it 8.

この電磁開閉弁7の開放28によつてホツトガ
スの一部が室外コイル3に流入するので、該コイ
ル表面温度が上昇し、その結果、着霜していれば
これを融かし、または着霜していないときは着霜
しようとする状態を排除する。
As a part of the hot gas flows into the outdoor coil 3 by opening 28 of the electromagnetic on-off valve 7, the surface temperature of the coil increases, and as a result, if there is frost, it is melted or the frost is removed. If not, eliminate conditions that will cause frost formation.

なお、吐出圧力が設定圧力に対して余裕があ
り、しかも室外フアン8が最高速状態でなけれ
ば、該フアン8を増速作動29させ、また、同様
に余裕のある状態で、かつ、室外フアン8が最高
速状態であるが、室内フアン9が最低速でなけれ
ば、該フアン9を減速作動30させるよう出力を
発するのである。
Note that if the discharge pressure has a margin with respect to the set pressure and the outdoor fan 8 is not in the highest speed state, the speed increase operation 29 of the fan 8 is performed. 8 is the highest speed state, but if the indoor fan 9 is not at the lowest speed, an output is generated to cause the fan 9 to perform a deceleration operation 30.

このようにして吐出圧が高圧々力設定値に較べ
て余裕がなく、しかも着霜が生じ易い状態であれ
ば、ホツトガスバイパス回路6を開き又は逆に余
裕がある場合には室外フアン8を増速させて熱交
換量を増大し、さらに室内フアン9を減速して冷
凍機の吐出圧力増大をはからせることによつてと
もに蒸発温度を上昇させ着霜が生じないように
し、又は着霜防止を正常な暖房サイクル下で確実
に行うことができる。
In this way, if the discharge pressure does not have a margin compared to the high pressure setting value and frost formation is likely to occur, open the hot gas bypass circuit 6, or conversely, if there is margin, open the outdoor fan 8. By increasing the speed of the indoor fan 9 to increase the amount of heat exchange and further decelerating the indoor fan 9 to increase the discharge pressure of the refrigerator, both raise the evaporation temperature and prevent frost formation, or Prevention can be ensured under normal heating cycles.

本発明は以上述べた説明から明らかなように、
対空気室外コイル3の吸込空気の温度及び湿度を
計測し、このときの外気条件の下での着霜運転に
至らない室外コイル3の温度条件下限値を算出し
て、室外コイル3の実際の温度条件が前記下限値
以下になつたときには、吐出圧力が高圧々力開閉
器の設定圧に対し幾分余裕が存する状態で室外フ
アン8を高速運転、室内フアン9を低速運転し、
逆に余裕のない状態でホツトガスバイパス回路6
を導通することにより、冷凍装置の蒸発温度を高
めて着霜を防止するようにした構成を特徴とする
ものであるから、吐出圧力が安全領域にあれば室
外コイル3の熱交換能力を向上させて暖房能力を
増大しながら着霜の防止が可能となり、従つて安
定した能力下での快適暖房が果せる。
As is clear from the above description, the present invention has the following features:
The temperature and humidity of the intake air of the air-to-air outdoor coil 3 are measured, and the limit value of the temperature condition of the outdoor coil 3 that does not lead to frosting operation under the outside air conditions at this time is calculated, and the actual temperature of the outdoor coil 3 is calculated. When the temperature condition falls below the lower limit value, the outdoor fan 8 is operated at high speed and the indoor fan 9 is operated at low speed while the discharge pressure has some margin with respect to the set pressure of the high pressure force switch,
On the other hand, if there is no room, the hot gas bypass circuit 6
The device is characterized by a configuration in which the evaporation temperature of the refrigeration system is increased and frost formation is prevented by conducting electrically with This makes it possible to prevent frost formation while increasing the heating capacity, thus achieving comfortable heating with stable capacity.

一方、吐出圧力が高いにも拘わらず着霜を生じ
易い状態にある場合には、ホツトガスバイパス回
路6を開くことによつて、吐出圧も低下するた
め、さらに室外フアン8の増速、室内フアン9の
減速を行わせるに足る余裕が生じることとなり、
従つて広範囲の着霜防止運転が可能となるのであ
る。
On the other hand, if the discharge pressure is high but frost is likely to form, opening the hot gas bypass circuit 6 will reduce the discharge pressure, so the speed of the outdoor fan 8 will be increased, and the indoor fan 8 will be increased in speed. There will be enough room to decelerate fan 9,
Therefore, a wide range of frost prevention operation is possible.

さらに本発明は外気の温度と湿度とによつて着
霜限界温度条件を決定し、この条件を基準として
着霜防止のための制御を行わせる構成であるか
ら、無駄な換言するならば不必要な着霜防止運転
を回避でき、効率の良い暖房運転が可能となる。
Furthermore, the present invention is configured to determine the frost limit temperature condition based on the temperature and humidity of the outside air, and perform control to prevent frost formation based on this condition. It is possible to avoid frost-prevention operation and enable efficient heating operation.

本発明は叙上の如く種々すぐれた効果を奏する
ものであり、誠に有用性に富む冷凍装置であつて
斯界に貢献する処多大なものがある。
As mentioned above, the present invention exhibits various excellent effects, and is a truly useful refrigeration system that contributes to the field in many ways.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の例に係る装置回路図、第2図
は本発明の構成を示すブロツク図、第3図は本発
明の作動態様を説明するための順序作動図であ
る。 イ……室外ユニツト、ロ……室内ユニツト、3
……室外コイル、5……室内コイル、6……ホツ
トガスバイパス回路、8……室外フアン、9……
室内フアン、10……高圧々力開閉器、11……
圧力検知器、12……温度検知器、13……湿度
検知器、14……蒸発温度検知器。
FIG. 1 is a circuit diagram of an apparatus according to an example of the present invention, FIG. 2 is a block diagram showing the configuration of the present invention, and FIG. 3 is a sequential operation diagram for explaining the operating mode of the present invention. A...Outdoor unit, B...Indoor unit, 3
...Outdoor coil, 5...Indoor coil, 6...Hot gas bypass circuit, 8...Outdoor fan, 9...
Indoor fan, 10... High pressure force switch, 11...
Pressure detector, 12... Temperature detector, 13... Humidity detector, 14... Evaporation temperature detector.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機1、対空気室外コイル3、室外フアン
8および高圧々力開閉器10を備えた室外ユニツ
トイと、室内コイル5、室内フアン9を備えた室
内ユニツトロとからなるヒートポンプ冷凍装置に
おいて、ホツトガスを暖房時に前記室外コイル3
に流通し得るホツトガスバイパス回路6と、室外
ユニツトイの吸込空気の温度および湿度を夫々検
知する外気温度検知器12および湿度検知器13
と、暖房運転中の前記室外コイル3の蒸発温度を
検知する蒸発温度検知器14と、吐出圧力を検知
する圧力検知器11とを室外ユニツトイに設ける
一方、室外フアン8および室内フアン9を夫々風
量可変構造となすと共に、前記2つの温度検知器
12,14、湿度検知器13および圧力検知器1
1の前記4検知器の検知信号を入力要素として、
室外フアン8および室内フアン9の一斉風量制御
と、ホツトガスバイパス回路6の導通とを選択し
て行う制御回路を前記冷凍装置の電気回路に設け
てなり、前記制御回路は、蒸発器として作用する
室外コイル3における外気温度および相対湿度に
より定まる各空気状態に対応する着霜しない蒸発
温度の下限値をあらかじめ設定して記憶させてお
く記憶回路と、前記外気温度検知器12および前
記湿度検知器13の両検知信号から室外ユニツト
イを設置した個所の空気状態を求めて、該空気状
態に対応する着霜しない蒸発温度の下限値を前記
記憶回路に記憶させておいた下限値の中から求め
る演算回路と、前記演算回路により求めた下限値
と運転中の室外コイル3の蒸発温度を検知する蒸
発温度検知器14からの検知信号による温度とを
比較して、運転中の蒸発温度の方が低いときに出
力を発する比較回路と、この比較回路が出力を発
し、前記圧力検知器11で検知した吐出圧が高
圧々力開閉器10の設定値に比して低い場合に、
その圧力差が所定値以上であれば室外フアン8を
高風量、室内フアン9を低風量に一斉制御する出
力を発し、一方、前記圧力差が所定値未満であれ
ばホツトガスバイパス回路6を導通する出力を発
する出力回路とから形成されていることを特徴と
する冷凍装置。
1 In a heat pump refrigeration system consisting of an outdoor unit equipped with a compressor 1, an air-to-air outdoor coil 3, an outdoor fan 8, and a high-pressure force switch 10, and an indoor unit equipped with an indoor coil 5 and an indoor fan 9, hot gas is The outdoor coil 3 during heating
a hot gas bypass circuit 6 that can flow to the outside air temperature sensor 12 and a humidity sensor 13 that detect the temperature and humidity of the air sucked into the outdoor unit, respectively.
The outdoor unit is provided with an evaporation temperature detector 14 that detects the evaporation temperature of the outdoor coil 3 during heating operation, and a pressure sensor 11 that detects the discharge pressure. In addition to having a variable structure, the two temperature sensors 12 and 14, the humidity sensor 13 and the pressure sensor 1
Using the detection signals of the four detectors of No. 1 as input elements,
A control circuit is provided in the electric circuit of the refrigeration device to selectively control the air volume of the outdoor fan 8 and the indoor fan 9 and to conduct the hot gas bypass circuit 6, and the control circuit acts as an evaporator. A memory circuit that presets and stores a lower limit value of evaporation temperature that does not form frost corresponding to each air condition determined by the outside air temperature and relative humidity in the outdoor coil 3, and the outside air temperature sensor 12 and the humidity sensor 13. an arithmetic circuit that determines the air condition at the location where the outdoor unit is installed from both detection signals, and calculates the lower limit value of the evaporation temperature that does not form frost corresponding to the air condition from among the lower limit values stored in the memory circuit; When the lower limit value obtained by the arithmetic circuit is compared with the temperature based on the detection signal from the evaporation temperature detector 14 that detects the evaporation temperature of the outdoor coil 3 during operation, and the evaporation temperature during operation is lower. a comparator circuit that emits an output, and when the comparator circuit emits an output and the discharge pressure detected by the pressure detector 11 is lower than the set value of the high pressure force switch 10,
If the pressure difference is above a predetermined value, an output is generated to simultaneously control the outdoor fan 8 to a high air volume and the indoor fan 9 to a low air volume.On the other hand, if the pressure difference is less than a predetermined value, the hot gas bypass circuit 6 is turned on. 1. A refrigeration device comprising: an output circuit that generates an output.
JP13446577A 1977-11-08 1977-11-08 Refrigerating unit Granted JPS5467252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13446577A JPS5467252A (en) 1977-11-08 1977-11-08 Refrigerating unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13446577A JPS5467252A (en) 1977-11-08 1977-11-08 Refrigerating unit

Publications (2)

Publication Number Publication Date
JPS5467252A JPS5467252A (en) 1979-05-30
JPS6127665B2 true JPS6127665B2 (en) 1986-06-26

Family

ID=15128952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13446577A Granted JPS5467252A (en) 1977-11-08 1977-11-08 Refrigerating unit

Country Status (1)

Country Link
JP (1) JPS5467252A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03100068U (en) * 1990-01-26 1991-10-18
JPH0438423B2 (en) * 1986-06-04 1992-06-24
JP2011257098A (en) * 2010-06-11 2011-12-22 Fujitsu General Ltd Heat pump cycle device
JP2012007751A (en) * 2010-06-22 2012-01-12 Fujitsu General Ltd Heat pump cycle device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6095353B2 (en) * 2012-12-13 2017-03-15 三菱電機株式会社 Refrigeration cycle equipment
KR101626675B1 (en) 2014-11-12 2016-06-01 엘지전자 주식회사 An air conditioning system and a method for controlling the same
CN106679067A (en) * 2016-11-11 2017-05-17 青岛海尔空调器有限总公司 Self-cleaning method for air conditioner heat exchanger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0438423B2 (en) * 1986-06-04 1992-06-24
JPH03100068U (en) * 1990-01-26 1991-10-18
JP2011257098A (en) * 2010-06-11 2011-12-22 Fujitsu General Ltd Heat pump cycle device
JP2012007751A (en) * 2010-06-22 2012-01-12 Fujitsu General Ltd Heat pump cycle device

Also Published As

Publication number Publication date
JPS5467252A (en) 1979-05-30

Similar Documents

Publication Publication Date Title
US5970726A (en) Defrost control for space cooling system
JPH09310927A (en) Device for controlling refrigerant of air conditioner
JPS6127665B2 (en)
JP2993180B2 (en) Air conditioner
JPH04270876A (en) Defrosting controller for heat pump type air-conditioning machine
JP3004676B2 (en) Refrigeration cycle device
JP2695288B2 (en) Multi-room air conditioner
JPH09236332A (en) Heat pump apparatus for air conditioning
JP2005016884A (en) Air conditioner
JPH0668410B2 (en) Air conditioner
JPH0694310A (en) Hot gas bypass circuit control method for refrigerating circuit and device thereof
JP2863240B2 (en) Control device for air conditioner
JPH04327770A (en) Defrosting device in multi-chamber type air conditioner
JP3708245B2 (en) Motorized valve controller for multi-function heat pump system
JP2757900B2 (en) Air conditioner
JPH07151420A (en) Air conditioner with water heater
JPH0349016B2 (en)
CN110715423B (en) Air conditioner, control method and device thereof, electronic equipment and storage medium
JPH081343B2 (en) Air conditioner
JPS596346B2 (en) Control device for multi-room air conditioner
JPH08271016A (en) Air conditioner of multi-room type
JP2503701B2 (en) Air conditioner
JPH0618123A (en) Air conditioning and hot water feeding device
JP3754205B2 (en) Control valve operating method for air conditioner and air conditioner
JPH078973Y2 (en) Air conditioner