JPH0225103Y2 - - Google Patents

Info

Publication number
JPH0225103Y2
JPH0225103Y2 JP1983145319U JP14531983U JPH0225103Y2 JP H0225103 Y2 JPH0225103 Y2 JP H0225103Y2 JP 1983145319 U JP1983145319 U JP 1983145319U JP 14531983 U JP14531983 U JP 14531983U JP H0225103 Y2 JPH0225103 Y2 JP H0225103Y2
Authority
JP
Japan
Prior art keywords
degree
superheat
electric expansion
expansion valve
during
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983145319U
Other languages
Japanese (ja)
Other versions
JPS6054061U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14531983U priority Critical patent/JPS6054061U/en
Publication of JPS6054061U publication Critical patent/JPS6054061U/en
Application granted granted Critical
Publication of JPH0225103Y2 publication Critical patent/JPH0225103Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 [考案の技術分野] この考案は、電動式膨張弁を用いた空気調和装
置の改善に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] This invention relates to improvement of an air conditioner using an electric expansion valve.

[考案の技術的背景とその問題点] 電動式膨張弁を用いた空気調和装置にあつて
は、冷房ならびに暖房運転を良好に維持すること
ができるよう冷凍サイクルの温度、圧力等を検出
し、この検出情報から過熱度を演算し、この演算
した値が予め設定された冷凍サイクルの設定過熱
度となるように電動式膨張弁の開度を制御するこ
とが行なわれている。
[Technical background of the invention and its problems] Air conditioners using electric expansion valves detect the temperature, pressure, etc. of the refrigeration cycle in order to maintain good cooling and heating operations. The degree of superheat is calculated from this detected information, and the opening degree of the electric expansion valve is controlled so that the calculated value becomes a preset degree of superheat of the refrigeration cycle.

ところで、ヒートポンプ式の空気調和装置にお
いては、暖房運転時、外気温の低下を要因に生じ
る室外側熱交換器の霜を、冷房運転への切換えに
よつて生じる凝縮熱を利用して除霜する、いわゆ
る除霜運転が行なわれている。もちろん、電動式
膨張弁を用いた空気調和装置も同じであることは
いうまでもない。
By the way, in a heat pump type air conditioner, during heating operation, the frost on the outdoor heat exchanger that occurs due to a drop in outside temperature is defrosted using condensed heat generated when switching to cooling operation. , so-called defrosting operation is being performed. Of course, it goes without saying that the same applies to air conditioners using electric expansion valves.

ところが、冷凍サイクルの状態にもとづき単に
暖房運転から冷房運転に切換えて除霜運転を行な
うものでは、冷凍サイクルの状態がもとになつた
過熱度から電動式膨張弁の開度を制御することか
ら、得られる凝縮熱量が少なく、このために除霜
時間を長く要するといつた問題があり、暖房効果
の低下が余儀なくなされていた。
However, in systems that perform defrosting by simply switching from heating operation to cooling operation based on the state of the refrigeration cycle, the opening degree of the electric expansion valve is controlled based on the degree of superheating, which is based on the state of the refrigeration cycle. However, there was a problem in that the amount of condensation heat obtained was small, which required a long time for defrosting, and the heating effect was inevitably reduced.

[考案の目的] この考案は上記事情に着目してなされたもの
で、その目的とするところは、除霜時間の短縮化
を図ることができる空気調和装置を提供すること
にある。
[Purpose of the invention] This invention was made with attention to the above-mentioned circumstances, and its purpose is to provide an air conditioner that can shorten the defrosting time.

[考案の概要] すなわち、この考案は、冷暖房運転時の過熱度
とは別に、圧縮機の負荷が最大となる値で定めた
過熱度を除霜運転時の過熱度とし、この過熱度と
センサーから得られる過熱度との差にしたがつ
て、除霜運転時、電動式膨張弁の開度を制御する
ことにより、凝縮熱量を大きくした除霜運転を行
なうとするものである。
[Summary of the invention] In other words, this invention uses the degree of superheating during defrosting operation as the degree of superheating determined by the value at which the load on the compressor is maximum, in addition to the degree of superheating during air-conditioning operation, and uses this degree of superheating and the sensor as the degree of superheating during defrosting operation. During defrosting operation, the opening degree of the electric expansion valve is controlled in accordance with the difference in the degree of superheat obtained from the defrosting operation, thereby increasing the amount of heat of condensation.

[考案の実施例] 以下、この考案を第1図ないし第5図に示す一
実施例にもとづいて説明する。第1図は空気調和
装置を示し、図中1は能力可変可能な圧縮機、2
は四方弁、3は室外側熱交換器、4は電動式膨張
弁、5は室内側熱交換器である。そして、これら
各機器は冷媒管6で順次連結され、冷房(除霜)
および暖房運転が可能なヒートポンプ式冷凍サイ
クル7を構成している。また圧縮機1の吸込側に
は、第5図に示されるようにマイクロコンピユー
タで構成された制御回路8の演算部11につなが
る、吸込ガス温度センサー9および吸込ガス圧力
センサー10がそれぞれ設けられていて、各セン
サー9,10から出力される冷凍サイクル状態
(吸込温度、吸込圧力)の情報から過熱度の値を
演算できるようになつている。
[Embodiment of the invention] This invention will be described below based on an embodiment shown in FIGS. 1 to 5. Figure 1 shows an air conditioner, in which 1 is a variable capacity compressor, 2
is a four-way valve, 3 is an outdoor heat exchanger, 4 is an electric expansion valve, and 5 is an indoor heat exchanger. Each of these devices is sequentially connected by a refrigerant pipe 6, and is used for cooling (defrosting).
and a heat pump type refrigeration cycle 7 capable of heating operation. Further, on the suction side of the compressor 1, as shown in FIG. 5, a suction gas temperature sensor 9 and a suction gas pressure sensor 10 are provided, respectively, which are connected to a calculation section 11 of a control circuit 8 composed of a microcomputer. Thus, the value of the degree of superheat can be calculated from the information on the refrigeration cycle state (suction temperature, suction pressure) output from each sensor 9, 10.

また制御回路8には、第5図に示されるように
冷暖房運転時の過熱度が設定された第1の過熱度
設定部12、この冷暖房運転時とは別に圧縮機1
の負荷が最大となる値で定めた除霜運転時の過熱
度が設定された第2の過熱度設定部13が設けら
れている。さらに制御回路8には、第1の過熱度
設定部12につながる第1の制御部14、第2の
過熱度設定部13につながる第2の制御部15
(いずれもマイクロコンピユータよりなる)が設
けられている。そして、第1の制御部14および
第2の制御部15は、いずれも上記演算部11お
よび電動式膨張弁4に接続されていて、冷暖房運
転時は上記センサー9,10から得られる過熱度
と第1の過熱度設定部12で設定された過熱度と
の差にしたがつて電動式膨張弁4の開度を制御す
るようにしている。また除霜運転時は、上記セン
サー9,10から得られる過熱度と第2の過熱度
設定部13で設定された過熱度との差にしたがつ
て電動式膨張弁4の開度を制御するようにしてい
る。つまり、除霜運転は冷暖房運転とは独立して
行なわれるようになつている。
In addition, the control circuit 8 includes a first superheat degree setting section 12 in which the degree of superheat during cooling/heating operation is set, as shown in FIG.
A second degree of superheat setting section 13 is provided, in which the degree of superheat during defrosting operation is set to a value that maximizes the load. Furthermore, the control circuit 8 includes a first control section 14 connected to the first superheat degree setting section 12 and a second control section 15 connected to the second superheat degree setting section 13.
(all consisting of microcomputers) are installed. The first control section 14 and the second control section 15 are both connected to the calculation section 11 and the electric expansion valve 4, and the degree of superheat obtained from the sensors 9 and 10 during cooling/heating operation. He is trying to control the opening degree of the electric expansion valve 4 according to the difference with the superheat degree set by the 1st superheat degree setting part 12. Further, during defrosting operation, the opening degree of the electric expansion valve 4 is controlled according to the difference between the degree of superheat obtained from the sensors 9 and 10 and the degree of superheat set by the second degree of superheat setting section 13. That's what I do. In other words, the defrosting operation is performed independently of the heating and cooling operation.

そして、このように構成された空気調和装置を
用いて暖房を行なうときには、四方弁2を暖房側
へセツトして圧縮機1を運転すれば、圧縮機1、
四方弁2、室内側熱交換器5、電動式膨張弁4、
室内側熱交換器3を冷媒が順に流れる暖房サイク
ルが形成されて室内等を暖房する。
When performing heating using the air conditioner configured as described above, if the four-way valve 2 is set to the heating side and the compressor 1 is operated, the compressor 1,
four-way valve 2, indoor heat exchanger 5, electric expansion valve 4,
A heating cycle is formed in which the refrigerant sequentially flows through the indoor heat exchanger 3 to heat the room.

ここで、暖房運転中の電動式膨張弁4の作動状
態としてはつぎのようになつている。
Here, the operating state of the electric expansion valve 4 during heating operation is as follows.

すなわち、圧縮機1の吸込温度および吸込圧力
は、各吸込ガス温度センサー9および吸込ガス圧
力センサー10を通じて制御回路8へ出力されて
いて、演算部11で過熱度を演算する。そして、
この演算した値が、第1の過熱度設定部12で設
定した設定過熱度となるよう電動式膨張弁4の開
度が第1の制御部14で制御されていく。ここ
で、設定される過熱度の値SH1を例えば第3図に
示す「6deg」の点P1に設定すれば、常に「6deg」
となるよう電動式膨張弁4の開度が制御され、従
来同様、設定過熱度による暖房運転が行なわれ
る。
That is, the suction temperature and suction pressure of the compressor 1 are outputted to the control circuit 8 through each suction gas temperature sensor 9 and suction gas pressure sensor 10, and a calculation section 11 calculates the degree of superheat. and,
The opening degree of the electric expansion valve 4 is controlled by the first control section 14 so that this calculated value becomes the set superheat degree set by the first superheat degree setting section 12. Here, if the set superheat degree value SH 1 is set, for example, to the point P 1 of "6deg" shown in Fig. 3, it will always be "6deg".
The opening degree of the electric expansion valve 4 is controlled so that the heating operation is performed according to the set superheat degree as in the conventional case.

そして、このような暖房運転中、室外側熱交換
器3に着霜が生じると、四方弁2が冷房側に切換
つて除霜運転が行なわれる。ここで、この除霜運
転につき第2図に示すフローチヤートについて説
明すれば、暖房運転から除霜運転に切換わると同
時に、それまで冷凍サイクルの状態から設定され
た電動式膨張弁4の制御にかかわる設定過熱度
「6deg」から、第2の過熱度設定部13で設定さ
れた圧縮機1の負荷が最大となる過熱度、例えば
第4図に示す消費電力が最大とる「0deg」の値
SH2の点P2にかわる。そして、運転切換えに伴
い、まず、SH2と冷凍サイクルの過熱度とが比較
される。すなわち、冷凍サイクルの過熱度は、
SHを過熱度(deg)、TSを圧縮機1の吸込ガス
温度(℃)、Psを圧縮機1の吸込ガス圧力(Kg/
cm2・G)、Kを係数(℃・cm2/Kg)としたとき演
算回路11で; SH=Ts−K・Ps と演算されて、そのときの過熱度(SH)と予め
設定された過熱度(SH2)とが比較される。そし
て、設定された過熱度(SH2)よりも過熱度
(SH)が大きいときには、第2の制御部15によ
り電動式膨張弁4を開き側へ制御し、また逆に小
さいときには電動式膨張弁4を閉じ側へ制御し
て、過熱度(SH)を予め設定された過熱度
(SH2)になるように電動式膨張弁4の開度を制
御する。
If frost forms on the outdoor heat exchanger 3 during such a heating operation, the four-way valve 2 is switched to the cooling side and a defrosting operation is performed. Here, to explain the flowchart shown in FIG. 2 regarding this defrosting operation, at the same time as the heating operation is switched to the defrosting operation, the control of the electric expansion valve 4 that has been set from the refrigeration cycle state is changed. From the related setting superheat degree "6deg", the superheat degree set by the second superheat degree setting unit 13 at which the load of the compressor 1 is maximum, for example, the value of "0deg" where the power consumption is maximum as shown in FIG.
SH 2 changes to point P 2 . When the operation is switched, first, SH 2 and the degree of superheat of the refrigeration cycle are compared. In other words, the degree of superheating of the refrigeration cycle is
SH is the degree of superheat (deg), TS is the suction gas temperature of compressor 1 (℃), and Ps is the suction gas pressure of compressor 1 (Kg/
cm 2・G), and K is a coefficient (℃ ・cm 2 /Kg). In the arithmetic circuit 11, SH=Ts−K・Ps is calculated, and the superheat degree (SH) at that time is set in advance. The degree of superheat (SH 2 ) is compared. When the degree of superheat (SH) is larger than the set degree of superheat (SH 2 ), the second control section 15 controls the electric expansion valve 4 to open, and conversely, when the degree of superheat (SH) is smaller than the set degree of superheat (SH 2 ), the electric expansion valve 4 is opened. 4 to the closed side, and the opening degree of the electric expansion valve 4 is controlled so that the degree of superheat (SH) becomes a preset degree of superheat (SH 2 ).

かくして、圧縮機1に最大の負荷をかけた状
態、すなわち消費電力を最大に大きくした除霜運
転が行なわれ、凝縮熱量を最大に大きくとること
ができることとなる。したがつて、短時間で室外
側熱交換器3の霜を除霜させることができる。す
なわち、除霜時間Δt(h)は、除霜中の凝縮熱量
ΔQc(Kcal)を求める式; ΔQc=t×Qe′+Δt×860×W から Δt=ΔQc/Qe′+860×W 但し、 Qe′は除霜中の蒸発熱量(Kcal) Wは除霜中の圧縮機の消費電力(kw) 860は係数(Kcal/kw・h) と表わされ、ここで圧縮機1の消費電力が最大に
大きくなるよう電動式膨張弁4の開度が制御され
るから、除霜時間Δtを短縮することは明白であ
る。
In this way, a defrosting operation is performed in which the maximum load is applied to the compressor 1, that is, the power consumption is maximized, and the amount of heat of condensation can be maximized. Therefore, the frost on the outdoor heat exchanger 3 can be defrosted in a short time. In other words, the defrosting time Δt (h) is determined by the formula for calculating the amount of condensation heat ΔQc (Kcal) during defrosting; ΔQc=t×Qe′+Δt×860×W From Δt=ΔQc/Qe′+860×W However, Qe′ is the amount of heat of evaporation during defrosting (Kcal), W is the power consumption of the compressor during defrosting (kw), and 860 is the coefficient (Kcal/kw・h), where the power consumption of compressor 1 reaches its maximum. Since the opening degree of the electric expansion valve 4 is controlled so as to increase the opening degree, it is obvious that the defrosting time Δt can be shortened.

そして、過熱度(SH)と設定された過熱度
(SH2)とが、安定してほぼ同じになるとき、す
なわち; SHn+α≧SH≧SHn−α 但し、α:安定範囲(deg) となるとき除霜が完了し、再び暖房運転に復帰す
る。すなわち、設定される暖房の過熱度(SH1
と冷凍サイクルの過熱度(SH)との比較にもと
づき制御回路8にて、電動式膨張弁4を設定され
る過熱度(SH1)になるよう開き側あるいは閉じ
側へ開度制御して、暖房運転に復帰する。なお、
四方弁2が暖房側へセツトされることはいうまで
もない。
Then, when the degree of superheat (SH) and the set degree of superheat (SH 2 ) are stably almost the same, that is: SHn+α≧SH≧SHn−α, where α: stable range (deg) Defrosting is completed and heating operation resumes. In other words, the heating superheat degree (SH 1 ) to be set
Based on the comparison with the degree of superheat (SH) of the refrigeration cycle, the control circuit 8 controls the opening of the electric expansion valve 4 to the open side or the closed side so as to reach the set degree of superheat (SH 1 ). Return to heating operation. In addition,
It goes without saying that the four-way valve 2 is set to the heating side.

なお、第2図中、実線で示す矢印は除霜時の冷
媒の流れを、破線で示す矢印は暖房時の冷媒の流
れをそれぞれ示す。
In FIG. 2, solid line arrows indicate the flow of refrigerant during defrosting, and broken line arrows indicate the flow of refrigerant during heating.

また上述した一実施例では暖房サイクル時の着
霜を冷房サイクルにて除霜するようにしたものに
この考案を適用したが、冷房サイクル時の着霜を
暖房サイクルにて除霜するようにしたものについ
ても適用してもよい。
In addition, in the above-mentioned embodiment, this idea was applied to a device in which the frost formed during the heating cycle was defrosted in the cooling cycle; It can also be applied to things.

[考案の効果] 以上説明したようにこの考案によれば、凝縮熱
量を大きくした除霜運転を行なうことができるよ
うになり、除霜時間を短縮することができる。
[Effects of the invention] As explained above, according to this invention, defrosting operation can be performed with a large amount of condensing heat, and the defrosting time can be shortened.

したがつて、暖房効果の低下を少なくすること
ができる。特に着霜量の多い地域で有効である。
Therefore, the reduction in the heating effect can be reduced. It is especially effective in areas with a large amount of frost.

しかも、除霜運転時にも冷暖房運転時に用いた
センサーと同じセンサーの出力をそのまま使用す
るので、その分、制御系は簡単である。そのう
え、単一のセンサー出力を用いるので、信頼性も
高い。
Moreover, since the output of the same sensor used during cooling/heating operation is used during defrosting operation, the control system is correspondingly simpler. Furthermore, since a single sensor output is used, reliability is high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第5図はこの考案の一実施例を示
し、第1図は空気調和装置を示す概略構成図、第
2図は除霜運転に伴う電動式膨張弁の開閉制御を
示すフローチヤート図、第3図は暖房運転時に設
定された過熱度を示す線図、第4図は除霜運転時
に設定された過熱度を示す線図、第5図は制御系
を示すブロツク図である。 4……電動式膨張弁、7……ヒートポンプ式冷
凍サイクル、8……制御回路、9……吸込ガス温
度センサー、10……吸込ガス圧力センサー、1
2……第1の過熱度設定部、13……第2の過熱
度設定部、14……第1の制御部、15……第2
の制御部。
Figures 1 to 5 show one embodiment of this invention, Figure 1 is a schematic configuration diagram showing an air conditioner, and Figure 2 is a flowchart showing opening/closing control of an electric expansion valve during defrosting operation. 3 is a diagram showing the degree of superheating set during heating operation, FIG. 4 is a diagram showing the degree of superheating set during defrosting operation, and FIG. 5 is a block diagram showing the control system. 4...Electric expansion valve, 7...Heat pump type refrigeration cycle, 8...Control circuit, 9...Suction gas temperature sensor, 10...Suction gas pressure sensor, 1
2...First superheat degree setting section, 13...Second superheat degree setting section, 14...First control section, 15...Second
control section.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 能力が可変可能な圧縮機、四方弁、室外側熱交
換器、電動式膨張弁、室内側熱交換器を順次連結
してなる冷凍サイクルと、前記圧縮機の吸込側に
設けられ冷凍サイクルの過熱度を検出する吸込ガ
ス温度センサーおよび吸込ガス圧力センサーと、
冷暖房運転時の過熱度を設定した第1の過熱度設
定部と、冷暖房運転時、この設定された過熱度と
前記センサーで得られる過熱度の差にしたがつて
前記電動式膨張弁の開度を制御する第1の制御部
と、前記圧縮機の負荷が最大となる値で定めた除
霜運転時の過熱度を設定した第2の過熱度設定部
と、除霜運転時、この第2の過熱度設定部に設定
された過熱度と前記センサーから得られる過熱度
との差にしたがつて前記電動式膨張弁の開度を制
御する第2の制御部とを具備したことを特徴とす
る空気調和装置。
A refrigeration cycle consisting of a variable-capacity compressor, a four-way valve, an outdoor heat exchanger, an electric expansion valve, and an indoor heat exchanger connected in sequence; a suction gas temperature sensor and a suction gas pressure sensor that detect temperature;
a first degree of superheat setting section that sets the degree of superheat during cooling/heating operation; and an opening degree of the electric expansion valve according to the difference between the set degree of superheat and the degree of superheat obtained by the sensor during heating/cooling operation; a second superheat degree setting part that sets a degree of superheat during defrosting operation determined at a value that maximizes the load on the compressor; and a second control section that controls the opening degree of the electric expansion valve according to the difference between the degree of superheat set in the degree of superheat setting section and the degree of superheat obtained from the sensor. air conditioner.
JP14531983U 1983-09-20 1983-09-20 air conditioner Granted JPS6054061U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14531983U JPS6054061U (en) 1983-09-20 1983-09-20 air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14531983U JPS6054061U (en) 1983-09-20 1983-09-20 air conditioner

Publications (2)

Publication Number Publication Date
JPS6054061U JPS6054061U (en) 1985-04-16
JPH0225103Y2 true JPH0225103Y2 (en) 1990-07-10

Family

ID=30323799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14531983U Granted JPS6054061U (en) 1983-09-20 1983-09-20 air conditioner

Country Status (1)

Country Link
JP (1) JPS6054061U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174800A (en) * 2008-01-25 2009-08-06 Mitsubishi Electric Corp Reheating dehumidifier and air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5661554A (en) * 1979-10-25 1981-05-27 Matsushita Electric Ind Co Ltd Defrosting controller for air conditioner
JPS5824771A (en) * 1981-08-07 1983-02-14 株式会社鷺宮製作所 Controller for flow rate of refrigerant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5661554A (en) * 1979-10-25 1981-05-27 Matsushita Electric Ind Co Ltd Defrosting controller for air conditioner
JPS5824771A (en) * 1981-08-07 1983-02-14 株式会社鷺宮製作所 Controller for flow rate of refrigerant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174800A (en) * 2008-01-25 2009-08-06 Mitsubishi Electric Corp Reheating dehumidifier and air conditioner

Also Published As

Publication number Publication date
JPS6054061U (en) 1985-04-16

Similar Documents

Publication Publication Date Title
EP3690356A1 (en) Refrigeration cycle device
JP4068927B2 (en) Air conditioner
JPH0599525A (en) Multi-chamber type air conditioner
JPH09310927A (en) Device for controlling refrigerant of air conditioner
JP3816782B2 (en) Air conditioner
JPH0225103Y2 (en)
JP2001147052A (en) Air conditioner
JPH0730979B2 (en) Air conditioner
JPH02223757A (en) Air conditioner
JPH1038398A (en) Controller of electric expansion valve
JP3661014B2 (en) Refrigeration equipment
JP2974381B2 (en) Air conditioner
JPH0833245B2 (en) Refrigeration system operation controller
JP2893844B2 (en) Air conditioner
KR100308093B1 (en) Air conditioner
JP2523534B2 (en) Air conditioner
JPH06317360A (en) Multi-chamber type air conditioner
JP2508306B2 (en) Operation control device for air conditioner
JP2755040B2 (en) Heat pump system
JP3148558B2 (en) Air conditioner
JP2689025B2 (en) Multi-room air conditioner
JPH04236062A (en) Air conditioner
JPH10160273A (en) Air conditioner
JPH05302765A (en) Multi-chamber type air conditioner
JP2000234784A (en) Air conditioner