JP2009174800A - Reheating dehumidifier and air conditioner - Google Patents

Reheating dehumidifier and air conditioner Download PDF

Info

Publication number
JP2009174800A
JP2009174800A JP2008014986A JP2008014986A JP2009174800A JP 2009174800 A JP2009174800 A JP 2009174800A JP 2008014986 A JP2008014986 A JP 2008014986A JP 2008014986 A JP2008014986 A JP 2008014986A JP 2009174800 A JP2009174800 A JP 2009174800A
Authority
JP
Japan
Prior art keywords
expansion valve
compressor
suction
evaporator
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008014986A
Other languages
Japanese (ja)
Other versions
JP5100416B2 (en
Inventor
Sosuke Murase
壮介 村瀬
Keizo Fukuhara
啓三 福原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008014986A priority Critical patent/JP5100416B2/en
Publication of JP2009174800A publication Critical patent/JP2009174800A/en
Application granted granted Critical
Publication of JP5100416B2 publication Critical patent/JP5100416B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reheating dehumidifier or an air conditioner improving a capacity of defrosting, and capable of shortening a defrost time. <P>SOLUTION: An intake pressure sensor 28 and an intake temperature sensor 27 are provided in an intake side of a compressor 19, and a degree of intake superheat is calculated in a compressor intake side on receival of a pressure signal and a temperature signal from the intake pressure sensor 28 and the intake temperature sensor 27 during hot gas defrost operation. The reheating dehumidifier is equipped with a degree of superheat control means of carrying out opening adjustment of increasing an opening of an electric expansion valve 21 between a condenser 20 and an evaporator 22 when a calculated degree of intake superheat is a predetermined set value or more, and carrying opening adjustment of reducing the opening of the electric solenoid valve 21 when the calculated degree of intake superheat is less than the set value. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、再熱除湿装置または空気調和装置に係り、デフロスト運転時における圧縮機の液バック防止技術、およびデフロスト運転中における冷媒量を適正に維持する技術に関する。   The present invention relates to a reheat dehumidifying device or an air conditioner, and relates to a technology for preventing a liquid back of a compressor during defrost operation and a technology for appropriately maintaining a refrigerant amount during defrost operation.

冷凍サイクルを利用した冷凍装置、再熱除湿装置または空気調和装置において、蒸発器に着霜した霜を溶かすデフロスト運転には、圧縮機から吐出された高圧の冷媒であるホットガスを蒸発器に流し、その熱を用いて蒸発器に着霜した霜を溶かすホットガスデフロスト方式が知られている。   In a refrigeration system using a refrigeration cycle, a reheat dehumidifier or an air conditioner, in defrost operation to melt frost formed on the evaporator, hot gas, which is high-pressure refrigerant discharged from the compressor, is allowed to flow to the evaporator. A hot gas defrost system is known that uses the heat to melt frost that forms on the evaporator.

従来より、圧縮機、凝縮器、温度式膨張弁、および蒸発器が順に接続された主冷媒回路と、圧縮機と凝縮器とを繋ぐ高圧ガス配管の途中から分岐し、ホットガスバイパス用電磁弁を介して、温度式膨張弁と蒸発器とを繋ぐ低圧ガス配管に接続されたホットガスデフロスト用バイパス回路とを有した冷凍装置が知られている。この種の冷凍装置は、さらに、凝縮器に外気を供給する凝縮器側送風機、蒸発器に室内空気を供給する蒸発器側送風機、蒸発器入口温度センサおよび吸入温度センサ、蒸発器入口温度センサと吸入温度センサからの温度信号を受けホットガスバイパス用電磁弁を制御する電磁弁制御装置を備えている。そして、冷却運転時には、圧縮機から吐出された冷媒は、凝縮器にて外気と熱交換することで凝縮し、温度式膨張弁で減圧され、蒸発器にて室内空気と熱交換することで蒸発し圧縮機に戻る循環動作を行う。   Conventionally, a main refrigerant circuit in which a compressor, a condenser, a temperature expansion valve, and an evaporator are connected in order, and a high-pressure gas pipe that connects the compressor and the condenser are branched from the middle, and a hot gas bypass solenoid valve There is known a refrigeration apparatus having a hot gas defrost bypass circuit connected to a low-pressure gas pipe connecting a temperature type expansion valve and an evaporator. This type of refrigeration apparatus further includes a condenser side blower for supplying outside air to the condenser, an evaporator side blower for supplying room air to the evaporator, an evaporator inlet temperature sensor and an intake temperature sensor, an evaporator inlet temperature sensor, An electromagnetic valve control device that receives a temperature signal from the suction temperature sensor and controls the hot gas bypass electromagnetic valve is provided. During the cooling operation, the refrigerant discharged from the compressor is condensed by exchanging heat with the outside air in the condenser, depressurized by the temperature type expansion valve, and evaporated by exchanging heat with the indoor air in the evaporator. Then, return to the compressor.

このような冷凍装置において、室内吸入空気の温度が低下して、約15℃以下になると、蒸発器の表面温度が0℃以下になり、吸入空気中の水蒸気が霜となって蒸発器のフィンに着霜する。この霜の付着量が増大すると、フィンが目詰まりし冷却能力が減少する。   In such a refrigeration apparatus, when the temperature of the indoor intake air decreases to about 15 ° C. or less, the surface temperature of the evaporator becomes 0 ° C. or less, and water vapor in the intake air becomes frost and becomes a fin of the evaporator. Frost on. When the amount of frost attached increases, the fins are clogged and the cooling capacity decreases.

このため従来は、蒸発器入口温度センサによる温度信号が例えば設定温度−15℃以下になったことで霜の増大を検知し、凝縮器側送風機および蒸発器側送風機を停止させ、電磁弁制御装置によりホットガスデフロスト用バイパス回路に設けたホットガスバイパス用電磁弁を開いて、圧縮機から吐出された冷媒を蒸発器に流し、蒸発器に生じた霜を融解するホットガスデフロスト運転を行うものがあった。   For this reason, conventionally, when the temperature signal from the evaporator inlet temperature sensor becomes, for example, a set temperature of −15 ° C. or less, an increase in frost is detected, the condenser-side fan and the evaporator-side fan are stopped, and the solenoid valve control device Open the hot gas bypass solenoid valve provided in the hot gas defrost bypass circuit, flow the refrigerant discharged from the compressor to the evaporator, and perform hot gas defrost operation to melt the frost generated in the evaporator there were.

その場合、ホットガスデフロスト運転が進むにつれて圧縮機吸入温度が上昇し、吸入温度センサにより霜が融解したと判断する吸入温度、例えば10℃という温度信号によりホットガスデフロスト運転を終了し、電磁弁制御装置によりホットガスバイパス用電磁弁を閉じ、凝縮器側送風機および蒸発器側送風機を運転して、再度冷却運転に移行する。   In that case, as the hot gas defrost operation proceeds, the compressor intake temperature rises, and the hot gas defrost operation is terminated by a temperature signal of 10 ° C., for example, when the intake temperature sensor determines that the frost has melted, and solenoid valve control is performed. The hot gas bypass solenoid valve is closed by the device, the condenser side blower and the evaporator side blower are operated, and the cooling operation is started again.

また、他の従来の冷凍装置には、圧縮機、凝縮器、液溜、膨張弁、蒸発器を冷媒配管で順次接続して主冷媒回路を構成し、圧縮機の吐出管と蒸発器の入口配管とを接続するホットガスバイパス回路を設け、分岐点に三方比例弁を設け、液ラインと吸入ラインとの間をインジェクションバイパス回路によりインジェクション電磁弁を介して接続したものがある。この構成において、デフロスト運転中、高圧センサHPTまたは低圧センサLPTにて検出される冷媒圧力値が下方設定値よりも低いときには、インジェクション電磁弁を開いて吸入ラインに冷媒を補充し、一方、冷媒圧力値が上方設定値よりも高くなると三方比例弁の開度を調節して、凝縮器用送風機を運転し、吐出ガス冷媒を主冷媒回路の凝縮器に逃がし、デフロスト運転中における冷媒量を調整しているものもある(例えば、特許文献1参照)。   Also, in other conventional refrigeration devices, a compressor, a condenser, a liquid reservoir, an expansion valve, and an evaporator are sequentially connected by a refrigerant pipe to form a main refrigerant circuit, and a compressor discharge pipe and an evaporator inlet There is a type in which a hot gas bypass circuit for connecting a pipe is provided, a three-way proportional valve is provided at a branch point, and a liquid line and a suction line are connected via an injection electromagnetic valve by an injection bypass circuit. In this configuration, during the defrost operation, when the refrigerant pressure value detected by the high pressure sensor HPT or the low pressure sensor LPT is lower than the lower set value, the injection solenoid valve is opened to replenish the suction line with the refrigerant pressure. When the value is higher than the upper set value, the opening of the three-way proportional valve is adjusted, the condenser fan is operated, the discharged gas refrigerant is released to the condenser of the main refrigerant circuit, and the refrigerant amount during defrost operation is adjusted. There are some (see, for example, Patent Document 1).

特開平6−347143号公報JP-A-6-347143

以上のような冷凍装置に対して、再熱除湿装置は室内ユニット内に凝縮器および蒸発器を設けることから、冷媒配管長が短く必要冷媒量の変動が小さいため、冷媒回路の簡素化を目的としアキュムレータを設けないことが多い。これよりホットガスデフロスト運転時における冷媒量を調整する際に、高圧センサまたは低圧センサにて検出される冷媒圧力値が下方設定値よりも低いとき、液ラインと吸入ラインとの間に設けたインジェクション電磁弁を開して吸入ラインに冷媒を補充すると、圧縮機吸入側に凝縮器にて凝縮された液冷媒が直接返ることより、圧縮機に湿った冷媒が吸入されるいわゆる液バックが発生するという問題があった。   In contrast to the refrigeration equipment described above, the reheat dehumidification equipment is provided with a condenser and an evaporator in the indoor unit, so the refrigerant pipe length is short and the required refrigerant amount does not fluctuate. In many cases, an accumulator is not provided. Thus, when adjusting the refrigerant amount during hot gas defrost operation, if the refrigerant pressure value detected by the high pressure sensor or the low pressure sensor is lower than the lower set value, the injection provided between the liquid line and the suction line When the solenoid valve is opened and the refrigerant is replenished to the suction line, the liquid refrigerant condensed in the condenser directly returns to the compressor suction side, so that a so-called liquid back is generated in which the damp refrigerant is sucked into the compressor. There was a problem.

また、従来の再熱除湿装置において、ホットガスデフロスト運転中の冷媒量調整において検出される冷媒圧力値が上方設定値よりも高いときに、凝縮器側送風機のみを運転し、吐出冷媒を流すことによりホットガスデフロスト回路内の冷媒量を低下することは、再熱除湿装置が室内ユニット内に凝縮器および蒸発器を設けて同一の送風機を用いて風を供給することから、凝縮器側の送風機の単独運転ができないために上記の制御が行えず、これよりデフロスト運転中に高圧カットにより異常停止してしまうという問題があった。   Further, in the conventional reheat dehumidifier, when the refrigerant pressure value detected in the refrigerant amount adjustment during the hot gas defrost operation is higher than the upper set value, only the condenser side blower is operated and the discharged refrigerant flows. The refrigerant amount in the hot gas defrost circuit is reduced by the reheat dehumidifying device provided with a condenser and an evaporator in the indoor unit and supplying air using the same blower. Since the above-mentioned control cannot be performed because the single operation cannot be performed, there is a problem that the high pressure cut causes an abnormal stop during the defrost operation.

さらに、凝縮器および蒸発器が室内外に別々に設けられた従来の冷凍装置において、例えば室外側に凝縮器を設け、圧縮機吸入圧力の低下に応じて蒸発器に冷媒を補充する場合、外気温度が高い条件下ではインジェクション回路は有効であるが、外気温度が低い条件下におけるデフロスト運転中において、凝縮器側または液溜内の圧力が吸入圧力より低くなり、ホットガスデフロスト回路内に冷媒を返すことができないという問題があった。   Further, in a conventional refrigeration apparatus in which a condenser and an evaporator are separately provided inside and outside the room, for example, when a condenser is provided on the outside of the room and the refrigerant is replenished in accordance with a decrease in the compressor suction pressure, The injection circuit is effective under high temperature conditions, but during defrost operation under low outside air conditions, the pressure on the condenser side or in the liquid reservoir becomes lower than the suction pressure, and refrigerant is introduced into the hot gas defrost circuit. There was a problem that it could not be returned.

この発明は上記のような課題を解決するためになされたもので、簡素な構造により、また吸込空気温湿度によらず、蒸発器の着霜の融解状態に応じて必要な冷媒量をホットガスデフロスト回路に供給することでデフロストの能力を向上し、デフロスト時間の短縮を可能とする再熱除湿装置または空気調和装置を提供するものである。
また、デフロスト運転時の圧縮機の液バックを回避することができ、これによりアキュムレータが不要な再熱除湿装置または空気調和装置を提供するものである。
The present invention has been made to solve the above-described problems, and the amount of refrigerant required for hot gas can be reduced according to the frosting state of the evaporator with a simple structure and irrespective of the intake air temperature and humidity. The present invention provides a reheat dehumidifying device or an air conditioner that improves the defrosting capability by supplying the defrosting circuit and shortens the defrosting time.
Moreover, the liquid back of the compressor at the time of a defrost operation can be avoided, and this provides the reheat dehumidification apparatus or air conditioning apparatus which does not require an accumulator.

この発明に係る再熱除湿装置は、圧縮機と凝縮器と膨張弁と蒸発器とが順に接続された主冷媒回路と、前記圧縮機と前記凝縮器とを繋ぐ高圧ガス配管の途中から分岐し、開閉弁を介して前記膨張弁と前記蒸発器とを繋ぐ低圧ガス配管に接続されたホットガスデフロスト用バイパス回路とを備え、空気を外部から取り込んで前記蒸発器および前記凝縮器を経由して再び外部に送り出す再熱除湿装置において、
前記圧縮機の吸入側に吸入圧力センサと吸入温度センサとを設け、ホットガスデフロスト運転中に前記吸入圧力センサと前記吸入温度センサから圧力信号および温度信号を受けて、圧縮機吸入側での吸入過熱度を算出し、この算出吸入過熱度が予め定めた設定値以上のときは前記膨張弁の開度を大きくする開度調整を行い、この算出吸入過熱度が前記設定値よりも小さいときは前記膨張弁の開度を小さくする開度調整を行う吸入過熱度制御手段を備えたものである。
A reheat dehumidifying apparatus according to the present invention branches from a main refrigerant circuit in which a compressor, a condenser, an expansion valve, and an evaporator are connected in order, and a high-pressure gas pipe that connects the compressor and the condenser. A bypass circuit for hot gas defrost connected to a low-pressure gas pipe connecting the expansion valve and the evaporator via an on-off valve, taking in air from the outside and passing through the evaporator and the condenser In the reheat dehumidifier that sends it out again,
A suction pressure sensor and a suction temperature sensor are provided on the suction side of the compressor, and a pressure signal and a temperature signal are received from the suction pressure sensor and the suction temperature sensor during hot gas defrost operation, and suction on the compressor suction side is performed. The degree of superheat is calculated, and when the calculated suction superheat degree is equal to or larger than a predetermined set value, the opening degree adjustment is performed to increase the opening degree of the expansion valve, and when the calculated suction superheat degree is smaller than the set value, Intake superheat degree control means for adjusting the opening degree to reduce the opening degree of the expansion valve is provided.

また、圧縮機と凝縮器と膨張弁と蒸発器とが順に接続された主冷媒回路と、前記圧縮機と前記凝縮器とを繋ぐ高圧ガス配管の途中から分岐し、開閉弁を介して前記膨張弁と前記蒸発器とを繋ぐ低圧ガス配管に接続されたホットガスデフロスト用バイパス回路とを備え、空気を外部から取り込んで前記蒸発器および前記凝縮器を経由して再び外部に送り出す再熱除湿装置において、
前記圧縮機の吸入側に吸入温度センサを、前記蒸発器の入口に蒸発器入口温度センサをそれぞれ設け、ホットガスデフロスト運転中に前記吸入温度センサと前記蒸発器入口温度センサから温度信号を受けて、圧縮機吸入側での吸入過熱度を算出し、この算出吸入過熱度が予め定めた設定値以上のときは前記膨張弁を大きくする開度調整を行い、この算出吸入過熱度が前記設定値よりも小さいときは前記膨張弁の開度を小さくする開度調整を行う吸入過熱度制御手段、を備えたものである。
The main refrigerant circuit in which a compressor, a condenser, an expansion valve, and an evaporator are connected in series, and a high-pressure gas pipe that connects the compressor and the condenser are branched from the middle, and the expansion is performed through an on-off valve. A reheat dehumidifying device comprising a bypass circuit for hot gas defrost connected to a low-pressure gas pipe connecting a valve and the evaporator, and taking in air from the outside and sending it out again via the evaporator and the condenser In
An intake temperature sensor is provided on the intake side of the compressor, and an evaporator inlet temperature sensor is provided at the inlet of the evaporator, and temperature signals are received from the intake temperature sensor and the evaporator inlet temperature sensor during hot gas defrost operation. The suction superheat degree on the compressor suction side is calculated, and when the calculated suction superheat degree is equal to or larger than a predetermined set value, the opening adjustment is performed to increase the expansion valve, and the calculated suction superheat degree is set to the set value. When it is smaller than that, it is provided with suction superheat degree control means for adjusting the opening degree to reduce the opening degree of the expansion valve.

さらに、圧縮機と凝縮器と膨張弁と蒸発器とが順に接続された主冷媒回路と、前記圧縮機と前記凝縮器とを繋ぐ高圧ガス配管の途中から分岐し、開閉弁を介して前記膨張弁と前記蒸発器とを繋ぐ低圧ガス配管に接続されたホットガスデフロスト用バイパス回路とを備え、空気を外部から取り込んで前記蒸発器および前記凝縮器を経由して再び外部に送り出す再熱除湿装置において、
前記圧縮機の吐出側に吐出圧力センサと吐出温度センサとを設け、ホットガスデフロスト運転中に前記吐出圧力センサと前記吐出温度センサから圧力信号および温度信号を受けて、圧縮機吐出側での吐出過熱度を算出し、この算出吐出過熱度が予め定めた設定値以上のときは前記膨張弁の開度を大きくする開度調整を行い、この算出吐出過熱度が前記設定値よりも小さいときは前記膨張弁の開度を小さくする開度調整を行う吐出過熱度制御手段を備えたものである。
Further, the main refrigerant circuit in which a compressor, a condenser, an expansion valve, and an evaporator are connected in order, and a high-pressure gas pipe that connects the compressor and the condenser are branched from the middle, and the expansion is performed through an on-off valve. A reheat dehumidifying device comprising a bypass circuit for hot gas defrost connected to a low-pressure gas pipe connecting a valve and the evaporator, and taking in air from the outside and sending it out again via the evaporator and the condenser In
A discharge pressure sensor and a discharge temperature sensor are provided on the discharge side of the compressor, and a pressure signal and a temperature signal are received from the discharge pressure sensor and the discharge temperature sensor during hot gas defrost operation, and a discharge is performed on the compressor discharge side. The degree of superheat is calculated, and when the calculated discharge superheat degree is equal to or larger than a predetermined set value, the opening degree adjustment is performed to increase the opening degree of the expansion valve, and when the calculated discharge superheat degree is smaller than the set value, Discharge superheat degree control means for adjusting the opening degree to reduce the opening degree of the expansion valve is provided.

この発明の再熱除湿装置は、上記のように実際の冷媒回路から得た圧力や温度の情報を基に算出した吸入過熱度または吐出過熱度により膨張弁の開度を調節するように構成したことで、以下のような効果を奏する。
ホットガスデフロストの進行中、吸込空気条件によらず、蒸発器の着霜の融解状態によって必要な冷媒量を算出して、冷媒量の調整を行うことができ、デフロスト能力の向上によりデフロスト時間の短縮ができる。
また、圧縮機への液バック防止も可能となって信頼性が向上し、アキュムレータの設置も不要となる。
さらに、ホットガスデフロスト回路内の冷媒量が過多になる前に、膨張弁を制御することで、デフロスト運転中の不意な高圧カットが防止できる。
The reheat dehumidifying apparatus of the present invention is configured to adjust the opening degree of the expansion valve based on the suction superheat degree or the discharge superheat degree calculated based on the pressure and temperature information obtained from the actual refrigerant circuit as described above. Thus, the following effects are produced.
While hot gas defrost is in progress, the amount of refrigerant required can be calculated by adjusting the amount of frost on the evaporator, regardless of the intake air conditions, and the amount of refrigerant can be adjusted. Can be shortened.
In addition, the liquid back to the compressor can be prevented, so that the reliability is improved and the installation of an accumulator becomes unnecessary.
Furthermore, by controlling the expansion valve before the amount of refrigerant in the hot gas defrost circuit becomes excessive, an unexpected high pressure cut during the defrost operation can be prevented.

実施の形態1.
図1はこの発明の実施の形態1に係る再熱除湿装置の冷媒回路及び制御系統図である。この再熱除湿装置は、吸入した冷媒を高圧状態に圧縮して吐出する圧縮機19と、圧縮機19から吐出された吐出ガス冷媒を凝縮、液化する凝縮器20と、入力された電気信号に応じてオリフィスの開口度を自動調整できる膨張弁、例えば電子膨張弁21と、液冷媒を蒸発させるための蒸発器22とが順に接続された主冷媒回路を有する。
また、凝縮器20と蒸発器22とに風を供給する送風機24を有する。さらに、圧縮機19と凝縮器20とを繋ぐ高圧ガス配管の途中から分岐し、開閉弁であるホットガスデフロスト用電磁弁23を介して、電子膨張弁21と蒸発器22とを繋ぐ低圧ガス配管に接続されたホットガスデフロスト用バイパス回路23Aが設けられている。
また、蒸発器入口温度センサ26、吸入温度センサ27、吸入圧力センサ(LPT)28が設けられるとともに、蒸発器入口温度センサ26および吸入温度センサ27に接続されて、それらの信号を基にホットガスバイパス用電磁弁23や送風機24を制御する電磁弁制御装置100が設けられている。
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit and control system diagram of a reheat dehumidifier according to Embodiment 1 of the present invention. The reheat dehumidifying apparatus includes a compressor 19 that compresses and discharges the sucked refrigerant to a high pressure state, a condenser 20 that condenses and liquefies the discharged gas refrigerant discharged from the compressor 19, and an input electric signal. Accordingly, an expansion valve that can automatically adjust the opening degree of the orifice, for example, an electronic expansion valve 21, and an evaporator 22 for evaporating liquid refrigerant are connected in order.
Moreover, it has the air blower 24 which supplies wind to the condenser 20 and the evaporator 22. Further, the low-pressure gas pipe branches from the middle of the high-pressure gas pipe connecting the compressor 19 and the condenser 20 and connects the electronic expansion valve 21 and the evaporator 22 via the hot gas defrost electromagnetic valve 23 which is an on-off valve. A bypass circuit 23A for hot gas defrost connected to is provided.
Further, an evaporator inlet temperature sensor 26, a suction temperature sensor 27, and a suction pressure sensor (LPT) 28 are provided, and are connected to the evaporator inlet temperature sensor 26 and the suction temperature sensor 27, and hot gas is based on these signals. An electromagnetic valve control device 100 that controls the bypass electromagnetic valve 23 and the blower 24 is provided.

それらに加えて、吸入温度センサ27の温度信号と吸入圧力センサ(LPT)28の圧力信号とから圧縮機19の吸入過熱度を算出する吸入過熱度算出部102と、吸入過熱度算出部102からの吸入過熱度を受け、圧縮機19の吸入過熱度が予め定めた設定値になるよう電子膨張弁21の開度(電子膨張弁21のオリフィスの開口度)を調整する膨張弁制御装置101を備える。なお、図1では、膨張弁制御装置101と吸入過熱度算出部102とは、吸入過熱度制御手段110としてまとめて表されている。   In addition to these, from the suction superheat degree calculation unit 102 that calculates the suction superheat degree of the compressor 19 from the temperature signal of the suction temperature sensor 27 and the pressure signal of the suction pressure sensor (LPT) 28, and from the suction superheat degree calculation part 102 An expansion valve control device 101 that adjusts the opening degree of the electronic expansion valve 21 (the opening degree of the orifice of the electronic expansion valve 21) so that the suction superheat degree of the compressor 19 becomes a predetermined set value. Prepare. In FIG. 1, the expansion valve control device 101 and the suction superheat degree calculation unit 102 are collectively represented as suction superheat degree control means 110.

次に、図1に示した再熱除湿装置の動作について説明する。除湿運転時、圧縮機19から吐出された高温高圧のガス状の冷媒は、凝縮器20内で凝縮し、高温高圧の液状の冷媒となる。このとき冷媒から放出される熱は、送風機24により吸い込まれた空気が凝縮器20に施されたフィンの間を通過するときに、その空気を暖められるのに用いられる。そして、凝縮器20を出た高温高圧の液体冷媒は、電子膨張弁21で減圧されて常温低圧の気液二相冷媒となる。   Next, the operation of the reheat dehumidifier shown in FIG. 1 will be described. During the dehumidifying operation, the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 19 is condensed in the condenser 20 and becomes a high-temperature and high-pressure liquid refrigerant. The heat released from the refrigerant at this time is used to warm the air sucked by the blower 24 when it passes between the fins applied to the condenser 20. Then, the high-temperature and high-pressure liquid refrigerant exiting the condenser 20 is decompressed by the electronic expansion valve 21 to become a room-temperature and low-pressure gas-liquid two-phase refrigerant.

再熱除湿装置は室内ユニット内に凝縮器20と蒸発器22とを設けることから、比較的配管長が短く必要冷媒量の変動が小さいことと、冷媒回路の簡素化を目的にアキュムレータを設けないことが多いため、除湿運転中においては、圧縮機19への液バック防止を目的に、吸入過熱度による電子膨張弁21の開度制御を行っている。ここでは、電子膨張弁21は、吸入圧力センサ(LPT)28と吸入温度センサ27の信号(情報)に基づいて算出される吸入過熱度が、予め定めた吸入過熱度(設定値)になるようにその開度が調整される。   Since the reheat dehumidifier is provided with the condenser 20 and the evaporator 22 in the indoor unit, the accumulator is not provided for the purpose of relatively short piping length and small fluctuation of the necessary refrigerant amount and simplification of the refrigerant circuit. In many cases, during the dehumidifying operation, the opening degree of the electronic expansion valve 21 is controlled based on the degree of suction superheat for the purpose of preventing liquid back to the compressor 19. Here, in the electronic expansion valve 21, the suction superheat degree calculated based on the signals (information) of the suction pressure sensor (LPT) 28 and the suction temperature sensor 27 becomes a predetermined suction superheat degree (set value). The opening degree is adjusted.

電子膨張弁21の下流には蒸発器22が設けられており、常温低圧の気液二相冷媒はここで気化し、常温低圧のガス冷媒となる。このとき冷媒は周囲から熱を吸熱するため、送風機24により吸い込まれた吸入空気は、蒸発器22に施されたフィンの間を通過するときに冷却、除湿される。そして常温低圧のガス冷媒は圧縮機19に送られて再び圧縮される循環動作を行う。   An evaporator 22 is provided downstream of the electronic expansion valve 21, and the normal-temperature and low-pressure gas-liquid two-phase refrigerant is vaporized here to become a normal-temperature and low-pressure gas refrigerant. At this time, since the refrigerant absorbs heat from the surroundings, the intake air sucked by the blower 24 is cooled and dehumidified when passing between the fins applied to the evaporator 22. The room-temperature and low-pressure gas refrigerant is sent to the compressor 19 to perform a recirculation operation where it is compressed again.

再熱除湿装置における空気の流れとしては、送風機24で吸い込まれた吸入空気がまず蒸発器22に施されたフィンの間を通過するときに冷却、除湿され、次いで凝縮器20に施されたフィンの間を通過するときその空気が暖められ、相対湿度の低い空気となって室内空間に供給される。   As the air flow in the reheat dehumidifier, the intake air sucked by the blower 24 is cooled and dehumidified when it first passes between the fins applied to the evaporator 22, and then the fins applied to the condenser 20. When the air passes between the two, the air is warmed and supplied to the indoor space as air having a low relative humidity.

上記のように動作する再熱除湿装置において、吸入空気の温度が低下して例えば約15℃以下になると、圧縮機19の吸入過熱度を増大させるべく、膨張弁制御装置101により、電子膨張弁21の開度を閉じる方向(小さくする方向)に開度調整が行われる。これにより蒸発器22の表面温度が0℃以下となり、吸入空気中の水蒸気が霜となって蒸発器22に着霜する。この霜の付着量が増大するにつれ蒸発器22のフィンが目詰まりして蒸発能力が低下し、吸入過熱度が更に低下していく。着霜が進行するに伴い、膨張弁制御装置101により更に電子膨張弁21の開度を小さくする制御が働き、圧縮機19の吸入圧力が徐々に低下し冷媒循環量が低下することにより、冷却能力が低下して除湿量が減少する。   In the reheat dehumidifying apparatus operating as described above, when the temperature of the intake air decreases to, for example, about 15 ° C. or less, the expansion valve controller 101 causes the electronic expansion valve to increase the suction superheat degree of the compressor 19. The opening degree is adjusted in a direction in which the opening degree of 21 is closed (a direction in which the opening degree is reduced). As a result, the surface temperature of the evaporator 22 becomes 0 ° C. or lower, and the water vapor in the intake air becomes frost and forms on the evaporator 22. As the amount of frost attached increases, the fins of the evaporator 22 are clogged, the evaporation capacity is lowered, and the suction superheat degree is further lowered. As the frosting progresses, the expansion valve control device 101 controls to further reduce the opening of the electronic expansion valve 21, and the suction pressure of the compressor 19 gradually decreases and the refrigerant circulation rate decreases, thereby cooling the refrigerant. The capacity decreases and the amount of dehumidification decreases.

そして、蒸発器22における着霜量が所定量以上増大したと判断できるとき、例えば蒸発器入口温度センサ26が予め設定した温度、例えば−15℃以下を検出したとき、電磁弁制御装置100により送風機24を停止し、ホットガスバイパス用電磁弁23を開き、ホットガスデフロスト用バイパス回路23Aを利用して、ホットガスデフロスト運転を開始する。   When it can be determined that the amount of frost formation in the evaporator 22 has increased by a predetermined amount or more, for example, when the evaporator inlet temperature sensor 26 detects a preset temperature, for example, −15 ° C. or less, the blower is operated by the solenoid valve control device 100. 24 is stopped, the hot gas bypass solenoid valve 23 is opened, and the hot gas defrost operation is started using the hot gas defrost bypass circuit 23A.

このときホットガスバイパス用電磁弁23の口径は、圧縮機吐出圧力が上昇することによる高圧カットを回避可能に選定されており、電子膨張弁21のオリフィスの径に比べ大きく設定していることから圧力損失が小さくなり、デフロスト開始とともに圧縮機19の吸入圧力が上昇する。この吸入圧力上昇、および圧縮機19から吐出された高温高圧のガス状の冷媒が蒸発器22に着霜した霜と熱交換することで凝縮するため、吸入過熱度算出部102において、吸入温度センサ27と吸入圧力センサ(LPT)28から算出される吸入過熱度が減少する。そして、その算出された吸入過熱度が予め定めた設定値よりも小さいときは、膨張弁制御装置101により電子膨張弁21の開度を小さくする開度調整が行われる。   At this time, the diameter of the hot gas bypass solenoid valve 23 is selected so as to avoid a high-pressure cut due to an increase in the discharge pressure of the compressor, and is set to be larger than the diameter of the orifice of the electronic expansion valve 21. The pressure loss is reduced, and the suction pressure of the compressor 19 increases with the start of defrosting. Since the suction pressure rises and the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 19 condenses by exchanging heat with the frost that forms on the evaporator 22, the suction superheat degree calculation unit 102 uses the suction temperature sensor. 27 and the suction superheat degree calculated from the suction pressure sensor (LPT) 28 are decreased. Then, when the calculated suction superheat degree is smaller than a predetermined set value, the opening adjustment for reducing the opening of the electronic expansion valve 21 is performed by the expansion valve control device 101.

この制御によりホットガスバイパス用電磁弁23を通過した高温高圧のガス冷媒と合流する冷媒量、つまり凝縮器20にて凝縮されて電子膨張弁21を通る気液二相の湿った冷媒量が減少する。このため、圧縮機吸入過熱度が増大し、デフロスト運転開始時における圧縮機19への液バックが回避可能となる。   This control reduces the amount of refrigerant that merges with the high-temperature and high-pressure gas refrigerant that has passed through the hot gas bypass solenoid valve 23, that is, the amount of gas-liquid two-phase wet refrigerant that is condensed in the condenser 20 and passes through the electronic expansion valve 21. To do. For this reason, the compressor suction superheat degree increases, and the liquid back to the compressor 19 at the start of the defrost operation can be avoided.

デフロスト運転が進むにつれて、蒸発器22のフィン周りの霜が融解し熱伝達率が低下し、凝縮能力の低下に伴い吸入過熱度が上昇していく。従って、吸入過熱度算出部102において算出される吸入過熱度は上昇する。そして、その算出された吸入過熱度が予め定めた設定値以上になると、その吸入過熱度の上昇に応じて、膨張弁制御装置101により、電子膨張弁21の開度を大きくしていく制御をする。これにより、デフロスト運転時の霜の融解に応じて必要な冷媒量をホットガスデフロスト用バイパス回路23Aに供給することができる。   As the defrost operation proceeds, the frost around the fins of the evaporator 22 melts and the heat transfer rate decreases, and the suction superheat degree increases as the condensation capacity decreases. Therefore, the suction superheat degree calculated by the suction superheat degree calculation unit 102 increases. Then, when the calculated suction superheat degree is equal to or higher than a predetermined set value, the expansion valve control device 101 performs control to increase the opening degree of the electronic expansion valve 21 in accordance with the increase of the suction superheat degree. To do. Thereby, the refrigerant | coolant amount required according to the melting | fusing of the frost at the time of a defrost driving | operation can be supplied to the bypass circuit 23A for hot gas defrosts.

なお、上記吸入過熱度の設定値として定める吸入過熱度(吸入温度センサの検出温度−吸入圧力センサの検出圧力の飽和温度)は、例えば5degとする。理論的には0degより大きければよいが、センサ誤差やセンサ時定数を考慮して5deg程度とするのが好ましい。   Note that the suction superheat degree (the detection temperature of the suction temperature sensor−the saturation temperature of the detection pressure of the suction pressure sensor) determined as the set value of the suction superheat degree is, for example, 5 deg. Theoretically, it should be larger than 0 deg. However, it is preferably set to about 5 deg in consideration of sensor error and sensor time constant.

以上により、デフロスト運転における霜の融解に必要な最適な冷媒量を供給することが可能となり、冷媒循環量の上昇に伴いデフロスト能力が増大し、デフロスト運転時間の短縮が可能となる。またデフロスト運転中においても吸入過熱度を基に電子膨張弁21の開度を調整するため、圧縮機19への液バックが回避されるとともに、デフロスト運転中に発生する冷媒過多による高圧カットでの異常停止を防止することができる。   As described above, it is possible to supply the optimum amount of refrigerant necessary for melting frost in the defrost operation, the defrost capacity increases with the increase of the refrigerant circulation amount, and the defrost operation time can be shortened. Further, even during the defrost operation, the opening degree of the electronic expansion valve 21 is adjusted based on the suction superheat degree, so that liquid back to the compressor 19 is avoided and the high pressure cut due to excessive refrigerant generated during the defrost operation is avoided. Abnormal stop can be prevented.

再熱除湿装置におけるデフロスト運転時の必要冷媒量は、デフロスト運転が進むにつれ増大するため、基本的には膨張弁制御装置101により電子膨張弁21の開度を大きくする方向に制御が進む。
また、ホットガスバイパス用電磁弁23の口径が小さく、膨張弁制御装置101の制御による冷媒量の増大により吐出圧力が上昇し、予め定めた高圧カット値により異常停止する問題を回避するためには次のようにする。すなわち、ホットガスバイパス用電磁弁23の口径を適正冷媒量、つまり設定した吸入過熱度において吐出圧力が高圧カット値より低くなるように選定するか、圧縮機19の吸入圧力センサまたは吐出圧力センサのどちらかを利用して、電子膨張弁21の開度調整に際して以下のような上限設定値を設ける。
例えば、R410A冷媒機種において、高圧カット値が4.15MPaの場合、3.0MPa以上の圧縮機吐出圧力を検知した場合は、電子膨張弁21の開度を閉じる(開度を0とする)制御を加える。また、R410A冷媒機種において、高圧カット値が4.15MPaの場合、1.0MPa以上の圧縮機吸入圧力を検知した場合は、電子膨張弁21の開度を閉じる(開度を0とする)制御を加える。なお、上記の吐出圧力または吸入圧力の設定値は、デフロスト運転中およびデフロスト運転から除湿運転への切替時の高圧変動により、高圧カットがかからないよう決定されるものである。
このような制御により、不意なデフロスト運転中における高圧カットによる異常停止や、デフロスト運転から除湿運転切替り時に生じる圧力変動による高圧カットによる異常停止を避けることが可能となる。なお、この制御は後述する各実施の形態においても適用することができる。
Since the necessary refrigerant amount during the defrost operation in the reheat dehumidifying device increases as the defrost operation proceeds, the control basically proceeds in the direction of increasing the opening degree of the electronic expansion valve 21 by the expansion valve control device 101.
Further, in order to avoid the problem that the hot gas bypass solenoid valve 23 has a small diameter, the discharge pressure rises due to the increase in the refrigerant amount under the control of the expansion valve control device 101, and abnormally stops due to a predetermined high pressure cut value. Do as follows. That is, the diameter of the hot gas bypass solenoid valve 23 is selected so that the discharge pressure is lower than the high pressure cut value at the proper refrigerant amount, that is, the set suction superheat degree, or the suction pressure sensor or the discharge pressure sensor of the compressor 19 is selected. By using either of them, the following upper limit set value is provided when adjusting the opening degree of the electronic expansion valve 21.
For example, in the R410A refrigerant model, when the high pressure cut value is 4.15 MPa, when the compressor discharge pressure of 3.0 MPa or more is detected, control is performed to close the opening of the electronic expansion valve 21 (opening is set to 0). . Further, in the R410A refrigerant model, when the high pressure cut value is 4.15 MPa, when the compressor suction pressure of 1.0 MPa or more is detected, control is performed to close the opening of the electronic expansion valve 21 (the opening is set to 0). . The set value of the discharge pressure or the suction pressure is determined so that a high pressure cut is not applied due to a high pressure fluctuation during the defrost operation and when switching from the defrost operation to the dehumidification operation.
By such control, it is possible to avoid an abnormal stop due to a high-pressure cut during an unexpected defrost operation and an abnormal stop due to a high-pressure cut due to a pressure fluctuation generated when the defrost operation is switched to the dehumidifying operation. This control can also be applied to each embodiment described later.

デフロスト運転が進むにつれ圧縮機19の吸入温度が上昇し、霜が融解したと判断できる圧縮機吸入温度、例えば10℃の吸入温度センサ27の温度信号を受けると、電磁弁制御装置100によりホットガスバイパス用電磁弁23が閉じられ、送風機24を運転して、除湿運転に戻る。   As the defrosting operation proceeds, the suction temperature of the compressor 19 rises, and upon receiving a compressor suction temperature at which it can be determined that the frost has melted, for example, a temperature signal of the suction temperature sensor 27 of 10 ° C., the solenoid valve control device 100 causes the hot gas. The bypass solenoid valve 23 is closed, the blower 24 is operated, and the dehumidifying operation is resumed.

なお、吸入圧力センサ(LPT)28の信号を利用する代わりに、蒸発器22の入口温度センサ26の温度信号を用いた制御も可能である。すなわち、蒸発器22における圧力損失分を考慮して吸入過熱度を算出し、その算出された吸入過熱度が予め定めた設定値以上のときは電子膨張弁21の開度を大きくする開度調整を行い、この算出吸入過熱度がその設定値よりも小さいときは電子膨張弁21の開度を小さくする開度調整を行う吸入過熱度制御手段を備えてもよい。
この場合、吸入過熱度の設定値として定める吸入過熱度(吸入温度センサの検出温度−蒸発器入口温度センサの検出温度)は、例えば2degとする。
この制御によれば、ホットガスバイパス用電磁弁23の開度制御も蒸発器入口温度センサ26に基づいて行うことができるため、吸入圧力センサ(LPT)28が必要なくなりコストの削減が可能となる。
Instead of using the signal of the suction pressure sensor (LPT) 28, control using the temperature signal of the inlet temperature sensor 26 of the evaporator 22 is also possible. That is, the degree of suction superheat is calculated in consideration of the pressure loss in the evaporator 22, and the degree of opening adjustment for increasing the degree of opening of the electronic expansion valve 21 when the calculated degree of suction superheat is equal to or greater than a preset value. When the calculated suction superheat degree is smaller than the set value, a suction superheat degree control means for adjusting the opening degree to reduce the opening degree of the electronic expansion valve 21 may be provided.
In this case, the suction superheat degree (detection temperature of the suction temperature sensor−detection temperature of the evaporator inlet temperature sensor) determined as the set value of the suction superheat degree is, for example, 2 deg.
According to this control, the opening degree control of the hot gas bypass electromagnetic valve 23 can also be performed based on the evaporator inlet temperature sensor 26, so that the suction pressure sensor (LPT) 28 is not required, and the cost can be reduced. .

実施の形態2.
実施の形態1では、吸入過熱度に応じて電子膨張弁21の開度を調整するようにしたものであるが、実施の形態2では、特にデフロスト開始直後に電子膨張弁21の開度を小さくする開度調整を行い(開度を0とする場合も含む)、その後検出される吸入過熱度の上昇に応じて電子膨張弁21の開度を大きくする開度調整を行う。以下、図1を基に実施の形態2を説明する。
Embodiment 2. FIG.
In the first embodiment, the opening degree of the electronic expansion valve 21 is adjusted according to the intake superheat degree. However, in the second embodiment, the opening degree of the electronic expansion valve 21 is reduced particularly immediately after the start of defrosting. The degree of opening is adjusted (including the case where the degree of opening is 0), and the degree of opening of the electronic expansion valve 21 is increased in accordance with the increase in the degree of suction superheat detected thereafter. Hereinafter, the second embodiment will be described with reference to FIG.

ホットガスデフロスト運転時、電子膨張弁21の開度が開の場合は、凝縮器20において熱交換し液状となった冷媒が電子膨張弁21を通り気液二相の湿った冷媒となる。そして、圧縮機19から吐出されホットガスデフロスト用バイパス回路23Aを通った高温高圧のガス状の冷媒と合流することで湿った冷媒となって蒸発器22に入り、蒸発器22に着霜した霜と熱交換することで更に湿った冷媒となり、圧縮機19に吸入される。このため、圧縮機19に湿った冷媒が吸入されるいわゆる液バックが発生する問題がある。   When the opening degree of the electronic expansion valve 21 is open during the hot gas defrosting operation, the refrigerant that has exchanged heat and becomes liquid in the condenser 20 passes through the electronic expansion valve 21 and becomes a gas-liquid two-phase wet refrigerant. The frost that is discharged from the compressor 19 and enters the evaporator 22 by merging with the high-temperature and high-pressure gaseous refrigerant that has passed through the hot gas defrost bypass circuit 23A and frosted on the evaporator 22 By exchanging heat with the refrigerant, the refrigerant is further moistened and sucked into the compressor 19. For this reason, there is a problem that a so-called liquid back is generated in which the damp refrigerant is sucked into the compressor 19.

また、ホットガスデフロスト運転中、電子膨張弁21の開度調整は、吸入過熱度算出部102が吸入温度センサ27の温度信号と、吸入圧力センサ(LPT)28の圧力信号または蒸発器入口温度センサ26の温度信号とを受け、それらを基に吸入過熱度を算出し、その算出吸入過熱度を基に膨張弁制御装置101により開度調整される。
このためデフロスト開始時における急激な負荷変動時には、吸入温度センサ27の感温筒部の検出の遅れが発生することにより追従できずに、デフロスト開始直後には膨張弁制御装置101による開度調整が追従するまで、液バックが発生する問題がある。
Further, during the hot gas defrost operation, the opening degree of the electronic expansion valve 21 is adjusted by the suction superheat degree calculation unit 102 using the temperature signal of the suction temperature sensor 27 and the pressure signal of the suction pressure sensor (LPT) 28 or the evaporator inlet temperature sensor. 26, the intake superheat degree is calculated based on them, and the opening degree is adjusted by the expansion valve control device 101 based on the calculated intake superheat degree.
For this reason, at the time of a sudden load change at the start of defrost, the detection of the temperature sensing cylinder portion of the intake temperature sensor 27 cannot be followed, and the opening degree adjustment by the expansion valve control device 101 is performed immediately after the start of defrost. There is a problem that liquid back occurs until it follows.

そこで、膨張弁制御装置101において、デフロスト運転開始直後から膨張弁制御装置101による電子膨張弁21の開度調整が追従できるようになるまでの時間は、電子膨張弁21の開度を小さくするように調整をする。例えば電子膨張弁21の開度を0とする。その後、蒸発器22に着霜した霜が融解するにつれて吸入過熱度が増大する。吸入過熱度が増大してそれが予め定めた設定値(実施の形態1で説明した各吸入過熱度の設定値と同じ)以上となった場合は、その吸入過熱度の増大に応じて電子膨張弁21の開度を大きくしていくように制御する。これによりデフロスト運転開始時における圧縮機19への液バック回避が可能となる。また、吸入過熱度の変化に伴って電子膨張弁21を調整することにより、デフロスト運転時の霜の融解に応じた冷媒量をデフロスト回路に供給することができる。これによりデフロスト運転における霜の融解に応じた最適な冷媒量を供給することが可能となり、冷媒循環量が増大しデフロスト能力が向上して、デフロスト運転時間の短縮が可能となる。   Therefore, in the expansion valve control apparatus 101, the time until the opening adjustment of the electronic expansion valve 21 by the expansion valve control apparatus 101 can be followed immediately after the start of the defrost operation is made to reduce the opening of the electronic expansion valve 21. Adjust to. For example, the opening degree of the electronic expansion valve 21 is set to zero. Thereafter, the suction superheat degree increases as the frost frosted on the evaporator 22 melts. When the suction superheat degree increases and becomes equal to or greater than a predetermined set value (same as the set value of each suction superheat degree described in the first embodiment), electronic expansion is performed according to the increase of the suction superheat degree. Control is performed so as to increase the opening of the valve 21. Thereby, it is possible to avoid the liquid back to the compressor 19 at the start of the defrost operation. Further, by adjusting the electronic expansion valve 21 in accordance with the change in the degree of suction superheat, the amount of refrigerant corresponding to the frost melting during the defrost operation can be supplied to the defrost circuit. This makes it possible to supply the optimum amount of refrigerant according to the frost melting in the defrost operation, increase the refrigerant circulation amount, improve the defrost capability, and shorten the defrost operation time.

この再熱除湿装置における空気の流れは、送風機24で吸い込まれた吸入空気が、まず蒸発器22を通過し、次いで凝縮器20を通過する。このため、室内外に夫々に凝縮器および蒸発器が設けられる冷凍機器で起こる変動、例えば室外側に凝縮器があり外気が低いときに高圧が低下し、外気温度が高いときは高圧が上昇するといった変動は再熱除湿装置では起こらない。また、着霜量が増大するにつれ蒸発能力が低下し、吸入過熱度が減少するため、除湿運転中における吸入過熱度による電子膨張弁制御により、吸入過熱度を増大する目的で電子膨張弁21の開度を小さくする制御が働き、その後蒸発器入口温度が予め設定した値になった時点で、電磁弁制御装置100によりホットガスデフロスト運転に切替わる。   In the flow of air in the reheat dehumidifier, the intake air sucked by the blower 24 first passes through the evaporator 22 and then passes through the condenser 20. For this reason, fluctuations that occur in refrigeration equipment each provided with a condenser and an evaporator, for example, indoors and outdoors, such as a condenser outside the room, the high pressure decreases when the outside air is low, and the high pressure increases when the outside air temperature is high. Such fluctuations do not occur in the reheat dehumidifier. Further, as the amount of frost increases, the evaporation capacity decreases and the suction superheat degree decreases. Therefore, the electronic expansion valve 21 is controlled for the purpose of increasing the suction superheat degree by the electronic expansion valve control based on the suction superheat degree during the dehumidifying operation. Control for reducing the opening degree is activated, and then the solenoid valve control device 100 switches to hot gas defrost operation when the evaporator inlet temperature reaches a preset value.

これによりホットガスデフロスト運転開始時における吸入圧力および吐出圧力は、吸込空気温湿度によらずほぼ一定であり、ホットガスデフロスト開始時における冷媒回路内の冷媒分布も室外温湿度によらずほぼ一定と考えられる。従って、従来の冷凍装置において発生していた、外気温度が低い条件下におけるデフロスト中に、凝縮器側または液溜内の圧力が吸入圧力より低くなり、ホットガスデフロスト回路内に冷媒を返すことができないという問題は解消される。   As a result, the suction pressure and discharge pressure at the start of hot gas defrost operation are almost constant regardless of the intake air temperature and humidity, and the refrigerant distribution in the refrigerant circuit at the start of hot gas defrost is also almost constant regardless of the outdoor temperature and humidity. Conceivable. Therefore, during the defrost that occurs in the conventional refrigeration system under the condition that the outside air temperature is low, the pressure on the condenser side or in the liquid reservoir becomes lower than the suction pressure, and the refrigerant is returned to the hot gas defrost circuit. The problem of not being able to be solved.

実施の形態3.
実施の形態1または2は、圧縮機19の吸入過熱度を利用して電子膨張弁21の開度を調整するようにしたものであるが、実施の形態3は、圧縮機19の吐出過熱度を利用して電子膨張弁の開度を調整するようにしたものである。
図2はこの発明の実施の形態3に係る再熱除湿装置の冷媒回路、制御系統図である。図1の符号と同じ符号は図1で説明した物と同一物または相当物を表している。図2では、吐出温度センサ25と、吐出圧力センサ(HPT)29とが設けられている。そして、吐出温度センサ25の温度信号と吐出圧力センサ(HPT)29の圧力信号とから、圧縮機19の吐出過熱度を算出する吐出過熱度算出部103と、吐出過熱度算出部103からの吐出過熱度を受け、圧縮機19の吐出過熱度が予め定めた設定値になるよう電子膨張弁21の開度を調整する膨張弁制御装置101とを備える。なお、膨張弁制御装置101と吐出過熱度算出部103とは、吐出過熱度制御手段111としてまとめて表されている。
Embodiment 3 FIG.
In the first or second embodiment, the opening degree of the electronic expansion valve 21 is adjusted using the suction superheat degree of the compressor 19, but in the third embodiment, the discharge superheat degree of the compressor 19 is adjusted. Is used to adjust the opening of the electronic expansion valve.
FIG. 2 is a refrigerant circuit and control system diagram of the reheat dehumidifier according to Embodiment 3 of the present invention. The same reference numerals as those in FIG. 1 denote the same or equivalent parts as described in FIG. In FIG. 2, a discharge temperature sensor 25 and a discharge pressure sensor (HPT) 29 are provided. The discharge superheat degree calculation unit 103 that calculates the discharge superheat degree of the compressor 19 from the temperature signal of the discharge temperature sensor 25 and the pressure signal of the discharge pressure sensor (HPT) 29, and the discharge from the discharge superheat degree calculation part 103 An expansion valve control device 101 that adjusts the opening degree of the electronic expansion valve 21 so as to receive the degree of superheat and to set the discharge superheat degree of the compressor 19 to a predetermined set value. The expansion valve control device 101 and the discharge superheat degree calculation unit 103 are collectively represented as discharge superheat degree control means 111.

液バックに対しある一定値以上の吐出過熱度の運転であれば品質に問題ない圧縮機においては、吐出過熱度に応じて電子膨張弁21の開度を調整することも可能である。
前述したホットガスデフロスト運転と同様に、蒸発器22における着霜量が増大したと判断できるとき、例えば蒸発器入口温度センサ26が予め設定した温度、例えば−15℃以下を検出したとき、電磁弁制御装置100により送風機24を止めるとともに、ホットガスバイパス用電磁弁23を開く。これにより圧縮機19から吐出された高温高圧のガス状の冷媒は、ホットガスデフロスト用バイパス回路23Aを経て蒸発器22に入り、蒸発器22に着霜した霜と熱交換することにより凝縮され、液・ガスの二相冷媒として圧縮機19に吸入される。これに伴い、吐出過熱度算出部103において、吐出圧力センサ(HPT)29と吐出温度センサ25から算出される吐出過熱度は減少する。算出された吐出過熱度が予め定めた設定値よりも小さいときは、膨張弁制御装置101により電子膨張弁21の開度を小さくするように制御が働く。この制御により圧縮機吐出過熱度の低下が回避され、圧縮機19への液バックによる故障が回避可能となる。
In the compressor having no problem in quality as long as the operation is performed with a discharge superheat degree equal to or higher than a certain value with respect to the liquid back, the opening degree of the electronic expansion valve 21 can be adjusted according to the discharge superheat degree.
Similarly to the hot gas defrost operation described above, when it can be determined that the amount of frost formation in the evaporator 22 has increased, for example, when the evaporator inlet temperature sensor 26 detects a preset temperature, for example, −15 ° C. or less, the solenoid valve While the blower 24 is stopped by the control device 100, the hot gas bypass solenoid valve 23 is opened. As a result, the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 19 enters the evaporator 22 via the hot gas defrost bypass circuit 23A, and is condensed by exchanging heat with the frost formed on the evaporator 22, It is sucked into the compressor 19 as a liquid / gas two-phase refrigerant. Accordingly, the discharge superheat degree calculated by the discharge pressure sensor (HPT) 29 and the discharge temperature sensor 25 in the discharge superheat degree calculation unit 103 decreases. When the calculated discharge superheat degree is smaller than a predetermined set value, the expansion valve control device 101 performs control so as to reduce the opening degree of the electronic expansion valve 21. With this control, a decrease in the degree of superheat discharged from the compressor is avoided, and a failure due to liquid back to the compressor 19 can be avoided.

デフロスト運転が進むにつれ蒸発器22における熱交換が低下することから、吐出過熱度算出部103で算出される吐出過熱度は上昇する。そして、算出された吐出過熱度が予め定めた設定値以上となると、その吐出過熱度の上昇に応じて電子膨張弁21の開度を大きくしていく制御をすることにより、デフロスト運転時の霜の融解に応じた冷媒量をデフロスト回路に供給することができる。これによりデフロスト運転における霜の融解に応じた最適な冷媒量を供給することが可能となり、デフロスト能力が増大し、デフロスト運転時間の短縮が可能となる。また、吐出過熱度により制御することにより、圧縮機19への液バックが回避され信頼性が向上する。   As the defrosting operation proceeds, the heat exchange in the evaporator 22 decreases, so the discharge superheat degree calculated by the discharge superheat degree calculation unit 103 increases. Then, when the calculated discharge superheat degree is equal to or greater than a predetermined set value, the frost during the defrost operation is controlled by increasing the opening degree of the electronic expansion valve 21 in accordance with the increase in the discharge superheat degree. The amount of refrigerant corresponding to the melting of can be supplied to the defrost circuit. This makes it possible to supply an optimum amount of refrigerant according to the frost melting in the defrost operation, increase the defrost capability, and shorten the defrost operation time. Further, by controlling by the degree of discharge superheat, liquid back to the compressor 19 is avoided and reliability is improved.

上記吐出過熱度の設定値として定める吐出過熱度(吐出温度センサの検出温度−吐出圧力センサの検出圧力の飽和温度)は、圧縮機の液バック耐久性能を考慮して定められるもので、例えば25degとする。   The discharge superheat degree determined as the set value of the discharge superheat degree (the detection temperature of the discharge temperature sensor−the saturation temperature of the detection pressure of the discharge pressure sensor) is determined in consideration of the liquid back durability performance of the compressor. And

なお、実施の形態2に準じた制御を行っても良い。すなわち、ホットガスデフロスト運転開始とともに電子膨張弁21の開度を小さくするか0とする開度調整を行い、その後吐出過熱度を算出し、この算出吐出過熱度が上記設定値よりも大きくなるに従って、電子膨張弁21の開度を大きくしていくようにしても良い。   Note that control according to the second embodiment may be performed. That is, when the hot gas defrosting operation is started, the opening degree of the electronic expansion valve 21 is reduced or adjusted to 0, and then the discharge superheat degree is calculated. As the calculated discharge superheat degree becomes larger than the set value, The opening degree of the electronic expansion valve 21 may be increased.

実施の形態4.
実施の形態1〜3では、圧縮機19の吸入過熱度や吐出過熱度に応じて電子膨張弁21の開度を調整することを説明したが、実施の形態4では、特に、デフロスト開始直後に電子膨張弁21を閉じる調整を行い、所定時間経過後に検出される圧縮機の吸入圧力または吐出圧力に応じて電子膨張弁の開度を調整する態様を説明する。
Embodiment 4 FIG.
In the first to third embodiments, it has been described that the opening degree of the electronic expansion valve 21 is adjusted according to the suction superheat degree and the discharge superheat degree of the compressor 19, but in the fourth embodiment, particularly immediately after the start of defrosting. An aspect in which the electronic expansion valve 21 is adjusted to be closed and the opening degree of the electronic expansion valve is adjusted in accordance with the suction pressure or discharge pressure of the compressor detected after a predetermined time has elapsed will be described.

図3は圧縮機19の吐出圧力を基に電子膨張弁21を制御する吐出圧力制御手段112を備えた再熱除湿装置の冷媒回路、制御系統図であり、図4は圧縮機19の吸入圧力を基に電子膨張弁21を制御する吸入圧力制御手段113を備えた再熱除湿装置の冷媒回路、制御系統図である。図3、図4において、図1および図2内の符号と同じ符号はそれらの図に示した物と同一物または相当物を表している。
なお、図3においては、膨張弁制御装置101と吐出圧力比較部104が、吐出圧力制御手段112としてまとめて表され、図4においては、膨張弁制御装置101と吸入圧力比較部105が、吸入圧力制御手段113としてまとめて表されている。
3 is a refrigerant circuit and control system diagram of a reheat dehumidifier having a discharge pressure control means 112 for controlling the electronic expansion valve 21 based on the discharge pressure of the compressor 19, and FIG. It is a refrigerant circuit of a reheating dehumidifier provided with the suction pressure control means 113 which controls the electronic expansion valve 21 based on this, and a control system diagram. 3 and 4, the same reference numerals as those in FIGS. 1 and 2 represent the same or equivalent components shown in those drawings.
In FIG. 3, the expansion valve control device 101 and the discharge pressure comparison unit 104 are collectively represented as the discharge pressure control means 112, and in FIG. 4, the expansion valve control device 101 and the suction pressure comparison unit 105 are inhaled. The pressure control means 113 is collectively shown.

再熱除湿装置における空気の流れは、送風機24で吸い込まれた吸入空気がまず蒸発器22を通過し、次いで凝縮器20を通過する。このため、室内外夫々に凝縮器および蒸発器および送風機が設けられる冷凍機器のように、室外側に凝縮器があって外気が低いときに高圧が低下し、外気温度が高いときは高圧が上昇するといった変動はない。
また、着霜量が増大するにつれ蒸発能力が低下し、吸入過熱度が減少するため、除湿運転中における吸入過熱度による電子膨張弁21の制御により、吸入過熱度を増大する目的で電子膨張弁21の開度を閉じる制御が働く。
As for the air flow in the reheat dehumidifier, the intake air sucked by the blower 24 first passes through the evaporator 22 and then passes through the condenser 20. For this reason, the high pressure decreases when the outside air is low and the outside air is low, such as a refrigeration device provided with a condenser, an evaporator, and a blower inside and outside the room, and the high pressure increases when the outside air temperature is high. There are no fluctuations.
Further, as the amount of frost increases, the evaporation capability decreases and the suction superheat degree decreases. Therefore, the electronic expansion valve 21 is controlled for the purpose of increasing the suction superheat degree by controlling the electronic expansion valve 21 according to the suction superheat degree during the dehumidifying operation. Control to close the opening of 21 works.

これにより蒸発器22への着霜量が増大したと判断できるとき、例えば蒸発器入口温度センサ26による温度信号が、例えば設定温度である−15℃以下になったとき、圧縮機吐出圧力および圧縮機吸入圧力は吸込空気温湿度による大きな差異はなく、従って、ホットガスデフロスト開始時におけるホットガスデフロスト用バイパス回路23A内の冷媒量も大きな差異がないといえる。   Thus, when it can be determined that the amount of frost formation on the evaporator 22 has increased, for example, when the temperature signal from the evaporator inlet temperature sensor 26 becomes, for example, −15 ° C. or lower, which is the set temperature, the compressor discharge pressure and compression The machine intake pressure is not significantly different depending on the intake air temperature and humidity. Therefore, it can be said that the refrigerant amount in the hot gas defrost bypass circuit 23A at the start of the hot gas defrost is not significantly different.

蒸発器入口温度センサ26による温度信号により、蒸発器入口温度の予め設定した温度、例えば設定温度−15℃以下が検知されたとき、電磁弁制御装置100によりホットガスデフロスト用電磁弁23が開き、送風機24が停止する。これにより、圧縮機19から吐出された高温高圧のガス冷媒が、ホットガスデフロスト用バイパス回路23Aを経て蒸発器22に流れ、蒸発器22に生じた霜を融解する。デフロスト開始時においては蒸発器22に着霜した霜が固着しており熱伝達率が高く、霜が融解するに従い熱伝達率が低下するため、ある時間をかけて吸入過熱度が上昇した後、霜が融解し終わるまでは吸入過熱度はほぼ一定にて運転を行う。   When a preset temperature of the evaporator inlet temperature, for example, a set temperature of −15 ° C. or lower, is detected by the temperature signal from the evaporator inlet temperature sensor 26, the solenoid valve controller 100 opens the hot gas defrost solenoid valve 23, The blower 24 stops. As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 19 flows into the evaporator 22 via the hot gas defrost bypass circuit 23 </ b> A and melts the frost generated in the evaporator 22. At the start of defrosting, the frost formed on the evaporator 22 is fixed and the heat transfer rate is high, and the heat transfer rate decreases as the frost melts. Until the frost has melted, the operation is performed at a substantially constant suction superheat.

これにより、吸入過熱度が予め定めた設定値まで上昇する間の時間(所定時間)は電子膨張弁21の開度を小さくするか0にする制御を行う。そして、吸入過熱度が上記設定値以上になった後は、圧縮機19へ液バックが生じないものとして予め設定した吸入圧力または吐出圧力となるよう、それぞれの比較部104または105で、圧縮機19の吸入圧力または吐出圧力を対応する設定値と比較しながら、膨張弁制御装置101により電子膨張弁21の開度を大きくする開度調整を行う。   As a result, during the time (predetermined time) during which the suction superheat degree rises to a predetermined set value, the opening degree of the electronic expansion valve 21 is reduced or controlled to zero. Then, after the suction superheat degree becomes equal to or higher than the set value, the compressors in the respective comparison units 104 or 105 are set so that the suction pressure or discharge pressure is set in advance so that no liquid back is generated in the compressor 19. The opening adjustment of the electronic expansion valve 21 is increased by the expansion valve control device 101 while comparing the suction pressure or discharge pressure of 19 with the corresponding set value.

具体的には、デフロスト運転開始後、ある目標の吸入過熱度(例えば5deg)に上昇するまでの時間(例えばデフロスト運転開始後30秒間)は、電子膨張弁21の開度を小さくする(例えば開度0とする)。その後、デフロスト運転を通して圧縮機19の吸入過熱度または吐出過熱度が予め定めた設定値(例えば、吸入過熱度5deg若しくは吐出過熱度25deg)以上になるように予め設定された圧力値(例えば、吸入圧力0.5Mpa若しくは吐出圧力1.5Mpa)になるまで、電子膨張弁21の開度を大きくし、その設定圧力値以上では電子膨張弁21の開度を小さくする(例えば開度0とする)。
これにより、デフロスト開始時における液バックが回避でき、またデフロスト運転中における冷媒不足を回避することができる。
Specifically, after the start of the defrost operation, the opening time of the electronic expansion valve 21 is reduced (for example, opened) for a time (for example, 30 seconds after the start of the defrost operation) until the target intake superheat degree (for example, 5 deg) is increased. 0 degree). Thereafter, a pressure value (for example, suction) set in advance so that the suction superheat degree or the discharge superheat degree of the compressor 19 becomes equal to or higher than a predetermined set value (for example, suction superheat degree 5 deg or discharge superheat degree 25 deg) through the defrost operation. The opening degree of the electronic expansion valve 21 is increased until the pressure reaches 0.5 Mpa or the discharge pressure 1.5 Mpa), and the opening degree of the electronic expansion valve 21 is decreased (for example, the opening degree is set to 0) above the set pressure value.
Thereby, the liquid back | bag at the time of a defrost start can be avoided, and the refrigerant | coolant shortage during a defrost driving | operation can be avoided.

実施の形態5.
図1〜図4に示した再熱除湿装置と同様の冷凍サイクルを適用した空気調和装置、特に蒸発器および凝縮器が同じ空気温湿度空間に置かれた空気調和装置においても、実施の形態1〜4に示したような膨張弁(自動制御可能な電子膨張弁など)制御を行うができる。そのように構成した空気調和装置は、ホットガスデフロスト進行中に、蒸発器の着霜の融解状態によって必要な冷媒量を供給可能となり、デフロスト時間の短縮ができるという効果を奏し、また液バックを防止することが可能になり信頼性が向上し、アキュムレータの廃止によるコスト改善が可能となる。
Embodiment 5 FIG.
The first embodiment also applies to an air conditioner to which a refrigeration cycle similar to the reheat dehumidifier shown in FIGS. 1 to 4 is applied, particularly an air conditioner in which an evaporator and a condenser are placed in the same air temperature and humidity space. It is possible to control an expansion valve (such as an electronic expansion valve that can be automatically controlled) as shown in FIGS. The air conditioner configured as described above is capable of supplying a necessary amount of refrigerant according to the frost melting state of the evaporator while hot gas defrost is in progress, and has the effect of shortening the defrost time, and also provides liquid back. It is possible to prevent this, and the reliability is improved, and the cost can be improved by eliminating the accumulator.

以上説明したように、本発明の実施の形態に係る再熱除湿装置や空気調和装置では、ホットガスデフロスト運転中に吸入過熱度、吐出過熱度、吸入圧力または吐出圧力により電子膨張弁の開度を調節するように構成し、ホットガスデフロストの進行中に、蒸発器の着霜の融解状態に応じて必要な冷媒量を算出し、冷媒量の調整を行う制御手段を設けたことで、デフロスト能力が向上し、デフロスト運転時間の短縮ができるという効果を奏する。
また、必要な冷媒量を算出し、冷媒量の調整を行う制御手段を設けたことで、デフロスト運転中に発生する高圧カットによる異常停止を防止するという効果を奏する。
さらに、圧縮機への液バックを防止するように電子膨張弁の開度を調節するように構成したので信頼性が向上し、アキュムレータの廃止が可能となりコスト削減という効果も得られる。
As described above, in the reheat dehumidifying apparatus and the air conditioner according to the embodiment of the present invention, the opening degree of the electronic expansion valve is adjusted by the suction superheat degree, the discharge superheat degree, the suction pressure or the discharge pressure during the hot gas defrost operation. And a control means for adjusting the refrigerant amount by calculating the necessary refrigerant amount according to the frost melting state of the evaporator during the hot gas defrosting process. The ability is improved and the defrosting operation time can be shortened.
Further, by providing a control means for calculating the necessary refrigerant amount and adjusting the refrigerant amount, there is an effect of preventing an abnormal stop due to a high-pressure cut that occurs during the defrost operation.
Further, since the opening of the electronic expansion valve is adjusted so as to prevent liquid back to the compressor, the reliability is improved, the accumulator can be eliminated, and the cost can be reduced.

なお、上記各実施の形態で説明した吸入過熱度制御手段、吐出過熱度制御手段、吸入圧力制御手段および吐出圧力制御手段は、前述したような所定の制御動作がプログラムされたマイコンや各種装置から構成することができる。   The suction superheat degree control means, the discharge superheat degree control means, the suction pressure control means and the discharge pressure control means described in the above embodiments are obtained from a microcomputer or various devices programmed with the predetermined control operation as described above. Can be configured.

実施の形態1、2に係る再熱除湿装置の冷媒回路図および制御系統図。The refrigerant circuit figure and control system diagram of the reheat dehumidification apparatus which concern on Embodiment 1,2. 実施の形態3に係る再熱除湿装置の冷媒回路図および制御系統図。The refrigerant circuit diagram and control system diagram of the reheat dehumidifier according to Embodiment 3. 実施の形態4に係る再熱除湿装置の冷媒回路図および制御系統図。The refrigerant circuit diagram and control system diagram of the reheat dehumidifying apparatus according to Embodiment 4. 実施の形態4に係る別の再熱除湿装置の冷媒回路図および制御系統図。The refrigerant circuit diagram and control system diagram of another reheat dehumidification apparatus which concerns on Embodiment 4. FIG.

符号の説明Explanation of symbols

19 圧縮機、20 凝縮器、21 電子膨張弁、22 蒸発器、23 ホットガスバイパス用電磁弁、23A ホットガスデフロスト用バイパス回路、24 送風機、25 吐出温度センサ、26 蒸発器入口温度センサ、27 吸入温度センサ、28 吸入圧力センサ(LPT)、29 吐出圧力センサ(HPT)、100 電磁弁制御装置、101 膨張弁制御装置、102 吸入過熱度算出部、103 吐出過熱度算出部、104 吐出圧力比較部、105 吸入圧力比較部、110 吸入過熱度制御手段、111 吐出過熱度制御手段、112 吐出圧力制御手段、113 吸入圧力制御手段。   DESCRIPTION OF SYMBOLS 19 Compressor, 20 Condenser, 21 Electronic expansion valve, 22 Evaporator, 23 Hot gas bypass solenoid valve, 23A Hot gas defrost bypass circuit, 24 Blower, 25 Discharge temperature sensor, 26 Evaporator inlet temperature sensor, 27 Inhalation Temperature sensor, 28 Suction pressure sensor (LPT), 29 Discharge pressure sensor (HPT), 100 Solenoid valve control device, 101 Expansion valve control device, 102 Suction superheat degree calculation unit, 103 Discharge superheat degree calculation unit, 104 Discharge pressure comparison unit 105, suction pressure comparison unit, 110 suction superheat degree control means, 111 discharge superheat degree control means, 112 discharge pressure control means, 113 suction pressure control means.

Claims (16)

圧縮機と凝縮器と膨張弁と蒸発器とが順に接続された主冷媒回路と、
前記圧縮機と前記凝縮器とを繋ぐ高圧ガス配管の途中から分岐し、開閉弁を介して前記膨張弁と前記蒸発器とを繋ぐ低圧ガス配管に接続されたホットガスデフロスト用バイパス回路とを備え、
空気を外部から取り込んで前記蒸発器および前記凝縮器を経由して再び外部に送り出す再熱除湿装置において、
前記圧縮機の吸入側に吸入圧力センサと吸入温度センサとを設け、
ホットガスデフロスト運転中に前記吸入圧力センサと前記吸入温度センサから圧力信号および温度信号を受けて、圧縮機吸入側での吸入過熱度を算出し、この算出吸入過熱度が予め定めた設定値以上のときは前記膨張弁の開度を大きくする開度調整を行い、この算出吸入過熱度が前記設定値よりも小さいときは前記膨張弁の開度を小さくする開度調整を行う吸入過熱度制御手段を備えたことを特徴とする再熱除湿装置。
A main refrigerant circuit in which a compressor, a condenser, an expansion valve, and an evaporator are sequentially connected;
A hot gas defrost bypass circuit that branches from the middle of a high-pressure gas pipe connecting the compressor and the condenser and connected to a low-pressure gas pipe connecting the expansion valve and the evaporator via an on-off valve; ,
In the reheat dehumidification device that takes in air from the outside and sends it out again via the evaporator and the condenser,
A suction pressure sensor and a suction temperature sensor are provided on the suction side of the compressor;
During the hot gas defrost operation, a pressure signal and a temperature signal are received from the suction pressure sensor and the suction temperature sensor to calculate a suction superheat degree on the compressor suction side, and the calculated suction superheat degree is equal to or greater than a predetermined set value. In this case, the opening degree adjustment is performed to increase the opening degree of the expansion valve. When the calculated suction superheat degree is smaller than the set value, the suction superheat degree control is performed to adjust the opening degree to reduce the opening degree of the expansion valve. A reheat dehumidifying device comprising means.
圧縮機と凝縮器と膨張弁と蒸発器とが順に接続された主冷媒回路と、
前記圧縮機と前記凝縮器とを繋ぐ高圧ガス配管の途中から分岐し、開閉弁を介して前記膨張弁と前記蒸発器とを繋ぐ低圧ガス配管に接続されたホットガスデフロスト用バイパス回路とを備え、
空気を外部から取り込んで前記蒸発器および前記凝縮器を経由して再び外部に送り出す再熱除湿装置において、
前記圧縮機の吸入側に吸入温度センサを、前記蒸発器の入口に蒸発器入口温度センサをそれぞれ設け、
ホットガスデフロスト運転中に前記吸入温度センサと前記蒸発器入口温度センサから温度信号を受けて、圧縮機吸入側での吸入過熱度を算出し、この算出吸入過熱度が予め定めた設定値以上のときは前記膨張弁の開度を大きくする開度調整を行い、この算出吸入過熱度が前記設定値よりも小さいときは前記膨張弁の開度を小さくする開度調整を行う吸入過熱度制御手段を備えたことを特徴とする再熱除湿装置。
A main refrigerant circuit in which a compressor, a condenser, an expansion valve, and an evaporator are sequentially connected;
A hot gas defrost bypass circuit that branches from the middle of a high-pressure gas pipe connecting the compressor and the condenser and connected to a low-pressure gas pipe connecting the expansion valve and the evaporator via an on-off valve; ,
In the reheat dehumidification device that takes in air from the outside and sends it out again via the evaporator and the condenser,
An intake temperature sensor is provided on the intake side of the compressor, and an evaporator inlet temperature sensor is provided at the inlet of the evaporator.
During the hot gas defrost operation, a temperature signal is received from the suction temperature sensor and the evaporator inlet temperature sensor to calculate a suction superheat degree on the compressor suction side, and the calculated suction superheat degree is equal to or higher than a predetermined set value. When the calculated intake superheat degree is smaller than the set value, the intake superheat degree control means adjusts the opening degree to reduce the opening degree of the expansion valve. A reheat dehumidifying device comprising:
圧縮機と凝縮器と膨張弁と蒸発器とが順に接続された主冷媒回路と、
前記圧縮機と前記凝縮器とを繋ぐ高圧ガス配管の途中から分岐し、開閉弁を介して前記膨張弁と前記蒸発器とを繋ぐ低圧ガス配管に接続されたホットガスデフロスト用バイパス回路とを備え、
空気を外部から取り込んで前記蒸発器および前記凝縮器を経由して再び外部に送り出す再熱除湿装置において、
前記圧縮機の吐出側に吐出圧力センサと吐出温度センサとを設け、
ホットガスデフロスト運転中に前記吐出圧力センサと前記吐出温度センサから圧力信号および温度信号を受けて、圧縮機吐出側での吐出過熱度を算出し、この算出吐出過熱度が予め定めた設定値以上のときは前記膨張弁の開度を大きくする開度調整を行い、この算出吐出過熱度が前記設定値よりも小さいときは前記膨張弁の開度を小さくする開度調整を行う吐出過熱度制御手段を備えたことを特徴とする再熱除湿装置。
A main refrigerant circuit in which a compressor, a condenser, an expansion valve, and an evaporator are sequentially connected;
A hot gas defrost bypass circuit that branches from the middle of a high-pressure gas pipe connecting the compressor and the condenser and connected to a low-pressure gas pipe connecting the expansion valve and the evaporator via an on-off valve; ,
In the reheat dehumidification device that takes in air from the outside and sends it out again via the evaporator and the condenser,
A discharge pressure sensor and a discharge temperature sensor are provided on the discharge side of the compressor,
During the hot gas defrost operation, a pressure signal and a temperature signal are received from the discharge pressure sensor and the discharge temperature sensor to calculate a discharge superheat degree on the compressor discharge side, and the calculated discharge superheat degree is equal to or greater than a predetermined set value. Discharge superheat degree control that adjusts the opening degree to increase the opening degree of the expansion valve, and adjusts the opening degree to reduce the opening degree of the expansion valve when the calculated discharge superheat degree is smaller than the set value A reheat dehumidifying device comprising means.
前記吸入過熱度制御手段は、ホットガスデフロスト運転開始とともに前記膨張弁の開度を小さくする開度調整を行い、その後前記吸入圧力センサと前記吸入温度センサから圧力信号および温度信号を受けて前記吸入過熱度を算出し、この算出吸入過熱度が前記設定値よりも大きくなるに従って前記膨張弁の開度を大きくする開度調整を行うことを特徴とする請求項1記載の再熱除湿装置。   The suction superheat degree control means adjusts the opening degree to reduce the opening degree of the expansion valve at the start of hot gas defrost operation, and then receives a pressure signal and a temperature signal from the suction pressure sensor and the suction temperature sensor to receive the suction signal. The reheat dehumidifying device according to claim 1, wherein the degree of superheat is calculated, and the opening degree of the expansion valve is increased as the calculated suction superheat degree becomes larger than the set value. 前記吸入過熱度制御手段は、ホットガスデフロスト運転開始とともに前記膨張弁の開度を小さくする開度調整を行い、その後前記吸入温度センサと前記蒸発器入口温度センサから温度信号を受けて前記吸入過熱度を算出し、この算出吸入過熱度が前記設定値よりも大きくなるに従って前記膨張弁の開度を大きくする開度調整を行うことを特徴とする請求項2記載の再熱除湿装置。   The suction superheat degree control means adjusts the opening degree to reduce the opening degree of the expansion valve with the start of hot gas defrost operation, and then receives temperature signals from the suction temperature sensor and the evaporator inlet temperature sensor to receive the suction superheat. The reheat dehumidifying device according to claim 2, wherein the degree of opening is adjusted so that the degree of opening of the expansion valve is increased as the calculated suction superheat degree becomes larger than the set value. 前記吐出過熱度制御手段は、ホットガスデフロスト運転開始とともに前記膨張弁の開度を小さくする開度調整を行い、その後前記吐出圧力センサと前記吐出温度センサから圧力信号および温度信号を受けて前記吐出過熱度を算出し、この算出吐出過熱度が前記設定値よりも大きくなるに従って前記膨張弁の開度を大きくする開度調整を行うことを特徴とする請求項3記載の再熱除湿装置。   The discharge superheat degree control means adjusts the opening degree to reduce the opening degree of the expansion valve at the start of hot gas defrost operation, and then receives a pressure signal and a temperature signal from the discharge pressure sensor and the discharge temperature sensor, and then discharges the discharge valve. The reheat dehumidifying device according to claim 3, wherein the degree of superheat is calculated, and the degree of opening is adjusted to increase the degree of opening of the expansion valve as the calculated discharge superheat degree becomes larger than the set value. 圧縮機と凝縮器と膨張弁と蒸発器とが順に接続された主冷媒回路と、
前記圧縮機と前記凝縮器とを繋ぐ高圧ガス配管の途中から分岐し、開閉弁を介して前記膨張弁と前記蒸発器とを繋ぐ低圧ガス配管に接続されたホットガスデフロスト用バイパス回路とを備え、
空気を外部から取り込んで前記蒸発器および前記凝縮器を経由して再び外部に送り出す再熱除湿装置において、
ホットガスデフロスト運転開始とともに前記膨張弁の開度を小さくする開度調整を行い、所定時間経過後に前記圧縮機の吐出側に設けた吐出圧力センサから圧力信号を受けて、圧縮機吐出圧力が予め設定した値になるまで前記膨張弁の開度を大きくする開度調整を行う吐出圧力制御手段を設けたことを特徴とする再熱除湿装置。
A main refrigerant circuit in which a compressor, a condenser, an expansion valve, and an evaporator are sequentially connected;
A hot gas defrost bypass circuit that branches from the middle of a high-pressure gas pipe connecting the compressor and the condenser and connected to a low-pressure gas pipe connecting the expansion valve and the evaporator via an on-off valve; ,
In the reheat dehumidification device that takes in air from the outside and sends it out again via the evaporator and the condenser,
When the hot gas defrost operation is started, the opening of the expansion valve is adjusted so that the opening of the expansion valve is reduced. After a predetermined time has elapsed, a pressure signal is received from a discharge pressure sensor provided on the discharge side of the compressor, A reheat dehumidifying device comprising discharge pressure control means for adjusting the opening of the expansion valve until a set value is reached.
圧縮機と凝縮器と膨張弁と蒸発器とが順に接続された主冷媒回路と、
前記圧縮機と前記凝縮器とを繋ぐ高圧ガス配管の途中から分岐し、開閉弁を介して前記膨張弁と前記蒸発器とを繋ぐ低圧ガス配管に接続されたホットガスデフロスト用バイパス回路とを備え、
空気を外部から取り込んで前記蒸発器および前記凝縮器を経由して再び外部に送り出す再熱除湿装置において、
ホットガスデフロスト運転開始とともに前記膨張弁の開度を小さくする開度調整を行い、所定時間経過後に前記圧縮機の吸入側に設けた吸入圧力センサから圧力信号を受けて、圧縮機吸入圧力が予め設定した値になるまで前記膨張弁の開度を大きくする開度調整を行う吸入圧力制御手段を設けたことを特徴とする再熱除湿装置。
A main refrigerant circuit in which a compressor, a condenser, an expansion valve, and an evaporator are sequentially connected;
A hot gas defrost bypass circuit that branches from the middle of a high-pressure gas pipe connecting the compressor and the condenser and connected to a low-pressure gas pipe connecting the expansion valve and the evaporator via an on-off valve; ,
In the reheat dehumidification device that takes in air from the outside and sends it out again via the evaporator and the condenser,
When the hot gas defrosting operation is started, the opening of the expansion valve is adjusted to be small, and after a predetermined time has passed, a pressure signal is received from a suction pressure sensor provided on the suction side of the compressor, and the compressor suction pressure is set in advance. A reheat dehumidifying device, comprising suction pressure control means for adjusting an opening to increase an opening of the expansion valve until a set value is reached.
上記各制御手段は、前記圧縮機の吸入圧力信号を受け取り、該信号が冷媒の高圧カット値に応じて予め定めた設定値以上の場合には、前記膨張弁の開度を0とすることを特徴とする請求項1〜8のいずれかに記載の再熱除湿装置。   Each of the control means receives an intake pressure signal of the compressor, and when the signal is equal to or larger than a preset value corresponding to a high pressure cut value of the refrigerant, the opening degree of the expansion valve is set to 0. The reheat dehumidifying device according to any one of claims 1 to 8. 上記各制御手段は、前記圧縮機の吐出圧力信号を受け取り、該信号が冷媒の高圧カット値に応じて予め定めた設定値以上の場合には、前記膨張弁の開度を0とすることを特徴とする請求項1〜8のいずれかに記載の再熱除湿装置。   Each of the control means receives a discharge pressure signal of the compressor, and sets the opening of the expansion valve to 0 when the signal is equal to or higher than a preset value according to a high pressure cut value of the refrigerant. The reheat dehumidifying device according to any one of claims 1 to 8. 圧縮機と凝縮器と膨張弁と蒸発器とが順に接続された主冷媒回路と、
前記圧縮機と前記凝縮器とを繋ぐ高圧ガス配管の途中から分岐し、開閉弁を介して前記膨張弁と前記蒸発器とを繋ぐ低圧ガス配管に接続されたホットガスデフロスト用バイパス回路と、
同じ空気温湿度空間内に前記蒸発器および前記凝縮器が設置されている空気調和装置において、
ホットガスデフロスト運転中に、前記圧縮機吸入側の吸入温度信号と、前記圧縮機の吸入側の吸入圧力信号または前記蒸発器の入口の蒸発器入口温度信号とを基に、圧縮機吸入側での吸入過熱度を算出し、この算出吸入過熱度が予め定めた設定値以上のときは前記膨張弁の開度を大きくする開度調整を行い、この算出吸入過熱度が前記設定値よりも小さいときは前記膨張弁の開度を小さくする開度調整を行う吸入過熱度制御手段、を備えたことを特徴とする空気調和装置。
A main refrigerant circuit in which a compressor, a condenser, an expansion valve, and an evaporator are sequentially connected;
A bypass circuit for hot gas defrost branched from the middle of a high-pressure gas pipe connecting the compressor and the condenser, and connected to a low-pressure gas pipe connecting the expansion valve and the evaporator via an on-off valve;
In the air conditioner in which the evaporator and the condenser are installed in the same air temperature and humidity space,
During the hot gas defrost operation, on the compressor suction side, based on the suction temperature signal on the compressor suction side and the suction pressure signal on the suction side of the compressor or the evaporator inlet temperature signal on the inlet of the evaporator. When the calculated intake superheat degree is equal to or greater than a predetermined set value, the opening adjustment is performed to increase the opening degree of the expansion valve, and the calculated intake superheat degree is smaller than the set value. An air conditioning apparatus comprising suction superheat degree control means for adjusting the opening degree to reduce the opening degree of the expansion valve.
前記吸入過熱度制御手段は、ホットガスデフロスト運転開始とともに前記膨張弁の開度を小さくする開度調整を行い、その後前記吸入過熱度を算出し、その算出吸入過熱度が前記設定値よりも大きくなるに従って前記膨張弁の開度を大きくする開度調整を行うことを特徴とする請求項11記載の空気調和装置。   The suction superheat degree control means adjusts the opening degree to reduce the opening degree of the expansion valve at the start of hot gas defrost operation, calculates the suction superheat degree, and the calculated suction superheat degree is larger than the set value. The air conditioner according to claim 11, wherein opening adjustment is performed to increase the opening of the expansion valve as it goes. 圧縮機と凝縮器と膨張弁と蒸発器とが順に接続された主冷媒回路と、
前記圧縮機と前記凝縮器とを繋ぐ高圧ガス配管の途中から分岐し、開閉弁を介して前記膨張弁と前記蒸発器とを繋ぐ低圧ガス配管に接続されたホットガスデフロスト用バイパス回路と、
同じ空気温湿度空間内に前記蒸発器および前記凝縮器が設置されている空気調和装置において、
ホットガスデフロスト運転中に、前記圧縮機吐出側の吐出圧力信号と吐出温度信号とを基に、圧縮機吐出側での吐出過熱度を算出し、この算出吐出過熱度が予め定めた設定値以上のときは前記膨張弁の開度を大きくする開度調整を行い、この算出吐出過熱度が前記設定値よりも小さいときは前記膨張弁の開度を小さくする開度調整を行う吐出過熱度制御手段、を備えたことを特徴とする空気調和装置。
A main refrigerant circuit in which a compressor, a condenser, an expansion valve, and an evaporator are sequentially connected;
A bypass circuit for hot gas defrost branched from the middle of a high-pressure gas pipe connecting the compressor and the condenser, and connected to a low-pressure gas pipe connecting the expansion valve and the evaporator via an on-off valve;
In the air conditioner in which the evaporator and the condenser are installed in the same air temperature and humidity space,
During hot gas defrost operation, the discharge superheat degree on the compressor discharge side is calculated based on the discharge pressure signal and discharge temperature signal on the compressor discharge side, and the calculated discharge superheat degree is equal to or greater than a predetermined set value. Discharge superheat degree control that adjusts the opening degree to increase the opening degree of the expansion valve, and adjusts the opening degree to reduce the opening degree of the expansion valve when the calculated discharge superheat degree is smaller than the set value Means for providing an air conditioner.
前記吐出過熱度制御手段は、ホットガスデフロスト運転開始とともに前記膨張弁の開度を小さくする開度調整を行い、その後前記吐出過熱度を算出し、その算出吐出過熱度が前記設定値よりも大きくなるに従って前記膨張弁の開度を大きくする開度調整を行うことを特徴とする請求項13記載の空気調和装置。   The discharge superheat degree control means adjusts the opening degree to reduce the opening degree of the expansion valve at the start of hot gas defrost operation, calculates the discharge superheat degree, and the calculated discharge superheat degree is larger than the set value. 14. The air conditioner according to claim 13, wherein opening adjustment is performed to increase the opening of the expansion valve. 圧縮機と凝縮器と膨張弁と蒸発器とが順に接続された主冷媒回路と、
前記圧縮機と前記凝縮器とを繋ぐ高圧ガス配管の途中から分岐し、開閉弁を介して前記膨張弁と前記蒸発器とを繋ぐ低圧ガス配管に接続されたホットガスデフロスト用バイパス回路と、
同じ空気温湿度空間内に前記蒸発器および前記凝縮器が設置されている空気調和装置において、
ホットガスデフロスト運転開始とともに前記膨張弁の開度を小さくする開度調整を行い、所定時間経過後に前記圧縮機の吐出側に設けた吐出圧力センサから圧力信号を受けて、圧縮機吐出圧力が予め設定した値になるまで前記膨張弁の開度を大きくする開度調整を行う吐出圧力制御手段を設けたことを特徴とする空気調和装置。
A main refrigerant circuit in which a compressor, a condenser, an expansion valve, and an evaporator are sequentially connected;
A bypass circuit for hot gas defrost branched from the middle of a high-pressure gas pipe connecting the compressor and the condenser, and connected to a low-pressure gas pipe connecting the expansion valve and the evaporator via an on-off valve;
In the air conditioner in which the evaporator and the condenser are installed in the same air temperature and humidity space,
When the hot gas defrost operation is started, the opening of the expansion valve is adjusted so that the opening of the expansion valve is reduced. After a predetermined time has elapsed, a pressure signal is received from a discharge pressure sensor provided on the discharge side of the compressor, An air conditioning apparatus comprising discharge pressure control means for adjusting an opening degree to increase the opening degree of the expansion valve until a set value is reached.
圧縮機と凝縮器と膨張弁と蒸発器とが順に接続された主冷媒回路と、
前記圧縮機と前記凝縮器とを繋ぐ高圧ガス配管の途中から分岐し、開閉弁を介して前記膨張弁と前記蒸発器とを繋ぐ低圧ガス配管に接続されたホットガスデフロスト用バイパス回路と、
同じ空気温湿度空間内に前記蒸発器および前記凝縮器が設置されている空気調和装置において、
ホットガスデフロスト運転開始とともに前記膨張弁の開度を小さくする開度調整を行い、所定時間経過後に前記圧縮機の吸入側に設けた吸入圧力センサから圧力信号を受けて、圧縮機吸入圧力が予め設定した値になるまで前記膨張弁の開度を大きくする開度調整を行う吸入圧力制御手段を設けたことを特徴とする空気調和装置。
A main refrigerant circuit in which a compressor, a condenser, an expansion valve, and an evaporator are sequentially connected;
A bypass circuit for hot gas defrost branched from the middle of a high-pressure gas pipe connecting the compressor and the condenser, and connected to a low-pressure gas pipe connecting the expansion valve and the evaporator via an on-off valve;
In the air conditioner in which the evaporator and the condenser are installed in the same air temperature and humidity space,
When the hot gas defrosting operation is started, the opening of the expansion valve is adjusted to be small, and after a predetermined time has passed, a pressure signal is received from a suction pressure sensor provided on the suction side of the compressor, and the compressor suction pressure is set in advance. An air conditioning apparatus comprising suction pressure control means for adjusting an opening to increase an opening of the expansion valve until a set value is reached.
JP2008014986A 2008-01-25 2008-01-25 Reheat dehumidifier and air conditioner Active JP5100416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008014986A JP5100416B2 (en) 2008-01-25 2008-01-25 Reheat dehumidifier and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008014986A JP5100416B2 (en) 2008-01-25 2008-01-25 Reheat dehumidifier and air conditioner

Publications (2)

Publication Number Publication Date
JP2009174800A true JP2009174800A (en) 2009-08-06
JP5100416B2 JP5100416B2 (en) 2012-12-19

Family

ID=41030075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008014986A Active JP5100416B2 (en) 2008-01-25 2008-01-25 Reheat dehumidifier and air conditioner

Country Status (1)

Country Link
JP (1) JP5100416B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153789A (en) * 2010-01-28 2011-08-11 Denso Corp Refrigerating cycle device
CN102242996A (en) * 2011-07-05 2011-11-16 海尔集团公司 Method for controlling opening of electronic expansion valve in central air-conditioning unit
CN102635990A (en) * 2012-05-11 2012-08-15 杭州雪中炭恒温技术有限公司 Refrigerating output control device and test device and control method using the refrigerating output control device
CN102788462A (en) * 2012-07-25 2012-11-21 广东美的暖通设备有限公司 Air conditioner defrosting method and air-conditioning system
KR101296468B1 (en) * 2013-02-21 2013-08-13 (주)귀뚜라미 Hybrid type dehumidifying and cooling air apparatus
JP2014029230A (en) * 2012-07-31 2014-02-13 Chofu Seisakusho Co Ltd Method of determining frost formation on heat pump and heat pump adopting the method
JP2014119122A (en) * 2012-12-13 2014-06-30 Mitsubishi Electric Corp Refrigeration cycle device
KR20150062172A (en) * 2012-12-21 2015-06-05 플라크트 우드스 에이비 Method and apparatus for defrosting of an evaporator in connection with an air handling unit
CN105546732A (en) * 2015-12-22 2016-05-04 广东美的暖通设备有限公司 Multi-connected air conditioning system and outdoor unit pressure relief control method thereof
WO2017056394A1 (en) * 2015-09-30 2017-04-06 ダイキン工業株式会社 Refrigeration device
WO2017057860A1 (en) * 2015-09-30 2017-04-06 엘지전자 주식회사 Air conditioner and control method therefor
CN107238200A (en) * 2017-07-24 2017-10-10 湖南埃瓦新能源科技有限公司 A kind of air-source water heater
CN107289696A (en) * 2017-06-19 2017-10-24 青岛海尔空调电子有限公司 The control method of choke valve
WO2018229864A1 (en) * 2017-06-13 2018-12-20 三菱電機株式会社 Air conditioning device
US10449556B2 (en) 2012-02-13 2019-10-22 Eppendorf Ag Centrifuge having a compressor cooling device, and method for controlling a compressor cooling device of a centrifuge
WO2020066273A1 (en) * 2018-09-28 2020-04-02 ダイキン工業株式会社 Heat pump device
CN111271814A (en) * 2019-07-22 2020-06-12 宁波奥克斯电气股份有限公司 Refrigerant flow control method and device and air conditioner
WO2020161834A1 (en) * 2019-02-06 2020-08-13 三菱電機株式会社 Refrigeration cycle device
KR102173814B1 (en) * 2020-08-25 2020-11-04 (주)대성마리프 Cascade heat pump system
KR102239638B1 (en) * 2020-09-25 2021-04-13 (주)산돌기술 Dehumidification air conditioner for swimming pool using series heat pump and control method using the same
CN114353198A (en) * 2021-12-15 2022-04-15 广州万居隆电器有限公司 Dehumidification system with temperature-adjusting fresh air dehumidifier and control method thereof
CN115371305A (en) * 2022-07-26 2022-11-22 浙江中广电器集团股份有限公司 Method for controlling opening degree of electronic expansion valve in defrosting process
WO2024039042A1 (en) * 2022-08-19 2024-02-22 삼성전자주식회사 Air conditioner and control method therefor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101729526B1 (en) 2015-12-16 2017-04-24 엘지전자 주식회사 Chiller and control method therefor
EP3862660B1 (en) 2020-02-06 2024-05-22 Carrier Corporation Heat pump system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01107069A (en) * 1987-10-21 1989-04-24 Hitachi Ltd Multi-chamber type air conditioner
JPH0225103Y2 (en) * 1983-09-20 1990-07-10
JPH03274361A (en) * 1990-03-22 1991-12-05 Daikin Ind Ltd Refrigerating plant
JPH07120120A (en) * 1993-10-29 1995-05-12 Daikin Ind Ltd Drive controller for air conditioner
JPH07122534B2 (en) * 1989-12-14 1995-12-25 ダイキン工業株式会社 Defrost operation controller for air conditioner
JPH08110129A (en) * 1994-10-11 1996-04-30 Kobe Steel Ltd Separate type heat pump
JP2000111213A (en) * 1998-10-06 2000-04-18 Daikin Ind Ltd Freezer
JP2004116794A (en) * 2002-09-24 2004-04-15 Mitsubishi Electric Corp Refrigeration cycle
JP2004225924A (en) * 2003-01-20 2004-08-12 Mitsubishi Electric Corp Refrigeration cycle control system
JP2005282894A (en) * 2004-03-29 2005-10-13 Mitsubishi Electric Corp Dehumidifier
JP2006292351A (en) * 2005-03-14 2006-10-26 Mitsubishi Electric Corp Refrigerating air conditioner

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0225103Y2 (en) * 1983-09-20 1990-07-10
JPH01107069A (en) * 1987-10-21 1989-04-24 Hitachi Ltd Multi-chamber type air conditioner
JPH07122534B2 (en) * 1989-12-14 1995-12-25 ダイキン工業株式会社 Defrost operation controller for air conditioner
JPH03274361A (en) * 1990-03-22 1991-12-05 Daikin Ind Ltd Refrigerating plant
JPH07120120A (en) * 1993-10-29 1995-05-12 Daikin Ind Ltd Drive controller for air conditioner
JPH08110129A (en) * 1994-10-11 1996-04-30 Kobe Steel Ltd Separate type heat pump
JP2000111213A (en) * 1998-10-06 2000-04-18 Daikin Ind Ltd Freezer
JP2004116794A (en) * 2002-09-24 2004-04-15 Mitsubishi Electric Corp Refrigeration cycle
JP2004225924A (en) * 2003-01-20 2004-08-12 Mitsubishi Electric Corp Refrigeration cycle control system
JP2005282894A (en) * 2004-03-29 2005-10-13 Mitsubishi Electric Corp Dehumidifier
JP2006292351A (en) * 2005-03-14 2006-10-26 Mitsubishi Electric Corp Refrigerating air conditioner

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153789A (en) * 2010-01-28 2011-08-11 Denso Corp Refrigerating cycle device
CN102242996A (en) * 2011-07-05 2011-11-16 海尔集团公司 Method for controlling opening of electronic expansion valve in central air-conditioning unit
EP2814617B1 (en) * 2012-02-13 2020-01-22 Eppendorf AG Laboratory centrifuge having a compressor cooling device and method for controlling a compressor cooling device of a laboratory centrifuge
US10449556B2 (en) 2012-02-13 2019-10-22 Eppendorf Ag Centrifuge having a compressor cooling device, and method for controlling a compressor cooling device of a centrifuge
CN102635990A (en) * 2012-05-11 2012-08-15 杭州雪中炭恒温技术有限公司 Refrigerating output control device and test device and control method using the refrigerating output control device
CN102635990B (en) * 2012-05-11 2014-08-13 杭州雪中炭恒温技术有限公司 Refrigerating output control device and test device and control method using the refrigerating output control device
CN102788462A (en) * 2012-07-25 2012-11-21 广东美的暖通设备有限公司 Air conditioner defrosting method and air-conditioning system
JP2014029230A (en) * 2012-07-31 2014-02-13 Chofu Seisakusho Co Ltd Method of determining frost formation on heat pump and heat pump adopting the method
JP2014119122A (en) * 2012-12-13 2014-06-30 Mitsubishi Electric Corp Refrigeration cycle device
KR101576431B1 (en) * 2012-12-21 2015-12-21 플라크트 우드스 에이비 Method and apparatus for defrosting of an evaporator in connection with an air handling unit
KR20150062172A (en) * 2012-12-21 2015-06-05 플라크트 우드스 에이비 Method and apparatus for defrosting of an evaporator in connection with an air handling unit
KR101296468B1 (en) * 2013-02-21 2013-08-13 (주)귀뚜라미 Hybrid type dehumidifying and cooling air apparatus
KR101794413B1 (en) * 2015-09-30 2017-11-06 엘지전자 주식회사 Air conditioner and a method controlling the same
WO2017057860A1 (en) * 2015-09-30 2017-04-06 엘지전자 주식회사 Air conditioner and control method therefor
JP2017067384A (en) * 2015-09-30 2017-04-06 ダイキン工業株式会社 Freezer
US10533787B2 (en) 2015-09-30 2020-01-14 Lg Electronics Inc. Air conditioner and control method therefor
WO2017056394A1 (en) * 2015-09-30 2017-04-06 ダイキン工業株式会社 Refrigeration device
CN105546732A (en) * 2015-12-22 2016-05-04 广东美的暖通设备有限公司 Multi-connected air conditioning system and outdoor unit pressure relief control method thereof
WO2018229864A1 (en) * 2017-06-13 2018-12-20 三菱電機株式会社 Air conditioning device
JPWO2018229864A1 (en) * 2017-06-13 2019-12-26 三菱電機株式会社 Air conditioner
CN110709648A (en) * 2017-06-13 2020-01-17 三菱电机株式会社 Air conditioner
CN110709648B (en) * 2017-06-13 2021-06-22 三菱电机株式会社 Air conditioner
CN107289696A (en) * 2017-06-19 2017-10-24 青岛海尔空调电子有限公司 The control method of choke valve
CN107238200A (en) * 2017-07-24 2017-10-10 湖南埃瓦新能源科技有限公司 A kind of air-source water heater
JP2020056515A (en) * 2018-09-28 2020-04-09 ダイキン工業株式会社 Heat pump device
JP7303413B2 (en) 2018-09-28 2023-07-05 ダイキン工業株式会社 heat pump equipment
WO2020066273A1 (en) * 2018-09-28 2020-04-02 ダイキン工業株式会社 Heat pump device
WO2020161834A1 (en) * 2019-02-06 2020-08-13 三菱電機株式会社 Refrigeration cycle device
CN113383201A (en) * 2019-02-06 2021-09-10 三菱电机株式会社 Refrigeration cycle device
JPWO2020161834A1 (en) * 2019-02-06 2021-10-28 三菱電機株式会社 Refrigeration cycle equipment
JP7331021B2 (en) 2019-02-06 2023-08-22 三菱電機株式会社 refrigeration cycle equipment
CN113383201B (en) * 2019-02-06 2022-10-21 三菱电机株式会社 Refrigeration cycle device
CN111271814A (en) * 2019-07-22 2020-06-12 宁波奥克斯电气股份有限公司 Refrigerant flow control method and device and air conditioner
KR102173814B1 (en) * 2020-08-25 2020-11-04 (주)대성마리프 Cascade heat pump system
KR102239638B1 (en) * 2020-09-25 2021-04-13 (주)산돌기술 Dehumidification air conditioner for swimming pool using series heat pump and control method using the same
CN114353198A (en) * 2021-12-15 2022-04-15 广州万居隆电器有限公司 Dehumidification system with temperature-adjusting fresh air dehumidifier and control method thereof
CN115371305A (en) * 2022-07-26 2022-11-22 浙江中广电器集团股份有限公司 Method for controlling opening degree of electronic expansion valve in defrosting process
WO2024039042A1 (en) * 2022-08-19 2024-02-22 삼성전자주식회사 Air conditioner and control method therefor

Also Published As

Publication number Publication date
JP5100416B2 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
JP5100416B2 (en) Reheat dehumidifier and air conditioner
US9506674B2 (en) Air conditioner including a bypass pipeline for a defrosting operation
EP2719966B1 (en) Refrigeration air-conditioning device
JP5213817B2 (en) Air conditioner
JP6895901B2 (en) Air conditioner
JP2006284035A (en) Air conditioner and its control method
WO2006013938A1 (en) Freezing apparatus
CN108369046B (en) Refrigeration cycle device
JP2008082589A (en) Air conditioner
US20210341192A1 (en) Heat pump device
AU2019436796B2 (en) Air-conditioning apparatus
JP5533209B2 (en) Air conditioner
JP2013178046A (en) Air conditioner
WO2019144616A1 (en) Heat pump system and defrosting control method therefor
JP2005076933A (en) Refrigeration cycle system
JP2001280669A (en) Refrigerating cycle device
JP2987951B2 (en) Operation control device for air conditioner
KR102500807B1 (en) Air conditioner and a method for controlling the same
JP5517891B2 (en) Air conditioner
JPWO2018167961A1 (en) Air conditioner
JP2008096072A (en) Refrigerating cycle device
JP3627101B2 (en) Air conditioner
KR20100025354A (en) Air conditioner and control process of the same
JP2007147242A (en) Air conditioner
JP6581822B2 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5100416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250