EP2814617B1 - Laboratory centrifuge having a compressor cooling device and method for controlling a compressor cooling device of a laboratory centrifuge - Google Patents

Laboratory centrifuge having a compressor cooling device and method for controlling a compressor cooling device of a laboratory centrifuge Download PDF

Info

Publication number
EP2814617B1
EP2814617B1 EP13705913.5A EP13705913A EP2814617B1 EP 2814617 B1 EP2814617 B1 EP 2814617B1 EP 13705913 A EP13705913 A EP 13705913A EP 2814617 B1 EP2814617 B1 EP 2814617B1
Authority
EP
European Patent Office
Prior art keywords
compressor
temperature
actual temperature
centrifuge
controllable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13705913.5A
Other languages
German (de)
French (fr)
Other versions
EP2814617A2 (en
Inventor
Heiko Müller
Sven Fischer
Dieter Wolf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eppendorf SE
Original Assignee
Eppendorf SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eppendorf SE filed Critical Eppendorf SE
Priority to PL13705913T priority Critical patent/PL2814617T3/en
Publication of EP2814617A2 publication Critical patent/EP2814617A2/en
Application granted granted Critical
Publication of EP2814617B1 publication Critical patent/EP2814617B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B15/00Other accessories for centrifuges
    • B04B15/02Other accessories for centrifuges for cooling, heating, or heat insulating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21174Temperatures of an evaporator of the refrigerant at the inlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator

Definitions

  • the present invention relates to a laboratory centrifuge according to claim 1 and a method for controlling and regulating the compressor cooling device of a centrifuge according to claim 9.
  • centrifugation especially in very fast rotating laboratory centrifuges, heat is generated during the rotation of the centrifuge rotor in the centrifuge bowl by air friction and the introduction of electrical power loss. Since the centrifuge bowl is closed with a lid to prevent the centrifuging material from escaping, this heat input cannot be dissipated easily and leads to an increase in the temperature of the centrifuging material.
  • a compressor cooling device with pipes and heat exchangers is often provided, by means of which a special refrigerant (in contrast to "coolants", such as those used for the cooling water circuit of cars, for example), a refrigerant undergoes phase changes during the passage through the refrigeration cycle, namely usually of liquid after gaseous, and with such a refrigerant it is also possible to temper a refrigerated product which has a temperature below the ambient temperature) via pipes (which form the refrigeration cycle), which, for example, are in a spiral shape against the centrifuge bowl, i.e. the side walls and the bottom of the bowl , is led past the boiler to remove heat.
  • a special refrigerant in contrast to "coolants”, such as those used for the cooling water circuit of cars, for example
  • a refrigerant undergoes phase changes during the passage through the refrigeration cycle, namely usually of liquid after gaseous, and with such a refrigerant it is also possible to temper a refrigerated product which has a temperature below the ambient
  • compressor cooling device cooling of the sample to a temperature below the temperature of the ambient air is also possible.
  • Such laboratory centrifuges are for example DE 38 18 584 A1 or JP 2011 255330 A known.
  • Compressor cooling devices 1 of this type have an evaporator 3, which is usually guided around the centrifuge bowl 5 in a tubular manner, a compressor 7, a condenser 9 and a expansion element 11 (cf. Fig. 1 ).
  • the expansion element 11 is designed for the greatest possible load case, i.e. the maximum speed of the centrifuge rotor (not shown), it being known that the expansion device (pressure compensation element between the high and low pressure sides of the refrigeration circuit when the compressor is at a standstill) as a capillary tube or thermostatic injection valve 11 is trained.
  • this thermostatic injection valve (TEV) 11 is used to independently increase or reduce the inflow of refrigerant in the refrigeration circuit 15 depending on the temperature determined at the evaporator inlet VE.
  • this thermostatic injection valve (TEV) 11 is used to independently increase or reduce the inflow of refrigerant in the refrigeration circuit 15 depending on the temperature determined at the evaporator inlet VE.
  • an overheating of the refrigerant at the evaporator outlet VA is necessary, so that an overpressure arises which is passed directly to a spring 17 of the thermostatic injection valve 11 in order to actuate it.
  • the sensor 13 of the TEV 11 in which a refrigerant is contained, is attached to the evaporator outlet VA. Due to the temperature at the evaporator outlet VA, the refrigerant has a corresponding pressure, which then affects the TEV 11 and the counterforce of the spring and thus opens or closes the TEV 11.
  • Another load element which is a frequency-controlled compressor 7, for example, can be used to control other load cases partially, but mostly only inaccurately.
  • compressors 7 usually have a minimum runtime in order to ensure the internal oil circuit.
  • compressors 7 usually have a minimum runtime in order to ensure the internal oil circuit.
  • Another disadvantage is that vibrations occur when the compressor 7 of a compressor cooling device 1 starts or stops. These vibrations influence the operating behavior of the centrifuge, increase the backmixing rate in the rotor after the centrifuge has come to a standstill and have effects on laboratory equipment and the like placed in the vicinity.
  • the compressor 7 is shortened by frequently switching the compressor on and off.
  • the object of the present invention is to remedy or alleviate these disadvantages mentioned.
  • the centrifuge with the compressor cooling device should be simple and cost-effective, have a high control quality and cause less vibrations.
  • the centrifuge according to the invention in particular a laboratory centrifuge, has a centrifuge bowl and a compressor cooling device with a refrigeration circuit, an evaporator, a compressor and a condenser and is characterized in that at least one controllable throttle device for regulating the refrigerant flow is provided in the refrigeration circuit, which is preferably used as electronic injection valve is formed. It can expediently be provided that the controllable throttle device also acts as a pressure compensation element between the high and low pressure side of the refrigeration circuit when the compressor is at a standstill.
  • an externally controllable throttle device is understood to be a throttle device in which there is a direct external control option for regulating the refrigerant flow, that is to say an actuator that can be influenced from outside the refrigeration circuit.
  • a direct external control option for regulating the refrigerant flow that is to say an actuator that can be influenced from outside the refrigeration circuit.
  • the control option according to the invention is preferably electrical, but hydraulic and / or pneumatic control options or the like are also possible.
  • Thermostatic injection valves are therefore not controllable throttle devices in the sense of the present invention, since they cannot be directly influenced externally, but rather these elements react passively to a temperature-related pressure increase with respect to a spring.
  • the compressor cooling device of the centrifuge has a controllable throttle device in the refrigeration circuit, the compressor cooling device can be controlled directly for many load cases without having to regulate the compressor itself.
  • the compressor cooling device is therefore much less a source of vibrations and also has a longer service life.
  • the heat transfer area of the evaporator is increased, as a result of which a higher cooling capacity is achieved and the overall efficiency of the cooling device is improved. In this way, lower cooling temperatures can be achieved in the centrifuge bowl and / or the desired lower cooling temperatures can also be set for higher centrifuge outputs.
  • the desired temperature in the centrifuge bowl can be reached more quickly.
  • a compressor with a lower capacity can be used, which reduces the installation space required, or a frequency-controllable compressor can be operated at a lower frequency, i.e. with a lower capacity, as a result of which the overall energy requirement for the same cooling capacity can be reduced ,
  • the accuracy of the control is increased, which is why smaller deviations from a desired setpoint can be achieved.
  • At least one means for detecting the temperature of the refrigerant in the refrigeration cycle is provided.
  • a means for detecting the temperature in the centrifuge bowl is provided.
  • a means for detecting the temperature of the refrigerant in the refrigeration circuit upstream of the evaporator, preferably at the evaporator inlet, and a means for Detection of the temperature after the evaporator are provided.
  • the location for the latter means is preferably the evaporator outlet, because otherwise the temperature can possibly only be measured imprecisely due to overheating at a point further in the direction of the compressor, and therefore optimal utilization of the evaporator would not be guaranteed. This enables a much more precise control.
  • “Means for detecting the temperature” are all means which determine a physical parameter by means of which the temperature can be determined. For example, they are pressure or temperature sensors, temperature sensors being less expensive and therefore being used with preference.
  • the compressor for controlling its delivery rate is designed to be controllable, preferably power-controllable, in particular frequency-controllable, so that, particularly for starting up the compressor cooling device with a frequency that is higher than the mains frequency, the settling time is substantially reduced until the desired temperature is reached.
  • a bypass can be provided in the refrigeration circuit to bypass the condenser, which is in particular designed to be controllable.
  • a controllable throttle device can also be used for this regulation.
  • Controllable throttle devices according to the present invention can be designed both as continuously adjustable throttle valves and as discretely adjustable throttle valves.
  • the possible actuators are designed as continuously adjustable throttle devices, compressors with continuously adjustable flow rates, continuously adjustable bypass valves, coverage of the entire load spectrum can be ensured very efficiently and quickly in an appealing manner without leaps in performance.
  • control means which are designed in particular as programmable electronics (e.g. microcontrollers), which use at least one of the recorded temperatures as an input variable and which control and regulate at least one of the elements controllable throttle device, controllable bypass and controllable compressor, because then particularly effective Control routines can be used.
  • programmable electronics e.g. microcontrollers
  • independent protection is claimed for the method according to the invention for controlling and / or regulating the compressor cooling device of a centrifuge with a centrifuge bowl, the compressor cooling device having a refrigeration cycle, an evaporator, a compressor and a condenser and being characterized in that a controllable throttle device for regulating the refrigerant flow is used in the refrigeration circuit of the compressor cooling device.
  • the centrifuge according to the invention is preferably used here.
  • a target temperature of the centrifuge bowl of the centrifuge is specified and the actual temperature of the centrifuge bowl of the centrifuge is determined.
  • the trend of the actual temperature is preferably determined for a predetermined trend period in order to be able to react more quickly to temperature changes and to minimize fluctuations around the setpoint value.
  • the trend period is preferably at least 2 s, preferably at least 5 s, in particular at least 10 s.
  • a tolerance range is defined around the predetermined target temperature, which is at most +/- 5 K, preferably at most +/- 3 K and in particular +/- 1.5 K. Then the regulation can be significantly improved if the actual temperature is only regulated by means of the controllable throttle device if it is within the defined tolerance range. This regulation is particularly sensitive. "Within” the tolerance range means here that the temperatures of the edges of the tolerance range are also recorded. In addition, the control is improved if the actual temperature is only controlled by the compressor if the actual temperature is not within the tolerance range.
  • a controllable compressor is used for the regulation outside the tolerance range (rough regulation).
  • the compressor is controlled by the actual temperature measured in the centrifuge bowl when the tolerance range is exited so that the actual temperature is again within the tolerance range.
  • the combination of coarse and fine control (see below), the performance of the compressor is used particularly advantageously and at the same time switching the compressor off and on again in the low-load range, especially at high internal boiler temperatures, largely prevented because the compressor is mainly used only for regulating the actual temperature up to the tolerance range.
  • the controllable throttle device when the compressor cooling device is started, the controllable throttle device is set to an empirically determined refrigerant flow and the actual temperature is reduced to the predetermined tolerance range by means of the compressor.
  • a position of the controllable throttle device that is determined as optimal for the respective centrifuge should be used for maximum cooling and, if necessary, adjusted later to a position corresponding to the optimal evaporator charge.
  • the compressor is only adjusted over such a period until the actual temperature is within the tolerance range for an empirically determined period, advantageously a multiple, preferably 40 times, most preferably 26 times and in particular 12 times, for example for at least 2 minutes , according to which it is then provided according to the invention that the compressor output is kept constant, for as long as the actual temperature is in the tolerance range and is regulated to the target temperature via the controllable throttle device. This ensures that when starting the refrigeration compressor device in a first step, only a coarse control takes place via the compressor and then a fine control via the controllable throttle device with constant compressor output.
  • the performance of the compressor and / or the refrigerant flow can also be regulated accordingly by the controllable throttle device.
  • a pre-switch-off value can be provided above the target temperature or the tolerance range. This takes into account the effect that, in such a control process, the actual temperature value is currently very rapidly striving for the target temperature value from the positive temperature range.
  • the pre-switch-off value is introduced, i.e. before the actual target temperature value, preferably in the middle of the tolerance range, is reached by the actual temperature value, for example the compressor already turned down or switched off or the controllable throttle device is actuated in the direction of closing. So this is a counter rule against the inertia of the system.
  • the temperature of the refrigerant in the refrigeration cycle is determined firstly upstream of the evaporator, preferably at the evaporator inlet, and secondly downstream of the evaporator, preferably at the evaporator outlet, and the controllable throttle device is controlled so that the difference in the temperature of the refrigerant in the refrigeration cycle before the evaporator and the temperature of the refrigerant in the refrigeration cycle after the evaporator is between 0 K and 5 K, preferably between 0 K and 3 K, in particular between 0 K and 1 K. (The specified range limits are permitted values.) This means that the evaporator is used particularly effectively since the temperature difference of approx.
  • the temperature of the refrigerant in the refrigeration circuit upstream of the evaporator is determined and if the temperature falls below a predetermined temperature at least by one of the following measures, this predetermined temperature is at least reached again: i) lowering the delivery rate of the compressor, ii) switching on and Regulating a bypass with which the condenser in the refrigeration circuit is bypassed and iii) controlling the controllable throttle device to increase the refrigerant flow in the refrigeration circuit of the compressor cooling device.
  • the predetermined temperature depends on the refrigerant used and the geometric relationships between the evaporator inlet and the compressor inlet and is, for example, -18 ° C. This effectively prevents the compressor from entering the vacuum area and the oil return failing. In variant iii), therefore, the throttle device must be opened again when the temperature falls below a predetermined value.
  • Fig. 2 the centrifuge 20 according to the invention is shown purely schematically in a perspective top view.
  • the centrifuge is designed as a laboratory centrifuge 20 and has a housing 21 with a cover (not shown) for the compressor cooling device 25 with the compressor 27, a cover 23 for the centrifuge bowl 37 and rotor 28 and a base plate 29.
  • the compressor cooling device 30 also has a frequency-controllable compressor 31, a condenser 33, an evaporator 35, which is arranged for indirect cooling around a centrifuge bowl 37, and a relaxation element 39.
  • the previously known compressor cooling device 1 has, as the expansion device 11, a thermostatic injection valve (TEV) which has a pressure inlet 17 which is connected to a sensor 13 at the outlet VA of the evaporator 3.
  • TEV thermostatic injection valve
  • the TEV 11 is therefore only an element of a passive control, since there is no external controllability, for example via electronics, and it is not possible to fully utilize the evaporator due to the overheating to be produced.
  • the in Fig. 3 shown compressor cooling device 30 instead of the TEV a controllable throttle device 39 in the form of an electronic injection valve (EEV) 39.
  • the refrigeration circuit 41 has a bypass 43 for bridging the condenser 33.
  • This bypass 43 is also provided with an electronic injection valve 45.
  • discrete actuators can alternatively also be provided.
  • three means 47, 49, 51 are provided for detecting the temperature T VE upstream of the evaporator 35, for detecting the temperature T VA at the outlet VA of the evaporator 35 and for detecting the temperature T in the centrifuge bowl 37.
  • a control means 60 which takes into account the target temperature T K for the centrifuge bowl set by an operator.
  • the temperature T VE at the inlet VE and the temperature T VA at the outlet VA are recorded on the evaporator 35 and fed to the control means 60.
  • the actual temperature T is taken from the boiler 37 and fed to the control means 60.
  • the tendency of the temperature development of the actual temperature T is determined over a trend period td of 10 s empirically determined for the centrifuge 20 constructed according to the invention, both longer and shorter periods being possible.
  • a tolerance range of +/- 1.5 K is established for the centrifuge bowl 37.
  • the control means 60 controls the EEV 39, the compressor 31 and possibly the bypass 45.
  • the EEV 39 is set to an empirically determined refrigerant flow and the actual temperature T is reduced to the predetermined tolerance range by controlling the speed of the compressor 31.
  • the speed of the compressor 31 is either kept at a maximum or, if a specific cooling time to the target temperature T K is desired, is kept at a corresponding value.
  • a pre-switch-off time can be used to take into account the inertia of the compressor cooling device 30 and / or the speed of the compressor 31 is reduced by means of an empirically determined function during the rough control.
  • a position of the controllable throttle device 39 which is determined as optimal for the respective centrifuge 20, should be used for maximum cooling and, if necessary, be subsequently adjusted to a position corresponding to the optimal evaporator charge.
  • the coarse control by means of the compressor speed is carried out until the actual temperature T in the boiler 37 remains in the tolerance range for a fixed period (for example 1 min). If the actual temperature T falls below the target temperature T K , the power of the compressor 31 is reduced by reducing the frequency until the actual temperature T reaches or exceeds the target temperature T K again. If the target temperature T K is exceeded, the frequency of the compressor 31 is raised again. This iterative process is continued until the actual temperature T is within the tolerance range of the target temperature T K for a period of at least 1 min, ie 6 tendency periods td.
  • the compressor speed is then kept constant, for as long as the actual temperature is within the tolerance range and the setpoint temperature is regulated via the controllable throttle device 39.
  • controllable throttle device 39 is set to a middle position and the speed of the compressor 31 is adjusted accordingly in order to be able to optimally utilize the control capacity of the throttle device 39 during the fine control. It is essential, however, that during the fine control, ie the time in which the actual temperature T is within the tolerance range, there is no change in the output of the compressor 31.
  • the cooling capacity is only controlled via the EEV 39 alone. Regulation is based on the tendency, i. H. If the tendency of the actual temperature T decreases in the trend period td, the EEV 39 is reduced, that is to say the refrigerant flow is reduced. In the event that the tendency increases, the electronic injection valve 39 is regulated upward, so that more refrigerant is supplied to the evaporator 35.
  • a defined lower limit T VEmin of the temperature T VE at the input VE of the evaporator 35 is monitored and if this temperature T VEmin is undershot , the EEV 39 is opened further until the temperature T VE determined is again greater than the temperature T VEmin specified therefor . This prevents the compressor 31 from getting into the vacuum range.
  • T VA - T VE the difference in temperatures T VA - T VE is constantly monitored. This should be in the range between 0 K and 1 K, on the one hand to keep the utilization of the evaporator 35 to a maximum, and on the other hand to prevent liquid refrigerant from getting into the compressor 31. If this difference falls below T VA - T VE , the EEV 39 is closed further and / or the compressor frequency is reduced.
  • the evaporator can be used to the maximum with the method according to the invention.
  • the cooling capacity of the evaporator can thus be increased and, in the case of the centrifuge 20 according to the invention, approximately 5% more heat can be dissipated compared to previously known compressor cooling devices, as a result of which the capacity of the rotor of the centrifuge can be increased accordingly. In extreme cases, a 5% higher heat generation by the rotor is permissible and it can be operated in a higher speed range, which increases the centrifuging performance.
  • Fig. 5 The advantageous effect of the centrifuge 20 according to the invention can be clearly seen in connection with the method according to the invention, it being provided for simplification that the compressor frequency was kept constant (maximum) over the entire running time and was regulated with the throttle device. It is very clear from the graphical representation of the courses of the actual temperature T that the control of the temperature of the boiler air according to the present invention takes place much more steadily and that a lower final temperature can be reached.
  • the samples can thus be kept much more precisely at a certain temperature, which is of great advantage particularly in the case of sensitive samples or problematic temperature influences.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Centrifugal Separators (AREA)

Description

Die vorliegende Erfindung betrifft eine Laborzentrifuge nach Anspruch 1 und ein Verfahren zur Steuerung und Regelung der Kompressorkühleinrichtung einer Zentrifuge nach Anspruch 9.The present invention relates to a laboratory centrifuge according to claim 1 and a method for controlling and regulating the compressor cooling device of a centrifuge according to claim 9.

Bei der Zentrifugation, insbesondere in sehr schnell drehenden Laborzentrifugen, entsteht während der Drehung des Zentrifugenrotors im Zentrifugenkessel Wärme durch Luftreibung und Einleitung elektrischer Verlustleistung. Da der Zentrifugenkessel zum Verhindern eines Austrittes von Zentrifugiergut mit einem Deckel verschlossen ist, kann dieser Wärmeeintrag nicht ohne weiteres abgeführt werden und führt zu einer Erhöhung der Temperatur des Zentrifugiergutes.During centrifugation, especially in very fast rotating laboratory centrifuges, heat is generated during the rotation of the centrifuge rotor in the centrifuge bowl by air friction and the introduction of electrical power loss. Since the centrifuge bowl is closed with a lid to prevent the centrifuging material from escaping, this heat input cannot be dissipated easily and leads to an increase in the temperature of the centrifuging material.

Diese Temperaturerhöhung ist jedoch unerwünscht, da sie zu einer Zerstörung bzw. Unbrauchbarkeit der zentrifugierten Proben führen kann. Üblicherweise müssen die Proben auf einer definierten Temperatur gehalten werden, beispielsweise je nach Anwendung auf Temperaturen von 4 °C, 22 °C oder 37 °C. Daher wurden schon in der Vergangenheit Vorkehrungen zur Vermeidung einer Erhöhung der Temperatur des Zentrifugiergutes getroffen, wobei häufig eine mittelbare Kühlung eingesetzt wird. Bei dieser mittelbaren Kühlung ist der Rotor zumeist im Zentrifugenkessel unter dem Zentrifugendeckel eingeschlossen und es ist kein Kühlkanal oder dergleichen vorgesehen. Die Luft zirkuliert daher nur innerhalb des Zentrifugenkessels. Eine Kühlung wird nun durch ein zweites Medium erreicht, das an der Außenseite des Kessels vorbeigeführt oder in der Kesselwand geführt wird. Hierzu wird häufig eine Kompressorkühleinrichtung mit Rohren und Wärmetauschern vorgesehen, mittels derer ein spezielles Kältemittel (Im Gegensatz zu "Kühlmitteln", wie sie beispielsweise für den Kühlwasserkreislauf von PKW eingesetzt werden, durchläuft ein Kältemittel während des Durchgangs durch den Kältekreislauf Phasenänderungen, nämlich üblicherweise von flüssig nach gasförmig, und mit einem solchen Kältemittel ist auch eine Temperierung eines Kühlgutes, welches eine Temperatur unterhalb der Umgebungstemperatur hat, möglich) über Rohrleitungen (bilden den Kältekreislauf), die beispielsweise spiralförmig an dem Zentrifugenkessel, d. h. den Seitenwänden und den Boden des Kessels, anliegen, an dem Kessel vorbeigeführt wird, um Wärme abzutransportieren. Mittels einer solchen Kompressorkühleinrichtung ist auch eine Abkühlung des Probengutes auf eine Temperatur unter die Temperatur der Umgebungsluft möglich. Derartige Laborzentrifugen sind beispielsweise aus DE 38 18 584 A1 oder JP 2011 255330 A bekannt.
Solche Kompressorkühleinrichtungen 1 weisen einen Verdampfer 3 auf, der zumeist rohrförmig um den Zentrifugenkessel 5 herumgeführt wird, einen Verdichter 7, einen Verflüssiger 9 und ein Entspannungselement 11 (vgl. Fig. 1). Das Entspannungselement 11 ist dabei auf den größtmöglichen Lastfall, also die Maximaldrehzahl des Zentrifugenrotors (nicht gezeigt), ausgelegt, wobei schon bekannt ist, dass der Entspanner (Druckausgleichselement zwischen Hoch- und Niederdruckseite des Kältekreislaufs bei Stillstand des Verdichters) als Kapillarrohr oder thermostatisches Einspritzventil 11 ausgebildet ist.
However, this temperature increase is undesirable since it can lead to the destruction or unusability of the centrifuged samples. Usually the samples have to be kept at a defined temperature, for example depending on the application at temperatures of 4 ° C, 22 ° C or 37 ° C. For this reason, precautions have been taken in the past to avoid increasing the temperature of the centrifuged material, with indirect cooling often being used. With this indirect cooling, the rotor is mostly enclosed in the centrifuge bowl under the centrifuge lid and no cooling channel or the like is provided. The air therefore only circulates within the centrifuge bowl. Cooling is now achieved by a second medium, which is led past the outside of the boiler or in the boiler wall. For this purpose, a compressor cooling device with pipes and heat exchangers is often provided, by means of which a special refrigerant (in contrast to "coolants", such as those used for the cooling water circuit of cars, for example), a refrigerant undergoes phase changes during the passage through the refrigeration cycle, namely usually of liquid after gaseous, and with such a refrigerant it is also possible to temper a refrigerated product which has a temperature below the ambient temperature) via pipes (which form the refrigeration cycle), which, for example, are in a spiral shape against the centrifuge bowl, i.e. the side walls and the bottom of the bowl , is led past the boiler to remove heat. By means of such a compressor cooling device cooling of the sample to a temperature below the temperature of the ambient air is also possible. Such laboratory centrifuges are for example DE 38 18 584 A1 or JP 2011 255330 A known.
Compressor cooling devices 1 of this type have an evaporator 3, which is usually guided around the centrifuge bowl 5 in a tubular manner, a compressor 7, a condenser 9 and a expansion element 11 (cf. Fig. 1 ). The expansion element 11 is designed for the greatest possible load case, i.e. the maximum speed of the centrifuge rotor (not shown), it being known that the expansion device (pressure compensation element between the high and low pressure sides of the refrigeration circuit when the compressor is at a standstill) as a capillary tube or thermostatic injection valve 11 is trained.

Im Zusammenhang mit einer druckgesteuerten Temperaturerfassung 13 nach dem Verdampfer 3 wird dieses thermostatische Einspritzventil (TEV) 11 dazu verwendet, in Abhängigkeit von der ermittelten Temperatur selbständig am Verdampfereingang VE den Kältemittelzufluss im Kältekreislauf 15 zu steigern oder zu drosseln. Hierzu ist eine Überhitzung des Kältemittels am Verdampferausgang VA erforderlich, so dass ein Überdruck entsteht, der direkt auf eine Feder 17 des thermostatischen Einspritzventils 11 geleitet wird, um dieses zu betätigen. Genauer gesagt besteht am Verdampferausgang VA eine gewisse Temperatur. Am Verdampferausgang VA ist der Fühler 13 des TEV 11 befestigt, in welchem ein Kältemittel enthalten ist. Aufgrund der Temperatur am Verdampferausgang VA hat das Kältemittel einen entsprechenden Druck, welcher sich dann auf das TEV 11 und die Gegenkraft der Feder auswirkt und somit das TEV 11 öffnet oder schließt.In connection with a pressure-controlled temperature detection 13 after the evaporator 3, this thermostatic injection valve (TEV) 11 is used to independently increase or reduce the inflow of refrigerant in the refrigeration circuit 15 depending on the temperature determined at the evaporator inlet VE. For this purpose, an overheating of the refrigerant at the evaporator outlet VA is necessary, so that an overpressure arises which is passed directly to a spring 17 of the thermostatic injection valve 11 in order to actuate it. More specifically, there is a certain temperature at the evaporator outlet VA. The sensor 13 of the TEV 11, in which a refrigerant is contained, is attached to the evaporator outlet VA. Due to the temperature at the evaporator outlet VA, the refrigerant has a corresponding pressure, which then affects the TEV 11 and the counterforce of the spring and thus opens or closes the TEV 11.

Über ein weiteres Regelglied, welches ein beispielsweise frequenzgeregelter Verdichter 7 ist, können andere Lastfälle teilweise, aber meist nur ungenau geregelt werden.Another load element, which is a frequency-controlled compressor 7, for example, can be used to control other load cases partially, but mostly only inaccurately.

Dadurch, dass zur Funktion des thermostatischen Einspritzventils 11 eine Überhitzung des Kältemittels erforderlich ist, kann die Verdampferleistung nicht vollständig ausgenutzt werden, wobei nur ca. 95 % der Verdampferfläche genutzt werden können. Aufgrund der erforderlichen Überhitzung liegt zwischen Verdampfereingang VE und Verdampferausgang VA eine Temperaturdifferenz von ca. 7 K vor.Because overheating of the refrigerant is required for the function of the thermostatic injection valve 11, the evaporator output cannot be fully utilized, only about 95% of the evaporator area being able to be used. Due to the required overheating, there is a temperature difference of approx. 7 K between the evaporator inlet VE and the evaporator outlet VA.

Ein weiterer wesentlicher Nachteil solcher bekannten Kompressorkühlreinrichtungen 1 bei Zentrifugen besteht darin, dass die Verdichter 7 nur relativ ungenau und in gewissen Grenzen in ihrer Leistung gesteuert werden können, so dass bei verschiedenen Teillastfällen und Geringlastfällen der Verdichter 7 ggf. ganz ausgeschaltet werden muss.Another major disadvantage of such known compressor cooling devices 1 in centrifuges is that the compressors 7 can be controlled in terms of their output only relatively inaccurately and within certain limits, so that the compressor 7 may have to be switched off completely in the case of various part-load cases and low-load cases.

Dies ist allerdings nicht immer möglich, weil Verdichter 7 üblicherweise eine Mindestlaufzeit besitzen, um den internen Ölkreislauf sicher zu stellen. Im Gegenzug besteht wegen der stärkeren Erwärmung des Antriebsmotors des Verdichters 7 im Anlauf und dem notwendigen Druckausgleich/Druckdifferenzminderung zwischen Hoch- und Niederdruckseite auch eine gewisse Mindestruhezeit für solche Verdichter 7, weshalb die Regelungsmöglichkeiten über den Verdichter 7 insbesondere im unteren Leistungsbereich stark begrenzt sind.However, this is not always possible because compressors 7 usually have a minimum runtime in order to ensure the internal oil circuit. In return, because of the greater heating of the drive motor of the compressor 7 during startup and the necessary pressure compensation / pressure difference reduction between the high and low pressure side, there is also a certain minimum rest period for such compressors 7, which is why the control options via the compressor 7 are severely limited, particularly in the lower power range.

Ein weiterer Nachteil besteht darin, dass beim Start oder Halt des Verdichters 7 einer Kompressorkühlreinrichtung 1 Erschütterungen entstehen. Diese Erschütterungen beeinflussen das Betriebsverhalten der Zentrifuge, erhöhen die Rückmischrate im Rotor nach Stillstand der Zentrifuge und haben Auswirkungen auf benachbart aufgestellte Laborgeräte und dergleichen.Another disadvantage is that vibrations occur when the compressor 7 of a compressor cooling device 1 starts or stops. These vibrations influence the operating behavior of the centrifuge, increase the backmixing rate in the rotor after the centrifuge has come to a standstill and have effects on laboratory equipment and the like placed in the vicinity.

Schließlich wird durch häufiges Aus- und Einschalten des Verdichters 7 dessen Lebensdauer verkürzt.Finally, the compressor 7 is shortened by frequently switching the compressor on and off.

Aufgabe der vorliegenden Erfindung ist es, diese genannten Nachteile zu beheben bzw. abzumildern. Insbesondere soll die Zentrifuge mit der Kompressorkühleinrichtung einfach und kostengünstig aufgebaut sein, eine hohe Regelgüte aufweisen und weniger Erschütterungen hervorrufen.The object of the present invention is to remedy or alleviate these disadvantages mentioned. In particular, the centrifuge with the compressor cooling device should be simple and cost-effective, have a high control quality and cause less vibrations.

Diese Aufgabe wird gelöst mit einer Zentrifuge nach Anspruch 1 und einem Verfahren nach Anspruch 9. Vorteilhafte Weiterbildungen sind in den abhängigen Unteransprüchen angegeben.This object is achieved with a centrifuge according to claim 1 and a method according to claim 9. Advantageous further developments are specified in the dependent subclaims.

Die erfindungsgemäße Zentrifuge, insbesondere Laborzentrifuge, weist einen Zentrifugenkessel und eine Kompressorkühleinrichtung mit einem Kältekreislauf, einen Verdampfer, einen Verdichter und einen Verflüssiger auf und zeichnet sich dadurch aus, dass im Kältekreislauf zumindest eine-steuerbare Drosselvorrichtung zur Regelung des Kältemittelflusses vorgesehen ist, die bevorzugt als elektronisches Einspritzventil ausgebildet ist. Zweckmäßig kann vorgesehen sein, dass die steuerbare Drosselvorrichtung auch als Druckausgleichselement zwischen Hoch- und Niederdruckseite des Kältekreislaufs bei Stillstand des Verdichters wirkt.The centrifuge according to the invention, in particular a laboratory centrifuge, has a centrifuge bowl and a compressor cooling device with a refrigeration circuit, an evaporator, a compressor and a condenser and is characterized in that at least one controllable throttle device for regulating the refrigerant flow is provided in the refrigeration circuit, which is preferably used as electronic injection valve is formed. It can expediently be provided that the controllable throttle device also acts as a pressure compensation element between the high and low pressure side of the refrigeration circuit when the compressor is at a standstill.

Unter einer steuerbaren, d.h. extern ansteuerbaren Drosselvorrichtung im Sinne der vorliegenden Erfindung wird eine Drosselvorrichtung verstanden, bei der eine direkte externe Ansteuerungsmöglichkeit besteht, um den Kältemittelfluss zu regeln, also ein von außerhalb des Kältekreislaufs beeinflussbares Stellglied. Zwar erfolgt beispielsweise auch mit einem TEV 11 eine Regelung, allerdings wird dieses nicht von außerhalb des Kältekreislaufs 15 gesteuert, sondern durch einen Sensor 13, der direkt auf das TEV 11 einwirkt und dieses regelt. Vorzugsweise besteht die erfindungsgemäße Ansteuerungsmöglichkeit auf elektrischem Wege, allerdings sind auch hydraulische und/oder pneumatische Ansteuerungsmöglichkeiten oder dgl. möglich. Thermostatische Einspritzventile sind daher keine steuerbaren Drosselvorrichtungen im Sinne der vorliegenden Erfindung, da bei ihnen keine unmittelbare externe Beeinflussung vorgenommen werden kann, sondern diese Elemente passiv auf eine Temperatur bedingte Druckerhöhung gegenüber einer Feder reagieren.Under a controllable, i.e. In the sense of the present invention, an externally controllable throttle device is understood to be a throttle device in which there is a direct external control option for regulating the refrigerant flow, that is to say an actuator that can be influenced from outside the refrigeration circuit. Although regulation is also carried out, for example, with a TEV 11, this is not controlled from outside the refrigeration circuit 15, but by a sensor 13, which acts directly on the TEV 11 and regulates it. The control option according to the invention is preferably electrical, but hydraulic and / or pneumatic control options or the like are also possible. Thermostatic injection valves are therefore not controllable throttle devices in the sense of the present invention, since they cannot be directly influenced externally, but rather these elements react passively to a temperature-related pressure increase with respect to a spring.

Dadurch, dass die Kompressorkühleinrichtung der Zentrifuge eine steuerbare Drosselvorrichtung im Kältekreislauf aufweist, lässt sich die Kompressorkühleinrichtung für viele Lastfälle direkt regeln ohne den Verdichter selbst regeln zu müssen. Damit ist die Kompressorkühleinrichtung wesentlich weniger Quelle von Erschütterungen und weist auch eine höhere Lebensdauer auf. Zusätzlich ist es nicht mehr erforderlich, eine Überhitzung des Kältemittels zu ermöglichen, weshalb die volle Verdampferlänge ausgenutzt werden kann. Dadurch wird die Wärmeübertragungsfläche des Verdampfers vergrößert, wodurch eine höhere Kühlleistung erreicht wird und insgesamt der Wirkungsgrad der Kühleinrichtung verbessert wird. Damit lassen sich tiefere Kühltemperaturen im Zentrifugenkessel erreichen und/oder die gewünschten niedrigeren Kühltemperaturen auch für höhere Zentrifugenleistungen einstellen. Außerdem kann die gewünschte Temperatur im Zentrifugenkessel schneller erreicht werden. Andererseits lässt sich auch bei einer vorgegebenen Kühlleistung des Verdampfers ein Verdichter mit geringerer Leistung verwenden, was den benötigten Bauraum verringert, oder es lässt sich ein frequenzsteuerbarer Verdichter bei geringerer Frequenz, also geringerer Leistung betreiben, wodurch insgesamt der Energiebedarf für die selbe Kühlleistung gesenkt werden kann. Außerdem wird die Genauigkeit der Regelung erhöht, weshalb geringere Abweichungen von einem gewünschten Sollwert erzielbar sind.Because the compressor cooling device of the centrifuge has a controllable throttle device in the refrigeration circuit, the compressor cooling device can be controlled directly for many load cases without having to regulate the compressor itself. The compressor cooling device is therefore much less a source of vibrations and also has a longer service life. In addition, it is no longer necessary to allow the refrigerant to overheat, which is why the full evaporator length can be used. As a result, the heat transfer area of the evaporator is increased, as a result of which a higher cooling capacity is achieved and the overall efficiency of the cooling device is improved. In this way, lower cooling temperatures can be achieved in the centrifuge bowl and / or the desired lower cooling temperatures can also be set for higher centrifuge outputs. In addition, the desired temperature in the centrifuge bowl can be reached more quickly. On the other hand, even with a given cooling capacity of the evaporator, a compressor with a lower capacity can be used, which reduces the installation space required, or a frequency-controllable compressor can be operated at a lower frequency, i.e. with a lower capacity, as a result of which the overall energy requirement for the same cooling capacity can be reduced , In addition, the accuracy of the control is increased, which is why smaller deviations from a desired setpoint can be achieved.

In einer zweckmäßigen Weiterbildung ist zumindest ein Mittel zur Erfassung der Temperatur des Kältemittels im Kältekreislauf vorgesehen. Erfindungsgemäß ist ein Mittel zur Erfassung der Temperatur im Zentrifugenkessel vorgesehen. Diesbezüglich ist es bevorzugt, dass ein Mittel zur Erfassung der Temperatur des Kältemittels im Kältekreislauf vor dem Verdampfer, bevorzugt am Verdampfereingang, und ein Mittel zur Erfassung der Temperatur nach dem Verdampfer vorgesehen sind. Bevorzugt handelt es sich bei dem Anordnungsort für letzteres Mittel um den Verdampferausgang, weil ansonsten möglicherweise aufgrund von Überhitzung an einer weiter in Richtung Verdichter liegenden Stelle die Temperatur nur ungenau gemessen werden kann und somit keine optimale Ausnutzung des Verdampfers gewährleistet wäre. Dadurch lässt sich eine wesentlich genauere Regelung ermöglichen.In an expedient development, at least one means for detecting the temperature of the refrigerant in the refrigeration cycle is provided. According to the invention, a means for detecting the temperature in the centrifuge bowl is provided. In this regard, it is preferred that a means for detecting the temperature of the refrigerant in the refrigeration circuit upstream of the evaporator, preferably at the evaporator inlet, and a means for Detection of the temperature after the evaporator are provided. The location for the latter means is preferably the evaporator outlet, because otherwise the temperature can possibly only be measured imprecisely due to overheating at a point further in the direction of the compressor, and therefore optimal utilization of the evaporator would not be guaranteed. This enables a much more precise control.

"Mittel zur Erfassung der Temperatur" sind dabei alle Mittel, die einen physikalischen Parameter bestimmen, über den sich die Temperatur ermitteln lässt. Beispielsweise handelt es sich um Druck- oder Temperatursensoren, wobei Temperatursensoren kostengünstiger sind und daher bevorzugt eingesetzt werden."Means for detecting the temperature" are all means which determine a physical parameter by means of which the temperature can be determined. For example, they are pressure or temperature sensors, temperature sensors being less expensive and therefore being used with preference.

Erfindungsgemäß ist der Verdichter zur Regelung seiner Fördermenge steuerbar, bevorzugt leistungssteuerbar, insbesondere frequenzsteuerbar ausgebildet, wodurch insbesondere für das Anfahren der Kompressorkühleinrichtung mit einer gegenüber der Netzfrequenz erhöhten Frequenz die Einschwingzeit bis zum Erreichen der gewünschten Temperatur wesentlich verkürzt wird.According to the invention, the compressor for controlling its delivery rate is designed to be controllable, preferably power-controllable, in particular frequency-controllable, so that, particularly for starting up the compressor cooling device with a frequency that is higher than the mains frequency, the settling time is substantially reduced until the desired temperature is reached.

Zusätzlich kann im Kältekreislauf zur Überbrückung des Verflüssigers ein Bypass vorgesehen sein, der insbesondere regelbar ausgebildet ist. Für diese Regelung kann ebenfalls eine steuerbare Drosselvorrichtung eingesetzt werden.In addition, a bypass can be provided in the refrigeration circuit to bypass the condenser, which is in particular designed to be controllable. A controllable throttle device can also be used for this regulation.

Steuerbare Drosselvorrichtungen gemäß der vorliegenden Erfindung können sowohl als kontinuierlich verstellbare Drosselventile als auch als diskret verstellbare Drosselventile ausgebildet sein.Controllable throttle devices according to the present invention can be designed both as continuously adjustable throttle valves and as discretely adjustable throttle valves.

Insbesondere wenn die möglichen Stellglieder als kontinuierlich verstellbare Drosselvorrichtung, Verdichter mit kontinuierlich verstellbarem Förderstrom, kontinuierlich verstellbares Bypassventil ausgebildet sind, kann die Abdeckung des gesamten Lastspektrums ohne Leistungssprünge sehr effizient und schnell ansprechend gewährleistet werden.In particular, if the possible actuators are designed as continuously adjustable throttle devices, compressors with continuously adjustable flow rates, continuously adjustable bypass valves, coverage of the entire load spectrum can be ensured very efficiently and quickly in an appealing manner without leaps in performance.

Besonders bevorzugt sind Regelungsmittel, die insbesondere als programmierbare Elektronik (z.B. Mikrocontroller) ausgebildet sind, vorgesehen, die zumindest eine der erfassten Temperaturen als Eingangsgröße verwenden und die zumindest eines der Elemente steuerbare Drosselvorrichtung, steuerbarer Bypass und steuerbarer Verdichter ansteuern und regeln, weil dann besonders effektive Steuerungs- und Regelungsroutinen verwendet werden können.Particularly preferred are control means, which are designed in particular as programmable electronics (e.g. microcontrollers), which use at least one of the recorded temperatures as an input variable and which control and regulate at least one of the elements controllable throttle device, controllable bypass and controllable compressor, because then particularly effective Control routines can be used.

Unabhängiger Schutz wird beansprucht für das erfindungsgemäße Verfahren zur Steuerung und/oder Regelung der Kompressorkühleinrichtung einer Zentrifuge mit einem Zentrifugenkessel, wobei die Kompressorkühleinrichtung einen Kältekreislauf, einen Verdampfer, einen Verdichter und einen Verflüssiger aufweist und sich dadurch auszeichnet, dass eine steuerbare Drosselvorrichtung zur Regelung des Kältemittelflusses im Kältekreislauf der Kompressorkühleinrichtung verwendet wird. Vorzugsweise kommt dabei die erfindungsgemäße Zentrifuge zum Einsatz.Independent protection is claimed for the method according to the invention for controlling and / or regulating the compressor cooling device of a centrifuge with a centrifuge bowl, the compressor cooling device having a refrigeration cycle, an evaporator, a compressor and a condenser and being characterized in that a controllable throttle device for regulating the refrigerant flow is used in the refrigeration circuit of the compressor cooling device. The centrifuge according to the invention is preferably used here.

Erfindungsgemäß wird eine Soll-Temperatur des Zentrifugenkessels der Zentrifuge vorgegeben und es wird die Ist-Temperatur des Zentrifugenkessels der Zentrifuge ermittelt. In diesem Zusammenhang wird bevorzugt die Tendenz der Ist-Temperatur für einen vorbestimmten Tendenzzeitraum bestimmt, um auf Temperaturveränderungen schneller reagieren zu können und Schwankungen um den Sollwert zu minimieren Vorzugsweise beträgt der Tendenzzeitraum mindestens 2 s, bevorzugt mindestens 5 s insbesondere mindestens 10 s. Andererseits können hiervon auch zweckmäßige Abweichungen erfolgen, die sich aus Größe und Leistung des Gesamtsystems Zentrifuge ableiten.According to the invention, a target temperature of the centrifuge bowl of the centrifuge is specified and the actual temperature of the centrifuge bowl of the centrifuge is determined. In this context, the trend of the actual temperature is preferably determined for a predetermined trend period in order to be able to react more quickly to temperature changes and to minimize fluctuations around the setpoint value. The trend period is preferably at least 2 s, preferably at least 5 s, in particular at least 10 s. On the other hand, there can also be useful deviations derived from the size and performance of the overall centrifuge system.

Erfindungsgemäß wird um die vorgegebene Soll-Temperatur ein Toleranzbereich festgelegt, der höchstens +/- 5 K, bevorzugt höchstens +/- 3 K und insbesondere +/-1,5 K beträgt. Dann kann die Regelung wesentlich verbessert werden, wenn die Ist-Temperatur nur dann mittels der steuerbaren Drosselvorrichtung geregelt wird, wenn sie sich innerhalb des festgelegten Toleranzbereiches befindet. Diese Regelung ist besonders feinfühlig. "Innerhalb" des Toleranzbereichs bedeutet hier, dass auch die Temperaturen der Ränder des Toleranzbereichs erfasst sind. Außerdem wird die Regelung dann verbessert, wenn die Ist-Temperatur nur dann über den Verdichter geregelt wird, wenn sich die Ist-Temperatur nicht innerhalb des Toleranzbereichs befindet.According to the invention, a tolerance range is defined around the predetermined target temperature, which is at most +/- 5 K, preferably at most +/- 3 K and in particular +/- 1.5 K. Then the regulation can be significantly improved if the actual temperature is only regulated by means of the controllable throttle device if it is within the defined tolerance range. This regulation is particularly sensitive. "Within" the tolerance range means here that the temperatures of the edges of the tolerance range are also recorded. In addition, the control is improved if the actual temperature is only controlled by the compressor if the actual temperature is not within the tolerance range.

Erfindungsgemäß ist vorgesehen, dass für die Regelung außerhalb des Toleranzbereiches (Grobreglung) ein steuerbarer Verdichter verwendet wird. Der Verdichter wird dazu bei Verlassen des Toleranzbereiches durch die im Zentrifugenkessel gemessene Ist-Temperatur so geregelt, dass sich die Ist-Temperatur wieder in den Toleranzbereich einfindet.According to the invention it is provided that a controllable compressor is used for the regulation outside the tolerance range (rough regulation). For this purpose, the compressor is controlled by the actual temperature measured in the centrifuge bowl when the tolerance range is exited so that the actual temperature is again within the tolerance range.

Mit diesem Verfahren, der Kombination von Grob- und Feinreglung (s.u.), wird die Leistungsfähigkeit des Verdichters besonders vorteilhaft ausgenutzt und gleichzeitig ein Aus- und Wiederanschalten des Verdichters im Geringlastbereich, speziell auch bei hohen Kesselinnentemperaturen, weitgehend verhindert, weil der Verdichter im Wesentlichen nur für die Einregelung der Ist-Temperatur bis in den Toleranzbereich verwendet wird.With this method, the combination of coarse and fine control (see below), the performance of the compressor is used particularly advantageously and at the same time switching the compressor off and on again in the low-load range, especially at high internal boiler temperatures, largely prevented because the compressor is mainly used only for regulating the actual temperature up to the tolerance range.

Erfindungsgemäß wird beim Start der Kompressorkühleinrichtung die steuerbare Drosselvorrichtung auf einen empirisch ermittelten Kältemittelfluss eingestellt und die Ist-Temperatur wird bis zum vorgegeben Toleranzbereich mittels des Verdichters abgesenkt.According to the invention, when the compressor cooling device is started, the controllable throttle device is set to an empirically determined refrigerant flow and the actual temperature is reduced to the predetermined tolerance range by means of the compressor.

Erfindungsgemäß sollte zumindest am Anfang des Kühlprozesses eine für die jeweilige Zentrifuge als optimal ermittelte Stellung der steuerbaren Drosselvorrichtung zur maximalen Kühlung verwendet und ggf. später auf eine der optimalen Verdampferfüllung entsprechende Position nachgeführt werden. In diesem Zusammenhang wird erfindungsgemäß der Verdichter nur über einen solchen Zeitraum eingeregelt, bis die Ist-Temperatur sich für einen empirisch ermittelten Zeitraum, vorteilhaft einen mehrfachen, bevorzugt 40fachen, höchstbevorzugt 26fachen und insbesondere 12fachen Tendenzzeitraum, beispielsweise für mindestens 2 min, innerhalb des Toleranzbereiches befindet, wonach dann erfindungsgemäß vorgesehen ist, dass die Verdichterleistung konstant gehalten wird, und zwar so lange, wie sich die Ist-Temperatur im Toleranzbereich befindet und auf die Soll-Temperatur über die steuerbare Drosselvorrichtung geregelt wird. Dadurch wird sichergestellt, dass beim Anfahren der Kühlkompressoreinrichtung in einem ersten Schritt ausschließlich eine Grobregelung über den Verdichter und anschließend eine Feinregelung über die steuerbare Drosselvorrichtung bei konstanter Verdichterleistung erfolgt.According to the invention, at least at the beginning of the cooling process, a position of the controllable throttle device that is determined as optimal for the respective centrifuge should be used for maximum cooling and, if necessary, adjusted later to a position corresponding to the optimal evaporator charge. In this context, according to the invention, the compressor is only adjusted over such a period until the actual temperature is within the tolerance range for an empirically determined period, advantageously a multiple, preferably 40 times, most preferably 26 times and in particular 12 times, for example for at least 2 minutes , according to which it is then provided according to the invention that the compressor output is kept constant, for as long as the actual temperature is in the tolerance range and is regulated to the target temperature via the controllable throttle device. This ensures that when starting the refrigeration compressor device in a first step, only a coarse control takes place via the compressor and then a fine control via the controllable throttle device with constant compressor output.

Falls bestimmte Vorgaben bezüglich der Abkühlzeit, also der Zeit, in der auf die Soll-Temperatur abgekühlt wird, bestehen, können auch die Leistung des Verdichters und/oder der Kältemittelfluss durch die steuerbare Drosselvorrichtung entsprechend geregelt werden.If certain requirements exist with regard to the cooling time, that is to say the time during which cooling to the target temperature takes place, the performance of the compressor and / or the refrigerant flow can also be regulated accordingly by the controllable throttle device.

Außerdem kann ein Vorabschaltwert oberhalb der Soll-Temperatur oder des Toleranzbereichs vorgesehen sein. Damit wird dem Effekt Rechnung getragen, dass in einem solchen Regelprozess der Ist-Temperaturwert aktuell den Soll-Temperaturwert aus dem positiven Temperaturbereich sehr rasant anstrebt. Um eine Überschreitung des schmalen Toleranzbereichs in Richtung negative Temperaturen möglichst zu vermeiden, wird der Vorabschaltwert eingeführt, das heißt bevor der eigentliche Soll-Temperaturwert, bevorzugt in der Mitte des Toleranzbereichs gelegen, durch den Ist-Temperaturwert erreicht ist, wird zum Beispiel der Verdichter schon heruntergeregelt oder abgeschaltet oder die steuerbare Drosselvorrichtung wird in Richtung Schließen betätigt. Es handelt sich hier also um ein Gegenregeln gegen die Trägheit des Systems.In addition, a pre-switch-off value can be provided above the target temperature or the tolerance range. This takes into account the effect that, in such a control process, the actual temperature value is currently very rapidly striving for the target temperature value from the positive temperature range. In order to avoid exceeding the narrow tolerance range in the direction of negative temperatures as far as possible, the pre-switch-off value is introduced, i.e. before the actual target temperature value, preferably in the middle of the tolerance range, is reached by the actual temperature value, for example the compressor already turned down or switched off or the controllable throttle device is actuated in the direction of closing. So this is a counter rule against the inertia of the system.

Weiterhin ist es vorteilhaft, wenn die Temperatur des Kältemittels im Kältekreislauf zum einen vor dem Verdampfer, bevorzugt am Verdampfereingang, und zum anderen nach dem Verdampfer, bevorzugt am Verdampferausgang, ermittelt wird und die steuerbare Drosselvorrichtung so geregelt wird, dass die Differenz der Temperatur des Kältemittels im Kältekreislauf vor dem Verdampfer und der Temperatur des Kältemittels im Kältekreislauf nach dem Verdampfer zwischen 0 K und 5 K, bevorzugt zwischen 0 K und 3 K, insbesondere zwischen 0 K und 1 K beträgt. (Die angegebenen Bereichsgrenzen sind dabei zugelassene Werte.) Hierdurch wird der Verdampfer besonders effektiv ausgenutzt, da der bei den Lösungen nach dem Stand der Technik erforderliche Temperaturunterschied von ca. 7 K zur Sicherstellung der Überhitzung nicht mehr erforderlich ist. Gleichzeitig wird eine Durchströmung des Verdampfers mit flüssigem Kältemittel und damit ein möglicher Flüssigkeitsschlag vermieden. Wenn auf eine Differenz größer 0 K geregelt wird, dann wird sichergestellt, dass das Kältemittel vollständig verdampft ist, da die positive Differenz dadurch zustande kommt, dass eine geringe Überhitzung stattfindet.Furthermore, it is advantageous if the temperature of the refrigerant in the refrigeration cycle is determined firstly upstream of the evaporator, preferably at the evaporator inlet, and secondly downstream of the evaporator, preferably at the evaporator outlet, and the controllable throttle device is controlled so that the difference in the temperature of the refrigerant in the refrigeration cycle before the evaporator and the temperature of the refrigerant in the refrigeration cycle after the evaporator is between 0 K and 5 K, preferably between 0 K and 3 K, in particular between 0 K and 1 K. (The specified range limits are permitted values.) This means that the evaporator is used particularly effectively since the temperature difference of approx. 7 K required in the solutions according to the prior art is no longer necessary to ensure overheating. At the same time, a flow of liquid refrigerant through the evaporator and thus a possible liquid hammer is avoided. If a difference greater than 0 K is controlled, then it is ensured that the refrigerant has completely evaporated, since the positive difference is caused by a slight overheating.

Weiterhin ist es besonders bevorzugt, wenn die Temperatur des Kältemittels im Kältekreislauf vor dem Verdampfer ermittelt wird und bei Unterschreiten einer vorbestimmten Temperatur zumindest durch eine der folgenden Maßnahmen diese vorbestimmte Temperatur zumindest wieder erreicht wird: i) Absenken der Fördermenge des Verdichters, ii) Zuschalten und Regeln eines Bypasses, mit dem der Verflüssiger im Kältekreislauf umgangen wird und iii) Steuerung der regelbaren Drosselvorrichtung zur Erhöhung des Kältemittelflusses im Kältekreislauf der Kompressorkühleinrichtung. Die vorbestimmte Temperatur ist abhängig vom benutzten Kältemittel und den geometrischen Verhältnissen zwischen Verdampfereingang und Verdichtereingang und beträgt beispielsweise -18°C. Dadurch wird wirksam verhindert, dass der Verdichter in den Vakuumbereich gerät und die Ölrückführung ausfällt. Deshalb muss bei Variante iii) bei Unterschreitung einer vorbestimmten Temperatur die Drosselvorrichtung wieder geöffnet werden.Furthermore, it is particularly preferred if the temperature of the refrigerant in the refrigeration circuit upstream of the evaporator is determined and if the temperature falls below a predetermined temperature at least by one of the following measures, this predetermined temperature is at least reached again: i) lowering the delivery rate of the compressor, ii) switching on and Regulating a bypass with which the condenser in the refrigeration circuit is bypassed and iii) controlling the controllable throttle device to increase the refrigerant flow in the refrigeration circuit of the compressor cooling device. The predetermined temperature depends on the refrigerant used and the geometric relationships between the evaporator inlet and the compressor inlet and is, for example, -18 ° C. This effectively prevents the compressor from entering the vacuum area and the oil return failing. In variant iii), therefore, the throttle device must be opened again when the temperature falls below a predetermined value.

Alternativ oder zusätzlich können folgende Merkmale zur weiteren Reduzierung von Erschütterungen der Zentrifuge eingesetzt werden:

  • Verwendung eines Verdichters mit waagerecht liegender Hauptwelle, der bevorzugt einen niedrigen Schwerpunkt aufweist und/oder eine große Stellfläche beansprucht
  • Verwendung eines rotierenden Verdichters, der bevorzugt nicht die von Hubkolbenverdichter her bekannte Mindestdrehzahl benötigt und/oder mittels eines Frequenzumrichters nach Möglichkeit bis zum Stillstand heruntergeregelt werden kann. Zusätzlich entsteht der Vorteil des Entfalls oszillierender Massen
  • Verwendung einer elastischen Abstützung des insbesondere stehend eingebauten Verdichters gegenüber dem Chassis der Zentrifuge, wobei die Abstützung bevorzugt oberhalb des Schwerpunktes des Verdichters angeordnet wird.
Alternatively or additionally, the following features can be used to further reduce vibrations in the centrifuge:
  • Use of a compressor with a horizontal main shaft, which preferably has a low center of gravity and / or takes up a large footprint
  • Use of a rotating compressor which preferably does not require the minimum speed known from reciprocating piston compressors and / or can be regulated down to standstill by means of a frequency converter if possible. In addition, there is the advantage of eliminating oscillating masses
  • Use of an elastic support of the compressor, which is installed in particular standing, relative to the chassis of the centrifuge, the support preferably being arranged above the center of gravity of the compressor.

Für die Ausgestaltung einer Zentrifuge mit diesen den Verdichter betreffenden Merkmalen wird unabhängig von der Ausgestaltung der Kompressorkühleinrichtung selbständiger Schutz beansprucht.Independent protection is claimed for the design of a centrifuge with these features relating to the compressor, regardless of the design of the compressor cooling device.

Sämtliche Merkmale der vorliegenden Erfindung lassen sich - sofern nicht anders angegeben - frei miteinander kombinieren.Unless otherwise stated, all of the features of the present invention can be freely combined with one another.

Die Merkmale der vorliegenden Erfindung und weitere Vorteile werden im Folgenden anhand der Beschreibung eines bevorzugten Ausführungsbeispiels im Zusammenhang mit den Figuren deutlich werden. Dabei zeigen:

Fig. 1
das Blockschema einer Kompressorkühleinrichtung nach dem Stand der Technik,
Fig. 2
die erfindungsgemäße Zentrifuge in einer Draufsicht,
Fig. 3
das Blockschema der Kompressorkühleinrichtung der erfindungsgemäßen Zentrifuge,
Fig. 4
das Blockschema der Regelung nach dem erfindungsgemäßen Verfahren und
Fig. 5
den Vergleich der maximalen Kühlleistung zweier Zentrifugen mit Kompressorkühleinrichtung nach Stand der Technik mit TEV und der erfindungsgemäß verwendeten Kompressorkühleinrichtung mit EEV.
The features of the present invention and further advantages will become clear below on the basis of the description of a preferred exemplary embodiment in connection with the figures. Show:
Fig. 1
the block diagram of a compressor cooling device according to the prior art,
Fig. 2
the centrifuge according to the invention in a plan view,
Fig. 3
the block diagram of the compressor cooling device of the centrifuge according to the invention,
Fig. 4
the block diagram of the control according to the inventive method and
Fig. 5
the comparison of the maximum cooling capacity of two centrifuges with compressor cooling device according to the prior art with TEV and the compressor cooling device used according to the invention with EEV.

In Fig. 2 ist rein schematisch in einer perspektivischen Draufsicht die erfindungsgemäße Zentrifuge 20 dargestellt. Die Zentrifuge ist als eine Laborzentrifuge 20 ausgebildet und weist ein Gehäuse 21 mit einer Abdeckung (nicht gezeigt) für die Kompressorkühleinrichtung 25 mit dem Kompressor 27, einem Deckel 23 für den Zentrifugenkessel 37 und Rotor 28 und eine Bodenplatte 29 auf.In Fig. 2 the centrifuge 20 according to the invention is shown purely schematically in a perspective top view. The centrifuge is designed as a laboratory centrifuge 20 and has a housing 21 with a cover (not shown) for the compressor cooling device 25 with the compressor 27, a cover 23 for the centrifuge bowl 37 and rotor 28 and a base plate 29.

Aus den Fig. 1 und 3 werden die Unterschiede der erfindungsgemäßen Kompressorkühleinrichtung 30 im Vergleich zu einer Kompressorkühleinrichtung 1 nach dem Stand der Technik deutlich.From the Fig. 1 and 3 the differences of the compressor cooling device 30 according to the invention in comparison to a compressor cooling device 1 according to the prior art become clear.

Auch die erfindungsgemäße Kompressorkühleinrichtung 30 weist einen frequenzsteuerbaren Verdichter 31, einen Verflüssiger 33, einen Verdampfer 35, der zur mittelbaren Kühlung um einen Zentrifugenkessel 37 angeordnet ist, und ein Entspannungselement 39 auf.The compressor cooling device 30 according to the invention also has a frequency-controllable compressor 31, a condenser 33, an evaporator 35, which is arranged for indirect cooling around a centrifuge bowl 37, and a relaxation element 39.

Die in Fig. 1 dargestellte bisher bekannte Kompressorkühleinrichtung 1 weist als Entspanner 11 ein thermostatisches Einspritzventil (TEV) auf, das einen Druckeingang 17 besitzt, der mit einem Sensor 13 am Ausgang VA des Verdampfers 3 in Verbindung steht. Bei Erreichen einer Überhitzung entsteht im Sensor 13 am Verdampferausgang VA ein Überdruck, der gegen den Druck einer Feder des TEV 11 wirkt und diesen dadurch öffnet. Das TEV 11 ist daher nur Element einer passiven Regelung, da keine externe Ansteuerbarkeit, beispielsweise über eine Elektronik vorliegt, und es ist aufgrund der herzustellenden Überhitzung nicht möglich, den Verdampfer vollständig auszunutzen.In the Fig. 1 The previously known compressor cooling device 1 has, as the expansion device 11, a thermostatic injection valve (TEV) which has a pressure inlet 17 which is connected to a sensor 13 at the outlet VA of the evaporator 3. When overheating is reached, an overpressure arises in the sensor 13 at the evaporator outlet VA, which acts against the pressure of a spring of the TEV 11 and thereby opens it. The TEV 11 is therefore only an element of a passive control, since there is no external controllability, for example via electronics, and it is not possible to fully utilize the evaporator due to the overheating to be produced.

Im Gegensatz dazu weist die in Fig. 3 gezeigte Kompressorkühleinrichtung 30 anstelle des TEV eine steuerbare Drosselvorrichtung 39 in Form eines elektronischen Einspritzventils (EEV) 39 auf. Weiterhin besitzt der Kältekreislauf 41 einen Bypass 43 zur Überbrückung des Verflüssigers 33. Dieser Bypass 43 ist ebenfalls mit einem elektronischen Einspritzventil 45 versehen. Anstelle kontinuierlich verstellbaren Stellglieder 39, 45 können alternativ auch diskrete Stellglieder vorgesehen sein.In contrast, the in Fig. 3 shown compressor cooling device 30 instead of the TEV a controllable throttle device 39 in the form of an electronic injection valve (EEV) 39. Furthermore, the refrigeration circuit 41 has a bypass 43 for bridging the condenser 33. This bypass 43 is also provided with an electronic injection valve 45. Instead of continuously adjustable actuators 39, 45, discrete actuators can alternatively also be provided.

Weiterhin sind drei Mittel 47, 49, 51 zur Erfassung der Temperatur TVE vor dem Verdampfer 35, zur Erfassung der Temperatur TVA am Ausgang VA des Verdampfers 35 und zur Erfassung der Temperatur T im Zentrifugenkessel 37 vorgesehen.Furthermore, three means 47, 49, 51 are provided for detecting the temperature T VE upstream of the evaporator 35, for detecting the temperature T VA at the outlet VA of the evaporator 35 and for detecting the temperature T in the centrifuge bowl 37.

In Fig. 4 ist rein schematisch die Regelung nach dem erfindungsgemäßen Verfahren gezeigt.In Fig. 4 the control according to the inventive method is shown purely schematically.

Es ist zu erkennen, dass ein Regelungsmittel 60 eingesetzt wird, das die durch einen Bediener festgelegte Soll-Temperatur TK für den Zentrifugenkessel berücksichtigt. Am Verdampfer 35 werden am Eingang VE die Temperatur TVE und am Ausgang VA die Temperatur TVA erfasst und dem Regelungsmittel 60 zugeführt. Außerdem wird am Kessel 37 die Ist-Temperatur T abgenommen und dem Regelungsmittel 60 zugeführt. Über einen für die erfindungsgemäß aufgebaute Zentrifuge 20 empirisch ermittelten Tendenzzeitraum td von 10 s, wobei sowohl längere als auch kürzere Zeiträume möglich sind, wird die Tendenz der Temperaturentwicklung der Ist-Temperatur T bestimmt. Außerdem ist für die Soll-Temperatur TK für den Zentrifugenkessel 37 ein Toleranzbereich von +/- 1,5 K festgelegt. Das Regelmittel 60 steuert das EEV 39, den Verdichter 31 und ggf. den Bypass 45.It can be seen that a control means 60 is used, which takes into account the target temperature T K for the centrifuge bowl set by an operator. The temperature T VE at the inlet VE and the temperature T VA at the outlet VA are recorded on the evaporator 35 and fed to the control means 60. In addition, the actual temperature T is taken from the boiler 37 and fed to the control means 60. The tendency of the temperature development of the actual temperature T is determined over a trend period td of 10 s empirically determined for the centrifuge 20 constructed according to the invention, both longer and shorter periods being possible. In addition, for the target temperature T K a tolerance range of +/- 1.5 K is established for the centrifuge bowl 37. The control means 60 controls the EEV 39, the compressor 31 and possibly the bypass 45.

Die Steuerung und Regelung der Kompressorkühleinrichtung 30 erfolgt nun in der folgenden Art und Weise.The control and regulation of the compressor cooling device 30 is now carried out in the following manner.

Bei Start der Kühlvorrichtung 30 der Zentrifuge 20 ist das EEV 39 auf einen empirisch ermittelten Kältemittelfluss eingestellt und die Ist-Temperatur T wird bis zum vorgegeben Toleranzbereich mittels Steuerung der Drehzahl des Verdichters 31 abgesenkt. Die Drehzahl des Verdichters 31 wird dabei entweder maximal gehalten oder, falls eine bestimmte Abkühlzeit auf die Soll-Temperatur TK angestrebt ist, auf einem entsprechenden Wert gehalten werden. Zusätzlich kann eine Vorabschaltzeit zur Berücksichtigung der Trägheit der Kompressorkühleinrichtung 30 verwendet werden und/oder die Drehzahl des Verdichters 31 wird mittels einer empirisch bestimmten Funktion während der Grobregelung abgesenkt.When the cooling device 30 of the centrifuge 20 starts, the EEV 39 is set to an empirically determined refrigerant flow and the actual temperature T is reduced to the predetermined tolerance range by controlling the speed of the compressor 31. The speed of the compressor 31 is either kept at a maximum or, if a specific cooling time to the target temperature T K is desired, is kept at a corresponding value. In addition, a pre-switch-off time can be used to take into account the inertia of the compressor cooling device 30 and / or the speed of the compressor 31 is reduced by means of an empirically determined function during the rough control.

Erfindungsgemäß sollte zumindest am Anfang des Kühlprozesses eine für die jeweilige Zentrifuge 20 als optimal ermittelte Stellung der steuerbaren Drosselvorrichtung 39 zur maximalen Kühlung verwendet und ggf. später auf eine der optimalen Verdampferfüllung entsprechende Position nachgeführt werden.According to the invention, at least at the beginning of the cooling process, a position of the controllable throttle device 39, which is determined as optimal for the respective centrifuge 20, should be used for maximum cooling and, if necessary, be subsequently adjusted to a position corresponding to the optimal evaporator charge.

Die Grobregelung mittels Verdichterdrehzahl wird so lange ausgeführt, bis die Ist-Temperatur T im Kessel 37 für einen festgelegten Zeitraum (z.B. 1 min) im Toleranzbereich verweilt. Wenn also die Ist-Temperatur T die Soll-Temperatur TK unterschreitet, wird die Leistung des Verdichters 31 durch Reduzierung der Frequenz herabgesetzt, und zwar so lange, bis die Ist-Temperatur T die Soll-Temperatur TK wieder erreicht oder überschreitet. Im Fall des Überschreitens der Soll-Temperatur TK wird die Frequenz des Verdichters 31 wieder angehoben. Dieser iterative Prozess wird so lange fortgesetzt, bis sich die Ist-Temperatur T für eine Zeitspanne von beispielsweise mindestens 1 min, d.h. 6 Tendenzzeiträume td innerhalb des Toleranzbereiches der Soll-Temperatur TK bewegt.The coarse control by means of the compressor speed is carried out until the actual temperature T in the boiler 37 remains in the tolerance range for a fixed period (for example 1 min). If the actual temperature T falls below the target temperature T K , the power of the compressor 31 is reduced by reducing the frequency until the actual temperature T reaches or exceeds the target temperature T K again. If the target temperature T K is exceeded, the frequency of the compressor 31 is raised again. This iterative process is continued until the actual temperature T is within the tolerance range of the target temperature T K for a period of at least 1 min, ie 6 tendency periods td.

Danach wird dann die Verdichterdrehzahl konstant gehalten, und zwar so lange, wie sich die Ist-Temperatur im Toleranzbereich befindet und die Soll-Temperatur über die steuerbare Drosselvorrichtung 39 geregelt wird.The compressor speed is then kept constant, for as long as the actual temperature is within the tolerance range and the setpoint temperature is regulated via the controllable throttle device 39.

Dadurch wird sichergestellt, dass beim Anfahren der Kühlkompressoreinrichtung 20 in einem ersten Schritt ausschließlich die Grobregelung über den Verdichter 31 und anschließend eine Feinregelung über die steuerbare Drosselvorrichtung 39 bei konstanter Verdichterdrehzahl erfolgt.This ensures that when starting the cooling compressor device 20 in a first step, only the rough control via the compressor 31 and then one Fine control takes place via the controllable throttle device 39 at a constant compressor speed.

Es kann vorgesehen sein, dass im Laufe der Grobregelung oder zwischen Grob- und Feinregelung die steuerbare Drosselvorrichtung 39 auf eine Mittelstellung eingestellt wird und die Drehzahl des Verdichters 31 entsprechend angepasst wird, um das Regelungsvermögen der Drosselvorrichtung 39 während der Feinregelung optimal ausnutzen zu können. Wesentlich ist aber, dass während der Feinregelung, also der Zeit, in der sich die Ist-Temperatur T sich innerhalb des Toleranzbereichs befindet, keine Veränderung der Leistung des Verdichters 31 erfolgt.It can be provided that in the course of the coarse control or between coarse and fine control, the controllable throttle device 39 is set to a middle position and the speed of the compressor 31 is adjusted accordingly in order to be able to optimally utilize the control capacity of the throttle device 39 during the fine control. It is essential, however, that during the fine control, ie the time in which the actual temperature T is within the tolerance range, there is no change in the output of the compressor 31.

Bei der nachfolgenden Feinregelung wird die Kühlleistung nur noch über das EEV 39 allein geregelt. Dabei erfolgt eine Regelung nach der Tendenz, d. h. wenn die Tendenz der Ist-Temperatur T im Tendenzzeitraum td sinkt, wird das EEV 39 heruntergeregelt, also der Kältemittelfluss verringert. Für den Fall, dass die Tendenz steigt, wird das elektronische Einspritzventil 39 heraufgeregelt, so dass mehr Kältemittel dem Verdampfer 35 zugeführt wird.In the subsequent fine control, the cooling capacity is only controlled via the EEV 39 alone. Regulation is based on the tendency, i. H. If the tendency of the actual temperature T decreases in the trend period td, the EEV 39 is reduced, that is to say the refrigerant flow is reduced. In the event that the tendency increases, the electronic injection valve 39 is regulated upward, so that more refrigerant is supplied to the evaporator 35.

Außerdem wird noch eine festgelegte untere Grenze TVEmin der Temperatur TVE am Eingang VE des Verdampfers 35 überwacht und bei Unterschreiten dieser Temperatur TVEmin wird das EEV 39 weiter geöffnet bis die ermittelte Temperatur TVE wieder größer ist als die dafür vorgegebene Temperatur TVEmin. Dadurch wird verhindert, dass der Verdichter 31 in den Vakuumbereich gerät.In addition, a defined lower limit T VEmin of the temperature T VE at the input VE of the evaporator 35 is monitored and if this temperature T VEmin is undershot , the EEV 39 is opened further until the temperature T VE determined is again greater than the temperature T VEmin specified therefor . This prevents the compressor 31 from getting into the vacuum range.

Zusätzlich wird die Differenz der Temperaturen TVA - TVE ständig überwacht. Diese sollte sich im Bereich zwischen 0 K und 1 K bewegen, um einerseits die Auslastung des Verdampfers 35 maximal zu halten, und um andererseits zu verhindern, dass flüssiges Kältemittel in den Verdichter 31 gelangt, Falls diese Differenz TVA - TVE unterschritten wird, wird das EEV 39 weiter geschlossen oder/und die Verdichterfrequenz verringert.In addition, the difference in temperatures T VA - T VE is constantly monitored. This should be in the range between 0 K and 1 K, on the one hand to keep the utilization of the evaporator 35 to a maximum, and on the other hand to prevent liquid refrigerant from getting into the compressor 31. If this difference falls below T VA - T VE , the EEV 39 is closed further and / or the compressor frequency is reduced.

Mit dem erfindungsgemäßen Verfahren kann der Verdampfer maximal ausgenutzt werden. Damit kann die Kühlleistung des Verdampfers erhöht und somit im Fall der erfindungsgemäßen Zentrifuge 20 ca. 5 % mehr Wärme gegenüber bisher bekannten Kompressorkühleinrichtungen abgeführt werden, wodurch die Leistung des Rotors der Zentrifuge entsprechend angehoben werden kann. Im Extremfall ist also eine um 5% höhere Wärmeerzeugung durch den Rotor zulässig und dieser kann damit in einem höheren Drehzahlbereich betrieben werden, wodurch die Zentrifugierleistung erhöht wird.The evaporator can be used to the maximum with the method according to the invention. The cooling capacity of the evaporator can thus be increased and, in the case of the centrifuge 20 according to the invention, approximately 5% more heat can be dissipated compared to previously known compressor cooling devices, as a result of which the capacity of the rotor of the centrifuge can be increased accordingly. In extreme cases, a 5% higher heat generation by the rotor is permissible and it can be operated in a higher speed range, which increases the centrifuging performance.

In Fig. 5 ist die vorteilhafte Wirkung der erfindungsgemäßen Zentrifuge 20 im Zusammenhang mit dem erfindungsgemäßen Verfahren deutlich zu erkennen, wobei zur Vereinfachung vorgesehen war, dass die Kompressorfrequenz über die gesamte Laufzeit konstant (maximal) gehalten wurde und mit der Drosselvorrichtung geregelt wurde. Aus der graphischen Darstellung der Verläufe der Ist-Temperatur T wird sehr deutlich, dass die Regelung der Temperatur der Kesselluft gemäß der vorliegenden Erfindung wesentlich stetiger erfolgt und eine tiefere Endtemperatur gefahren werden kann.In Fig. 5 The advantageous effect of the centrifuge 20 according to the invention can be clearly seen in connection with the method according to the invention, it being provided for simplification that the compressor frequency was kept constant (maximum) over the entire running time and was regulated with the throttle device. It is very clear from the graphical representation of the courses of the actual temperature T that the control of the temperature of the boiler air according to the present invention takes place much more steadily and that a lower final temperature can be reached.

Neben den beschriebenen Vorteilen bezüglich der Kühlleistung können somit die Proben wesentlich genauer auf einer bestimmten Temperatur gehalten werden, was insbesondere bei empfindlichen Proben bzw. problematischen Temperatureinflüssen von großem Vorteil ist.In addition to the described advantages with regard to the cooling capacity, the samples can thus be kept much more precisely at a certain temperature, which is of great advantage particularly in the case of sensitive samples or problematic temperature influences.

Insgesamt lässt sich somit festhalten, dass die vorliegende Erfindung folgende Vorteile besitzt:

  • effizientere Ausnutzung des Rotorraumes/Verdampfers der Zentrifuge
  • energieeffizientere Funktion der Zentrifuge
  • Möglichkeit der Verwendung eines Verdichters mit geringerer Leistung bzw. der Verdichter kann zur Erzielung einer vorgegebenen Kühlleistung mit geringerer Frequenz angetrieben werden, woraus eine geringere Stromaufnahme und damit Energieeinsparung folgen
  • Verdichter startet weniger, wodurch die Anzahl der Lastspitzen im Stromnetz und der Verbrauch minimiert werden
  • Verdichter kann im optimalen Arbeitspunkt, öfter bei niedriger Drehzahl, betrieben werden, wodurch sich Arbeitsgeräusche vermindern
  • die Möglichkeit eines gesteuerten Druckausgleichs zwischen Hoch- und Niederdruckseite verringert die Startströme des Verdichters. Es kann im Stillstand des Verdichters gezielt das EEV geöffnet werden, um den Druckausgleich zwischen Hoch- und Niederdruckseite zu beschleunigen und damit im Geringlastbereich eine höhere Regelgüte zu erreichen
  • genauere Regelung der Temperatur im Rotorraum und somit der Probentemperatur.
Overall, it can thus be said that the present invention has the following advantages:
  • more efficient use of the rotor space / evaporator of the centrifuge
  • more energy efficient function of the centrifuge
  • Possibility of using a compressor with a lower power or the compressor can be driven to achieve a predetermined cooling capacity with a lower frequency, which results in lower power consumption and thus energy saving
  • Compressor starts less, which minimizes the number of load peaks in the power grid and consumption
  • The compressor can be operated at the optimum operating point, more often at low speed, which reduces working noise
  • the possibility of a controlled pressure equalization between the high and low pressure side reduces the starting currents of the compressor. When the compressor is at a standstill, the EEV can be opened in order to equalize the pressure between high and accelerate the low pressure side and thus achieve a higher control quality in the low load range
  • more precise control of the temperature in the rotor space and thus the sample temperature.

Claims (16)

  1. Laboratory centrifuge (20) with a centrifuge vessel (37) and a compressor cooling device (30), which has a refrigeration cycle (41), an evaporator (35), a condenser (33) and a compressor (31), wherein at least one controllable throttle device (39), acting in particular as an expansion element, is provided in the refrigeration cycle (41) upstream of the evaporator (35) to regulate the refrigerant flow, wherein means (51) for determining the actual temperature (T) of the centrifuge vessel (37) of the centrifuge (20) are provided, the compressor is formed to be controllable in respect of its flow rate, characterised in that the laboratory centrifuge (20) is adapted thereto that a target temperature (TK) of the centrifuge vessel (37) can be set, wherein a tolerance range of a maximum of +/- 5K can be set around the target temperature (TK), and the laboratory centrifuge is further adapted to set the controllable throttle device (39) to a certain refrigerant flow on starting of the compressor cooling device (30) and to lower the actual temperature (T) in the centrifuge vessel (37) as far as the tolerance range by means of the controllable compressor (31) and thereafter to keep the compressor output constant as long as the actual temperature (T) is in the tolerance range and the actual temperature (T), when it is within the tolerance range, is regulated via the controllable throttle device (39), wherein the actual temperature (T) is only regulated by means of the controllable throttle device (39) if it is within the defined tolerance range and wherein the actual temperature (T) is only regulated via the compressor if the actual temperature is not within the tolerance range.
  2. Laboratory centrifuge (20) according to claim 1, characterised in that at least one means (47, 49) is provided for recording the temperature (TVE, TVA) of the refrigerant in the refrigeration cycle (41) and/or for recording the temperature (TK) in the centrifuge vessel (37), wherein preferably a means (47) for recording the temperature (TVE) of the refrigerant in the refrigeration cycle (41) before the evaporator (35) and a means (49) for recording the temperature (TVA) after the evaporator (35) are provided.
  3. Laboratory centrifuge (20) according to claim 1 or 2, characterised in that the compressor (31) is formed to be power-controllable, in particular frequency-controllable, in respect of its flow rate and/or that a bypass (43) is provided in the refrigeration cycle (41) to bridge the condenser (33), which bypass is formed to be capable of regulation via a controllable throttle device (45).
  4. Laboratory centrifuge (20) according to any one of the preceding claims, characterised in that regulating means (60) are provided, which use at least one of the recorded temperatures (TVE, TVA, TK) as an input variable and which control and regulate at least one of the elements controllable throttle device (39), controllable bypass (43) and controllable compressor (31).
  5. Laboratory centrifuge according to any one of the preceding claims, characterised in that means are provided for determining the trend of the actual temperature (T) for a predetermined trend period (td), wherein the laboratory centrifuge is preferably adapted to regulate the controllable throttle device (39) up or down if the trend of the actual temperature (T) rises or falls in the trend period (td), so that the refrigerant flow is increased or reduced.
  6. Laboratory centrifuge according to any one of the preceding claims, characterised in that the controllable throttle device is formed as an electronic injection valve (39).
  7. Laboratory centrifuge (20) according to any one of claims 1 to 6, characterised in that the centrifuge (20) has a regulating system formed for coarse and fine regulation, wherein it is preferably provided that in a first step for coarse regulation, the regulating system controls the compressor (31) and if applicable the controllable throttle device (39), preferably only the compressor (31) and in a second step for fine regulation, regulation takes place via the controllable throttle device (39) without regulation of the compressor (31).
  8. Laboratory centrifuge (20) according to claim 1, characterised in that the regulating system is designed to take account of the trend of the actual temperature (T), wherein preferably a trend period (td) of at least 2 s, preferably of at least 5 s and in particular of at least 10 s can be set.
  9. Method for controlling and regulating the compressor cooling device (30) of a laboratory centrifuge (20) with a centrifuge vessel (37), in particular according to any one of the preceding claims, wherein the compressor cooling device (30) has a refrigeration cycle (41), an evaporator (35), a condenser (33) and a compressor (31), wherein a controllable throttle device (39) is used upstream of the evaporator (35) to regulate the refrigerant flow in the refrigeration cycle (41) of the compressor cooling device (30), wherein a compressor (31) formed to be controllable in respect of its flow rate is used, wherein furthermore a target temperature (TK) of the centrifuge vessel (37) is specified and the actual temperature (T) of the centrifuge vessel (37) of the centrifuge (20) is determined, characterised in that a tolerance range of a maximum of +/- 5K around the target temperature (TK) is set, wherein on starting of the compressor cooling device (30) the controllable throttle device (39) is set to a certain refrigerant flow and the actual temperature (T) in the centrifuge vessel (37) is lowered as far as the tolerance range by means of the controllable compressor (31), after which it is provided that the compressor output is kept constant as long as the actual temperature (T) is in the tolerance range and the actual temperature (T), when it is within the tolerance range, is regulated via the controllable throttle device (39), wherein the actual temperature (T) is only regulated by means of the controllable throttle device (39) if it is within the defined tolerance range and wherein the actual temperature (T) is only regulated via the compressor if the actual temperature is not within the tolerance range.
  10. Method according to claim 9, characterised in that the trend of the actual temperature (T) is determined in a certain trend period (td), wherein this trend period (td) is at least 2 s, preferably at least 5 s, in particular at least 10 s and/or wherein the controllable throttle device (39) is regulated up or down if the trend of the actual temperature (T) rises or falls in the trend period (td).
  11. Method according to claim 10, characterised in that the tolerance range around the target temperature (TK) is a maximum of +/- 3K, in particular +/- 1.5K, and the actual temperature (T), if it is within the tolerance range, is regulated by means of the controllable throttle device (39), wherein it is preferably provided that a controllable compressor (31) is used and in the event of the actual temperature (T) exceeding or falling below the tolerance range, the compressor (31) is regulated so that the actual temperature (T) is once again located in the tolerance range.
  12. Method according to one of claims 10 or 11, characterised in that the compressor (31) is adjusted over such a period until the actual temperature (T) is located for an empirically determined period, preferably 60 times, most preferably 24 times, in particular 12 times the trend period (td) within the tolerance range, after which it is then provided in particular that the compressor output is kept constant as long as the actual temperature (T) is in the tolerance range and the actual temperature (T) is regulated via the controllable throttle device (39).
  13. Method according to any one of claims 9 to 12, characterised in that the temperature (TVE, TVA) of the refrigerant in the refrigeration cycle (41) a) is determined before the evaporator (35) and b) after the evaporator (35) and the controllable throttle device (39) is regulated such that the difference in the temperature (TVE) of the refrigerant in the refrigeration cycle (41) before the evaporator (35) and the temperature (TVA) of the refrigerant in the refrigeration cycle (41) after the evaporator (35) is between 0K and 5K, preferably between 0K and 3K, in particular between 0K and 1K.
  14. Method according to any one of claims 9 to 13, characterised in that the temperature (TVE) of the refrigerant in the refrigeration cycle (41) before the evaporator (35) is determined and if it falls below a predetermined temperature (TVEmin), this temperature is at least reached again at least by one of the following measures:
    i) lowering the flow rate of the compressor (31),
    ii) connecting and regulating a bypass (43) with which the condenser (33) in the refrigeration cycle (41) is bypassed, and
    iii) regulating the controllable throttle device (39) to increase the refrigerant flow in the refrigeration cycle (41) of the compressor cooling device (30).
  15. Method according to any one of claims 9 to 14, characterised in that a preliminary switch-off value above the target temperature (TK) or the tolerance range is provided and on attainment of this value by the actual temperature (T), the compressor (31) is regulated down or switched off or the controllable throttle device (39) is operated in the closing direction.
  16. Method according to any one of claims 9 to 15, characterised in that an electronic injection valve (39) is used as a controllable throttle device.
EP13705913.5A 2012-02-13 2013-02-13 Laboratory centrifuge having a compressor cooling device and method for controlling a compressor cooling device of a laboratory centrifuge Active EP2814617B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL13705913T PL2814617T3 (en) 2012-02-13 2013-02-13 Laboratory centrifuge having a compressor cooling device and method for controlling a compressor cooling device of a laboratory centrifuge

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261597916P 2012-02-13 2012-02-13
DE102012002593A DE102012002593A1 (en) 2012-02-13 2012-02-13 Centrifuge with compressor cooling device and method for controlling a compressor cooling device of a centrifuge
PCT/EP2013/000415 WO2013120604A2 (en) 2012-02-13 2013-02-13 Centrifuge having a compressor cooling device, and methods for controlling a compressor cooling device of a centrifuge

Publications (2)

Publication Number Publication Date
EP2814617A2 EP2814617A2 (en) 2014-12-24
EP2814617B1 true EP2814617B1 (en) 2020-01-22

Family

ID=48868130

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13705913.5A Active EP2814617B1 (en) 2012-02-13 2013-02-13 Laboratory centrifuge having a compressor cooling device and method for controlling a compressor cooling device of a laboratory centrifuge

Country Status (7)

Country Link
US (1) US10449556B2 (en)
EP (1) EP2814617B1 (en)
JP (1) JP6329910B2 (en)
CN (1) CN104203422B (en)
DE (1) DE102012002593A1 (en)
PL (1) PL2814617T3 (en)
WO (1) WO2013120604A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4299188A1 (en) 2022-06-30 2024-01-03 Sigma Laborzentrifugen GmbH Centrifuge, method of operating a centrifuge and computer readable medium

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014107294B4 (en) 2014-05-23 2017-02-09 Andreas Hettich Gmbh & Co. Kg centrifuge
DE102014110467A1 (en) 2014-07-24 2016-01-28 Andreas Hettich Gmbh & Co. Kg centrifuge
EP3015791A1 (en) * 2014-10-29 2016-05-04 Eppendorf Ag Centrifuge with a compressor cooling circuit and method for operating a centrifuge with a compressor cooling circuit
US10415891B2 (en) * 2016-02-22 2019-09-17 Kabushiki Kaisha Toyota Chuo Kenkyusho Heat exchanger and heat storage system
CN107752587A (en) * 2016-08-16 2018-03-06 开利公司 Refrigerated display case, refrigeration system and constant-temperature control method
EP3479903B1 (en) 2017-11-06 2020-09-16 Sigma Laborzentrifugen GmbH Centrifuge
DE102017130785A1 (en) 2017-12-20 2019-06-27 Eppendorf Ag Tempered centrifuge
CN108981969B (en) * 2018-06-07 2023-07-25 浙江大学 Device and method for testing air friction heat generation capacity of geotechnical centrifuge in vacuum environment
DE102018114450A1 (en) * 2018-06-15 2019-12-19 Eppendorf Ag Temperature-controlled centrifuge with crash protection
CN110565317B (en) * 2019-08-27 2022-03-15 亳州樰骏纺织有限公司 Chemical fiber fabric ironing device
CN111832189B (en) * 2020-07-24 2021-09-14 重庆通用工业(集团)有限责任公司 Centrifugal vapor compressor model selection method
CN115338046A (en) * 2022-07-21 2022-11-15 青岛海尔生物医疗科技有限公司 Control method for centrifugal machine and centrifugal machine

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3343516A1 (en) * 1983-12-01 1985-06-13 Berthold Hermle Kg, 7209 Gosheim COOLING CENTRIFUGE WITH INTERCHANGEABLE ROTORS
DE3601817A1 (en) * 1986-01-22 1987-07-23 Egelhof Fa Otto CONTROL DEVICE FOR THE REFRIGERANT FLOW FOR EVAPORATING REFRIGERATION SYSTEMS OR HEAT PUMPS AND EXPANSION VALVES ARRANGED IN THE REFRIGERANT FLOW
DE3720085A1 (en) * 1987-06-16 1988-12-29 Berthold Hermle Gmbh & Co Masc METHOD AND ARRANGEMENT FOR TEMPERATURE CONTROL, IN PARTICULAR WITH COOLING CENTRIFUGES
DE3818584A1 (en) * 1988-06-01 1989-12-14 Hermle Kg Berthold COOLING DEVICE FOR A CENTRIFUGE
US5218836A (en) * 1992-06-11 1993-06-15 Eaton Corporation Measuring evaporator load in an automotive air conditioning system for compressor clutch control using evaporator inlet temperature
JP2002267314A (en) * 2001-03-14 2002-09-18 Sanyo Electric Co Ltd Controller for automatic vending machine
DE102004041655A1 (en) * 2003-09-26 2005-05-04 Thermo King Corp Temperature control device and method for its operation
JP2009174800A (en) * 2008-01-25 2009-08-06 Mitsubishi Electric Corp Reheating dehumidifier and air conditioner
JP2011255330A (en) * 2010-06-10 2011-12-22 Hitachi Koki Co Ltd Centrifugal separator

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900001896B1 (en) * 1984-05-23 1990-03-26 미쓰비시전기주식회사 Heat pump with capillary tube-type expansion device
JPS6136671A (en) * 1984-07-26 1986-02-21 三洋電機株式会社 Controller for flow rate of refrigerant
US4899549A (en) * 1989-01-31 1990-02-13 Thermo King Corporation Transport refrigeration system with improved temperature and humidity control
JPH04366365A (en) * 1991-06-12 1992-12-18 Daikin Ind Ltd Controlling device for operation of refrigerating plant
JP3540075B2 (en) * 1995-12-11 2004-07-07 松下電器産業株式会社 Air conditioner
DE19932721C1 (en) * 1999-07-16 2001-01-18 Eppendorf Geraetebau Netheler Laboratory centrifuge with cooling unit
JP2003083621A (en) * 2001-09-12 2003-03-19 Mitsubishi Heavy Ind Ltd Marine refrigerating unit
TWI315383B (en) * 2003-03-24 2009-10-01 Sanyo Electric Co Refrigerant cycle apparatus
JP2005048988A (en) * 2003-07-31 2005-02-24 Mitsubishi Heavy Ind Ltd Refrigeration unit
ATE426785T1 (en) * 2004-01-28 2009-04-15 Bms Energietechnik Ag HIGHLY EFFICIENT EVAPORATION IN COOLING SYSTEMS WITH THE REQUIRED PROCESS TO ACHIEVE THE MOST STABLE CONDITIONS AT THE SMALLEST AND/OR DESIRED TEMPERATURE DIFFERENCES OF THE MEDIA TO BE COOL AND THE EVAPORATION TEMPERATURE
JP4786960B2 (en) * 2005-08-02 2011-10-05 関東精機株式会社 Machine tool temperature control method and apparatus
JP2007232331A (en) * 2006-03-03 2007-09-13 Sumitomo Electric Ind Ltd Air-conditioning control method and air-conditioning control device
JP2008032336A (en) * 2006-07-31 2008-02-14 Sanyo Electric Co Ltd Two-stage expansion refrigeration apparatus
JP2010008022A (en) * 2008-06-30 2010-01-14 Tomy Ltd Refrigerating circuit and centrifugal separator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3343516A1 (en) * 1983-12-01 1985-06-13 Berthold Hermle Kg, 7209 Gosheim COOLING CENTRIFUGE WITH INTERCHANGEABLE ROTORS
DE3601817A1 (en) * 1986-01-22 1987-07-23 Egelhof Fa Otto CONTROL DEVICE FOR THE REFRIGERANT FLOW FOR EVAPORATING REFRIGERATION SYSTEMS OR HEAT PUMPS AND EXPANSION VALVES ARRANGED IN THE REFRIGERANT FLOW
DE3720085A1 (en) * 1987-06-16 1988-12-29 Berthold Hermle Gmbh & Co Masc METHOD AND ARRANGEMENT FOR TEMPERATURE CONTROL, IN PARTICULAR WITH COOLING CENTRIFUGES
DE3818584A1 (en) * 1988-06-01 1989-12-14 Hermle Kg Berthold COOLING DEVICE FOR A CENTRIFUGE
US5218836A (en) * 1992-06-11 1993-06-15 Eaton Corporation Measuring evaporator load in an automotive air conditioning system for compressor clutch control using evaporator inlet temperature
JP2002267314A (en) * 2001-03-14 2002-09-18 Sanyo Electric Co Ltd Controller for automatic vending machine
DE102004041655A1 (en) * 2003-09-26 2005-05-04 Thermo King Corp Temperature control device and method for its operation
JP2009174800A (en) * 2008-01-25 2009-08-06 Mitsubishi Electric Corp Reheating dehumidifier and air conditioner
JP2011255330A (en) * 2010-06-10 2011-12-22 Hitachi Koki Co Ltd Centrifugal separator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4299188A1 (en) 2022-06-30 2024-01-03 Sigma Laborzentrifugen GmbH Centrifuge, method of operating a centrifuge and computer readable medium
WO2024002794A1 (en) 2022-06-30 2024-01-04 Sigma Laborzentrifugen Gmbh Centrifuge, method for operating a centrifuge and computer-readable medium

Also Published As

Publication number Publication date
JP6329910B2 (en) 2018-05-23
US20150080202A1 (en) 2015-03-19
DE102012002593A1 (en) 2013-08-14
EP2814617A2 (en) 2014-12-24
WO2013120604A2 (en) 2013-08-22
PL2814617T3 (en) 2020-07-27
WO2013120604A3 (en) 2013-12-19
CN104203422B (en) 2017-12-29
CN104203422A (en) 2014-12-10
US10449556B2 (en) 2019-10-22
JP2015513447A (en) 2015-05-14

Similar Documents

Publication Publication Date Title
EP2814617B1 (en) Laboratory centrifuge having a compressor cooling device and method for controlling a compressor cooling device of a laboratory centrifuge
DE102011017433B4 (en) Method for the intelligent control of a compressor system with heat recovery
DE3517216C2 (en)
EP1824695B1 (en) Air conditioner for motor vehicles
EP3161320B1 (en) Side channel pump
WO2014072276A1 (en) Vacuum pump system for evacuating a chamber, and method for controlling a vacuum pump system
DE60123321T2 (en) Compressor system with a controlled cooling fan
DE102017200874A1 (en) Electric coolant pump
EP3597019A1 (en) Method for cooling a converter, in particular a frequency converter in a heat pump circuit
WO2016066267A2 (en) Laboratory centrifuge comprising a compressor-based cooling cycle, and method for operating a laboratory centrifuge comprising a compressor-based cooling cycle
EP2400229B1 (en) Method for operating a heat pump unit and heat pump unit
EP3807011A1 (en) Temperature-controller centrifuge having crash protection
DE102013114374A1 (en) Method for performing speed regulation of compressor in e.g. cooling apparatus, involves increasing rotation speed of compressor around certain amount when measured time period reaches predetermined threshold value
EP3434905A1 (en) Vacuum pump and method for operating a vacuum pump
EP2543567B1 (en) Method for limiting the maximum possible braking power of a hydrodynamic retarder
EP3601806A1 (en) Apparatus for controlling a hydraulic machine
DE3818584A1 (en) COOLING DEVICE FOR A CENTRIFUGE
EP3400410B1 (en) Method for operating a rotational-speed-variable refrigerant compressor
CH643348A5 (en) Method for operating a heat pump
EP3596340B1 (en) Compressor system with temperature monitoring device controllable in closed-loop and/or open-loop fashion
WO2015185179A1 (en) Electrically driven motor-pump unit
EP3244143A1 (en) Cooling device
DE102018100398B4 (en) Method for optimizing the degree of emptying of a hydrodynamic retarder
DE102012020692A1 (en) Method for volume flow control in underground mine cooling plants
DE202008000761U1 (en) Freezer or fridge freezer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140911

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
PUAG Search results despatched under rule 164(2) epc together with communication from examining division

Free format text: ORIGINAL CODE: 0009017

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180605

B565 Issuance of search results under rule 164(2) epc

Effective date: 20180605

RIC1 Information provided on ipc code assigned before grant

Ipc: B04B 15/02 20060101AFI20180531BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190808

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1226585

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013014236

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200122

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200522

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200423

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013014236

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200213

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

26N No opposition filed

Effective date: 20201023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200213

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1226585

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013014236

Country of ref document: DE

Owner name: EPPENDORF SE, DE

Free format text: FORMER OWNER: EPPENDORF AG, 22339 HAMBURG, DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240219

Year of fee payment: 12

Ref country code: GB

Payment date: 20240219

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240202

Year of fee payment: 12

Ref country code: FR

Payment date: 20240221

Year of fee payment: 12