EP3161320B1 - Side channel pump - Google Patents

Side channel pump Download PDF

Info

Publication number
EP3161320B1
EP3161320B1 EP15729508.0A EP15729508A EP3161320B1 EP 3161320 B1 EP3161320 B1 EP 3161320B1 EP 15729508 A EP15729508 A EP 15729508A EP 3161320 B1 EP3161320 B1 EP 3161320B1
Authority
EP
European Patent Office
Prior art keywords
pump
motor
cooling circuit
channel
pump according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15729508.0A
Other languages
German (de)
French (fr)
Other versions
EP3161320A1 (en
Inventor
Heiner KÖSTERS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sterling Industry Consult GmbH
Original Assignee
Sterling Industry Consult GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sterling Industry Consult GmbH filed Critical Sterling Industry Consult GmbH
Publication of EP3161320A1 publication Critical patent/EP3161320A1/en
Application granted granted Critical
Publication of EP3161320B1 publication Critical patent/EP3161320B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0066Control, e.g. regulation, of pumps, pumping installations or systems by changing the speed, e.g. of the driving engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5813Cooling the control unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/586Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps
    • F04D29/588Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps cooling or heating the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D31/00Pumping liquids and elastic fluids at the same time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D5/00Pumps with circumferential or transverse flow
    • F04D5/002Regenerative pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D5/00Pumps with circumferential or transverse flow
    • F04D5/002Regenerative pumps
    • F04D5/003Regenerative pumps of multistage type
    • F04D5/006Regenerative pumps of multistage type the stages being axially offset

Definitions

  • the invention relates to a side channel pump with a pump housing.
  • a working chamber provided with a side channel and a motor are arranged in the pump housing.
  • An impeller in the working chamber rotates with a shaft driven by the motor.
  • side channel pumps can initially deliver pure gas in order to suck the liquid to be delivered into the pump. This is also possible when the working chamber is dry, so initially no amount of liquid is contained in the working chamber, such as in the WO 2014/033317 A1 . For this purpose, the pump is operated at high speed so that it works like a fan.
  • the invention is based on the object of presenting a side channel pump that does not overheat when sucking in gas. Starting from the prior art mentioned, the object is achieved with the features of claim 1. Advantageous embodiments are specified in the subclaims.
  • the side channel pump comprises a cooling circuit which extends from the working chamber to the motor and from the motor to a suction section of the pump.
  • the side channel pump sucks in gas
  • the gas is compressed in the working chamber so that a higher pressure is present in the working chamber than at the inlet of the pump.
  • An area of the pump from which the medium is conveyed to the outlet of the pump and in which the pressure is lower than in the section of the working chamber from which the cooling circuit is fed is referred to as the suction section.
  • the invention has recognized that part of the conveyed medium can be used as a cooling medium. Since the cooling is designed as a closed circuit, in which the cooling medium is guided from the working chamber to the motor and again to a suction section of the pump, a steady flow of the cooling medium can be maintained through which heat is removed from the motor.
  • the invention has recognized in particular that the cooling circuit also has an effect when a gaseous medium is conveyed. The cooling is then regularly not so effective that it would enable the side channel pump to operate continuously. This is also not necessary because only the period of time has to be bridged until the liquid that is sucked in follows the gas. For this purpose it is sufficient if dry operation becomes possible for a period of time on the order of minutes. This is many times longer than with conventional pumps, which overheat within a few seconds if no liquid medium is being conveyed.
  • the pressure difference across the cooling circuit is therefore smaller than the pressure difference between the outlet opening of the side channel pump and the inlet opening of the side channel pump. According to the invention, the pressure difference across the cooling circuit is not greater than the pressure difference across a working chamber.
  • the side channel pump according to the invention is regularly multi-stage.
  • the side channel pump comprises a plurality of working chambers provided with side channels.
  • An impeller rotates in each of the working chambers.
  • the output side of a first working chamber is preferably connected to the input side of a subsequent working chamber.
  • the cooling circuit is fed from a working chamber, the output side of which is connected to the output opening of the pump.
  • the cooling circuit is preferably fed from the outlet side of the working chamber.
  • the cooling circuit can branch off from a connecting line between the working chamber and the outlet opening of the pump.
  • the cooling circuit opens into the same working chamber from which the cooling circuit is fed. Another area of the same working chamber then forms the suction section within the meaning of the invention.
  • the cooling circuit can open into a gap in the working chamber which is formed between the shaft and a section of the pump housing surrounding the shaft. A gap that would otherwise form a leakage gap is used as part of the cooling circuit.
  • the pressure difference across the cooling circuit is preferably less than 60%, more preferably less than 40% of the pressure difference between the inlet side and the outlet side of the working chamber, which is the working chamber whose outlet side is connected to the outlet opening.
  • the cooling circuit should be designed so that the heat is effectively dissipated from the engine.
  • the cooling circuit can extend through between the rotor and the stator of the motor.
  • the cooling circuit preferably extends in the longitudinal direction (ie parallel to the shaft) over the entire length of the motor.
  • the length of the motor describes the section in which the rotor and the stator interact electrically.
  • the direction of flow of the cooling medium can be such that the cooling medium approaches the working chamber as it moves through the motor.
  • the cooling medium can first be directed from the working chamber to the distal end of the motor before it enters the motor.
  • Control electronics for the motor can also be accommodated in the pump housing.
  • the control electronics can in particular be designed to variably control the speed of the motor.
  • the side channel pump according to the invention is preferably designed in such a way that, viewed in the longitudinal direction, the motor is arranged between the control electronics and the working chamber.
  • the cooling circuit can comprise a section which is arranged between the motor and the control electronics. With this design, the control electronics can also be cooled at the same time as the cooling circuit.
  • the cooling circuit can comprise a plurality of channels which are arranged between the control electronics and the motor. The channels can be aligned in the radial direction. The flow direction of the cooling medium can be such that the cooling medium flows in all channels from the outside to the inside.
  • the cooling circuit is designed in such a way that it enables large-area contact between the cooling medium and the motor.
  • An annular gap can be formed between the pump housing and the motor.
  • the annular gap can extend in the circumferential direction around the motor.
  • the cooling circuit can extend through the annular gap.
  • the annular gap can at the same time form a connecting channel between the output side of a working chamber and the output opening of the side channel pump.
  • the entire medium required by the pump moves through the annular gap.
  • Part of the medium can be led out of the pump from the annular gap through an outlet opening, while the other part moves as a cooling medium through the cooling circuit.
  • the cooling medium preferably only forms a small proportion of the total medium conveyed. The proportion can be, for example, less than 10%, preferably less than 5%.
  • the motor can therefore be surrounded by an outer tube which extends in the circumferential direction around the motor.
  • the outer tube can be in direct physical contact with the stator of the motor. In the longitudinal direction, the outer tube preferably extends at least over the length of the motor.
  • the outer tube can adjoin the annular gap and form an inner boundary for the annular gap. The heat can be effectively dissipated through the large-area contact between the outer tube and the annular gap.
  • the motor may include an inner tube disposed between the stator and the rotor of the motor.
  • the inner tube can be in direct physical contact with the stator.
  • a section of the cooling circuit can extend through an annular gap between the inner tube and the rotor of the motor. Due to the large-area contact, the heat can be conducted both from the rotor and from the stator of the motor.
  • such an inner tube can avoid direct contact between the stator and the conveyed medium.
  • the cooling circuit is generally not sufficient to completely dissipate the heat generated in the rotor. So the engine warms up.
  • the motor and the surrounding housing can be designed according to the invention so that they have a high thermal capacity. The amount of heat can be absorbed due to the high heat capacity in the engine and the temperature increase is limited.
  • the stator can be designed so that it has a large mass and, associated therewith, a high thermal capacity.
  • the stator preferably completely fills the gap between the inner tube and the outer tube over a longitudinal section of the motor, so that there are no cavities with a heat-insulating effect. More preferably, the length section extends over the entire length of the motor.
  • a space surrounding the winding heads of the stator can be filled with a potting compound.
  • the inner tube and the outer tube of the motor can consequently have the double effect of, on the one hand, enabling extensive contact with the cooling circuit and, on the other hand, defining a space within which excess amounts of heat can be temporarily stored.
  • the pump housing can be equipped with a vent valve which opens when a gaseous medium is conveyed and which closes when liquid medium is conveyed.
  • the gaseous medium can exit through the vent valve, so that, if possible, only liquid medium is conveyed through the outlet opening of the pump.
  • the vent valve can be arranged between the outlet side of the working chamber and the outlet opening of the pump. In a preferred embodiment, the vent valve opens into the annular gap between the outer tube and the pump housing.
  • the pump housing can have several vent valves. One of the vent valves can be arranged in an upper section of the pump housing, and another vent valve can be arranged in a lower section of the pump housing.
  • the pumps according to the invention are often used in systems in which it is of great importance that the pumped liquid does not penetrate to the outside. It is useful for this purpose if a side channel pump is used that is sealless. Sealless means that the end of the shaft on which the drive motor acts is arranged completely within the housing of the pump. Since the shaft is not led to the outside through the housing, no shaft seal is required at this point.
  • An impeller rotates in each working chamber.
  • the impeller is enclosed between two end faces of the working chamber, the side channel being formed in one of the end faces.
  • the side channel corresponds to a depression in the end face, which means that the leakage gap existing between the impeller and the end face is enlarged in the area of the side channel.
  • the side channel can extend in an arcuate path from the inlet opening to the outlet opening of the working chamber.
  • the arcuate path can essentially correspond to the path that the impeller also describes on the path from the inlet opening to the outlet opening.
  • the input stage of the pump should be designed so that it can withstand this sudden load.
  • the input stage can be a centrifugal stage.
  • an impeller In a centrifugal stage, an impeller is provided with a plurality of channels which extend from a central region of the impeller to a peripheral region of the impeller. The pumping action of such a centrifugal stage results from the fact that the conveyed medium moves under the centrifugal force through the channel from the central area to the peripheral area.
  • the pump Since the drive power is low when operating at overspeed, the pump is quickly braked as soon as the liquid has entered the input stage. Before the liquid enters the subsequent stages, which are provided with an impeller and side channel, the speed has already decreased significantly, so that the subsequent stages are only exposed to sudden loads to a lesser extent.
  • the side channel pump according to the invention is provided with a control which is designed to operate the pump at an overspeed when the working chamber of the pump is filled with gas, and to reduce the speed to an operating speed when liquid enters the pump. It is possible that the control is set up in such a way that it brings about an active braking of the pump. However, this is not necessary. As soon as liquid enters the pump, the resistance increases, so that the speed of the pump decreases even if the drive power remains unchanged.
  • the drive motor is regularly designed in such a way that it cannot keep the pump at the overspeed even when operating at maximum power after liquid has entered the pump.
  • the control can therefore be set up in such a way that, after the liquid has entered, it waits until the speed has reduced by itself to the desired operating speed and then increases the drive power so that the pump is kept constant at the operating speed.
  • a preferred area of application of the pump according to the invention is the delivery of liquid gas from a tank. This takes place, for example, at LPG filling stations, where vehicles powered by liquid gas are refueled from a tank that is often sunk in the ground.
  • the tank is partially filled with liquid gas in the liquid state, the upper part of the tank and in particular the line which leads to the pump according to the invention are occupied by vaporized liquid gas.
  • the pressure in the tank and the line corresponds i.e. the vapor pressure of the liquid gas when the pump is not in operation.
  • the pump If the pump is started, the vapor of the liquid gas is sucked in.
  • the first consequence of this is that the pressure in the line drops and, as a result, further liquid gas changes into the gaseous state.
  • the pump only has a low suction power, this continues and only the newly vaporized gas is continuously pumped.
  • the suction power of the pump according to the invention is large enough that the temperature in the line is also reduced, which means that the vapor pressure in the line is lower than the vapor pressure in the tank. Due to the pressure difference, the liquid rises from the tank into the line and can be sucked in by the pump. With this method it is therefore possible to pump the liquefied gas out of the tank in liquid form.
  • the line that extends from the tank to the pump i.e. is a riser line through which the liquid gas has to be conveyed against gravity.
  • the speed of the pump decreases from overspeed to operating speed and the liquid is pumped in conventional operation of the pump.
  • a shaft 14 is rotatably mounted in a pump housing 15.
  • the pump housing 15 is provided with an inlet opening 16 and an outlet opening 17, the inlet opening 16 being arranged concentrically with the shaft 14.
  • the end of the pump housing 15 opposite the inlet opening 16 is closed, so that the end of the shaft 14 is received within the housing 15. Since one end of the shaft 14 opens into the inlet opening 16 and the other end of the shaft 14 is received in the pump housing 15, the pump is sealless in the sense that there is no place where the interior and exterior of the pump are merely are separated by a shaft seal. This has the advantage that leakage of the conveyed medium can be reliably prevented.
  • a drive motor is also accommodated in the pump housing 15 and comprises a rotor 19 connected to the shaft 14 and a stator 20.
  • the motor is controlled via control electronics 35 and, in particular, the speed of the motor is set.
  • the pump according to the invention comprises two side channel stages, in each of which an impeller 22 rotates in a working chamber 23.
  • the impellers 22 have blades arranged in a star shape with open blade spaces which are closely surrounded by the housing 15. Axially next to the impeller 22, the housing 15 forms an open towards the impeller 22 Side channel 24, in which the conveying medium is conveyed by exchanging impulses with the impeller 22.
  • the inlet end of the side channel 24 is opposite an inlet opening formed in the housing of the working chamber 23, which in Fig. 1 is not visible.
  • the medium entering through the inlet opening reaches the side channel 24 through the gaps between the blades.
  • An in each case extends from the outlet opening of the preceding working chamber 23 Fig. 1 Only schematically indicated channel 25 through the pump housing 15 up to the inlet opening of the subsequent working chamber 23. The conveyed medium thus successively runs through the two side channel stages of the pump.
  • the input stage 26 of the pump is designed as a centrifugal stage.
  • An impeller 27 connected to the shaft 14 is provided with channels 18 which extend from a central region to a peripheral region of the impeller 27. The medium entering the channels 18 in the central area is moved outward by the centrifugal force.
  • a channel extends from the outer end of the impeller 27 through the pump housing 15 to the inlet opening of the first working chamber 23.
  • the pump housing 15 surrounds the working chambers 23 of the pump as well as the motor 19, 20 at a distance so that an annular gap 40 surrounding the working chambers 23 and the motor 19, 20 is formed within the pump housing.
  • the outlet side of the second side channel step opens into the annular gap 40.
  • the outlet opening 17 of the pump is also connected to the annular gap 40. The medium conveyed by the pump therefore moves from the outlet side of the second Side channel step through the annular gap 40 to the outlet opening 17 of the pump.
  • the stator 20 of the drive motor is surrounded by an outer tube 41.
  • the outer tube 41 extends along the motor and at the same time forms the inner delimitation of the annular gap 40.
  • the stator 20 of the drive motor is delimited by an inner tube 42.
  • the space between the inner tube 42 and the outer tube 41 is completely filled by the stator 20.
  • the stator 20 is in direct large-area contact with the inner tube 42 and the outer tube 41, so that a good heat transfer between the stator 20 and the inner tube 41 and the outer tube 42 is guaranteed.
  • the space between the stator 20 and the inner tube 42 and the outer tube 41 is filled with a heat-conducting potting compound 47.
  • a plurality of channels 44 extend radially inward from the annular gap 40 between the drive motor 19, 20 and the control electronics 35.
  • the channels 44 open into the motor gap 45 between the rotor 19 and the inner tube 42 of the stator 20.
  • the motor gap 45 extends over the entire length of the drive motor 19, 20 and merges into a gap 46 between the pump housing 15 and the shaft 14 is included.
  • the gap 46 opens into the working chamber 23 of the second side channel stage of the pump and is therefore referred to below as the chamber gap 46.
  • the channels 44, the motor gap 45 and the chamber gap 46 are components of a cooling circuit that extends from the working chamber 23 of the second side channel stage through the Annular gap 40, the channels 44, the motor gap 45 and the chamber gap 46 extends back into the working chamber 23 of the second side channel stage of the pump.
  • the cross section of the cooling circuit is significantly smaller than the cross section of the outlet opening 17, so that only a small portion of the conveyed medium moves as a cooling medium along the cooling circuit, while the larger portion of the conveyed medium leaves the pump through the outlet opening 17.
  • the cooling medium is kept in motion in the cooling circuit by the pressure difference between the outlet side of the second side channel stage of the pump and the chamber gap 46.
  • the pressure difference corresponds to about half the pressure difference between the inlet side and the outlet side of the second side channel stage of the pump.
  • the cooling circuit is designed in such a way that it is in extensive contact with the inner tube 42 and the outer tube 41 of the stator 20 and can thereby effectively dissipate heat from the stator 20.
  • the cooling circuit extends with the channels 44 between the drive motor 19, 20 and the control electronics 35, so that the control electronics 35 are also cooled at the same time.
  • the cooling medium is in extensive contact with the rotor 19, in addition to the stator 20, so that it is also effectively cooled.
  • the cooling medium mixes with the conveyed medium, which enters the working chamber 23 through the inlet opening, so that the heat absorbed by the cooling medium is distributed in the volume flow.
  • the cooling circuit is designed so that the pump according to the invention can be kept at a constant operating temperature in continuous operation when the pump requires a liquid medium. If, on the other hand, the pump delivers a gaseous medium, only a smaller amount of heat is dissipated and the pump heats up.
  • the motor In order to avoid rapid overheating of the pump, the motor is designed so that it has a large heat capacity. Both the rotor 19 and the stator 20 are made very solid for this purpose. In particular, a high thermal capacity is achieved in the stator 20 in that the space between the inner tube 42 and the outer tube 41 is completely filled. With this design of the stator 20, overheating is counteracted in two ways. On the one hand, the massive design allows a large amount of heat to be absorbed. Secondly, a large amount of heat can be given off due to the large-area contact of the inner tube 42 and the outer tube 41 with the cooling circuit. This makes it possible to deliver gas over a period of, for example, more than 1 minute without the pump overheating.
  • FIG. 2 An application example of the pump according to the invention is shown in Fig. 2 shown.
  • the pump 28 according to the invention is connected to a liquid gas tank 29.
  • a riser pipe 31 extends from the lower part of the tank 29 to the inlet opening 16 of the pump 28.
  • a line 34 is connected to the outlet opening 17 of the pump 28 and leads to a vehicle 32 which is to be refueled with liquid gas 30.
  • the volume flow of the pump is so great that it cannot be completely absorbed by the car 32.
  • a separator 33 separates gas bubbles from the volume flow and returns them to the tank 29.
  • liquid gas 30 About one third of the tank 29 is filled with liquid gas 30.
  • the remaining space in the tank 29 and in the riser 31 is filled with evaporated liquid gas, the pressure consequently corresponds to the vapor pressure of the liquid gas.
  • the pump 28 If the pump 28 is put into operation from this state, the liquid gas initially enters the pump 28 in a gaseous state. Since liquid gas continues to evaporate with the application of negative pressure in tank 29, the suction power of the pump must be high in this phase in order to still suck in liquid gas through riser 31. According to the invention, this is achieved in that the pump is operated in this phase at an overspeed which is significantly above the operating speed.
  • the overspeed with which the pump is operated as a kind of fan can be 6000 rpm, for example.
  • This speed is well above the maximum speed at which the pump can be operated when liquid is being pumped.
  • the pump is operated, for example, at a speed of 3000 rpm.
  • the liquid is conveyed with a volume flow of, for example, 35 m 3 / h.
  • the performance of the pump when it is operated as a fan is lower than in normal operation in which liquid is conveyed. So if a low power is sufficient to accelerate the pump to the overspeed, it follows that the working chambers 23 of the pump are gas-filled.
  • the controller 35 is consequently designed to operate the electric motor 21 at the overspeed with low power.
  • the controller 35 is designed such that it increases the power of the electric motor 21 as soon as the pump 28 is braked to operating speed in order to keep the pump at this speed. This operating state is maintained until the car 32 is full. As soon as this is the case, the pump 28 is switched off.
  • the pump housing 15 is provided with two vent valves 48 which open into the annular gap 46.
  • the vent valves 48 are open as long as gas is being promoted.
  • the vent valves 48 close when liquid medium is required.
  • the gas exiting through the venting valves 48 like the gas separated by the separator 33, is fed back into the tank 29.

Description

Die Erfindung betrifft eine Seitenkanalpumpe mit einem Pumpengehäuse. In dem Pumpengehäuse sind eine mit einem Seitenkanal versehene Arbeitskammer und ein Motor angeordnet. Ein Flügelrad in der Arbeitskammer dreht sich mit einer von dem Motor angetriebenen Welle.The invention relates to a side channel pump with a pump housing. A working chamber provided with a side channel and a motor are arranged in the pump housing. An impeller in the working chamber rotates with a shaft driven by the motor.

Seitenkanalpumpen sind als solche seit langem bekannt (siehe etwa DE 855 363 oder US 3,124,077 ). Sie dienen zum Fördern von Flüssigkeiten sowie von Gemischen aus Flüssigkeiten und Gas. Es ist ein Vorteil von Seitenkanalpumpen, dass der Betrieb der Pumpe nur unwesentlich beeinträchtigt wird, wenn in der Flüssigkeit auch größere Mengen von Gas mitgeführt werden.Side channel pumps have long been known as such (see for example DE 855 363 or U.S. 3,124,077 ). They are used to convey liquids and mixtures of liquids and gas. It is an advantage of side channel pumps that the operation of the pump is only insignificantly impaired if larger amounts of gas are also carried in the liquid.

Es ist außerdem bekannt, dass mit Seitenkanalpumpen anfänglich reines Gas gefördert werden kann, um damit die zu fördernde Flüssigkeit in die Pumpe hinein anzusaugen. Dies ist auch dann möglich, wenn die Arbeitskammer trocken ist, also anfänglich keine Flüssigkeitsmenge in der Arbeitskammer enthalten ist, wie z.B. in der WO 2014/033317 A1 . Dazu wird die Pumpe mit hoher Drehzahl betrieben, so dass sie nach Art eines Gebläses wirkt.It is also known that side channel pumps can initially deliver pure gas in order to suck the liquid to be delivered into the pump. This is also possible when the working chamber is dry, so initially no amount of liquid is contained in the working chamber, such as in the WO 2014/033317 A1 . For this purpose, the pump is operated at high speed so that it works like a fan.

Es besteht in diesem Betriebszustand das Risiko, dass die Seitenkanalpumpe überhitzt. Zum einen ist die hohe Drehzahl mit einer starken Wärmeentwicklung verbunden. Zum anderen werden nur geringe Wärmemengen abtransportiert, solange noch keine Flüssigkeit in der Pumpe angekommen ist.In this operating state there is a risk that the side channel pump will overheat. On the one hand, the high speed is associated with a strong development of heat. On the other hand only small amounts of heat are removed as long as no liquid has reached the pump.

Der Erfindung liegt die Aufgabe zu Grunde, eine Seitenkanalpumpe vorzustellen, die beim Ansaugen von Gas nicht überhitzt. Ausgehend vom genannten Stand der Technik wird die Aufgabe gelöst mit den Merkmalen des Anspruchs 1. Vorteilhafte Ausführungsformen sind in den Unteransprüchen angegeben.The invention is based on the object of presenting a side channel pump that does not overheat when sucking in gas. Starting from the prior art mentioned, the object is achieved with the features of claim 1. Advantageous embodiments are specified in the subclaims.

Erfindungsgemäß umfasst die Seitenkanalpumpe einen Kühlkreislauf, der sich von der Arbeitskammer zu dem Motor und von dem Motor zu einem Saugabschnitt der Pumpe erstreckt.According to the invention, the side channel pump comprises a cooling circuit which extends from the working chamber to the motor and from the motor to a suction section of the pump.

Zunächst werden einige Begriffe erläutert. Wenn die Seitenkanalpumpe Gas ansaugt, wird das Gas in der Arbeitskammer verdichtet, so dass in der Arbeitskammer ein höherer Druck anliegt als am Eingang der Pumpe. Als Saugabschnitt wird ein Bereich der Pumpe bezeichnet, von dem das Medium zum Ausgang der Pumpe gefördert wird und in dem der Druck niedriger ist als in dem Abschnitt der Arbeitskammer, aus dem der Kühlkreislauf gespeist wird.First some terms are explained. When the side channel pump sucks in gas, the gas is compressed in the working chamber so that a higher pressure is present in the working chamber than at the inlet of the pump. An area of the pump from which the medium is conveyed to the outlet of the pump and in which the pressure is lower than in the section of the working chamber from which the cooling circuit is fed is referred to as the suction section.

Die Erfindung hat erkannt, dass ein Teil des geförderten Mediums als Kühlmedium genutzt werden kann. Indem die Kühlung als geschlossener Kreislauf ausgebildet ist, bei dem das Kühlmedium von der Arbeitskammer zu dem Motor und wieder zu einem Saugabschnitt der Pumpe geführt wird, kann ein stetiger Strom des Kühlmediums aufrechterhalten werden, durch den Wärme von dem Motor abgeführt wird. Die Erfindung hat insbesondere erkannt, dass der Kühlkreislauf auch dann eine Wirkung hat, wenn gasförmiges Medium gefördert wird. Zwar ist die Kühlung dann regelmäßig nicht so wirksam, dass sie einen Dauerbetrieb der Seitenkanalpumpe ermöglichen würde. Dies ist auch nicht erforderlich, weil nur der Zeitraum zu überbrücken ist, bis die angesaugte Flüssigkeit dem Gas nachfolgt. Für diesen Zweck ist es ausreichend, wenn ein trockener Betrieb für eine Zeitdauer in der Größenordnung von Minuten möglich wird. Dies ist um ein Vielfaches länger als bei üblichen Pumpen, die innerhalb weniger Sekunden überhitzen, wenn kein flüssiges Medium gefördert wird.The invention has recognized that part of the conveyed medium can be used as a cooling medium. Since the cooling is designed as a closed circuit, in which the cooling medium is guided from the working chamber to the motor and again to a suction section of the pump, a steady flow of the cooling medium can be maintained through which heat is removed from the motor. The invention has recognized in particular that the cooling circuit also has an effect when a gaseous medium is conveyed. The cooling is then regularly not so effective that it would enable the side channel pump to operate continuously. This is also not necessary because only the period of time has to be bridged until the liquid that is sucked in follows the gas. For this purpose it is sufficient if dry operation becomes possible for a period of time on the order of minutes. This is many times longer than with conventional pumps, which overheat within a few seconds if no liquid medium is being conveyed.

Je größer die Druckdifferenz ist, die über dem Kühlkreislauf anliegt, desto stärker ist der Strom des Kühlmediums und desto wirksamer ist die Kühlung. Allerdings stellt der Kühlkreislauf zugleich auch einen Leckfluss dar, durch den der Wirkungsgrad der Pumpe vermindert wird. Es ist deswegen wünschenswert, nicht mehr Kühlmedium als erforderlich durch den Kühlkreislauf fließen zu lassen. Erfindungsgemäß ist die über dem Kühlkreislauf anliegende Druckdifferenz deswegen kleiner als die Druckdifferenz zwischen der Ausgangsöffnung der Seitenkanalpumpe und der Eingangsöffnung der Seitenkanalpumpe. Erfindungsgemäß ist die über dem Kühlkreislauf anliegende Druckdifferenz nicht größer als die über einer Arbeitskammer liegende Druckdifferenz.The greater the pressure difference across the cooling circuit, the stronger the flow of the cooling medium and the more effective the cooling. However, the cooling circuit also represents a leakage flow, which reduces the efficiency of the pump. It is therefore desirable not to allow more cooling medium to flow through the cooling circuit than is necessary. According to the invention, the pressure difference across the cooling circuit is therefore smaller than the pressure difference between the outlet opening of the side channel pump and the inlet opening of the side channel pump. According to the invention, the pressure difference across the cooling circuit is not greater than the pressure difference across a working chamber.

Die erfindungsgemäße Seitenkanalpumpe ist regelmäßig mehrstufig. Erfindungsgemäß umfasst die Seitenkanalpumpe eine Mehrzahl von mit Seitenkanälen versehenen Arbeitskammern. In jeder der Arbeitskammern dreht sich ein Flügelrad. Dabei ist vorzugsweise jeweils die Ausgangsseite einer ersten Arbeitskammer mit der Eingangsseite einer nachfolgenden Arbeitskammer verbunden.The side channel pump according to the invention is regularly multi-stage. According to the invention, the side channel pump comprises a plurality of working chambers provided with side channels. An impeller rotates in each of the working chambers. The output side of a first working chamber is preferably connected to the input side of a subsequent working chamber.

Der Kühlkreislauf wird erfindungsgemäß aus einer Arbeitskammer gespeist, deren Ausgangsseite mit der Ausgangsöffnung der Pumpe verbunden ist. Bevorzugt wird der Kühlkreislauf von der Ausgangsseite der Arbeitskammer gespeist. Beispielsweise kann der Kühlkreislauf von einer Verbindungsleitung zwischen der Arbeitskammer und der Ausgangsöffnung der Pumpe abzweigen.According to the invention, the cooling circuit is fed from a working chamber, the output side of which is connected to the output opening of the pump. The cooling circuit is preferably fed from the outlet side of the working chamber. For example, the cooling circuit can branch off from a connecting line between the working chamber and the outlet opening of the pump.

Der Kühlkreislauf mündet erfindungsgemäß in derselben Arbeitskammer, aus der der Kühlkreislauf gespeist wird. Ein anderer Bereich derselben Arbeitskammer bildet dann den Saugabschnitt im Sinne der Erfindung. Beispielsweise kann der Kühlkreislauf in einem Spalt der Arbeitskammer münden, der zwischen der Welle und einem die Welle umgebenden Abschnitt des Pumpengehäuses ausgebildet ist. Damit wird ein Spalt, der ansonsten einen Leckspalt bilden würde, als Teil des Kühlkreislaufs genutzt. Die über dem Kühlkreislauf anliegende Druckdifferenz ist vorzugsweise kleiner als 60 %, weiter vorzugsweise kleiner als 40 % der Druckdifferenz zwischen der Eingangsseite und der Ausgangsseite der Arbeitskammer, bei der es sich um die Arbeitskammer handelt, deren Ausgangsseite mit der Ausgangsöffnung verbunden ist.According to the invention, the cooling circuit opens into the same working chamber from which the cooling circuit is fed. Another area of the same working chamber then forms the suction section within the meaning of the invention. For example, the cooling circuit can open into a gap in the working chamber which is formed between the shaft and a section of the pump housing surrounding the shaft. A gap that would otherwise form a leakage gap is used as part of the cooling circuit. The pressure difference across the cooling circuit is preferably less than 60%, more preferably less than 40% of the pressure difference between the inlet side and the outlet side of the working chamber, which is the working chamber whose outlet side is connected to the outlet opening.

Der Kühlkreislauf sollte so gestaltet sein, dass die Wärme wirksam von dem Motor abgeführt wird. Beispielsweise kann sich der Kühlkreislauf zwischen dem Rotor und dem Stator des Motors hindurch erstrecken.The cooling circuit should be designed so that the heat is effectively dissipated from the engine. For example, the cooling circuit can extend through between the rotor and the stator of the motor.

Vorzugsweise erstreckt der Kühlkreislauf sich in Längsrichtung (also parallel zur Welle) über die gesamte Länge des Motors. Länge des Motors bezeichnet den Abschnitt, in dem der Rotor und der Stator elektrisch zusammenwirken. Die Flussrichtung des Kühlmediums kann so sein, dass das Kühlmedium sich bei seiner Bewegung durch den Motor hindurch an die Arbeitskammer annähert. Das Kühlmedium kann von der Arbeitskammer zunächst zu dem entfernten Ende des Motors geführt werden, bevor es in den Motor eintritt.The cooling circuit preferably extends in the longitudinal direction (ie parallel to the shaft) over the entire length of the motor. The length of the motor describes the section in which the rotor and the stator interact electrically. The The direction of flow of the cooling medium can be such that the cooling medium approaches the working chamber as it moves through the motor. The cooling medium can first be directed from the working chamber to the distal end of the motor before it enters the motor.

In dem Pumpengehäuse kann außerdem eine Steuerelektronik für den Motor aufgenommen sein. Die Steuerelektronik kann insbesondere dazu ausgelegt sein, die Drehzahl des Motors variabel zu steuern. Die erfindungsgemäße Seitenkanalpumpe ist vorzugsweise so gestaltet, dass in Längsrichtung betrachtet der Motor zwischen der Steuerelektronik und der Arbeitskammer angeordnet ist.Control electronics for the motor can also be accommodated in the pump housing. The control electronics can in particular be designed to variably control the speed of the motor. The side channel pump according to the invention is preferably designed in such a way that, viewed in the longitudinal direction, the motor is arranged between the control electronics and the working chamber.

Der Kühlkreislauf kann einen Abschnitt umfassen, der zwischen dem Motor und der Steuerelektronik angeordnet ist. Bei dieser Gestaltung kann mit dem Kühlkreislauf zugleich auch die Steuerelektronik gekühlt werden. Der Kühlkreislauf kann eine Mehrzahl von Kanälen umfassen, die zwischen der Steuerelektronik und dem Motor angeordnet sind. Die Kanäle können in radialer Richtung ausgerichtet sein. Die Flussrichtung des Kühlmediums kann derart sein, dass das Kühlmedium in allen Kanälen von außen nach innen fließt.The cooling circuit can comprise a section which is arranged between the motor and the control electronics. With this design, the control electronics can also be cooled at the same time as the cooling circuit. The cooling circuit can comprise a plurality of channels which are arranged between the control electronics and the motor. The channels can be aligned in the radial direction. The flow direction of the cooling medium can be such that the cooling medium flows in all channels from the outside to the inside.

Für die Wirksamkeit der Kühlung ist es außerdem von Vorteil, wenn der Kühlkreislauf so gestaltet ist, dass er einen großflächigen Kontakt zwischen dem Kühlmedium und dem Motor ermöglicht. Zwischen dem Pumpengehäuse und dem Motor kann ein Ringspalt ausgebildet sein. Der Ringspalt kann sich in Umfangsrichtung um den Motor herum erstrecken. Der Kühlkreislauf kann sich durch den Ringspalt hindurch erstrecken. Der Ringspalt kann zugleich einen Verbindungskanal zwischen der Ausgangsseite einer Arbeitskammer und der Ausgangsöffnung der Seitenkanalpumpe bilden.For the effectiveness of the cooling, it is also advantageous if the cooling circuit is designed in such a way that it enables large-area contact between the cooling medium and the motor. An annular gap can be formed between the pump housing and the motor. The annular gap can extend in the circumferential direction around the motor. The cooling circuit can extend through the annular gap. The annular gap can at the same time form a connecting channel between the output side of a working chamber and the output opening of the side channel pump.

Vorzugsweise bewegt sich das gesamte mit der Pumpe geforderte Medium durch den Ringspalt. Ein Teil des Mediums kann von dem Ringspalt durch eine Austrittsöffnung aus der Pumpe herausgeführt werden, während der andere Teil sich als Kühlmedium durch den Kühlkreislauf bewegt. Das Kühlmedium bildet vorzugsweise nur einen geringen Anteil des insgesamt geförderten Mediums. Der Anteil kann beispielsweise geringer als 10 %, vorzugsweise geringer als 5 % sein.Preferably, the entire medium required by the pump moves through the annular gap. Part of the medium can be led out of the pump from the annular gap through an outlet opening, while the other part moves as a cooling medium through the cooling circuit. The cooling medium preferably only forms a small proportion of the total medium conveyed. The proportion can be, for example, less than 10%, preferably less than 5%.

Der Motor kann deswegen von einem Außenrohr umgeben sein, das sich in Umfangsrichtung um den Motor herum erstreckt. Das Außenrohr kann in direktem körperlichen Kontakt mit dem Stator des Motors stehen. In Längsrichtung erstreckt sich das Außenrohr vorzugsweise mindestens über die Länge des Motors. Das Außenrohr kann an den Ringspalt angrenzen und eine innere Begrenzung für den Ringspalt bilden. Durch den großflächigen Kontakt zwischen dem Außenrohr und dem Ringspalt kann die Wärme wirksam abgeführt werden.The motor can therefore be surrounded by an outer tube which extends in the circumferential direction around the motor. The outer tube can be in direct physical contact with the stator of the motor. In the longitudinal direction, the outer tube preferably extends at least over the length of the motor. The outer tube can adjoin the annular gap and form an inner boundary for the annular gap. The heat can be effectively dissipated through the large-area contact between the outer tube and the annular gap.

Der Motor kann ein Innenrohr umfassen, das zwischen dem Stator und dem Rotor des Motors angeordnet ist. Das Innenrohr kann in direktem körperlichen Kontakt mit dem Stator stehen. Ein Abschnitt des Kühlkreislaufs kann sich durch einen Ringspalt zwischen dem Innenrohr und dem Rotor des Motors erstrecken. Durch den großflächigen Kontakt kann die Wärme sowohl von dem Rotor als auch von dem Stator des Motors geführt werden. Außerdem kann durch ein solches Innenrohr ein direkter Kontakt zwischen dem Stator und dem geförderten Medium vermieden werden.The motor may include an inner tube disposed between the stator and the rotor of the motor. The inner tube can be in direct physical contact with the stator. A section of the cooling circuit can extend through an annular gap between the inner tube and the rotor of the motor. Due to the large-area contact, the heat can be conducted both from the rotor and from the stator of the motor. In addition, such an inner tube can avoid direct contact between the stator and the conveyed medium.

Solange nur Gas gefördert wird, reicht der Kühlkreislauf regelmäßig nicht aus, um die in dem Rotor erzeugte Wärme vollständig abzuführen. Der Motor erwärmt sich also. Um eine Überhitzung des Motors zu vermeiden, können der Motor und das umgebende Gehäuse erfindungsgemäß so gestaltet sein, dass sie eine hohe Wärmekapazität haben. Die Wärmemenge kann aufgrund der hohen Wärmekapazität in dem Motor aufgenommen werden und die Temperaturerhöhung wird begrenzt.As long as only gas is being conveyed, the cooling circuit is generally not sufficient to completely dissipate the heat generated in the rotor. So the engine warms up. In order to avoid overheating of the motor, the motor and the surrounding housing can be designed according to the invention so that they have a high thermal capacity. The amount of heat can be absorbed due to the high heat capacity in the engine and the temperature increase is limited.

Insbesondere kann der Stator so gestaltet sein, dass er eine große Masse und damit verbunden eine hohe Wärmekapazität hat. Vorzugsweise füllt der Stator über einen Längsabschnitt des Motors den Spalt zwischen dem Innenrohr und dem Außenrohr vollständig aus, so dass es keine Hohlräume mit wärmeisolierender Wirkung gibt. Weiter vorzugsweise erstreckt der Längenabschnitt sich über die gesamte Länge des Motors. Ein die Wickelköpfe des Stators umgebender Raum kann mit einer Vergussmasse ausgefüllt sein. Das Innenrohr und das Außenrohr des Motors können folglich die doppelte Wirkung haben, dass sie einerseits einen großflächigen Kontakt zu dem Kühlkreislauf ermöglichen und andererseits einen Raum definieren, innerhalb dessen überschüssige Wärmemengen zwischengespeichert werden können.In particular, the stator can be designed so that it has a large mass and, associated therewith, a high thermal capacity. The stator preferably completely fills the gap between the inner tube and the outer tube over a longitudinal section of the motor, so that there are no cavities with a heat-insulating effect. More preferably, the length section extends over the entire length of the motor. A space surrounding the winding heads of the stator can be filled with a potting compound. The inner tube and the outer tube of the motor can consequently have the double effect of, on the one hand, enabling extensive contact with the cooling circuit and, on the other hand, defining a space within which excess amounts of heat can be temporarily stored.

Das Pumpengehäuse kann mit einem Entlüftungsventil ausgestattet sein, das öffnet, wenn gasförmiges Medium gefördert wird, und das schließt, wenn flüssiges Medium gefördert wird. Das gasförmige Medium kann durch das Entlüftungsventil austreten, so dass möglichst nur flüssiges Medium durch die Austrittsöffnung der Pumpe gefördert wird. Das Entlüftungsventil kann zwischen der Ausgangsseite der Arbeitskammer und der Austrittsöffnung der Pumpe angeordnet sein. In einer bevorzugten Ausführungsform mündet das Entlüftungsventil in dem Ringspalt zwischen dem Außenrohr und dem Pumpengehäuse. Das Pumpengehäuse kann mehrere Entlüftungsventile aufweisen. Eines der Entlüftungsventile kann in einem oberen Abschnitt des Pumpengehäuses, ein anderes Entlüftungsventile in einem unteren Abschnitt des Pumpengehäuses angeordnet sein.The pump housing can be equipped with a vent valve which opens when a gaseous medium is conveyed and which closes when liquid medium is conveyed. The gaseous medium can exit through the vent valve, so that, if possible, only liquid medium is conveyed through the outlet opening of the pump. The vent valve can be arranged between the outlet side of the working chamber and the outlet opening of the pump. In a preferred embodiment, the vent valve opens into the annular gap between the outer tube and the pump housing. The pump housing can have several vent valves. One of the vent valves can be arranged in an upper section of the pump housing, and another vent valve can be arranged in a lower section of the pump housing.

Die erfindungsgemäßen Pumpen werden häufig in Anlagen verwendet, in denen es von großer Bedeutung ist, dass die geförderte Flüssigkeit nicht nach außen dringt. Diesem Zweck ist es dienlich, wenn eine Seitenkanalpumpe verwendet wird, die dichtungslos ausgeführt ist. Dichtungslos bedeutet, dass das Ende der Welle, auf das der Antriebsmotor wirkt, vollständig innerhalb des Gehäuses der Pumpe angeordnet ist. Da die Welle nicht durch das Gehäuse nach außen geführt ist, ist an dieser Stelle keine Wellenabdichtung erforderlich.The pumps according to the invention are often used in systems in which it is of great importance that the pumped liquid does not penetrate to the outside. It is useful for this purpose if a side channel pump is used that is sealless. Sealless means that the end of the shaft on which the drive motor acts is arranged completely within the housing of the pump. Since the shaft is not led to the outside through the housing, no shaft seal is required at this point.

In jeder Arbeitskammer dreht sich ein Flügelrad. Das Flügelrad ist zwischen zwei Stirnflächen der Arbeitskammer eingeschlossen, wobei der Seitenkanal in einer der Stirnflächen ausgebildet ist. Der Seitenkanal entspricht einer Vertiefung in der Stirnfläche, was bedeutet, dass der zwischen dem Flügelrad und der Stirnfläche bestehende Leckspalt im Bereich des Seitenkanals vergrößert ist. Der Seitenkanal kann sich in einem bogenförmigen Weg von der Einlassöffnung zu der Auslassöffnung der Arbeitskammer erstrecken. Der bogenförmige Weg kann im Wesentlichen dem Weg entsprechen, den auch das Flügelrad auf dem Weg von der Einlassöffnung zu der Auslassöffnung beschreibt.An impeller rotates in each working chamber. The impeller is enclosed between two end faces of the working chamber, the side channel being formed in one of the end faces. The side channel corresponds to a depression in the end face, which means that the leakage gap existing between the impeller and the end face is enlarged in the area of the side channel. The side channel can extend in an arcuate path from the inlet opening to the outlet opening of the working chamber. The arcuate path can essentially correspond to the path that the impeller also describes on the path from the inlet opening to the outlet opening.

Wenn die Pumpe mit der Überdrehzahl als Gebläse läuft und dann Flüssigkeit auf die Eingangsstufe der Pumpe trifft, ist dies mit einer schlagartigen Belastung der Pumpe verbunden. Die Eingangsstufe der Pumpe sollte so gestaltet sein, dass sie dieser schlagartigen Belastung standhält. Beispielsweise kann es sich bei der Eingangsstufe um eine Zentrifugalstufe handeln. Bei einer Zentrifugalstufe ist ein Laufrad mit einer Mehrzahl von Kanälen versehen, die sich von einem zentralen Bereich des Laufrads zu einem peripheren Bereich des Laufrads erstrecken. Die Pumpwirkung einer solchen Zentrifugalstufe ergibt sich daraus, dass das geförderte Medium sich unter der Zentrifugalkraft durch den Kanal vom zentralen Bereich zu dem peripheren Bereich bewegt.If the pump runs at the overspeed as a fan and then liquid hits the input stage of the pump, this is associated with a sudden load on the pump. The input stage of the pump should be designed so that it can withstand this sudden load. For example, the input stage can be a centrifugal stage. In a centrifugal stage, an impeller is provided with a plurality of channels which extend from a central region of the impeller to a peripheral region of the impeller. The pumping action of such a centrifugal stage results from the fact that the conveyed medium moves under the centrifugal force through the channel from the central area to the peripheral area.

Wenn das Medium in axialer Richtung auf die Eingangsstufe trifft, wird das Medium also umgelenkt, so dass es sich in radialer Richtung bewegt. Bei dem erfindungsgemäßen Verfahren hat dies den Vorteil, dass der Impuls von der auf die Eingangsstufe treffenden Flüssigkeit im Wesentlichen in axialer Richtung wirkt. Kräfte in radialer Richtung, durch die die Pumpe in Schwingung versetzt werden könnte, werden weitgehend vermieden. In diesem Zusammenhang ist es außerdem von Vorteil, wenn die Kanäle über den Umfang des Laufrads gleich verteilt sind.When the medium hits the input stage in the axial direction, the medium is deflected so that it moves in the radial direction. In the method according to the invention, this has the advantage that the impulse from the liquid hitting the input stage acts essentially in the axial direction. Forces in the radial direction, which could cause the pump to vibrate, are largely avoided. In this context it is also advantageous if the channels are evenly distributed over the circumference of the impeller.

Da die Antriebsleistung beim Betrieb mit Überdrehzahl gering ist, wird die Pumpe zügig abgebremst, sobald die Flüssigkeit in die Eingangsstufe eingetreten ist. Bevor die Flüssigkeit in die nachfolgenden, mit Flügelrad und Seitenkanal versehenen Stufen eintritt, hat sich die Drehzahl bereits deutlich vermindert, so dass die nachfolgenden Stufen der schlagartigen Belastung nur noch in vermindertem Umfang ausgesetzt sind.Since the drive power is low when operating at overspeed, the pump is quickly braked as soon as the liquid has entered the input stage. Before the liquid enters the subsequent stages, which are provided with an impeller and side channel, the speed has already decreased significantly, so that the subsequent stages are only exposed to sudden loads to a lesser extent.

Die erfindungsgemäße Seitenkanalpumpe ist mit einer Steuerung versehen, die dazu ausgelegt ist, die Pumpe mit einer Überdrehzahl zu betreiben, wenn die Arbeitskammer der Pumpe gasgefüllt ist, und die Drehzahl auf eine Betriebsdrehzahl zu vermindern, wenn Flüssigkeit in die Pumpe eintritt. Möglich ist es, dass die Steuerung so eingerichtet ist, dass sie ein aktives Abbremsen der Pumpe bewirkt. Notwendig ist dies jedoch nicht. Sobald Flüssigkeit in die Pumpe eintritt, erhöht sich der Widerstand, so dass die Drehzahl der Pumpe sich auch dann vermindert, wenn die Antriebsleistung unverändert bleibt. Regelmäßig ist der Antriebsmotor so ausgelegt, dass er die Pumpe auch beim Betrieb mit maximaler Leistung nicht auf der Überdrehzahl halten kann, nachdem Flüssigkeit in die Pumpe eingetreten ist. Die Steuerung kann deswegen so eingerichtet sein, dass sie nach dem Eintreten der Flüssigkeit abwartet, bis die Drehzahl sich von alleine auf die gewünschte Betriebsdrehzahl reduziert hat und dann die Antriebsleistung erhöht, so dass die Pumpe konstant auf der Betriebsdrehzahl gehalten wird.The side channel pump according to the invention is provided with a control which is designed to operate the pump at an overspeed when the working chamber of the pump is filled with gas, and to reduce the speed to an operating speed when liquid enters the pump. It is possible that the control is set up in such a way that it brings about an active braking of the pump. However, this is not necessary. As soon as liquid enters the pump, the resistance increases, so that the speed of the pump decreases even if the drive power remains unchanged. The drive motor is regularly designed in such a way that it cannot keep the pump at the overspeed even when operating at maximum power after liquid has entered the pump. The control can therefore be set up in such a way that, after the liquid has entered, it waits until the speed has reduced by itself to the desired operating speed and then increases the drive power so that the pump is kept constant at the operating speed.

Ein bevorzugter Einsatzbereich der erfindungsgemäßen Pumpe ist das Fördern von Flüssiggas aus einem Tank. Dies findet beispielsweise an LPG-Tankstellen statt, wo mit Flüssiggas betriebene Fahrzeuge aus einem Tank, der häufig im Boden versenkt ist, betankt werden. Der Tank ist zum Teil mit Flüssiggas in flüssigem Zustand gefüllt, der obere Teil des Tanks und insbesondere die Leitung, die zu der erfindungsgemäßen Pumpe führt, werden von verdampftem Flüssiggas eingenommen. Der Druck in dem Tank und der Leitung entspricht also dem Dampfdruck des Flüssiggases, wenn die Pumpe nicht in Betrieb ist.A preferred area of application of the pump according to the invention is the delivery of liquid gas from a tank. This takes place, for example, at LPG filling stations, where vehicles powered by liquid gas are refueled from a tank that is often sunk in the ground. The tank is partially filled with liquid gas in the liquid state, the upper part of the tank and in particular the line which leads to the pump according to the invention are occupied by vaporized liquid gas. The pressure in the tank and the line corresponds i.e. the vapor pressure of the liquid gas when the pump is not in operation.

Wird die Pumpe in Betrieb gesetzt, so wird der Dampf des Flüssiggases angesaugt. Dies hat zunächst zur Folge, dass der Druck in der Leitung absinkt und dadurch weiteres Flüssiggas in den gasförmigen Zustand übergeht. Wenn die Pumpe nur eine geringe Saugleistung hat, geht dies immer so weiter und es wird fortlaufend nur das neu verdampfte Gas gefördert. Die Saugleistung der erfindungsgemäßen Pumpe ist jedoch groß genug, dass auch eine Verminderung der Temperatur in der Leitung erreicht wird, was dazu führt, dass der Dampfdruck in der Leitung geringer ist als der Dampfdruck im Tank. Durch die Druckdifferenz steigt die Flüssigkeit aus dem Tank in die Leitung und kann von der Pumpe angesaugt werden. Mit diesem Verfahren ist es deswegen möglich, das Flüssiggas auch in flüssiger Form aus dem Tank zu fördern. Dies funktioniert sogar dann, wenn der Tank tiefer angeordnet ist als die Pumpe, die Leitung, die sich aus dem Tank zu der Pumpe erstreckt, also eine Steigleitung ist, durch die das Flüssiggas entgegen der Schwerkraft gefördert werden muss. Sobald die Flüssigkeit auf die Eingangsstufe der Pumpe trifft, vermindert sich die Drehzahl der Pumpe von Überdrehzahl auf Betriebsdrehzahl und die Flüssigkeit wird im konventionellen Betrieb der Pumpe gefördert.If the pump is started, the vapor of the liquid gas is sucked in. The first consequence of this is that the pressure in the line drops and, as a result, further liquid gas changes into the gaseous state. If the pump only has a low suction power, this continues and only the newly vaporized gas is continuously pumped. However, the suction power of the pump according to the invention is large enough that the temperature in the line is also reduced, which means that the vapor pressure in the line is lower than the vapor pressure in the tank. Due to the pressure difference, the liquid rises from the tank into the line and can be sucked in by the pump. With this method it is therefore possible to pump the liquefied gas out of the tank in liquid form. This even works when the tank is arranged lower than the pump, the line that extends from the tank to the pump, i.e. is a riser line through which the liquid gas has to be conveyed against gravity. As soon as the liquid hits the input stage of the pump, the speed of the pump decreases from overspeed to operating speed and the liquid is pumped in conventional operation of the pump.

Die Erfindung wird nachfolgend unter Bezugnahme auf die beigefügten Zeichnungen anhand vorteilhafter Ausführungsformen beispielhaft beschrieben. Es zeigen:

Fig. 1:
eine schematische Darstellung einer erfindungsgemäßen Seitenkanalpumpe;
Fig. 2:
eine Anordnung aus einer erfindungsgemäßen Seitenkanalpumpe und einem Flüssiggastank; und
Fig. 3:
eine weitere Ausführungsform einer erfindungsgemäßen Seitenkanalpumpe.
The invention is described below by way of example with reference to the accompanying drawings using advantageous embodiments. Show it:
Fig. 1:
a schematic representation of a side channel pump according to the invention;
Fig. 2:
an arrangement of a side channel pump according to the invention and a liquid gas tank; and
Fig. 3:
another embodiment of a side channel pump according to the invention.

Bei einer erfindungsgemäßen Seitenkanalpumpe in Fig. 1 ist eine Welle 14 drehbar in einem Pumpengehäuse 15 gelagert. Das Pumpengehäuse 15 ist mit einer Einlassöffnung 16 und einer Auslassöffnung 17 versehen, wobei die Einlassöffnung 16 konzentrisch zu der Welle 14 angeordnet ist. Das der Eingangsöffnung 16 gegenüberliegende Ende des Pumpengehäuses 15 ist geschlossen, so dass das Ende der Welle 14 innerhalb des Gehäuses 15 aufgenommen ist. Indem das eine Ende der Welle 14 in die Einlassöffnung 16 mündet und das andere Ende der Welle 14 in dem Pumpengehäuse 15 aufgenommen ist, ist die Pumpe dichtungslos in dem Sinne, dass es keine Stelle gibt, an der der Innenraum und der Außenraum der Pumpe lediglich durch eine Wellendichtung getrennt sind. Dies hat den Vorteil, dass ein Austreten des geförderten Mediums sicher verhindert werden kann.In a side channel pump according to the invention in Fig. 1 a shaft 14 is rotatably mounted in a pump housing 15. The pump housing 15 is provided with an inlet opening 16 and an outlet opening 17, the inlet opening 16 being arranged concentrically with the shaft 14. The end of the pump housing 15 opposite the inlet opening 16 is closed, so that the end of the shaft 14 is received within the housing 15. Since one end of the shaft 14 opens into the inlet opening 16 and the other end of the shaft 14 is received in the pump housing 15, the pump is sealless in the sense that there is no place where the interior and exterior of the pump are merely are separated by a shaft seal. This has the advantage that leakage of the conveyed medium can be reliably prevented.

In dem Pumpengehäuse 15 ist außerdem ein Antriebsmotor aufgenommen, der einen mit der Welle 14 verbundenen Rotor 19 und einen Stator 20 umfasst. Über eine Steuerelektronik 35 wird der Motor angesteuert und insbesondere die Drehzahl des Motors eingestellt.A drive motor is also accommodated in the pump housing 15 and comprises a rotor 19 connected to the shaft 14 and a stator 20. The motor is controlled via control electronics 35 and, in particular, the speed of the motor is set.

Die erfindungsgemäße Pumpe umfasst zwei Seitenkanalstufen, in denen jeweils ein Flügelrad 22 sich in einer Arbeitskammer 23 dreht. Die Flügelräder 22 haben sternförmig angeordnete Flügel mit offenen Flügelzwischenräumen, die eng von dem Gehäuse 15 umgeben sind. Axial neben dem Flügelrad 22 bildet das Gehäuse 15 einen zum Flügelrad 22 hin offenen Seitenkanal 24, in welchem das Fördermedium durch Impulsaustausch mit dem Flügelrad 22 gefördert wird. Das Eintrittsende des Seitenkanals 24 liegt gegenüber einer im Gehäuse gebildeten Eintrittsöffnung der Arbeitskammer 23, die in Fig. 1 nicht sichtbar ist. Das durch die Eintrittsöffnung eintretende Medium gelangt durch die Zwischenräume der Flügel hindurch zum Seitenkanal 24. Von der Austrittsöffnung der vorangehenden Arbeitskammer 23 erstreckt sich jeweils ein in Fig. 1 nur schematisch angedeuteter Kanal 25 durch das Pumpengehäuse 15 hindurch bis zu der Eintrittsöffnung der nachfolgenden Arbeitskammer 23. Das geförderte Medium durchläuft also nacheinander die beiden Seitenkanalstufen der Pumpe.The pump according to the invention comprises two side channel stages, in each of which an impeller 22 rotates in a working chamber 23. The impellers 22 have blades arranged in a star shape with open blade spaces which are closely surrounded by the housing 15. Axially next to the impeller 22, the housing 15 forms an open towards the impeller 22 Side channel 24, in which the conveying medium is conveyed by exchanging impulses with the impeller 22. The inlet end of the side channel 24 is opposite an inlet opening formed in the housing of the working chamber 23, which in Fig. 1 is not visible. The medium entering through the inlet opening reaches the side channel 24 through the gaps between the blades. An in each case extends from the outlet opening of the preceding working chamber 23 Fig. 1 Only schematically indicated channel 25 through the pump housing 15 up to the inlet opening of the subsequent working chamber 23. The conveyed medium thus successively runs through the two side channel stages of the pump.

Die Eingangsstufe 26 der Pumpe ist als Zentrifugalstufe gestaltet. Ein mit der Welle 14 verbundenes Laufrad 27 ist mit Kanälen 18 versehen, die sich von einem zentralen Bereich zu einem peripheren Bereich des Laufrads 27 erstrecken. Das im zentralen Bereich in die Kanäle 18 eintretende Medium wird durch die Zentrifugalkraft nach außen bewegt. Vom äußeren Ende des Laufrads 27 erstreckt sich ein Kanal durch das Pumpengehäuse 15 zur Einlassöffnung der ersten Arbeitskammer 23.The input stage 26 of the pump is designed as a centrifugal stage. An impeller 27 connected to the shaft 14 is provided with channels 18 which extend from a central region to a peripheral region of the impeller 27. The medium entering the channels 18 in the central area is moved outward by the centrifugal force. A channel extends from the outer end of the impeller 27 through the pump housing 15 to the inlet opening of the first working chamber 23.

Das Pumpengehäuse 15 umgibt die Arbeitskammern 23 der Pumpe sowie den Motor 19, 20 mit einem Abstand, so dass innerhalb des Pumpengehäuses ein die Arbeitskammern 23 und den Motor 19, 20 umgebender Ringspalt 40 gebildet wird. Die Ausgangsseite der zweiten Seitenkanalstufe mündet in den Ringspalt 40. Die Auslassöffnung 17 der Pumpe ist ebenfalls an den Ringspalt 40 angeschlossen. Das durch die Pumpe geförderte Medium bewegt sich also von der Ausgangsseite der zweiten Seitenkanalstufe durch den Ringspalt 40 zur Ausgangsöffnung 17 der Pumpe.The pump housing 15 surrounds the working chambers 23 of the pump as well as the motor 19, 20 at a distance so that an annular gap 40 surrounding the working chambers 23 and the motor 19, 20 is formed within the pump housing. The outlet side of the second side channel step opens into the annular gap 40. The outlet opening 17 of the pump is also connected to the annular gap 40. The medium conveyed by the pump therefore moves from the outlet side of the second Side channel step through the annular gap 40 to the outlet opening 17 of the pump.

Der Stator 20 des Antriebsmotors ist von einem Außenrohr 41 umgeben. Das Außenrohr 41 erstreckt sich längs des Motors und bildet zugleich die innere Begrenzung des Ringspalts 40. Nach innen hin ist der Stator 20 des Antriebsmotors durch ein Innenrohr 42 begrenzt. Der Raum zwischen dem Innenrohr 42 und dem Außenrohr 41 ist durch den Stator 20 vollständig ausgefüllt. Der Stator 20 steht in direktem großflächigem Kontakt mit dem Innenrohr 42 und dem Außenrohr 41, so dass eine gute Wärmeübertragung zwischen dem Stator 20 und dem Innenrohr 41 sowie dem Außenrohr 42 gewährleistet ist. Im Bereich der Wickelköpfe 43 ist der Raum zwischen dem Stator 20 und dem Innenrohr 42 sowie dem Außenrohr 41 mit einer wärmeleitenden Vergussmasse 47 ausgefüllt.The stator 20 of the drive motor is surrounded by an outer tube 41. The outer tube 41 extends along the motor and at the same time forms the inner delimitation of the annular gap 40. Inwardly, the stator 20 of the drive motor is delimited by an inner tube 42. The space between the inner tube 42 and the outer tube 41 is completely filled by the stator 20. The stator 20 is in direct large-area contact with the inner tube 42 and the outer tube 41, so that a good heat transfer between the stator 20 and the inner tube 41 and the outer tube 42 is guaranteed. In the area of the end windings 43, the space between the stator 20 and the inner tube 42 and the outer tube 41 is filled with a heat-conducting potting compound 47.

Zwischen dem Antriebsmotor 19, 20 und der Steuerelektronik 35 erstreckt sich von dem Ringspalt 40 eine Mehrzahl von Kanälen 44 radial nach innen. Die Kanäle 44 münden in den Motorspalt 45 zwischen dem Rotor 19 und dem Innenrohr 42 des Stators 20. Der Motorspalt 45 erstreckt sich über die gesamte Länge des Antriebsmotors 19, 20 und geht über in einen Spalt 46, der zwischen dem Pumpengehäuse 15 und der Welle 14 eingeschlossen ist. Der Spalt 46 mündet in die Arbeitskammer 23 der zweiten Seitenkanalstufe der Pumpe und wird deswegen nachfolgend als Kammerspalt 46 bezeichnet.A plurality of channels 44 extend radially inward from the annular gap 40 between the drive motor 19, 20 and the control electronics 35. The channels 44 open into the motor gap 45 between the rotor 19 and the inner tube 42 of the stator 20. The motor gap 45 extends over the entire length of the drive motor 19, 20 and merges into a gap 46 between the pump housing 15 and the shaft 14 is included. The gap 46 opens into the working chamber 23 of the second side channel stage of the pump and is therefore referred to below as the chamber gap 46.

Die Kanäle 44, der Motorspalt 45 und der Kammerspalt 46 sind Bestandteile eines Kühlkreislaufs, der sich von der Arbeitskammer 23 der zweiten Seitenkanalstufe durch den Ringspalt 40, die Kanäle 44, den Motorspalt 45 und den Kammerspalt 46 zurück in die Arbeitskammer 23 der zweiten Seitenkanalstufe der Pumpe erstreckt. Der Querschnitt des Kühlkreislaufs ist wesentlich kleiner als der Querschnitt der Austrittsöffnung 17, so dass nur ein kleiner Anteil des geförderten Mediums sich als Kühlmedium entlang dem Kühlkreislauf bewegt, während der größere Anteil des geförderten Mediums die Pumpe durch die Austrittsöffnung 17 verlässt.The channels 44, the motor gap 45 and the chamber gap 46 are components of a cooling circuit that extends from the working chamber 23 of the second side channel stage through the Annular gap 40, the channels 44, the motor gap 45 and the chamber gap 46 extends back into the working chamber 23 of the second side channel stage of the pump. The cross section of the cooling circuit is significantly smaller than the cross section of the outlet opening 17, so that only a small portion of the conveyed medium moves as a cooling medium along the cooling circuit, while the larger portion of the conveyed medium leaves the pump through the outlet opening 17.

Das Kühlmedium wird in dem Kühlkreislauf durch den Druckunterschied zwischen der Ausgangsseite der zweiten Seitenkanalstufe der Pumpe und dem Kammerspalt 46 in Bewegung gehalten. Der Druckunterschied entspricht etwa der Hälfte der Druckdifferenz zwischen der Eingangsseite und der Ausgangsseite der zweiten Seitenkanalstufe der Pumpe.The cooling medium is kept in motion in the cooling circuit by the pressure difference between the outlet side of the second side channel stage of the pump and the chamber gap 46. The pressure difference corresponds to about half the pressure difference between the inlet side and the outlet side of the second side channel stage of the pump.

Der Kühlkreislauf ist so gestaltet, dass er in großflächigem Kontakt mit dem Innenrohr 42 und dem Außenrohr 41 des Stators 20 steht und dadurch wirksam Wärme von dem Stator 20 abführen kann. Mit den Kanälen 44 erstreckt sich der Kühlkreislauf zwischen dem Antriebsmotor 19, 20 und der Steuerelektronik 35, so dass gleichzeitig auch die Steuerelektronik 35 gekühlt wird. In dem Motorspalt 45 steht das Kühlmedium außer mit dem Stator 20 in einem großflächigen Kontakt mit dem Rotor 19, so dass auch dieser wirksam gekühlt wird. Nach seiner Rückkehr in die Arbeitskammer 23 vermischt sich das Kühlmedium mit dem geförderten Medium, das durch die Eingangsöffnung in die Arbeitskammer 23 eintritt, so dass sich die von dem Kühlmedium aufgenommene Wärme in dem Volumenstrom verteilt.The cooling circuit is designed in such a way that it is in extensive contact with the inner tube 42 and the outer tube 41 of the stator 20 and can thereby effectively dissipate heat from the stator 20. The cooling circuit extends with the channels 44 between the drive motor 19, 20 and the control electronics 35, so that the control electronics 35 are also cooled at the same time. In the motor gap 45, the cooling medium is in extensive contact with the rotor 19, in addition to the stator 20, so that it is also effectively cooled. After its return to the working chamber 23, the cooling medium mixes with the conveyed medium, which enters the working chamber 23 through the inlet opening, so that the heat absorbed by the cooling medium is distributed in the volume flow.

Der Kühlkreislauf ist so gestaltet, dass die erfindungsgemäße Pumpe im Dauerbetrieb auf einer konstanten Betriebstemperatur gehalten werden kann, wenn die Pumpe ein flüssiges Medium gefordert. Fördert die Pumpe hingegen ein gasförmiges Medium, so wird nur eine geringere Wärmemenge abgeführt und die Pumpe erwärmt sich.The cooling circuit is designed so that the pump according to the invention can be kept at a constant operating temperature in continuous operation when the pump requires a liquid medium. If, on the other hand, the pump delivers a gaseous medium, only a smaller amount of heat is dissipated and the pump heats up.

Um trotzdem ein schnelles Überhitzen der Pumpe zu vermeiden, ist der Motor so gestaltet, dass er eine große Wärmekapazität hat. Sowohl der Rotor 19 als auch der Stator 20 sind zu diesem Zweck sehr massiv ausgeführt. Insbesondere wird bei dem Stator 20 eine hohe Wärmekapazität dadurch erreicht, dass der Raum zwischen dem Innenrohr 42 und dem Außenrohr 41 vollständig ausgefüllt ist. Mit dieser Gestaltung des Stators 20 wird einem Überhitzen also in zweierlei Hinsicht entgegengewirkt. Zum einen kann durch die massive Gestaltung eine große Wärmemenge aufgenommen werden. Zum zweiten kann durch den großflächigen Kontakt des Innenrohrs 42 sowie des Außenrohrs 41 mit dem Kühlkreislauf eine große Wärmemenge abgegeben werden. Es wird dadurch möglich, über einen Zeitraum von beispielsweise mehr als 1 Minute Gas zu fördern, ohne dass die Pumpe überhitzt.In order to avoid rapid overheating of the pump, the motor is designed so that it has a large heat capacity. Both the rotor 19 and the stator 20 are made very solid for this purpose. In particular, a high thermal capacity is achieved in the stator 20 in that the space between the inner tube 42 and the outer tube 41 is completely filled. With this design of the stator 20, overheating is counteracted in two ways. On the one hand, the massive design allows a large amount of heat to be absorbed. Secondly, a large amount of heat can be given off due to the large-area contact of the inner tube 42 and the outer tube 41 with the cooling circuit. This makes it possible to deliver gas over a period of, for example, more than 1 minute without the pump overheating.

Ein Anwendungsbeispiel der erfindungsgemäßen Pumpe ist in Fig. 2 gezeigt. Die erfindungsgemäße Pumpe 28 ist an einen Flüssiggastank 29 angeschlossen. Eine Steigleitung 31 erstreckt sich vom unteren Teil des Tanks 29 hin zu der Einlassöffnung 16 der Pumpe 28. An die Auslassöffnung 17 der Pumpe 28 ist eine Leitung 34 angeschlossen, die zu einem Fahrzeug 32 führt, das mit Flüssiggas 30 betankt werden soll. Der Volumenstrom der Pumpe ist so groß, dass er von dem Auto 32 nicht vollständig aufgenommen werden kann. In einem Abscheider 33 werden Gasblasen aus dem Volumenstrom abgeschieden und in den Tank 29 zurückgeleitet.An application example of the pump according to the invention is shown in Fig. 2 shown. The pump 28 according to the invention is connected to a liquid gas tank 29. A riser pipe 31 extends from the lower part of the tank 29 to the inlet opening 16 of the pump 28. A line 34 is connected to the outlet opening 17 of the pump 28 and leads to a vehicle 32 which is to be refueled with liquid gas 30. The volume flow of the pump is so great that it cannot be completely absorbed by the car 32. In A separator 33 separates gas bubbles from the volume flow and returns them to the tank 29.

Der Tank 29 ist zu etwa einem Drittel mit Flüssiggas 30 gefüllt. Der verbleibende Raum in dem Tank 29 sowie in der Steigleitung 31 ist mit verdampftem Flüssiggas gefüllt, der Druck entspricht folglich dem Dampfdruck des Flüssiggases. Wird die Pumpe 28 aus diesem Zustand heraus in Betrieb gesetzt, tritt das Flüssiggas zunächst in gasförmigem Zustand in die Pumpe 28 ein. Da mit dem Anlegen von Unterdruck in dem Tank 29 immer weiter Flüssiggas verdampft, muss die Saugleistung der Pumpe in dieser Phase groß sein, um trotzdem Flüssiggas in flüssigem Zustand durch die Steigleitung 31 anzusaugen. Gemäß der Erfindung wird dies dadurch erreicht, dass die Pumpe in dieser Phase mit einer Überdrehzahl betrieben wird, die deutlich oberhalb der Betriebsdrehzahl liegt. Die Überdrehzahl, mit der die Pumpe quasi als Gebläse betrieben wird, kann beispielsweise 6000 U/min betragen. Diese Drehzahl liegt deutlich oberhalb der Drehzahl, mit der die Pumpe maximal betrieben werden kann, wenn Flüssigkeit gefördert wird. Beim Fördern von Flüssigkeit wird die Pumpe beispielsweise mit einer Drehzahl von 3000 U/min betrieben. Die Flüssigkeit wird mit einem Volumenstrom von beispielsweise 35 m3/h gefördert.About one third of the tank 29 is filled with liquid gas 30. The remaining space in the tank 29 and in the riser 31 is filled with evaporated liquid gas, the pressure consequently corresponds to the vapor pressure of the liquid gas. If the pump 28 is put into operation from this state, the liquid gas initially enters the pump 28 in a gaseous state. Since liquid gas continues to evaporate with the application of negative pressure in tank 29, the suction power of the pump must be high in this phase in order to still suck in liquid gas through riser 31. According to the invention, this is achieved in that the pump is operated in this phase at an overspeed which is significantly above the operating speed. The overspeed with which the pump is operated as a kind of fan can be 6000 rpm, for example. This speed is well above the maximum speed at which the pump can be operated when liquid is being pumped. When pumping liquid, the pump is operated, for example, at a speed of 3000 rpm. The liquid is conveyed with a volume flow of, for example, 35 m 3 / h.

Trotz der höheren Drehzahl liegt die Leistung der Pumpe, wenn sie als Gebläse betrieben wird, niedriger als im normalen Betrieb, in dem Flüssigkeit gefördert wird. Wenn also eine geringe Leistung ausreicht, um die Pumpe auf die Überdrehzahl zu beschleunigen, folgt daraus, dass die Arbeitskammern 23 der Pumpe gasgefüllt sind. Die Steuerung 35 ist folglich dazu ausgelegt, den Elektromotor 21 bei der Überdrehzahl mit geringer Leistung zu betreiben.Despite the higher speed, the performance of the pump when it is operated as a fan is lower than in normal operation in which liquid is conveyed. So if a low power is sufficient to accelerate the pump to the overspeed, it follows that the working chambers 23 of the pump are gas-filled. The controller 35 is consequently designed to operate the electric motor 21 at the overspeed with low power.

Sobald Flüssigkeit in die Pumpe eintritt, erhöht sich der Widerstand schlagartig und die Pumpe wird abgebremst. Die Steuerung 35 ist so ausgelegt, dass sie die Leistung des Elektromotors 21 erhöht, sobald die Pumpe 28 auf Betriebsdrehzahl abgebremst ist, um die Pumpe auf dieser Drehzahl zu halten. Dieser Betriebszustand wird so lange beibehalten, bis das Auto 32 vollgetankt ist. Sobald dies der Fall ist, wird die Pumpe 28 abgeschaltet.As soon as liquid enters the pump, the resistance increases suddenly and the pump is braked. The controller 35 is designed such that it increases the power of the electric motor 21 as soon as the pump 28 is braked to operating speed in order to keep the pump at this speed. This operating state is maintained until the car 32 is full. As soon as this is the case, the pump 28 is switched off.

Im Stillstand der Pumpe verdampft laufend Flüssiggas, das noch in der Pumpe enthalten ist, so dass die Arbeitsräume 23 nach genügend langer Wartezeit wieder in den Ausgangszustand zurückkehren, in dem sie gasgefüllt sind. Soll ein weiteres Auto betankt werden, kann die Pumpe erneut mit geringer Leistung auf die Überdrehzahl beschleunigt werden. Findet hingegen der nächste Tankvorgang statt, bevor die Flüssigkeit aus der Pumpe verdampft ist, ist der Widerstand deutlich höher, und die Pumpe wird von Anfang an mit hoher Leistung bei Betriebsdrehzahl betrieben, so dass Flüssigkeit gefördert werden kann.When the pump is at a standstill, liquid gas that is still contained in the pump evaporates continuously, so that after a sufficiently long waiting time, the working spaces 23 return to the initial state in which they are filled with gas. If another car needs to be refueled, the pump can be accelerated again to the overspeed with low power. If, on the other hand, the next refueling process takes place before the liquid has evaporated from the pump, the resistance is significantly higher and the pump is operated from the beginning with high power at operating speed so that liquid can be pumped.

Bei der alternativen Ausführungsform der Fig. 3 ist das Pumpengehäuse 15 mit zwei Entlüftungsventilen 48 versehen, die in den Ringspalt 46 münden. Die Entlüftungsventile 48 sind offen, solange Gas gefördert wird. Die Entlüftungsventile 48 schließen, wenn flüssiges Medium gefordert wird. Bezogen auf das Ausführungsbeispiel der Fig. 2 wird das durch die Entlüftungsventile 48 austretende Gas genau wie das mit dem Abscheider 33 abgetrennte Gas zurück in den Tank 29 geleitet.In the alternative embodiment of Fig. 3 the pump housing 15 is provided with two vent valves 48 which open into the annular gap 46. The vent valves 48 are open as long as gas is being promoted. The vent valves 48 close when liquid medium is required. Based on the embodiment of Fig. 2 the gas exiting through the venting valves 48, like the gas separated by the separator 33, is fed back into the tank 29.

Claims (12)

  1. Side-channel pump having a pump housing (15) in which a plurality of operating chambers (23) which are provided with a side channel (24) and a motor (19, 20) are arranged, having an impeller (22) in the operating chamber (23) which rotates with a shaft (14) which is driven by the motor (19, 20), and having a cooling circuit (40, 44, 45, 46) which extends from the operating chamber (23) to the motor (19, 20) and from the motor (19, 20) to a suction portion (46) of the pump, characterized in that the cooling circuit (40, 44, 45, 46) is supplied from an operating chamber (23) whose outlet side is connected to an outlet opening (17) of the side-channel pump, wherein
    the suction portion (46) is arranged in the operating chamber (23) from which the cooling circuit (40, 44, 45, 46) is supplied.
  2. Side-channel pump according to Claim 1, characterized in that the cooling circuit (40, 44, 45, 46) opens in a gap (46) of the operating chamber (23) which is formed between the shaft (14) and a portion of the pump housing (15) which surrounds the shaft.
  3. Side-channel pump according to one of Claims 1 and 2, characterized in that the cooling circuit (40, 44, 45, 46) extends between the rotor (19) and the stator (20) of the motor.
  4. Side-channel pump according to one of Claims 1 to 3, characterized in that an electronic control system (35) is received in the pump housing (15) and in that the cooling circuit (40, 44, 45, 46) extends between the motor (19, 20) and the electronic control system (35).
  5. Side-channel pump according to one of Claims 1 to 4, characterized in that an annular gap (40) is formed between the pump housing (15) and the motor (19, 20).
  6. Side-channel pump according to Claim 5, characterized in that the cooling circuit (40, 44, 45, 46) extends through the annular gap (40).
  7. Side-channel pump according to Claim 5 or 6, characterized in that the motor (19, 20) is surrounded by an outer pipe (41) and in that the outer pipe (41) adjoins the annular gap (40).
  8. Side-channel pump according to one of Claims 1 to 7, characterized in that the motor (19, 20) comprises an inner pipe (42) which is arranged between the rotor (19) and the stator (20) of the motor.
  9. Side-channel pump according to Claims 1, 5, 7 and 8, characterized in that the stator (19) completely fills the space between the inner pipe (42) and the outer pipe (41) over a longitudinal portion of the motor (19, 20).
  10. Side-channel pump according to Claim 9, characterized in that a space which surrounds the end windings (43) of the stator (20) is filled with a casting compound (47).
  11. Side-channel pump according to one of Claims 1 to 10, characterized in that the pump housing (15) is provided with a ventilation valve (48).
  12. Side-channel pump according to one of Claims 1 to 11, characterized by a control system which is configured to operate the pump with an overspeed when the operating chamber (23) of the pump is filled with gas and to reduce the speed to an operating speed when liquid enters the pump.
EP15729508.0A 2014-06-24 2015-06-18 Side channel pump Active EP3161320B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14173691 2014-06-24
PCT/EP2015/063741 WO2015197467A1 (en) 2014-06-24 2015-06-18 Side-channel pump

Publications (2)

Publication Number Publication Date
EP3161320A1 EP3161320A1 (en) 2017-05-03
EP3161320B1 true EP3161320B1 (en) 2021-02-24

Family

ID=51032957

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15729508.0A Active EP3161320B1 (en) 2014-06-24 2015-06-18 Side channel pump

Country Status (4)

Country Link
US (1) US10704565B2 (en)
EP (1) EP3161320B1 (en)
CN (1) CN107076154B (en)
WO (1) WO2015197467A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016103525A1 (en) * 2016-02-29 2017-08-31 Pierburg Gmbh Blower for an internal combustion engine
CN105673574B (en) * 2016-03-18 2018-06-29 池泉 Low noise centrifugal multistage pump multiple centrifugal pump
CN109630427A (en) * 2018-12-06 2019-04-16 广东威灵汽车部件有限公司 Electronic water pump and vehicle
CN110185628B (en) * 2019-05-30 2021-07-20 山东潍氢动力科技有限公司 Multi-medium delivery pump
TWI715192B (en) * 2019-09-12 2021-01-01 建準電機工業股份有限公司 Fluid delivery device
CN110725800A (en) * 2019-11-12 2020-01-24 浙江理工大学 Motor heat dissipation and rotating speed automatic adjusting method of pump
WO2023001370A1 (en) 2021-07-21 2023-01-26 Pierburg Pump Technology Gmbh Automotive electric side-channel liquid pump with motor cooling
CN116428195A (en) * 2023-03-29 2023-07-14 上海越圣智控环境科技有限公司 Centrifugal refrigerant pump

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0831236A2 (en) * 1996-09-24 1998-03-25 WILO GmbH Motor pump with cooled frequency converter

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3124077A (en) * 1964-03-10 white
DE855363C (en) * 1949-01-01 1952-11-13 Johannes Hinsch Self-priming circulation pump
DE1098820B (en) 1959-09-04 1961-02-02 Lederle Pumpen & Maschf Multi-stage centrifugal pump driven by a canned motor
US3385225A (en) * 1965-06-29 1968-05-28 Siemen & Hinsch Gmbh Rotary pump
FR2783884B1 (en) * 1998-09-24 2000-10-27 Inst Francais Du Petrole COMPRESSION-PUMPING SYSTEM COMPRISING AN ALTERNATING COMPRESSION SECTION AND A METHOD THEREOF
EP1069313B1 (en) * 1999-07-16 2005-09-14 Man Turbo Ag Turbo compressor
US6422838B1 (en) * 2000-07-13 2002-07-23 Flowserve Management Company Two-stage, permanent-magnet, integral disk-motor pump
CN2823602Y (en) 2005-01-21 2006-10-04 曹宝军 Electric fuel oil pump suitable for fuel containing alcohol
US9093871B2 (en) * 2010-12-21 2015-07-28 Calnetix Technologies, L.L.C. Bidirectional pumping and energy recovery system
CN202659519U (en) 2012-06-25 2013-01-09 合肥新沪屏蔽泵股份有限公司 Internal pressurized multistage shield pump for conveying easily gasifying medium
US9360015B2 (en) 2012-07-16 2016-06-07 Magna Powertrain Of America, Inc. Submerged rotor electric water pump with structural wetsleeve
US9709060B2 (en) * 2012-09-03 2017-07-18 Sterling Industry Consult Gmbh Side-channel pump and method for operating same
KR101332853B1 (en) 2013-05-09 2013-11-27 엔엔엔코리아(주) Electric water pump with cooling unit for vehicles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0831236A2 (en) * 1996-09-24 1998-03-25 WILO GmbH Motor pump with cooled frequency converter

Also Published As

Publication number Publication date
WO2015197467A1 (en) 2015-12-30
CN107076154B (en) 2021-02-09
EP3161320A1 (en) 2017-05-03
US10704565B2 (en) 2020-07-07
CN107076154A (en) 2017-08-18
US20170130735A1 (en) 2017-05-11

Similar Documents

Publication Publication Date Title
EP3161320B1 (en) Side channel pump
EP2822821B1 (en) Hydrodynamic retarder and method for controlling the power transmission of such a retarder
EP2006564B1 (en) Hydrodynamic machine
EP2015972B1 (en) Hydrodynamic machine
EP2509831A1 (en) Hydrodynamic retarder and method for operating a hydrodynamic retarder
EP2505842A1 (en) Multi stage centrifugal pump system
EP2824288B1 (en) Gas turbine engine
EP2818726A1 (en) Centrifugal pump with axially shiftable impeller for feeding different fluid paths
EP3423762B1 (en) Heat pump with convective shaft cooling
DE102015119095B4 (en) Coolant pump for an internal combustion engine
EP2893194B1 (en) Side channel pump and method for operating same
DE602004001156T2 (en) Compressor unit with supported cooling
EP3759356A1 (en) Electric coolant pump
DE102014222322B3 (en) Vane pump with improved starting behavior
WO2019048167A1 (en) Side-channel compressor for a fuel cell system for conveying and/or compressing a gaseous media
EP3933207A1 (en) Medical fan with an acoustic insulation system, in particular for dental purposes
EP1495227A2 (en) Hydraulic pump unit
EP3156663B1 (en) Centrifugal pump assembly
EP3267040B1 (en) Turbomolecular pump
EP3650703B1 (en) Vacuum pump and method for lubrication of same
DE102013213202B4 (en) Cooling system with integrated hydrodynamic machine
EP3019763B1 (en) Hydrodynamic machine, in particular hydrodynamic coupling
DE1213270B (en) Hydraulic downhill brake for motor vehicles
EP3423763A1 (en) Heat pump with a motor cooling arrangement
EP3676544B1 (en) Heat pump comprising a cooling device for cooling a guide space and a suction mouth

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20191008

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201006

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015014303

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1364767

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210524

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210524

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210525

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015014303

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20211125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210618

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1364767

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230626

Year of fee payment: 9

Ref country code: DE

Payment date: 20230626

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230627

Year of fee payment: 9