EP1069313B1 - Turbo compressor - Google Patents

Turbo compressor Download PDF

Info

Publication number
EP1069313B1
EP1069313B1 EP00810275A EP00810275A EP1069313B1 EP 1069313 B1 EP1069313 B1 EP 1069313B1 EP 00810275 A EP00810275 A EP 00810275A EP 00810275 A EP00810275 A EP 00810275A EP 1069313 B1 EP1069313 B1 EP 1069313B1
Authority
EP
European Patent Office
Prior art keywords
electric motor
radial
compressor
turbo
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00810275A
Other languages
German (de)
French (fr)
Other versions
EP1069313A2 (en
EP1069313A3 (en
Inventor
Denis Grob
Jean-Claude Pradetto
Dominique Dessibourg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Energy Solutions SE
Original Assignee
MAN Turbo AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26073837&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1069313(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from EP99810640A external-priority patent/EP0990798A1/en
Priority to EP00810275A priority Critical patent/EP1069313B1/en
Application filed by MAN Turbo AG filed Critical MAN Turbo AG
Priority to US09/599,098 priority patent/US6390789B1/en
Priority to CA002312085A priority patent/CA2312085C/en
Priority to DE20011217U priority patent/DE20011217U1/en
Priority to JP2000192340A priority patent/JP4395242B2/en
Priority to KR1020000039923A priority patent/KR100761917B1/en
Priority to CNB001201123A priority patent/CN1153906C/en
Publication of EP1069313A2 publication Critical patent/EP1069313A2/en
Publication of EP1069313A3 publication Critical patent/EP1069313A3/en
Publication of EP1069313B1 publication Critical patent/EP1069313B1/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0686Units comprising pumps and their driving means the pump being electrically driven specially adapted for submerged use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system

Definitions

  • the invention relates to a turbocompressor according to the Preamble of claim 1.
  • turbo compressor which one Includes radial turbocompressor and an electric motor, wherein each of these units is arranged in a separate housing, and the shaft of the electric motor via a flexible shaft part the shaft of the radial turbocompressor is coupled.
  • a disadvantage of this known turbocompressor is the fact that this is made relatively large that a plurality of seals and bearings are required and that the Cost of the turbo compressor are therefore relatively high.
  • the document DE 37 29 486 C1 discloses a Turbo compressor, which two two-stage radial turbocompressor As well as an electric motor, these being connected to a rigid Wave are coupled, which in three places with magnetic Radial bearings is stored.
  • a partial flow of the compressed and recooled gas is the Rotor of the electric motor and the radial bearings for cooling fed.
  • the known turbocompressor has the disadvantage that the assembly is very elaborate and difficult that this arrangement for a maximum of two stages Radial turbocompressor is suitable and that the turbo compressor has relatively high dissipation losses.
  • the invention is based on the object for a generic turbocompressor effective cooling of the Electric motor and the electromagnetic bearing provide.
  • a portion of the compressed fluid or Process gas for longitudinal gas cooling of the engine and the Radial bearing used.
  • the engine cooling on a low pressure level, thereby reducing the dissipation losses be reduced in the engine.
  • This is when using a common, hermetically sealed pressure housing advantageous.
  • an electric motor is preferably one for suction or Standstill pressure designed engine used.
  • the electric motor has a separate, separate from the radial turbo compressor cooling circuit on.
  • Fig. 1 shows schematically a known turbocompressor 1, which a Radial turbocompressor 3 with a shaft 3a and a driving Electric motor 2 comprises a shaft 2a.
  • the shaft 3a of Radial turbocompressor 3 is supported by two radial bearings 5 on both sides.
  • the shaft 2a of the electric motor 2 by two radial bearings. 5 stored on both sides.
  • the two shafts 2a, 3a are connected via a coupling 4 comprising two coupling parts 4a and 4b a flexible intermediate piece connected, so that the electric motor 2 via the shaft 2a and the coupling 4th the shaft 3a of the radial turbocompressor 3 drives.
  • Fig. 2 shows a turbocompressor 1, which in a hermetic sealed pressure housing 6 is arranged, wherein each one the Pressure housing 6 penetrating supply line 6c and 6d discharge provided is to the radial turbocompressor 3 fluid-conducting with an outside of the Pressure housing 6 arranged device to connect.
  • the electric motor 2 comprises the rotor 2b and the stator 2c, wherein the rotor 2b part of the Motor shaft 2a, and the motor shaft 2a on both sides in the electromagnetic Radial bearing 5, each comprising a support device 5a and a electromagnetic coil 5b, is mounted in the radial direction.
  • the Motor shaft 2a has a thrust bearing 7 against the radial turbocompressor 3 on, which is a part of the motor shaft 2a forming disc 2d as well comprises electromagnetic coils 7a.
  • the motor shaft 2a is at the End section via a coupling 4 with the rotor 3a of the Radial turbocompressor 3 connected, with the opposite End portion of the rotor 3a is mounted in a radial bearing 5.
  • the Motor shaft 2a and the rotor 3a form a common shaft 13.
  • In Running direction of the rotor 3a are arranged two compressor wheels 3b, which a first compression stage 3c and a second compression stage Training. Not shown are the guide vanes 3f of Radial turbo-compressor 3.
  • the main mass flow 8 of the compressed Fluids pass via the inlet opening 6a and the lead 6c enters and becomes the first compression stage 3c subsequently to the second compression stage 3d and subsequently via the Discharge 6d passed to the outlet opening 6b.
  • a small fraction of the Main mass flow 8 is at the exit point of the first Compression level 3c derived via a connecting line 11 and as Cooling gas mass flow 9 a filter device 10 fed, which the Cooling gas mass flow 9 cleans of impurities, and the purified Cooling gas mass flow 9 as a coolant to the electromagnetic radial bearings 5 and the electric motor 2 supplies.
  • the cooling gas mass flow 9 is flowing in the longitudinal direction of the housing, the radial bearing 5 and subsequently the electric motor 2 and the other Radial bearing 5 fed, the cooling gas preferably between the Wave 2a and the respective magnet 5b, 2c is performed.
  • the Coolant gas mass flow 9 opens to the suction side of the first Compression level 3c, we compress this in turn, and is called Main mass flow 8 and / or further promoted as cooling gas mass flow 9.
  • the connecting line 11 and the filter device 10 can within or be arranged outside of the pressure housing 6 extending.
  • the Turbo compressor 1 according to the embodiment shown in Fig. 2 has the advantage that no seal the motor shaft 2a and the Runner 3a opposite atmosphere is required. In addition, there is no seal between the engine 2 and the first compression stage 3c required.
  • the electric motor 2 is designed in such a way that this with Suction pressure or with standstill pressure is operable.
  • the turbo-compressor 1 could, of course, a plurality of in the direction of travel of the rotor 3a have arranged spaced compressor wheels 3b, so for example, a total of four, six, eight or ten compressor wheels 3 b.
  • the compression pressure to be achieved is largely open to the top, wherein by a corresponding number connected in series Compressor wheels 3b, for example, a compression pressure of 600 bar is reachable.
  • the turbocompressor 1 could also have one or more others Radial turbo compressor 3 and / or electric motors 2 include, which in Running direction of the rotor 3a, 2a are arranged, with all runs 3a, 2a to train a common wave.
  • This common wave could be through Radial bearing, in particular magnetic radial bearings 5 be stored, wherein between each one Radialturbover Noticer 3 preferably a single Radial bearing 5 is arranged.
  • all radial turbocompressors 3 together with the electric motor 2 or the electric motors 2 in one common, single pressure housing 6 is arranged.
  • the electromagnetic radial bearing 5 and the radial bearings. 5 associated portions of the shafts 2a and 3a have further, for a Professional self-evident and therefore not shown components on to form an electromagnetic radial bearing 5, such as electrical Coils, ferromagnetic parts, etc.
  • Fig. 3 shows a longitudinal section of another embodiment of a Turbo compressor 1 comprising two radial turbocompressors 3, wherein at each Side of the electric motor 2 per a Radialturbover Noticer 3 arranged and whose rotor 3a is connected via a coupling 4 with the motor shaft 2a. Only the upper half of the turbocompressor 1 is shown. It will only the opposite to the embodiment according to FIG. 2 essential Differences in detail described.
  • the entire wave includes the Motor shaft 2a and the two rotor 3a is by four, in the longitudinal direction of the distributed throughout the wave electromagnetic radial bearings 5 stored.
  • the left-hand radial turbocompressor 3 is as Low pressure part connected and has six compressor wheels 3b.
  • the main mass flow 8 passes through the supply line 6c in the low pressure part, and after compression over a Connecting line 12 is supplied to the high pressure part, wherein the Main mass flow 8 the high pressure part after compression over the Derivative 6d leaves.
  • a small part of the main mass flow 8 is after the first compression stage 3c as the cooling gas mass flow 9 in the Conduction line 11 passed, said cooling gas mass flow 9 after the flow through the filter 10 that on the right side of the electric motor 2 arranged interior 9 c is supplied, and thereafter in the longitudinal direction the motor shaft 2 a flowing over the inner space 9 b of the suction port of the first compression stage 3c zuflust.
  • the Radial turbo compressor 3 located process gas for cooling the Derived and used electric motor 2.
  • a non-contact seal 19th arranged to the internal pressure on the right side of the electric motor. 2 keep it low.
  • the electric motor 2 is again designed to be operable at a suction pressure or a standstill pressure.
  • the Connecting line 12 and / or the connecting line 11 and the Filter device 10 could also be completely inside the housing 6 be arranged running.
  • the radial turbo compressor 3 can, for example, in a “back to back “arrangement, in other words such that the by the two Radialturbover Noticer 3 on the shaft caused forces in act in the opposite direction to such in the direction of the Motor shaft 2a acting shear forces to compensate and reduce.
  • the housing 6 is set in the embodiments according to FIGS. 3 and 4 from the three sub-housings 6e, 6f, 6g together, the sub-housings 6e, 6g form part of the radial turbocompressor 3 and the part housing 6f part of Engine 2 forms.
  • the sub-housings 6e, 6f, 6g are adapted to one another in this way designed so that they, as shown in Figures 3 and 4, fixed can be connected to each other, for example by means of screws.
  • At this Junctions can also be arranged seals to the To hermetically seal the interior of the housing 6 so that only over the intended lines 6c, 6d, 11, 12 or corresponding flanges a fluid-conducting connection between the interior of the housing.
  • Figs. 3 and 4 show arrangement of the lines 11 and 12 only through the lines 6c, 6d and optionally through the discharge line 6i a fluid-conducting connection to the outside space exists.
  • the joints can also do so be adapted to each other that arranged adjacent Part housing when pushed together and connect with respect to Longitudinal axis of the turbocompressor 1 automatically center each other.
  • the two partial housings 6e, 6g each have an opening 23a in the outer wall which can be closed gas-tight with a cover 23b.
  • Fig. 3 is the in the sub-housing 6g arranged opening 23a with lid 23b shown.
  • the Turbo compressor 1 is preferably prefabricated such that the Radial turbo compressor 3 is installed in the respective sub-housing 6e, 6g and the electric motor 2 is installed in the sub housing 6f.
  • the like preconfigured sub-housing 6e, 6f, 6g are in the assembled State transported to the place of application.
  • the assembly of the Turbo compressor 1 is as follows: After the sub-housing 6e, 6f, 6g on the Flanges 6k, 6l are firmly connected to each other, the shaft 3a and the rotor 2b at the outside accessible through the opening 23a Clutch 4 firmly connected. Thereafter, the opening 23 a with the lid 23b firmly and sealed gas-tight.
  • the at the clutch 4 used fasteners, such as screws, are in themselves known and therefore not shown in detail.
  • the turbocompressor 1 shown in Fig. 4 in otherwise substantially the same configuration as the turbocompressor according to FIG. 3, in the housing part 6e a fluidically connected to the interior 9b outlet opening 6h and a subsequently arranged derivative 6i, through which the Cooling gas mass flow 9 and a minor proportion of Main mass flow 9a exits and example of a foreign investment Process source is supplied.
  • This arrangement is opposite to the Embodiment according to FIG. 3 has the advantage that the pressure in the Derivative 6i subsequent device independent of the pressure in Radial turbo compressor 3 is, this pressure is preferably selected is that the engine cooling is done at a lower pressure level than in the Embodiment according to FIG.
  • the Discharge 6i may be supplied to, for example, a compressor 24, which compresses the mass flow 9, 9a again the inlet opening 6a supplies.
  • the suction pressure generated by the compressor in the discharge line 6i can for example, be lower than 50 bar.
  • a control device 17 which at least for driving the electromagnetic radial bearing 5 and the motor 2 serves.
  • sensors 16a, 16b, 16c, 16d arranged, which the position of the entire shaft 13 and the sub-waves 2a, 3a with respect to the radial bearings 5, the sensors 16a, 16b, 16c, 16d via electrical lines 16e, 16f, 16g, 16h with the control device 17 are connected.
  • electrical lines 15a, 15b, 15c, 15d which are connected to the control device 17.
  • electrical line 15 e is also one electrical line 15 e is provided, which the control device 17 via a power electronics, not shown, with the winding of the Electric motor 2 connects.
  • Fig. 5 shows a longitudinal section through a housing 6, wherein the Junction of two sub-housing 6e, 6f is shown.
  • the flange 6k of the first sub-housing 6e has a recess configured in this way, that the flange 6l of the second part housing 6f is received therein, wherein the mutual position of the two sub-housings 6e, 6f at Joining together by the flanges 6k, 6l are centered on each other.
  • the Flanges 6k, 6l are distributed by several in the circumferential direction arranged screws 6m held together with nut 6n, wherein at the Face of the flanges 6k, 6l extending in the circumferential direction groove is provided, in which a sealing element 6o is arranged to the by the two sub-housing 6e, 6f limited interior to the outside seal.
  • FIG. 6 shows a longitudinal section of a schematically illustrated housing 6 consisting of three sub-housings 6e, 6f, 6g with flanges 6k, 6l and a Supply line 6c and a derivative 6d.
  • the housing 6 is about two Supporting elements 18a, 18b supported on a substrate 14.
  • a base member 6p which is a rigid, in Longitudinal direction of the housing 6 extending support, in particular a Supporting surface forms on which the electromagnetic radial bearings. 5 are arranged.
  • the function of the basic elements 6p is one as possible stable and preferably temperature-insensitive reference plane too form, on which at least some radial bearings 5 are arranged.
  • the Base member 6p may be configured in a variety of embodiments be, for example, as a solid, solid plate, as a carrier or as Grating. On the base element 6p further components such as Electric motor 2 or 3 Radialturbover Noticer be anchored.
  • the Using a base element 6p allows the electromagnetic Radial bearing 5 mutually very precise and in particular precisely aligned to arrange.
  • the common arrangement of the radial bearing 5 on the Base element 6p has the advantage that due to attacking Tensile, compressive or shear forces or due to temperature influences mutual shifts of the radial bearings turn out very low. moreover This arrangement can be set up very quickly ready for use. In the From Fig.
  • the bearing force generated by electromagnetic radial bearings is much lower than that of known hydrodynamic bearings producible bearing force. That is why the exact mutual Alignment of electromagnetic radial bearings and preventing a mutual displacement of the radial bearings of central importance.
  • the Electromagnetic radial bearing is usually operated such that the Shaft is held in the geometric center of the radial bearing.
  • One mutual displacement of the radial bearing has the consequence that the Radial bearing has to expend considerable forces to the shaft anyway in the to hold geometric center. Since the electromagnetic radial bearing relative it soon gets into the state of magnetic saturation Radial bearing in this situation over lower, to carry the shaft to Available forces.
  • Fig. 7 shows a turbocompressor 1 with a compared to Embodiment according to FIG. 4 separately cooled electric motor 2. It is between the pressure part of the radial turbocompressor 3 and the electric motor 2 each a system with a double seal, comprising a Dry gas seal 19 and subsequently a seal 20, arranged wherein between the two seals 19, 20 an outlet 21, as a vent (Exit to the atmosphere without gas combustion) or flare (exit to the Atmosphere with gas combustion) configured, which is arranged by the housing wall 6 runs.
  • the electric motor 2 has a separate, separated by the seals 19, 20 from the radial turbo compressor 3 Cooling circuit on which a connecting line 11 and a radiator 22nd includes.
  • a Coolant gas driving device not shown are other components of this cycle, such as a Coolant gas driving device.
  • a supply line 9d carries additional Cooling gas to, for example, the effluent via the discharge line 21 Compensate cooling gas components.
  • the cooling gas is not in particular aggressive gas such as nitrogen.
  • the cooling circuit of the Electric motor 2 may be designed such that this pressure in the Range of atmospheric pressure or slightly above it. As in 7, the cooling circuit can be designed such that a small proportion of the cooling gas mass flow 9 via the seal 20 for Outlet 21 arrives. This ensures that the Coolant gas mass flow 9 is not contaminated by foreign gases. in the Embodiment according to FIG. 7 also flows a small proportion of Process gas 8 via the seal 19 to the outlet 21.
  • the outlet 21 can a so-called flare or vent be subordinate to that from the Outlet 21 discharged gases unburned vent (vent) or via a subsequent combustion (flare) dissipate, especially to the environment leave.
  • cooling gas 9 has a low pressure and / or that as a cooling gas favorable or easily manageable gas is used, in particular a gas without aggressive properties.
  • turbocompressor 1 An advantage of the turbocompressor 1 according to the invention can be seen therein that the electric motor 2 and the radial turbocompressor 3 together with the corresponding housing parts 6e, 6f are preassembled, so that the Turbo compressor 1 as a housing 6 or as a unit for Site is transportable and can be set up there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

Die Erfindung betrifft einen Turboverdichter gemäß dem Oberbegriff von Anspruch 1.The invention relates to a turbocompressor according to the Preamble of claim 1.

Es ist ein Turboverdichter bekannt, welcher einen Radialturboverdichter sowie einen Elektromotor umfasst, wobei jede dieser Einheiten in einem separaten Gehäuse angeordnet ist, und die Welle des Elektromotors über ein flexibles Wellenteil an die Welle des Radialturboverdichters gekuppelt ist.It is known a turbo compressor, which one Includes radial turbocompressor and an electric motor, wherein each of these units is arranged in a separate housing, and the shaft of the electric motor via a flexible shaft part the shaft of the radial turbocompressor is coupled.

Nachteilig an diesem bekannten Turboverdichter ist die Tatsache, dass dieser relativ groß ausgestaltet ist, dass eine Mehrzahl von Dichtungen und Lagern erforderlich sind und dass die Herstellungskosten des Turboverdichters daher relativ hoch sind.A disadvantage of this known turbocompressor is the fact that this is made relatively large that a plurality of seals and bearings are required and that the Cost of the turbo compressor are therefore relatively high.

Die Druckschrift DE 37 29 486 C1 offenbart einen Turboverdichter, welcher zwei zweistufige Radialturboverdichter sowie einen Elektromotor umfasst, wobei diese an eine starre Welle gekoppelt sind, welche an drei Stellen mit magnetischen Radiallagern gelagert ist. In einer besonderen Ausführungsform wird ein Teilstrom des verdichteten und rückgekühlten Gases dem Rotor des Elektromotors und den Radiallagern zur Kühlung zugeführt. Der bekannte Turboverdichter weist den Nachteil auf, dass der Zusammenbau sehr aufwendig und schwierig ist, dass diese Anordnung für einen höchstens zweistufigen Radialturboverdichter geeignet ist und dass der Turboverdichter relativ hohe Dissipationsverluste aufweist.The document DE 37 29 486 C1 discloses a Turbo compressor, which two two-stage radial turbocompressor As well as an electric motor, these being connected to a rigid Wave are coupled, which in three places with magnetic Radial bearings is stored. In a particular embodiment a partial flow of the compressed and recooled gas is the Rotor of the electric motor and the radial bearings for cooling fed. The known turbocompressor has the disadvantage that the assembly is very elaborate and difficult that this arrangement for a maximum of two stages Radial turbocompressor is suitable and that the turbo compressor has relatively high dissipation losses.

Aus dem Dokument US-A-4 523 896 ist ein gattungsgemäßer Turboverdichter bekannt, bei dem die Innenräume beiderseits des Elektromotors mit jeweils einer Abführung versehen sind. Die beiden Abführungen sind mit einem zu dem Ansaugstutzen des Kompressors führenden Rohr verbunden. In dem Rohr ist ein Injektor angeordnet, dem ein Teilstrom des komprimierten Gases zugeführt wird. Dieses Gas wird in dem Injektor gedrosselt, um einen tieferen Druck zu erzeugen. In dem Rohr wird dadurch ein Kreislauf geringen Druckes aufrechterhalten, der darin besteht, dass das Medium aus dem Innenraum des Elektromotors zum Ansaugstutzen zurückgeführt wird. Durch diesen Kreislauf soll der Innenraum des Elektromotors unter verringerten Druck gesetzt werden.From document US-A-4 523 896 is a generic Turbo compressor known in which the interiors of both sides of the Electric motors are each provided with a discharge. The Both discharges are with a to the intake manifold of the Compressor leading pipe connected. In the tube is a Injector arranged, which is a partial flow of the compressed gas is supplied. This gas is throttled in the injector to to create a lower pressure. In the tube is characterized Maintain low pressure circuit, which consists in that the medium from the interior of the electric motor for Intake manifold is returned. Through this cycle should the interior of the electric motor is placed under reduced pressure become.

Der Erfindung liegt die Aufgabe zugrunde, für einen gattungsgemäßen Turboverdichter eine effektive Kühlung des Elektromotors und der elektromagnetischen Lager bereitzustellen.The invention is based on the object for a generic turbocompressor effective cooling of the Electric motor and the electromagnetic bearing provide.

Die Aufgabe wird bei einem gattungsgemäßen Turboverdichter erfindungsgemäß durch die kennzeichnenden Merkmale des Anspruches 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Ansprüche 2 bis 8.The task is in a generic turbocompressor According to the invention by the characterizing features of Claim 1 solved. Advantageous embodiments of the invention are the subject matter of claims 2 to 8.

Bei der Erfindung wird ein Teil des komprimierten Fluides bzw. Prozessgases zur Längsgaskühlung des Motors sowie der Radiallager verwendet. Durch den Kühlgaskreislauf in Verbindung mit der Austrittsöffnung kann die Motorkühlung auf einem niedrigen Druckniveau erfolgen, wodurch die Dissipationsverluste im Motor vermindert werden. Dies ist bei der Verwendung eines gemeinsamen, hermetisch abgedichteten Druckgehäuses von Vorteil. Als Elektromotor wird dabei vorzugsweise ein für Saugdruck oder Stillstanddruck ausgelegter Motor verwendet. In einer weiteren vorteilhaften Ausgestaltung weist der Elektromotor einen separaten, vom Radialturboverdichter getrennten Kühlkreislauf auf.In the invention, a portion of the compressed fluid or Process gas for longitudinal gas cooling of the engine and the Radial bearing used. Through the cooling gas circuit in conjunction with the outlet opening, the engine cooling on a low pressure level, thereby reducing the dissipation losses be reduced in the engine. This is when using a common, hermetically sealed pressure housing advantageous. As an electric motor is preferably one for suction or Standstill pressure designed engine used. In another advantageous embodiment, the electric motor has a separate, separate from the radial turbo compressor cooling circuit on.

Die Erfindung wird im Weiteren an Hand mehrerer Ausführungsbeispiele beschrieben, wobei dieselben Bezugszeichen dieselben Gegenstände betreffen. Es zeigen:

Fig. 1
eine schematische Anordnung eines bekannten Turboverdichters;
Fig. 2
einen Längsschnitt eines Turboverdichters mit einem Elektromotor sowie einem Radialturboverdichter,
Fig. 3
einen Längsschnitt eines Turboverdichters mit beidseitig angeordneten Radialturboverdichtern,
Fig. 4
einen weiteren Längsschnitt eines Turboverdichters mit beidseitig angeordneten Radialturboverdichtern,
Fig. 5
einen Längsschnitt durch die Verbindungsstelle zweier Teilgehäuse,
Fig. 6
einen Längsschnitt eines schematisch dargestellten Gehäuses bestehend aus drei Teilgehäusen,
Fig. 7
einen Längsschnitt eines Turboverdichters mit separatem Kühlsystem.
The invention will be described below with reference to several embodiments, wherein the same reference numerals refer to the same objects. Show it:
Fig. 1
a schematic arrangement of a known turbocompressor;
Fig. 2
a longitudinal section of a turbocompressor with an electric motor and a radial turbocompressor,
Fig. 3
a longitudinal section of a turbocompressor with both sides arranged radial turbocompressors,
Fig. 4
a further longitudinal section of a turbocompressor with radial turbochargers arranged on both sides,
Fig. 5
a longitudinal section through the junction of two sub-housing,
Fig. 6
a longitudinal section of a schematically illustrated housing consisting of three sub-housings,
Fig. 7
a longitudinal section of a turbocompressor with separate cooling system.

Fig. 1 zeigt schematisch einen bekannten Turboverdichter 1, welcher einen Radialturboverdichter 3 mit einer Welle 3a sowie einen antreibenden Elektromotor 2 mit einer Welle 2a umfasst. Die Welle 3a des Radialturboverdichters 3 ist durch zwei Radiallager 5 beidseitig gelagert. Ebenso ist die Welle 2a des Elektromotors 2 durch je zwei Radiallager 5 beidseitig gelagert. Die beiden Wellen 2a, 3a sind über eine Kupplung 4 umfassend zwei Kupplungsteile 4a und ein flexibles Zwischenstück 4b verbunden, sodass der Elektromotor 2 über die Welle 2a und die Kupplung 4 die Welle 3a des Radialturboverdichters 3 antreibt.Fig. 1 shows schematically a known turbocompressor 1, which a Radial turbocompressor 3 with a shaft 3a and a driving Electric motor 2 comprises a shaft 2a. The shaft 3a of Radial turbocompressor 3 is supported by two radial bearings 5 on both sides. Likewise, the shaft 2a of the electric motor 2 by two radial bearings. 5 stored on both sides. The two shafts 2a, 3a are connected via a coupling 4 comprising two coupling parts 4a and 4b a flexible intermediate piece connected, so that the electric motor 2 via the shaft 2a and the coupling 4th the shaft 3a of the radial turbocompressor 3 drives.

Fig. 2 zeigt einen Turboverdichter 1, welcher in einem hermetisch abgedichteten Druckgehäuse 6 angeordnet ist, wobei je eine das Druckgehäuse 6 durchdringende Zuleitung 6c und Ableitung 6d vorgesehen ist, um den Radialturboverdichter 3 fluidleitend mit einer ausserhalb des Druckgehäuses 6 angeordneten Vorrichtung zu verbinden. Der Elektromotor 2 umfasst den Rotor 2b sowie den Stator 2c, wobei der Rotor 2b Teil der Motorwelle 2a ist, und die Motorwelle 2a beidseitig im elektromagnetischen Radiallager 5, umfassend je eine Abstützvorrichtung 5a sowie eine elektromagnetische Spule 5b, in radialer Richtung gelagert ist. Die Motorwelle 2a weist gegen den Radialturboverdichter 3 hin ein Axiallager 7 auf, welches eine Teil der Motorwelle 2a bildende Scheibe 2d sowie elektromagnetische Spulen 7a umfasst. Die Motorwelle 2a ist an deren Endabschnitt über eine Kupplung 4 mit dem Läufer 3a des Radialturboverdichters 3 verbunden, wobei der gegenüberliegende Endabschnitt des Läufers 3a in einem Radiallager 5 gelagert ist. Die Motorwelle 2a sowie der Läufer 3a bilden eine gemeinsame Welle 13. In Verlaufsrichtung des Läufers 3a sind zwei Verdichterräder 3b angeordnet, welche eine erste Verdichtungsstufe 3c sowie eine zweite Verdichtungsstufe 3d ausbilden. Nicht dargestellt sind die Leitschaufeln 3f des Radialturboverdichters 3. Der Hauptmassenstrom 8 des zu komprimierenden Fluides, vorzugsweise in Form eines Gases, tritt über die Eintrittsöffnung 6a und die Zuleitung 6c in die erste Verdichtungsstufe 3c ein und wird nachfolgend zur zweiten Verdichtungsstufe 3d und nachfolgend über die Ableitung 6d zur Austrittsöffnung 6b geleitet. Ein geringer Bruchteil des Hauptmassenstroms 8 wird an der Austrittsstelle der ersten Verdichtungsstufe 3c über eine Verbindungsleitung 11 abgeleitet und als Kühlgasmassenstrom 9 einer Filtervorrichtung 10 zugeleitet, welche den Kühlgasmassenstrom 9 von Verunreinigungen reinigt, und den gereinigten Kühlgasmassenstrom 9 als Kühlmittel den elektromagnetischen Radiallagern 5 sowie dem Elektromotor 2 zuführt. Im dargestellten Ausführungsbeispiel wird der Kühlgasmassenstrom 9 in Längsrichtung des Gehäuses fliessend, dem Radiallager 5 und nachfolgend dem Elektromotor 2 sowie dem weiteren Radiallager 5 zugeführt, wobei das Kühlgas vorzugsweise zwischen der Welle 2a und dem jeweiligen Magnet 5b, 2c durchgeführt wird. Der Kühlgasmassenstrom 9 mündet zur Ansaugseite der ersten Verdichtungsstufe 3c, wir von dieser wiederum komprimiert, und wird als Hauptmassenstrom 8 und/oder als Kühlgasmassenstrom 9 weiter gefördert. Die Verbindungsleitung 11 und die Filtervorrichtung 10 können innerhalb oder ausserhalb des Druckgehäuses 6 verlaufend angeordnet sein. Der Turboverdichter 1 gemäss der in Fig. 2 dargestellten Ausführungsform weist den Vorteil auf, dass keine Dichtung der Motorwelle 2a beziehungsweise des Läufers 3a gegenüber Atmosphäre erforderlich ist. Zudem ist keine Dichtung zwischen zwischen dem Motor 2 und der ersten Verdichtungsstufe 3c erforderlich. Der Elektromotor 2 ist dabei derart auszulegen, dass dieser mit Saugdruck oder mit Stillstanddruck betreibbar ist.Fig. 2 shows a turbocompressor 1, which in a hermetic sealed pressure housing 6 is arranged, wherein each one the Pressure housing 6 penetrating supply line 6c and 6d discharge provided is to the radial turbocompressor 3 fluid-conducting with an outside of the Pressure housing 6 arranged device to connect. The electric motor 2 comprises the rotor 2b and the stator 2c, wherein the rotor 2b part of the Motor shaft 2a, and the motor shaft 2a on both sides in the electromagnetic Radial bearing 5, each comprising a support device 5a and a electromagnetic coil 5b, is mounted in the radial direction. The Motor shaft 2a has a thrust bearing 7 against the radial turbocompressor 3 on, which is a part of the motor shaft 2a forming disc 2d as well comprises electromagnetic coils 7a. The motor shaft 2a is at the End section via a coupling 4 with the rotor 3a of the Radial turbocompressor 3 connected, with the opposite End portion of the rotor 3a is mounted in a radial bearing 5. The Motor shaft 2a and the rotor 3a form a common shaft 13. In Running direction of the rotor 3a are arranged two compressor wheels 3b, which a first compression stage 3c and a second compression stage Training. Not shown are the guide vanes 3f of Radial turbo-compressor 3. The main mass flow 8 of the compressed Fluids, preferably in the form of a gas, pass via the inlet opening 6a and the lead 6c enters and becomes the first compression stage 3c subsequently to the second compression stage 3d and subsequently via the Discharge 6d passed to the outlet opening 6b. A small fraction of the Main mass flow 8 is at the exit point of the first Compression level 3c derived via a connecting line 11 and as Cooling gas mass flow 9 a filter device 10 fed, which the Cooling gas mass flow 9 cleans of impurities, and the purified Cooling gas mass flow 9 as a coolant to the electromagnetic radial bearings 5 and the electric motor 2 supplies. In the illustrated embodiment the cooling gas mass flow 9 is flowing in the longitudinal direction of the housing, the radial bearing 5 and subsequently the electric motor 2 and the other Radial bearing 5 fed, the cooling gas preferably between the Wave 2a and the respective magnet 5b, 2c is performed. Of the Coolant gas mass flow 9 opens to the suction side of the first Compression level 3c, we compress this in turn, and is called Main mass flow 8 and / or further promoted as cooling gas mass flow 9. The connecting line 11 and the filter device 10 can within or be arranged outside of the pressure housing 6 extending. Of the Turbo compressor 1 according to the embodiment shown in Fig. 2 has the advantage that no seal the motor shaft 2a and the Runner 3a opposite atmosphere is required. In addition, there is no seal between the engine 2 and the first compression stage 3c required. The electric motor 2 is designed in such a way that this with Suction pressure or with standstill pressure is operable.

Der Turboverdichter 1 könnte natürlich eine Mehrzahl von in Verlaufsrichtung des Läufers 3a beabstandet angeordneten Verdichterräder 3b aufweisen, so beispielsweise auch gesamthaft vier, sechs, acht oder zehn Verdichterräder 3b. Der zu erzielende Kompressionsdruck ist nach oben weitgehend offen, wobei durch eine entsprechende Anzahl in Serie geschalteter Verdichterräder 3b beispielsweise ein Kompressionsdruck von 600 Bar erreichbar ist. Der Turboverdichter 1 könnte auch einen oder mehrere weitere Radialturboverdichter 3 und/oder Elektromotoren 2 umfassen, welche in Verlaufsrichtung des Läufers 3a;2a angeordnet sind, wobei alle Läufe 3a;2a eine gemeinsame Welle ausbilden. Diese gemeinsame Welle könnte durch Radiallager, insbesondere magnetische Radiallager 5 gelagert sein, wobei zwischen je einem Radialturboverdichter 3 vorzugsweise ein einziges Radiallager 5 angeordnet ist. Vorzugsweise sind alle Radialturboverdichter 3 gemeinsam mit dem Elektromotor 2 oder den Elektromotoren 2 in einem gemeinsamen, einzigen Druckgehäuse 6 angeordnet. The turbo-compressor 1 could, of course, a plurality of in the direction of travel of the rotor 3a have arranged spaced compressor wheels 3b, so for example, a total of four, six, eight or ten compressor wheels 3 b. The compression pressure to be achieved is largely open to the top, wherein by a corresponding number connected in series Compressor wheels 3b, for example, a compression pressure of 600 bar is reachable. The turbocompressor 1 could also have one or more others Radial turbo compressor 3 and / or electric motors 2 include, which in Running direction of the rotor 3a, 2a are arranged, with all runs 3a, 2a to train a common wave. This common wave could be through Radial bearing, in particular magnetic radial bearings 5 be stored, wherein between each one Radialturboverdichter 3 preferably a single Radial bearing 5 is arranged. Preferably, all radial turbocompressors 3 together with the electric motor 2 or the electric motors 2 in one common, single pressure housing 6 is arranged.

Die elektromagnetischen Radiallager 5 sowie die den Radiallagern 5 zugeordneten Abschnitte der Wellen 2a und 3a weisen weitere, für einen Fachmann selbstverständliche und daher nicht dargestellte Komponenten auf, um ein elektromagnetisches Radiallager 5 auszubilden, wie elektrische Spulen, ferromagnetische Teile usw. Dasselbe gilt für den Elektromotor 2, welcher ebenfalls nur schematisch dargestellt ist.The electromagnetic radial bearing 5 and the radial bearings. 5 associated portions of the shafts 2a and 3a have further, for a Professional self-evident and therefore not shown components on to form an electromagnetic radial bearing 5, such as electrical Coils, ferromagnetic parts, etc. The same applies to the electric motor 2, which is also shown only schematically.

Fig. 3 zeigt einen Längsschnitt eines weiteren Ausführungsbeispiels eines Turboverdichters 1 umfassend zwei Radialturboverdichter 3, wobei an jeder Seite des Elektromotors 2 je ein Radialturboverdichter 3 angeordnet und dessen Läufer 3a über eine Kupplung 4 mit der Motorwelle 2a verbunden ist. Es ist nur die obere Hälfte des Turboverdichters 1 dargestellt. Es werden nur die gegenüber der Ausführungsform gemäss Fig. 2 wesentlichen Unterschiede im Detail beschrieben. Die gesamte Welle umfassend die Motorwelle 2a sowie die beiden Läufer 3a ist durch vier, in Längsrichtung der gesamten Welle verteilt angeordnete elektromagnetische Radiallager 5 gelagert. Der links angeordnete Radialturboverdichter 3 ist als Niederdruckteil angeschlossen und weist sechs Verdichterräder 3b auf. Der rechts angeordnete Radialturboverdichter 3 ist als Hochdruckteil angeschlossen und weist fünf Verdichterräder 3b auf. Ebenfalls dargestellt sind die Leitschaufeln 3f. Der Hauptmassenstrom 8 tritt über die Zuleitung 6c in den Niederdruckteil ein, und wird nach dem Komprimieren über eine Verbindungsleitung 12 dem Hochdruckteil zugeführt, wobei der Hauptmassenstrom 8 den Hochdruckteil nach dem Komprimieren über die Ableitung 6d verlässt. Ein geringer Teil des Hauptmassenstroms 8 wird nach der ersten Verdichtungsstufe 3c als Kühlgasmassenstrom 9 in die Verbindungsleitung 11 geleitet, wobei dieser Kühlgasmassenstrom 9 nach dem Durchfliessen des Filters 10 dem an der rechten Seite des Elektromotors 2 angeordneten Innenraum 9c zugeführt wird, und danach in Längsrichtung der Motorwelle 2a strömend über den Innenraum 9b der Saugöffnung der ersten Verdichtungsstufe 3c zufliesst. Somit wird ein Teil des sich im Radialturboverdichters 3 befindlichen Prozessgases zur Kühlung des Elektromotors 2 abgeleitet und verwendet.Fig. 3 shows a longitudinal section of another embodiment of a Turbo compressor 1 comprising two radial turbocompressors 3, wherein at each Side of the electric motor 2 per a Radialturboverdichter 3 arranged and whose rotor 3a is connected via a coupling 4 with the motor shaft 2a. Only the upper half of the turbocompressor 1 is shown. It will only the opposite to the embodiment according to FIG. 2 essential Differences in detail described. The entire wave includes the Motor shaft 2a and the two rotor 3a is by four, in the longitudinal direction of the distributed throughout the wave electromagnetic radial bearings 5 stored. The left-hand radial turbocompressor 3 is as Low pressure part connected and has six compressor wheels 3b. Of the right radial turbocompressor 3 is as a high pressure part connected and has five compressor wheels 3b. Also shown are the vanes 3f. The main mass flow 8 passes through the supply line 6c in the low pressure part, and after compression over a Connecting line 12 is supplied to the high pressure part, wherein the Main mass flow 8 the high pressure part after compression over the Derivative 6d leaves. A small part of the main mass flow 8 is after the first compression stage 3c as the cooling gas mass flow 9 in the Conduction line 11 passed, said cooling gas mass flow 9 after the flow through the filter 10 that on the right side of the electric motor 2 arranged interior 9 c is supplied, and thereafter in the longitudinal direction the motor shaft 2 a flowing over the inner space 9 b of the suction port of the first compression stage 3c zuflust. Thus, a part of himself in the Radial turbo compressor 3 located process gas for cooling the Derived and used electric motor 2.

Zwischen dem rechts angeordneten Radialturboverdichter 3 sowie dem Elektromotor 2 ist am Läufer 3a eine berührungsfreie Dichtung 19 angeordnet, um den Innendruck an der rechten Seite des Elektromotors 2 entsprechend tief zu halten. Der Elektromotor 2 ist wiederum ausgelegt, um bei einem Saugdruck oder einem Stillstanddruck betreibbar zu sein. Die Verbindungsleitung 12 und/oder die Verbindungsleitung 11 als auch die Filtervorrichtung 10 könnten auch vollständig innerhalb des Gehäuses 6 verlaufend angeordnet sein.Between the right arranged Radialturboverdichter 3 and the Electric motor 2 is on the rotor 3a a non-contact seal 19th arranged to the internal pressure on the right side of the electric motor. 2 keep it low. The electric motor 2 is again designed to be operable at a suction pressure or a standstill pressure. The Connecting line 12 and / or the connecting line 11 and the Filter device 10 could also be completely inside the housing 6 be arranged running.

Die Radialturboverdichter 3 können beispielsweise auch in einer "back to back" Anordnung angeordnet sein, mit anderen Worten derart, dass die durch die beiden Radialturboverdichter 3 auf die Welle bewirkten Kräfte in entgegengesetzter Richtung wirken, um derart die in Verlaufsrichtung der Motorwelle 2a wirkenden Schubkräfte zu kompensieren und zu reduzieren.The radial turbo compressor 3 can, for example, in a "back to back "arrangement, in other words such that the by the two Radialturboverdichter 3 on the shaft caused forces in act in the opposite direction to such in the direction of the Motor shaft 2a acting shear forces to compensate and reduce.

Das Gehäuse 6 setzt sich in den Ausführungsformen gemäss Fig. 3 und 4 aus den drei Teilgehäusen 6e, 6f, 6g zusammen, wobei die Teilgehäuse 6e, 6g Teil des Radialturboverdichters 3 bilden und das Teilgehäuse 6f Teil des Motors 2 bildet. Die Teilgehäuse 6e, 6f, 6g sind derart gegenseitig angepasst ausgestaltet, dass sie, wie in den Figuren 3 und 4 dargestellt, fest miteinander verbindbar sind, beispielsweise mittels Schrauben. An diesen Verbindungsstellen können zudem Dichtungen angeordnet sein, um den Innenraum des Gehäuses 6 hermetisch abzudichten, sodass nur noch über die vorgesehenen Leitungen 6c, 6d, 11, 12 oder entsprechende Flansche eine Fluid leitende Verbindung zwischen dem Innenraum des Gehäuses 6 und dem Aussenraum besteht, wobei bedingt durch die in Fig. 3 und 4 dargestellte Anordnung der Leitungen 11 und 12 nur durch die Leitungen 6c, 6d und gegebenenfalls durch die Ableitung 6i eine fluidleitende Verbindung zum Aussenraum besteht. Die Verbindungsstellen können zudem derart gegenseitig angepasst ausgestaltet sein, dass sich benachbart angeordnete Teilgehäuse beim Zusammenschieben und Verbinden bezüglich der Längsachse des Turboverdichters 1 selbsttätig gegenseitig zentrieren. Die beiden Teilgehäuse 6e, 6g weisen in der Aussenwand je eine Öffnung 23a auf, welche mit einem Deckel 23b gasdicht verschliessbar ist. In Fig. 3 ist die im Teilgehäuse 6g angeordnete Öffnung 23a mit Deckel 23b dargestellt. Der Turboverdichter 1 wird vorzugsweise derart vorgefertigt, dass der Radialturboverdichter 3 in das jeweilige Teilgehäuse 6e, 6g eingebaut wird und der Elektromotor 2 in das Teilgehäuse 6f eingebaut wird. Die derart vorkonfigurierten Teilgehäuse 6e, 6f, 6g werden im zusammengesetzten Zustand zum Anwendungsort transportiert. Der Zusammenbau des Turboverdichters 1 ist wie folgt: Nachdem die Teilgehäuse 6e, 6f, 6g über die Flansche 6k, 6l fest miteinander verbunden sind, werden die Welle 3a und der Rotor 2b an der von Aussen durch die Öffnung 23a zugänglichen Kupplung 4 fest miteinander verbunden. Danach wird die Öffnung 23a mit dem Deckel 23b fest und gasdicht verschlossen. Die an der Kupplung 4 verwendeten Befestigungsmittel, wie beispielsweise Schrauben, sind an sich bekannt und daher nicht im Detail dargestellt.The housing 6 is set in the embodiments according to FIGS. 3 and 4 from the three sub-housings 6e, 6f, 6g together, the sub-housings 6e, 6g form part of the radial turbocompressor 3 and the part housing 6f part of Engine 2 forms. The sub-housings 6e, 6f, 6g are adapted to one another in this way designed so that they, as shown in Figures 3 and 4, fixed can be connected to each other, for example by means of screws. At this Junctions can also be arranged seals to the To hermetically seal the interior of the housing 6 so that only over the intended lines 6c, 6d, 11, 12 or corresponding flanges a fluid-conducting connection between the interior of the housing. 6 and the outer space, due to the in Figs. 3 and 4 shown arrangement of the lines 11 and 12 only through the lines 6c, 6d and optionally through the discharge line 6i a fluid-conducting connection to the outside space exists. The joints can also do so be adapted to each other that arranged adjacent Part housing when pushed together and connect with respect to Longitudinal axis of the turbocompressor 1 automatically center each other. The two partial housings 6e, 6g each have an opening 23a in the outer wall which can be closed gas-tight with a cover 23b. In Fig. 3 is the in the sub-housing 6g arranged opening 23a with lid 23b shown. Of the Turbo compressor 1 is preferably prefabricated such that the Radial turbo compressor 3 is installed in the respective sub-housing 6e, 6g and the electric motor 2 is installed in the sub housing 6f. The like preconfigured sub-housing 6e, 6f, 6g are in the assembled State transported to the place of application. The assembly of the Turbo compressor 1 is as follows: After the sub-housing 6e, 6f, 6g on the Flanges 6k, 6l are firmly connected to each other, the shaft 3a and the rotor 2b at the outside accessible through the opening 23a Clutch 4 firmly connected. Thereafter, the opening 23 a with the lid 23b firmly and sealed gas-tight. The at the clutch 4 used fasteners, such as screws, are in themselves known and therefore not shown in detail.

Der in Fig. 4 dargestellte Turboverdichter 1 weist, an sonst im wesentlichen gleich ausgestaltet wie der Turboverdichter gemäss Fig. 3, im Gehäuseteil 6e eine mit den Innenraum 9b fluidleitend verbundene Austrittsöffnung 6h sowie eine daran anschliessend angeordnete Ableitung 6i auf, durch welche der Kühlgasmassenstrom 9 sowie ein geringfügiger Anteil des Hauptmassenstroms 9a austritt und beispielsweise einer Anlage fremden Prozessquelle zugeführt wird. Diese Anordnung weist gegenüber dem Ausführungsbeispiel gemäss Fig. 3 den Vorteil auf, dass der Druck in der der Ableitung 6i nachfolgenden Vorrichtung unabhängig vom Druck im Radialturboverdichter 3 ist, wobei dieser Druck vorzugsweise derart gewählt ist, dass die Motorkühlung auf einem tieferen Druckniveau erfolgt als in der Ausführungsform gemäss Fig. 3, was den Vorteil ergibt, dass die zwischen den rotierenden und den statischen Teilen auftretenden Dissipationsverluste im Motor 2 vermindert sind. Zwischen dem Motor 2 und dem Radialturboverdichter 3 ist beidseitig eine Dichtung 19 angeordnet. Die Ableitung 6i kann beispielsweise einem Kompressor 24 zugeführt werden, welcher den Massenstrom 9, 9a komprimiert wieder der Eintrittsöffnung 6a zuführt. Der vom Kompressor in der Ableitung 6i erzeugte Saugdruck kann beispielsweise tiefer als 50 Bar sein.The turbocompressor 1 shown in Fig. 4, in otherwise substantially the same configuration as the turbocompressor according to FIG. 3, in the housing part 6e a fluidically connected to the interior 9b outlet opening 6h and a subsequently arranged derivative 6i, through which the Cooling gas mass flow 9 and a minor proportion of Main mass flow 9a exits and example of a foreign investment Process source is supplied. This arrangement is opposite to the Embodiment according to FIG. 3 has the advantage that the pressure in the Derivative 6i subsequent device independent of the pressure in Radial turbo compressor 3 is, this pressure is preferably selected is that the engine cooling is done at a lower pressure level than in the Embodiment according to FIG. 3, which gives the advantage that the between the dissipation losses occurring in the rotating and static parts are reduced in the engine 2. Between the engine 2 and the Radial turbo compressor 3 is a seal 19 disposed on both sides. The Discharge 6i may be supplied to, for example, a compressor 24, which compresses the mass flow 9, 9a again the inlet opening 6a supplies. The suction pressure generated by the compressor in the discharge line 6i can for example, be lower than 50 bar.

In Fig. 4 ist zudem eine Regelvorrichtung 17 dargestellt, welche zumindest zum Ansteuern der elektromagnetischen Radiallager 5 sowie des Motors 2 dient. Im Bereich der Radiallager 5 sind Sensoren 16a, 16b, 16c, 16d angeordnet, welche die Lage der gesamten Welle 13 bzw. der Teilwellen 2a, 3a bezüglich der Radiallager 5 erfassen, wobei die Sensoren 16a, 16b, 16c, 16d über elektrische Leitungen 16e, 16f, 16g, 16h mit der Regelvorrichtung 17 verbunden sind. Zur Ansteuerung der magnetischen Spulen der Radiallager 5 sind elektrische Leitungen 15a, 15b, 15c, 15d angeordnet, welche mit der Regelvorrichtung 17 verbunden sind. Zudem ist eine elektrische Leitung 15e vorgesehen, welche die Regelvorrichtung 17 über eine nicht dargestellte Leistungselektronik mit der Wicklung des Elektromotors 2 verbindet.In Fig. 4 also a control device 17 is shown, which at least for driving the electromagnetic radial bearing 5 and the motor 2 serves. In the area of the radial bearings 5 are sensors 16a, 16b, 16c, 16d arranged, which the position of the entire shaft 13 and the sub-waves 2a, 3a with respect to the radial bearings 5, the sensors 16a, 16b, 16c, 16d via electrical lines 16e, 16f, 16g, 16h with the control device 17 are connected. For controlling the magnetic coils of Radial bearing 5 are arranged electrical lines 15a, 15b, 15c, 15d, which are connected to the control device 17. There is also one electrical line 15 e is provided, which the control device 17 via a power electronics, not shown, with the winding of the Electric motor 2 connects.

Fig. 5 zeigt einen Längsschnitt durch ein Gehäuse 6, wobei die Verbindungsstelle zweier Teilgehäuse 6e, 6f dargestellt ist. Der Flansch 6k des ersten Teilgehäuses 6e weist eine derart ausgestaltete Ausnehmung auf, dass der Flansch 6l des zweiten Teilgehäuses 6f darin eine Aufnahme findet, wobei die gegenseitige Lage der beiden Teilgehäuse 6e, 6f beim Zusammenfügen durch die Flansche 6k, 6l gegenseitig zentriert werden. Die Flansche 6k, 6l werden durch mehrere in Umfangsrichtung verteilt angeordnete Schrauben 6m mit Mutter 6n zusammengehalten, wobei an der Stirnseite der Flansche 6k, 6l eine in Umfangsrichtung verlaufende Nut vorgesehen ist, in welcher ein Dichtelement 6o angeordnet ist, um den durch die beiden Teilgehäuse 6e, 6f begrenzten Innenraum gegen aussen abzudichten.Fig. 5 shows a longitudinal section through a housing 6, wherein the Junction of two sub-housing 6e, 6f is shown. The flange 6k of the first sub-housing 6e has a recess configured in this way, that the flange 6l of the second part housing 6f is received therein, wherein the mutual position of the two sub-housings 6e, 6f at Joining together by the flanges 6k, 6l are centered on each other. The Flanges 6k, 6l are distributed by several in the circumferential direction arranged screws 6m held together with nut 6n, wherein at the Face of the flanges 6k, 6l extending in the circumferential direction groove is provided, in which a sealing element 6o is arranged to the by the two sub-housing 6e, 6f limited interior to the outside seal.

Fig. 6 zeigt einen Längsschnitt eines schematisch dargestellten Gehäuses 6 bestehend aus drei Teilgehäusen 6e, 6f, 6g mit Flanschen 6k, 6l sowie einer Zuleitung 6c und einer Ableitung 6d. Das Gehäuse 6 ist über zwei Abstützelemente 18a, 18b auf einen Untergrund 14 abgestützt. Innerhalb des Gehäuses ist ein Basiselement 6p angeordnet, welches eine steife, in Längsrichtung des Gehäuses 6 verlaufende Abstützung, insbesondere eine Abstützfläche ausbildet, auf welchem die elektromagnetischen Radiallager 5 angeordnet sind. Die Funktion des Basiselemente 6p ist eine möglichst stabile und vorzugsweise Temperatur unempfindliche Referenzebene zu bilden, auf welcher zumindest einige Radiallager 5 angeordnet sind. Das Basiselement 6p kann in einer Vielzahl von Ausführungsformen ausgestaltet sein, so beispielsweise als feste, massive Platte, als Träger oder als Gitterrost. Auf dem Basiselement 6p können weitere Komponenten wie der Elektromotor 2 oder der Radialturboverdichter 3 verankert sein. Die Verwendung eines Basiselemente 6p ermöglicht die elektromagnetischen Radiallager 5 gegenseitig sehr präzise und insbesondere genau fluchtend anzuordnen. Die gemeinsame Anordnung der Radiallager 5 auf dem Basiselement 6p weist den Vorteil auf, dass die auf Grund von angreifenden Zug-, Druck- oder Scherkräften oder durch Temperatureinflüsse bedingten gegenseitigen Verschiebungen der Radiallager sehr gering ausfallen. Zudem kann diese Anordnung sehr schnell betriebsbereit aufgestellt werden. Bei der aus Fig. 1 bekannten Anordnung war es erforderlich die beiden separaten Vorrichtungen Elektromotor 2 und Radialturboverdichter 3 getrennt aufzustellen und in einem zeitaufwendigen Verfahren genau gegenseitig auszurichten, damit die Wellen 2a, 3a fluchtend angeordnet sind. Trotz dieses Aufwandes können sich der Elektromotor 2 und/oder der Radialturboverdichter 3 beziehungsweise deren Radiallager bedingt beispielsweise durch einwirkende Kräfte, eine Verschiebung des Untergrundes oder Temperaturänderungen gegenseitig verschieben.6 shows a longitudinal section of a schematically illustrated housing 6 consisting of three sub-housings 6e, 6f, 6g with flanges 6k, 6l and a Supply line 6c and a derivative 6d. The housing 6 is about two Supporting elements 18a, 18b supported on a substrate 14. Within the Housing is arranged a base member 6p, which is a rigid, in Longitudinal direction of the housing 6 extending support, in particular a Supporting surface forms on which the electromagnetic radial bearings. 5 are arranged. The function of the basic elements 6p is one as possible stable and preferably temperature-insensitive reference plane too form, on which at least some radial bearings 5 are arranged. The Base member 6p may be configured in a variety of embodiments be, for example, as a solid, solid plate, as a carrier or as Grating. On the base element 6p further components such as Electric motor 2 or 3 Radialturboverdichter be anchored. The Using a base element 6p allows the electromagnetic Radial bearing 5 mutually very precise and in particular precisely aligned to arrange. The common arrangement of the radial bearing 5 on the Base element 6p has the advantage that due to attacking Tensile, compressive or shear forces or due to temperature influences mutual shifts of the radial bearings turn out very low. moreover This arrangement can be set up very quickly ready for use. In the From Fig. 1 known arrangement, it was necessary the two separate Devices electric motor 2 and radial turbocompressor 3 separated set up and in a time-consuming process exactly one another to align so that the shafts 2a, 3a are arranged in alignment. In spite of This effort can be the electric motor 2 and / or the Radial turbocompressor 3 or their radial bearings conditionally For example, by acting forces, a shift of Move background or temperature changes mutually.

Die durch elektromagnetische Radiallager erzeugbare Lagerkraft ist wesentlich geringer als die durch bekannte, hydrodynamische Lager erzeugbare Lagerkraft. Deshalb ist auch die genaue gegenseitige Ausrichtung der elektromagnetischen Radiallager sowie das Verhindern einer gegenseitigen Verschiebung der Radiallager von zentraler Bedeutung. Das elektromagnetische Radiallager wird üblicherweise derart betrieben, dass die Welle in der geometrischen Mitte des Radiallagers gehalten wird. Ein gegenseitige Verschieben der Radiallager hat zur Folge, dass das Radiallager erhebliche Kräfte aufzuwenden hat, um die Welle trotzdem in der geometrischen Mitte zu halten. Da das elektromagnetische Radiallager relativ bald in den Zustand einer magnetischen Sättigung gelangt, verfügt das Radiallager in dieser Situation über geringere, zum Tragen der Welle zur Verfügung stehende Kräfte. Dieser Effekt verringert die Betriebssicherheit des Turboverdichters, wobei das elektromagnetische Radiallager im Extremfall nicht mehr in der Lage ist die Welle zu tragen. Daher ist es bei der Verwendung von elektromagnetischen Radiallagern von zentraler Bedeutung, dass diese möglichst genau fluchtend angeordnet sind, und dass sie derart angeordnet sind, dass ein gegenseitiges Verschieben der Radiallager auch während dem Betrieb des Turboverdichters nach Möglichkeit verhindert wird. Daher ist es auch vorteilhaft, wenn die elektromagnetischen Radiallager in Verlaufsrichtung der gemeinsamen Welle 13 einen grösseren gegenseitigen Abstand aufweisen. Bei der bekannten Ausführungsform gemäss Fig. 1 weisen die beiden mittleren Radiallager 5 einen relativ geringen gegenseitigen Abstand auf, sodass bei einem gegenseitigen Versatz dieser beiden mittleren Radiallager 5 das Problem auftreten kann, dass diese in radialer Richtung gegeneinander wirkende Kräfte erzeugen, was bewirkt, dass die noch zum Tragen zur Verfügung stehende Restkraft des elektromagnetischen Radiallagers geringer ist oder gar nicht mehr zur Verfügung steht.The bearing force generated by electromagnetic radial bearings is much lower than that of known hydrodynamic bearings producible bearing force. That is why the exact mutual Alignment of electromagnetic radial bearings and preventing a mutual displacement of the radial bearings of central importance. The Electromagnetic radial bearing is usually operated such that the Shaft is held in the geometric center of the radial bearing. One mutual displacement of the radial bearing has the consequence that the Radial bearing has to expend considerable forces to the shaft anyway in the to hold geometric center. Since the electromagnetic radial bearing relative it soon gets into the state of magnetic saturation Radial bearing in this situation over lower, to carry the shaft to Available forces. This effect reduces the operational safety the turbocompressor, the electromagnetic radial bearing in the Extreme case is no longer able to carry the shaft. Therefore it is with the Use of electromagnetic radial bearings of central importance that they are arranged as precisely as possible in alignment, and that they are so are arranged that a mutual displacement of the radial bearing also is prevented as far as possible during operation of the turbocompressor. Therefore, it is also advantageous if the electromagnetic radial bearings in Course of the common shaft 13 a larger mutual Have distance. In the known embodiment according to FIG. 1 have the two central radial bearing 5 is a relatively small mutual distance, so that at a mutual offset of this two middle radial bearing 5 the problem can occur that this in generate radial forces against each other, which causes that the remaining power available for carrying the electromagnetic radial bearing is less or not at all Available.

Fig. 7 zeigt einen Turboverdichter 1 mit einem im Vergleich zur Ausführungsform gemäss Fig. 4 separat gekühlten Elektromotor 2. Dabei ist zwischen dem Druckteil des Radialturboverdichters 3 und dem Elektromotor 2 je ein System mit einer Doppeldichtung, umfassend eine Trockengasdichtung 19 und nachfolgend eine Dichtung 20, angeordnet, wobei zwischen den beiden Dichtungen 19, 20 ein Auslass 21, als Vent (Austritt an die Atmosphäre ohne Gasverbrennung) oder Flare (Austritt an die Atmosphäre mit Gasverbrennung) ausgestaltet, angeordnet ist, welcher durch die Gehäusewand 6 verläuft. Der Elektromotor 2 weist einen separaten, durch die Dichtungen 19, 20 vom Radialturboverdichter 3 getrennten Kühlkreislauf auf, welcher eine Verbindungsleitung 11 sowie einen Kühler 22 umfasst. Der den Elektromotor 2 kühlende Kühlgasmassenstrom 9 fliesst zwischen dem Stator 2c und dem Rotor 2b in Längsrichtung, wird im Bereich des einen Endes 9b des Elektromotors 2 aus dem Gehäuse 6 in die Verbindungsleitung 11 geleitet, und wird nach dem Durchströmen des Kühlers 22 und der nachfolgend angeordneten Verbindungsleitung 11 am anderen Ende 9c des Elektromotors 2 wieder in das Gehäuse 6 geleitet. Nicht dargestellt sind weitere Komponenten dieses Kreislaufes, wie eine das Kühlgas antreibende Vorrichtung. Eine Zuleitung 9d führt zusätzliches Kühlgas zu, um beispielsweise die über die Ableitung 21 abfliessenden Kühlgasanteile zu kompensieren. Als Kühlgas ist insbesondere ein nicht aggressives Gas wie Stickstoff geeignet. Die Anordnung gemäss Fig. 7 ist beispielsweise dann vorteilhaft, wenn kein Prozessgas auf einem tiefen Druckniveau zur Kühlung des Elektromotors 2 zur Verfügung steht, oder wenn das Prozessgas aggressive Eigenschaften aufweist oder verschmutzt ist, beispielsweise durch flüssige Gasunreinheiten, sodass dieses beispielsweise Teile des Elektromotors 2, wie die Welle 2a oder die elektrische Isolation, beschädigen könnte. Der Kühlkreislauf des Elektromotors 2 kann derart ausgelegt sein, dass dieser einen Druck im Bereich des atmosphärischen Druckes oder leicht darüber aufweist. Wie in Fig. 7 dargestellt kann der Kühlkreislauf derart ausgelegt sein, dass ein geringer Anteil des Kühlgasmassenstroms 9 über die Dichtung 20 zum Auslass 21 gelangt. Dadurch bleibt gewährleistet, dass der Kühlgasmassenstrom 9 nicht durch Fremdgase verunreinigt wird. Im Ausführungsbeispiel gemäss Fig. 7 fliesst zudem ein geringer Anteil des Prozessgases 8 über die Dichtung 19 zum Auslass 21. Dem Auslass 21 kann ein sogenanntes Flare oder Vent nachgeordnet sein, um die aus dem Auslass 21 austretenden Gase unverbrannt abzuführen (Vent) oder über eine nachfolgende Verbrennung (Flare) abzuführen, insbesondere an die Umwelt abzugeben.Fig. 7 shows a turbocompressor 1 with a compared to Embodiment according to FIG. 4 separately cooled electric motor 2. It is between the pressure part of the radial turbocompressor 3 and the electric motor 2 each a system with a double seal, comprising a Dry gas seal 19 and subsequently a seal 20, arranged wherein between the two seals 19, 20 an outlet 21, as a vent (Exit to the atmosphere without gas combustion) or flare (exit to the Atmosphere with gas combustion) configured, which is arranged by the housing wall 6 runs. The electric motor 2 has a separate, separated by the seals 19, 20 from the radial turbo compressor 3 Cooling circuit on which a connecting line 11 and a radiator 22nd includes. The cooling gas mass flow 9 which cools the electric motor 2 flows between the stator 2c and the rotor 2b in the longitudinal direction, is in the range of the one end 9b of the electric motor 2 from the housing 6 in the Conduction line 11 passed, and is after flowing through the Cooler 22 and the subsequently arranged connection line 11 am another end 9c of the electric motor 2 is returned to the housing 6. Not shown are other components of this cycle, such as a Coolant gas driving device. A supply line 9d carries additional Cooling gas to, for example, the effluent via the discharge line 21 Compensate cooling gas components. As the cooling gas is not in particular aggressive gas such as nitrogen. The arrangement according to FIG. 7 is For example, then advantageous if no process gas at a low Pressure level for cooling the electric motor 2 is available, or if the process gas has aggressive properties or is dirty is, for example, by liquid gas impurities, so this For example, parts of the electric motor 2, such as the shaft 2a or the electrical insulation, could damage. The cooling circuit of the Electric motor 2 may be designed such that this pressure in the Range of atmospheric pressure or slightly above it. As in 7, the cooling circuit can be designed such that a small proportion of the cooling gas mass flow 9 via the seal 20 for Outlet 21 arrives. This ensures that the Coolant gas mass flow 9 is not contaminated by foreign gases. in the Embodiment according to FIG. 7 also flows a small proportion of Process gas 8 via the seal 19 to the outlet 21. The outlet 21 can a so-called flare or vent be subordinate to that from the Outlet 21 discharged gases unburned vent (vent) or via a subsequent combustion (flare) dissipate, especially to the environment leave.

Ein Vorteil des Ausführungsbeispiels gemäss Fig. 7 ist darin zu sehen, dass das Kühlgas 9 einen geringen Druck aufweist und/oder dass als Kühlgas ein günstiges oder problemlos handhabbares Gas verwendbar ist, insbesondere ein Gas ohne aggressive Eigenschaften.An advantage of the embodiment according to FIG. 7 can be seen in that the cooling gas 9 has a low pressure and / or that as a cooling gas favorable or easily manageable gas is used, in particular a gas without aggressive properties.

Ein Vorteil des erfindungsgemässen Turboverdichters 1 ist darin zu sehen, dass der Elektromotor 2 und der Radialturboverdichter 3 zusammen mit den entsprechenden Gehäuseteilen 6e, 6f vormontierbar sind, sodass der Turboverdichter 1 als ein Gehäuse 6 beziehungsweise als eine Einheit zum Aufstellungsort transportierbar und dort aufstellbar ist.An advantage of the turbocompressor 1 according to the invention can be seen therein that the electric motor 2 and the radial turbocompressor 3 together with the corresponding housing parts 6e, 6f are preassembled, so that the Turbo compressor 1 as a housing 6 or as a unit for Site is transportable and can be set up there.

Die in den Figuren 3, 4 und 7 ausserhalb des Gehäuses 6 verlaufenden Leitungen 11, 12 sowie die dazu gehörenden Komponenten 22, können in einer weiteren Ausgestaltungsform auch innerhalb des Gehäuses 6 verlaufend angeordnet sein.The extending in Figures 3, 4 and 7 outside the housing 6 Lines 11, 12 and the associated components 22, in a further embodiment also within the housing. 6 be arranged running.

Claims (8)

  1. Turbo-compressor comprising a casing (6), gas-tight towards the outside, within which an electric motor (2) as well as a multiple-stage radial-flow turbo-compressor (3) are arranged on a common shaft (13), wherein for the support of shaft (13) electro-magnetic radial bearings (5) are arranged with spacing in the running direction of said shaft, wherein a gas seal (19) surrounding shaft (13) is placed between electric motor (2) and radial-flow turbo-compressor (3) in order to seal electric motor (2) towards radial-flow turbo-compressor (3), wherein either end section of electric motor (2) is provided with an inside chamber (9b, 9c), and wherein one of the inside chambers (9c) is connected in a fluid-conductive form with an outlet port (6h, 21) penetrating the casing, characterized in that inside chambers (9b, 9c) of electric motor (2) are connected through a connection line (11) in such a fluid-conductive form that a closed fluid cycle (9) is formed through the gap between stator (2c) and rotor (2b) of electric motor (2) and connection line (11).
  2. Turbo-compressor according to claim 1, characterized in that inside chamber (9b) of one end section of electric motor (2) is connected in a fluid-conductive form with one compressor stage.
  3. Turbo-compressor according to claim 1 or 2, characterized in that the closed cycle (9) is connected with a feed line (9d) in a fluid-conductive form in order to deliver a separate fluid, in particular nitrogen, to cycle (9).
  4. Turbo-compressor according to one of claims 1 to 3, characterized in that the closed fluid cycle (9) comprises a cooler (22).
  5. Turbo-compressor according to one of claims 1 to 4, characterized in that a seal (20) is placed between inside chamber (9b) of one end section of electric motor (2) and outlet port (21) at shaft (13).
  6. Turbo-compressor according to one of claims 1 to 5, characterized in that outlet port (21) ends in a flare or vent or is connected in a fluid-conductive form with the suction side of a compressor (24).
  7. Turbo-compressor (1) according to one of claims 1 to 6, characterized in that one radial-flow turbo-compressor (3) is arranged at either side of electric motor (2).
  8. System comprising a turbo-compressor according to one of claims 1 to 7.
EP00810275A 1999-07-16 2000-03-31 Turbo compressor Expired - Lifetime EP1069313B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP00810275A EP1069313B1 (en) 1999-07-16 2000-03-31 Turbo compressor
US09/599,098 US6390789B1 (en) 1999-07-16 2000-06-20 Cooling means for the motor of a turbocompressor
CA002312085A CA2312085C (en) 1999-07-16 2000-06-21 Cooling means for the motor of a turbocompressor
DE20011217U DE20011217U1 (en) 1999-07-16 2000-06-26 Turbocompressor
JP2000192340A JP4395242B2 (en) 1999-07-16 2000-06-27 Turbo compressor
KR1020000039923A KR100761917B1 (en) 1999-07-16 2000-07-12 Turbocompressor
CNB001201123A CN1153906C (en) 1999-07-16 2000-07-17 Turbo-compressor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP99810640A EP0990798A1 (en) 1999-07-16 1999-07-16 Turbo compressor
EP99810640 1999-07-16
EP00810275A EP1069313B1 (en) 1999-07-16 2000-03-31 Turbo compressor

Publications (3)

Publication Number Publication Date
EP1069313A2 EP1069313A2 (en) 2001-01-17
EP1069313A3 EP1069313A3 (en) 2002-05-15
EP1069313B1 true EP1069313B1 (en) 2005-09-14

Family

ID=26073837

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00810275A Expired - Lifetime EP1069313B1 (en) 1999-07-16 2000-03-31 Turbo compressor

Country Status (7)

Country Link
US (1) US6390789B1 (en)
EP (1) EP1069313B1 (en)
JP (1) JP4395242B2 (en)
KR (1) KR100761917B1 (en)
CN (1) CN1153906C (en)
CA (1) CA2312085C (en)
DE (1) DE20011217U1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008002148A1 (en) * 2006-06-30 2008-01-03 Aker Kvaerner Subsea As Method and apparatus for protection of compressor modules against influx of contaminated gas
EP2113671A1 (en) 2008-04-28 2009-11-04 Siemens Aktiengesellschaft Arrangement with an electric motor and a pump
EP2252797A1 (en) 2008-03-19 2010-11-24 Siemens Aktiengesellschaft Compressor unit
EP2290241A1 (en) 2009-07-13 2011-03-02 Siemens Aktiengesellschaft Turbocompressor assembly with a cooling system
EP2295811A1 (en) 2009-07-10 2011-03-16 Nuovo Pignone S.p.A. High-pressure compression unit for process fluids for industrial plant and a related method of operation
DE102009045633A1 (en) 2009-10-13 2011-04-14 Man Diesel & Turbo Se Underwater compressor assembly and underwater process fluid conveyor assembly equipped therewith
EP2315946A1 (en) 2008-08-13 2011-05-04 Siemens Aktiengesellschaft Fluid energy machine
EP2462350A1 (en) 2009-08-03 2012-06-13 Atlas Copco Airpower, Naamloze Vennootschap Turbocompressor system
EP2469100A1 (en) 2010-12-22 2012-06-27 Thermodyn Motorcompressor unit with torsionally flexible coupling placed in a hollow shaft of the compressor
EP2761187A1 (en) 2011-09-27 2014-08-06 Termodinamica SAS Motor compressor unit with removable cartridge
CN110953250A (en) * 2019-12-03 2020-04-03 珠海格力电器股份有限公司 Magnetic suspension bearing rotor structure, motor and air conditioner
CN111043069A (en) * 2019-12-18 2020-04-21 沈阳透平机械股份有限公司 Dry gas sealing control system for centrifugal compressor

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1018212C2 (en) * 2001-06-05 2002-12-10 Siemens Demag Delaval Turbomac Compressor unit comprising a centrifugal compressor and an electric motor.
JP2003201993A (en) * 2001-11-02 2003-07-18 Mitsubishi Heavy Ind Ltd Fluid compressor
GB0204139D0 (en) * 2002-02-21 2002-04-10 Alpha Thames Ltd Electric motor protection system
TW200406547A (en) * 2002-06-05 2004-05-01 Sanyo Electric Co Internal intermediate pressure multistage compression type rotary compressor, manufacturing method thereof and displacement ratio setting method
RU2304233C2 (en) * 2003-04-11 2007-08-10 Термодин Centrifugal compressing device
FR2853700B1 (en) * 2003-04-11 2006-06-16 Thermodyn CENTRIFUGAL MOTORCYCLE COMPRESSOR GROUP WITH ASSISTED REFRIGERATION.
ATE348267T1 (en) * 2003-07-05 2007-01-15 Man Turbo Ag Schweiz COMPRESSOR DEVICE AND METHOD FOR OPERATING THE SAME
GB2410982A (en) * 2004-02-14 2005-08-17 Richard Julius Gozdawa Turbomachinery electric generator arrangement with component cooling
DE102004023148A1 (en) * 2004-05-07 2005-11-24 Atlas Copco Energas Gmbh Turbomachinery for low temperature applications
US8021127B2 (en) * 2004-06-29 2011-09-20 Johnson Controls Technology Company System and method for cooling a compressor motor
DE102005002702A1 (en) * 2005-01-19 2006-07-27 Man Turbo Ag Multi-stage turbocompressor
US7811068B2 (en) * 2005-11-16 2010-10-12 General Electric Company Methods and apparatus for transporting natural gas through a pipeline
ITMI20060294A1 (en) * 2006-02-17 2007-08-18 Nuovo Pignone Spa MOTOCOMPRESSORE
WO2007110281A1 (en) * 2006-03-24 2007-10-04 Siemens Aktiengesellschaft Compressor unit
US8156757B2 (en) * 2006-10-06 2012-04-17 Aff-Mcquay Inc. High capacity chiller compressor
US20080199326A1 (en) * 2007-02-21 2008-08-21 Honeywell International Inc. Two-stage vapor cycle compressor
GB2453313B (en) * 2007-08-04 2012-06-27 Waukesha Bearings Ltd Motor compressor
US8092158B2 (en) * 2007-08-16 2012-01-10 Johnson Controls Technology Company Method of positioning seals in turbomachinery utilizing electromagnetic bearings
ES2392189T3 (en) 2007-11-30 2012-12-05 Siemens Aktiengesellschaft Procedure for the operation of a compressor device and corresponding compressor device
FI122036B (en) * 2008-01-10 2011-07-29 Waertsilae Finland Oy Piston engine turbocharger arrangement
FI121800B (en) * 2008-01-10 2011-04-15 Waertsilae Finland Oy Piston engine supercharging
CA2717871C (en) * 2008-03-13 2013-08-13 Aaf-Mcquay Inc. High capacity chiller compressor
DE102008031994B4 (en) * 2008-04-29 2011-07-07 Siemens Aktiengesellschaft, 80333 Fluid energy machine
DE102009004376B4 (en) * 2009-01-12 2016-06-16 Man Diesel & Turbo Se Method and system for controlling a turbocompressor network
IT1395822B1 (en) * 2009-10-12 2012-10-26 Nuovo Pignone Spa METHOD AND MACHINERY WITH COMBINATION OF PARTICLE SEPARATION AND FLOW REGULATION DEVICES
EP2322805A1 (en) * 2009-11-11 2011-05-18 Siemens Aktiengesellschaft Gas compressor assembly
DE102010064061A1 (en) 2009-12-28 2011-08-11 Volkswagen AG, 38440 Turbo compressor for fuel cell drive of internal combustion engine of hybrid drive for motor vehicle, has drive unit and two compressor wheels driven by drive unit
US20110315230A1 (en) * 2010-06-29 2011-12-29 General Electric Company Method and apparatus for acid gas compression
US8931304B2 (en) * 2010-07-20 2015-01-13 Hamilton Sundstrand Corporation Centrifugal compressor cooling path arrangement
DE102010041210A1 (en) * 2010-09-22 2012-03-22 Siemens Aktiengesellschaft casing
US9200643B2 (en) * 2010-10-27 2015-12-01 Dresser-Rand Company Method and system for cooling a motor-compressor with a closed-loop cooling circuit
EP2466144B1 (en) 2010-12-16 2013-02-20 FIMA Maschinenbau GmbH Device for compressing a process gas
US8994237B2 (en) 2010-12-30 2015-03-31 Dresser-Rand Company Method for on-line detection of liquid and potential for the occurrence of resistance to ground faults in active magnetic bearing systems
EP2659277B8 (en) 2010-12-30 2018-05-23 Dresser-Rand Company Method for on-line detection of resistance-to-ground faults in active magnetic bearing systems
WO2012138545A2 (en) 2011-04-08 2012-10-11 Dresser-Rand Company Circulating dielectric oil cooling system for canned bearings and canned electronics
WO2012145486A2 (en) * 2011-04-20 2012-10-26 Dresser-Rand Company Magnetic bearing system for heavy loaded compressor
EP2715167B1 (en) 2011-05-27 2017-08-30 Dresser-Rand Company Segmented coast-down bearing for magnetic bearing systems
WO2012166325A1 (en) 2011-05-31 2012-12-06 Carrier Corporation Compressor windage mitigation
US8851756B2 (en) 2011-06-29 2014-10-07 Dresser-Rand Company Whirl inhibiting coast-down bearing for magnetic bearing systems
DE102012016844A1 (en) * 2011-08-30 2013-02-28 Ksb Aktiengesellschaft Turbo compressor and use
DE102012204403A1 (en) * 2012-03-20 2013-09-26 Man Diesel & Turbo Se Centrifugal compressor unit
RU2485354C1 (en) * 2012-04-26 2013-06-20 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный технический университет (Новочеркасский политехнический институт)" Compressor plant
DE102012012540A1 (en) * 2012-06-26 2014-01-02 Robert Bosch Gmbh Turbo compressor
ITCO20130069A1 (en) * 2013-12-18 2015-06-19 Nuovo Pignone Srl MULTI-STAGE CENTRIFUGAL COMPRESSOR
KR20150074625A (en) * 2013-12-24 2015-07-02 삼성테크윈 주식회사 A supporter for compressing device core and a compressing device module comprising the supporter
EP3161320B1 (en) * 2014-06-24 2021-02-24 Sterling Industry Consult GmbH Side channel pump
DE102014218945A1 (en) * 2014-09-19 2016-03-24 Siemens Aktiengesellschaft Housing cast model, housing series, method of producing a cast housing of a radial turbofan energy machine
JP6460773B2 (en) * 2014-12-19 2019-01-30 株式会社マーレ フィルターシステムズ Turbocharger
DE102015207341B4 (en) * 2015-04-22 2019-02-14 Ford Global Technologies, Llc Compressor and motor vehicle
US10215190B2 (en) * 2016-05-31 2019-02-26 GE Oil & Gas, Inc. Refrigerant compressing process with cooled motor
JP6697094B2 (en) * 2016-11-08 2020-05-20 三菱重工コンプレッサ株式会社 Rotating machinery
CN109996966A (en) 2016-12-14 2019-07-09 开利公司 Two-stage centrifugal compressor
BR102017009824B1 (en) * 2017-05-10 2023-12-19 Fmc Technologies Do Brasil Ltda SYSTEM FOR GAS CIRCULATION IN ANNULAR SPACES OF ROTARY MACHINES
RU2670993C1 (en) * 2017-08-02 2018-10-29 Василий Сигизмундович Марцинковский Compressor unit for nitrogen-hydrogen mixture compression in ammonia production (embodiments)
CN108425859B (en) * 2018-01-29 2024-08-27 固耐重工(苏州)有限公司 Multistage compression structure of magnetic suspension high-power high-speed centrifugal machine
US11156231B2 (en) * 2018-03-23 2021-10-26 Honeywell International Inc. Multistage compressor having interstage refrigerant path split between first portion flowing to end of shaft and second portion following around thrust bearing disc
CN108930655B (en) * 2018-09-06 2023-11-03 东营市深蓝新材料有限公司 Centrifugal pump with anti-blocking function for oil field
KR20210043045A (en) * 2019-10-10 2021-04-21 한온시스템 주식회사 Air compressor for car
CN114458608B (en) * 2022-02-10 2024-01-30 瑞希特(浙江)科技股份有限公司 Pipeline shielding electric pump with outstanding cooling effect

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE571216A (en) * 1956-12-21
FR1178519A (en) * 1957-06-04 1959-05-12 Commissariat Energie Atomique Seals for corrosive fluid compressor shafts
CH663644A5 (en) 1982-02-22 1987-12-31 Bbc Brown Boveri & Cie TURBO COMPRESSORS.
FR2528127A1 (en) * 1982-06-04 1983-12-09 Creusot Loire HIGH-SPEED INTEGRATED ELECTRIC CENTRIFUGAL MOTORCYMO COMPRESSOR
EP0297691A1 (en) 1987-06-11 1989-01-04 Acec Energie S.A. Motor and compressor combination
DE3729486C1 (en) * 1987-09-03 1988-12-15 Gutehoffnungshuette Man Compressor unit
JP2741863B2 (en) * 1988-04-15 1998-04-22 株式会社日立製作所 Turbo vacuum pump
GB9404436D0 (en) 1994-03-08 1994-04-20 Welsh Innovations Ltd Compressor
IL109967A (en) 1993-06-15 1997-07-13 Multistack Int Ltd Compressor
JP3799121B2 (en) * 1997-03-19 2006-07-19 株式会社 日立インダストリイズ 2-stage centrifugal compressor

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO326735B1 (en) * 2006-06-30 2009-02-09 Aker Subsea As Method and apparatus for protecting compressor modules against unwanted contaminant gas inflow.
GB2453093A (en) * 2006-06-30 2009-03-25 Aker Kvaerner Subsea As Method and apparatus for protection of compressor modules against influx of contaminated gas
WO2008002148A1 (en) * 2006-06-30 2008-01-03 Aker Kvaerner Subsea As Method and apparatus for protection of compressor modules against influx of contaminated gas
GB2453093B (en) * 2006-06-30 2011-04-06 Aker Kvaerner Subsea As Method and apparatus for protection of compressor modules against influx of contaminated gas
US8221095B2 (en) 2006-06-30 2012-07-17 Aker Subsea As Method and apparatus for protection of compressor modules against influx of contaminated gas
EP2252797A1 (en) 2008-03-19 2010-11-24 Siemens Aktiengesellschaft Compressor unit
RU2461737C2 (en) * 2008-03-19 2012-09-20 Сименс Акциенгезелльшафт Compressor unit
EP2113671A1 (en) 2008-04-28 2009-11-04 Siemens Aktiengesellschaft Arrangement with an electric motor and a pump
EP2315946A1 (en) 2008-08-13 2011-05-04 Siemens Aktiengesellschaft Fluid energy machine
US8632320B2 (en) 2009-07-10 2014-01-21 Nuovo Pignone S.P.A. High-pressure compression unit for process fluids for industrial plant and a related method of operation
EP2295811A1 (en) 2009-07-10 2011-03-16 Nuovo Pignone S.p.A. High-pressure compression unit for process fluids for industrial plant and a related method of operation
EP2290241A1 (en) 2009-07-13 2011-03-02 Siemens Aktiengesellschaft Turbocompressor assembly with a cooling system
US8801398B2 (en) 2009-07-13 2014-08-12 Siemens Aktiengesellschaft Turbocompressor assembly with a cooling system
EP2462350A1 (en) 2009-08-03 2012-06-13 Atlas Copco Airpower, Naamloze Vennootschap Turbocompressor system
US9470238B2 (en) 2009-08-03 2016-10-18 Atlas Copco Airpower, Naamloze Vennootschap Electric motor having segmented stator windings
WO2011044892A1 (en) 2009-10-13 2011-04-21 Man Diesel & Turbo Se Underwater compressor arrangement and underwater process fluid conveying arrangement equipped therewith
DE102009045633A1 (en) 2009-10-13 2011-04-14 Man Diesel & Turbo Se Underwater compressor assembly and underwater process fluid conveyor assembly equipped therewith
EP2469100A1 (en) 2010-12-22 2012-06-27 Thermodyn Motorcompressor unit with torsionally flexible coupling placed in a hollow shaft of the compressor
EP2761187A1 (en) 2011-09-27 2014-08-06 Termodinamica SAS Motor compressor unit with removable cartridge
CN110953250A (en) * 2019-12-03 2020-04-03 珠海格力电器股份有限公司 Magnetic suspension bearing rotor structure, motor and air conditioner
CN111043069A (en) * 2019-12-18 2020-04-21 沈阳透平机械股份有限公司 Dry gas sealing control system for centrifugal compressor

Also Published As

Publication number Publication date
JP2001041199A (en) 2001-02-13
CN1281100A (en) 2001-01-24
KR100761917B1 (en) 2007-09-28
EP1069313A2 (en) 2001-01-17
JP4395242B2 (en) 2010-01-06
CA2312085C (en) 2003-10-21
CN1153906C (en) 2004-06-16
EP1069313A3 (en) 2002-05-15
US6390789B1 (en) 2002-05-21
KR20010015306A (en) 2001-02-26
DE20011217U1 (en) 2000-09-07
CA2312085A1 (en) 2001-01-16

Similar Documents

Publication Publication Date Title
EP1069313B1 (en) Turbo compressor
EP1074746B1 (en) Turbo compressor
EP2122169B1 (en) Fluid machine
EP1574714B1 (en) Pump unit
EP1993893B1 (en) Compressor assembly
DE69520343T2 (en) Lateral flow pump
EP3480929B1 (en) Cooled housing for the stator of a direct drive
DE2811724A1 (en) CENTRIFUGAL COMPRESSOR AND COMPRESSOR HOUSING
DE2337226A1 (en) VACUUM PUMP WITH A RUNNER MOUNTED INSIDE THEIR HOUSING
EP1963674A1 (en) Water-cooled piston compressor
DE102010064061A1 (en) Turbo compressor for fuel cell drive of internal combustion engine of hybrid drive for motor vehicle, has drive unit and two compressor wheels driven by drive unit
DE102007019126A1 (en) Sound-insulated compressor arrangement for use in railway vehicle, has ventilator unit discharging exhausted cooling air and designed as radial ventilator to bypass cooling air flow in fitting area
DE69614490T2 (en) BLOWERS FOR GAS LASERS
DE10247310A1 (en) Air-cooled electrical machine e.g. electric locomotive motor, uses single cooling fan for providing primary and secondary cooling air flows
EP0990798A1 (en) Turbo compressor
DE602004001156T2 (en) Compressor unit with supported cooling
EP0879967B1 (en) Machine assembly with integral heat barrier
EP0653566B1 (en) Gear driven compressor for the compression of oxygen
DE29617450U1 (en) Glandless turbomachine with an impeller of radial design
EP0814268B1 (en) Modular construction for manufacturing of a pump, particularly a pump driven by a permanent magnet coupling
DE202022103117U1 (en) Housing
DE102017105214A1 (en) A compressor thermovalve unit for conducting lubricant used in a compressor
EP1516109A1 (en) Device for cooling a current generator unit
DE3929750A1 (en) AXIAL DISCHARGE RELIEF DEVICE
DE102015224754A1 (en) Modular compressor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN TURBOMASCHINEN AG GHH BORSIG

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7F 04D 25/06 A, 7F 04D 17/12 B, 7F 04D 29/58 B, 7F 04D 29/04 B, 7F 04D 29/12 B, 7F 04D 17/16 B

17P Request for examination filed

Effective date: 20020419

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN TURBOMASCHINEN AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN TURBOMASCHINEN AG

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN TURBO AG

17Q First examination report despatched

Effective date: 20041126

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050914

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050914

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050914

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50011150

Country of ref document: DE

Date of ref document: 20051020

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051214

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051214

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20050914

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SIEMENS AKTIENGESELLSCHAFT ABT. CT IP PG

Effective date: 20060612

NLR1 Nl: opposition has been filed with the epo

Opponent name: SIEMENS AKTIENGESELLSCHAFT ABT. CT IP PG

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: MAN TURBO A.G.

Effective date: 20060331

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050914

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: MAN DIESEL & TURBO SE

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 50011150

Country of ref document: DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20131213

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 50011150

Country of ref document: DE

Effective date: 20131213

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50011150

Country of ref document: DE

Owner name: MAN ENERGY SOLUTIONS SE, DE

Free format text: FORMER OWNER: MAN DIESEL & TURBO SE, 86153 AUGSBURG, DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: HC

Owner name: MAN ENERGY SOLUTIONS SE; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: MAN TURBO AG

Effective date: 20181221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190322

Year of fee payment: 20

Ref country code: IT

Payment date: 20190325

Year of fee payment: 20

Ref country code: DE

Payment date: 20190321

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20190320

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50011150

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20200330