EP3423762B1 - Heat pump with convective shaft cooling - Google Patents

Heat pump with convective shaft cooling Download PDF

Info

Publication number
EP3423762B1
EP3423762B1 EP17709020.6A EP17709020A EP3423762B1 EP 3423762 B1 EP3423762 B1 EP 3423762B1 EP 17709020 A EP17709020 A EP 17709020A EP 3423762 B1 EP3423762 B1 EP 3423762B1
Authority
EP
European Patent Office
Prior art keywords
engine
condenser
heat pump
vapor
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17709020.6A
Other languages
German (de)
French (fr)
Other versions
EP3423762A1 (en
Inventor
Oliver Kniffler
Holger Sedlak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Efficient Energy GmbH
Original Assignee
Efficient Energy GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Efficient Energy GmbH filed Critical Efficient Energy GmbH
Publication of EP3423762A1 publication Critical patent/EP3423762A1/en
Application granted granted Critical
Publication of EP3423762B1 publication Critical patent/EP3423762B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • F25B31/008Cooling of compressor or motor by injecting a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type

Definitions

  • the present invention relates to heat pumps for heating, cooling or for any other application of a heat pump.
  • FIGs 8A and 8B represent a heat pump, as in the European patent EP 2016349 B1 is described.
  • the heat pump initially comprises an evaporator 10 for evaporating water as the working liquid in order to generate a steam in a working steam line 12 on the outlet side.
  • the evaporator comprises an evaporation space (in Figure 8A not shown) and is designed to generate an evaporation pressure of less than 20 hPa in the evaporation space, so that the water evaporates at temperatures below 15 ° C. in the evaporation space.
  • the water is, for example, groundwater, free in the ground or circulating brine in collector pipes, i.e. water with a certain salinity, river water, sea water or sea water. All types of water, i.e.
  • calcareous water calcareous water, saline water or saline-free water can be used.
  • all types of water ie all of these "hydrogens” have the favorable water property, namely that water, also known as "R 718”, has an enthalpy-difference ratio that can be used for the heat pump process of 6 has, which corresponds to more than 2 times the typical usable enthalpy-difference ratio of, for example, R134a.
  • the water vapor is fed through the suction line 12 to a compressor / condenser system 14 which has a turbomachine such as a radial compressor, for example in the form of a turbocompressor, which in Figure 8A is denoted by 16.
  • the turbomachine is designed to compress the working steam to a steam pressure at least greater than 25 hPa.
  • 25 hPa corresponds to a condensing temperature of around 22 ° C, which can be a sufficient heating flow temperature for underfloor heating, at least on relatively warm days.
  • pressures greater than 30 hPa can be generated with the fluid machine 16, a pressure of 30 hPa having a condensing temperature of 24 ° C, a pressure of 60 hPa having a condensing temperature of 36 ° C, and a pressure of 100 hPa corresponds to a condensing temperature of 45 ° C.
  • underfloor heating are designed to be able to heat sufficiently with a flow temperature of 45 ° C even on very cold days.
  • the turbomachine is coupled to a condenser 18, which is designed to liquefy the compressed working steam.
  • a condenser 18 which is designed to liquefy the compressed working steam.
  • the energy contained in the working steam is fed to the liquefier 18 in order to then be fed to a heating system via the flow 20a.
  • the working fluid flows back into the condenser via the return 20b.
  • the heat (energy) from the high-energy water vapor directly through the colder heating water, which is absorbed by the heating water, so that it heats up. So much energy is extracted from the steam that it is liquefied and also participates in the heating circuit.
  • the medium can also be used there directly, if one thinks of a house with underfloor heating, the water that comes from the evaporator to circulate directly in the underfloor heating.
  • a heat exchanger can also be arranged on the condenser side, which is fed with the flow 20a and which has the return 20b, this heat exchanger cooling the water in the condenser and thus heating up a separate underfloor heating liquid, which will typically be water.
  • the degree of purity of the water is irrelevant.
  • the fluid machine is always supplied with distilled water, just like the condenser and the possibly directly coupled underfloor heating, in such a way that the system requires less maintenance than today's systems. In other words, the system is self-cleaning, since only distilled water is supplied to the system and the water in the outlet 22 is therefore not contaminated.
  • turbomachines have the properties that, similar to an aircraft turbine, they do not connect the compressed medium to problematic substances, such as oil. Instead, the water vapor is only compressed by the turbine or the turbocompressor, but is not associated with oil or another medium which impairs purity and is thus contaminated.
  • the distilled water discharged through the drain can thus - if no other regulations stand in the way - be easily returned to the groundwater.
  • it can also e.g. seep in the garden or in an open area, or it can be fed to a sewage treatment plant via the sewer, if required by regulations.
  • Figure 8B shows a table to illustrate different pressures and the evaporation temperatures assigned to these pressures, from which it follows that very low pressures in the evaporator should be selected, in particular for water as the working medium.
  • the DE 4431887 A1 discloses a heat pump system with a lightweight, large volume, high performance centrifugal compressor.
  • a vapor leaving a second stage compressor has a saturation temperature that exceeds the ambient temperature or that of an available cooling water, thereby allowing heat to be dissipated.
  • the compressed steam is transferred from the second stage compressor to the condenser unit which consists of a bed layer which is inside a cooling water spray device is provided on an upper side, which is supplied by a water circulation pump.
  • the compressed water vapor rises in the condenser through the fill layer, where it comes in direct countercurrent contact with the cooling water flowing down.
  • the vapor condenses and the latent heat of condensation absorbed by the cooling water is expelled to the atmosphere via the condensate and cooling water, which are removed together from the system.
  • the condenser is continuously flushed with non-condensable gases by means of a vacuum pump via a pipeline.
  • the WO 2014072239 A1 discloses a condenser with a condensation zone for condensing steam to be condensed in a working liquid.
  • the condensation zone is designed as a volume zone and has a lateral boundary between the upper end of the condensation zone and the lower end.
  • the liquefier further comprises a steam introduction zone which extends along the lateral end of the condensation zone and is designed to supply steam to be condensed laterally into the condensation zone via the lateral boundary.
  • the WO 2014/200476 A1 discloses a heat pump having the following features: a condenser with a condenser housing; a compressor motor having a rotor and a stator, the rotor having a motor shaft to which a radial wheel is attached which extends into an evaporator zone; a control space which is designed to receive vapor condensed by the radial wheel and to conduct it into the condenser; a motor housing that surrounds the compressor motor; and a steam supply for supplying steam in the motor housing to a motor gap between the stator and the rotor, the compressor motor being designed such that a further gap extends from the motor gap along the radial wheel to the control space.
  • a general problem with heat pumps is the fact that moving parts and especially fast moving parts have to be cooled.
  • the compressor motor and especially the motor shaft are particularly problematic here.
  • shaft temperatures can reach values that are problematic because they lead to the destruction of the components can.
  • the object of the present invention is to provide a safe concept for a heat pump.
  • the heat pump comprises special convective shaft cooling.
  • This heat pump has a condenser with a condenser housing, a compressor motor which is attached to the condenser housing and has a rotor and a stator, the rotor having a motor shaft to which a radial wheel is attached, which extends into an evaporator zone, and a control space , which is designed to receive vapor condensed by the radial wheel and to conduct it into the condenser.
  • this heat pump has a motor housing which surrounds the compressor motor and is preferably designed to maintain a pressure which is at least equal to the pressure in the condenser.
  • a pressure that is greater than the pressure behind the radial wheel is also sufficient. In certain versions, this pressure adjusts to a pressure which lies in the middle between the condenser pressure and the evaporator pressure.
  • a steam supply is provided in the motor housing to supply steam in the motor housing to a motor gap between the stator and the motor shaft.
  • the motor is designed such that a further gap extends from the motor gap between the stator and the motor shaft along the radial wheel to the control space.
  • the area with high pressure in front of the radial wheel is still smaller than the high pressure in the condenser and the low pressure to a certain extent "behind" the radial wheel is even smaller than the high pressure at the outlet of the radial wheel.
  • the high pressure then only exists at the outlet of the control space condenser pressure.
  • This pressure drop which is “coupled” to the motor gap, ensures that working steam is drawn from the motor housing via the steam feed along the motor gap and the further gap into the condenser.
  • This vapor is at or above the temperature level of the condenser working fluid.
  • this is particularly advantageous because it avoids all condensation problems within the motor and in particular within the motor shaft, which would support corrosion, etc.
  • the coldest working liquid that is present in the evaporator is not used for convective wave cooling.
  • the cold steam is also not used in the evaporator.
  • the steam is used to condenser or condenser temperature, which is in the heat pump. Adequate wave cooling is still achieved, due to the convective nature, i.e. that a significant and in particular adjustable amount of steam flows around the motor shaft due to the steam supply, the motor gap and the further gap.
  • the fact that this steam is relatively warm compared to the steam in the evaporator ensures that no condensation takes place along the motor shaft in the motor gap or the further gap.
  • a temperature control is always created that is higher than the coldest temperature. Condensation always arises at the coldest temperature in a volume and therefore not within the engine gap and the further gap, since the warm steam flows around them.
  • the present invention thus leads to sufficient convective wave cooling. This prevents excessive temperatures in the motor shaft and the associated signs of wear. It also effectively prevents condensation in the motor, e.g. when the heat pump is at a standstill. This also effectively eliminates all operational safety problems and corrosion problems that would be associated with such condensation. According to the aspect of convective shaft cooling, the present invention leads to a significantly reliable heat pump.
  • the heat pump comprises a condenser with a condenser housing, a compressor motor, which is attached to the condenser housing and has a rotor and a stator.
  • the rotor includes a motor shaft on which a compressor wheel for compressing working fluid vapor is attached.
  • the compressor motor also has a motor wall.
  • the heat pump comprises a motor housing which surrounds the compressor motor and which is preferably designed to maintain a pressure which is at least equal to the pressure in the condenser and which has a working medium inlet in order to feed liquid working medium from the condenser to the motor wall for cooling the motor ,
  • the pressure in the motor housing can also be lower here, since the heat is removed from the motor housing by boiling or evaporation.
  • the thermal energy on the motor wall is thus mainly removed from the motor wall by the steam, and this heated steam is then removed, such as in the condenser.
  • the steam from the engine cooling can also be brought into the evaporator or to the outside.
  • the conduction of the heated steam into the condenser is preferred.
  • the cooling in this aspect of the invention takes place by evaporation, so that the heat energy to be removed is removed by the steam removal provided.
  • the motor housing is therefore designed to form a vapor space in the operation of the heat pump, in which the working medium due to the bubble boiling or evaporation is located.
  • the motor housing is also designed to discharge the steam from the steam space in the motor housing by a steam discharge. This discharge preferably takes place in the condenser, so that the vapor discharge is achieved by a gas-permeable connection between the condenser and the motor housing.
  • the motor housing is preferably further configured to maintain a maximum level of liquid working fluid in the motor housing during operation of the heat pump and to further form a vapor space above the maximum level.
  • the motor housing is also designed to guide working fluid into the condenser above the maximum level. This design makes it possible to keep the cooling by steam generation very robust, since the level of working fluid always ensures that there is enough working fluid on the motor wall for bubble boiling.
  • working fluid can also be sprayed onto the motor wall. The sprayed liquid is then dosed that it evaporates when it comes into contact with the engine wall, thereby achieving the cooling capacity for the engine.
  • the motor is thus effectively cooled with liquid working fluid on its motor wall.
  • this liquid working fluid is not the cold working fluid from the evaporator, but the warm working fluid from the condenser.
  • the use of warm working fluid from the condenser creates sufficient motor cooling.
  • the motor is not cooled too much and, in particular, is not cooled to the extent that it is the coldest part in the condenser or on the condenser housing. This would lead to e.g. when the engine is stopped, but also during operation, condensation of working fluid vapor would take place on the outside of the engine housing, which would lead to corrosion and further problems.
  • it is ensured that the motor is well cooled, but at the same time is always the warmest part of the heat pump, in such a way that condensation, which always takes place at the coldest "end", does not take place on the compressor motor.
  • the liquid working fluid in the motor housing is preferably kept at almost the same pressure as the condenser.
  • the working fluid that cools the motor is close to its boiling limit, since this working fluid is a condenser fluid and is at a similar temperature to that in the condenser. If the motor wall is warmed up due to friction due to motor operation, the thermal energy is transferred to the liquid working fluid. Due to the fact that the liquid working fluid is close to the boiling point, a bubble boil now starts in the motor housing in the liquid working fluid that fills the motor housing up to the maximum level.
  • This bubble boiling enables extremely efficient cooling due to the very strong mixing of the volume of liquid working fluid in the motor housing.
  • This cooling assisted by boiling can also be significantly supported by a preferably provided convection element, so that in the end a very efficient engine cooling with a relatively small volume or no standing volume of liquid working fluid, which also does not have to be controlled further because it is self-controlling , is achieved. Efficient engine cooling is achieved with little technical effort, which in turn contributes significantly to the operational safety of the heat pump.
  • Fig. 1 shows a heat pump 100 with an evaporator for evaporating working fluid in an evaporator space 102.
  • the heat pump further comprises a condenser for liquefying evaporated working fluid in a condenser space 104, which is delimited by a condenser bottom 106.
  • the evaporator chamber 102 is at least partially surrounded by the condenser chamber 104.
  • the evaporator space 102 is separated from the condenser space 104 by the condenser bottom 106.
  • the condenser bottom is connected to an evaporator bottom 108 to define the evaporator space 102.
  • a compressor 110 is provided above the evaporator chamber 102 or elsewhere Fig. 1 is not detailed, but is principally designed to compress vaporized working fluid and to conduct it as compressed vapor 112 into the condenser chamber 104.
  • the condenser space is further delimited on the outside by a condenser wall 114.
  • the condenser wall 114 like the condenser bottom 106, is also fastened to the evaporator bottom 108.
  • the dimensioning of the condenser bottom 106 in the region which forms the interface to the evaporator bottom 108 is such that the condenser bottom in the case of the Fig. 1
  • the embodiment shown is completely surrounded by the capacitor chamber wall 114. This means that the capacitor compartment is as it is in Fig. 1 is shown extends to the bottom of the evaporator, and that the evaporator space at the same time extends very far up, typically almost through almost the entire condenser space 104.
  • This "entangled" or interlocking arrangement of condenser and evaporator which is distinguished by the fact that the condenser bottom is connected to the evaporator bottom, delivers a particularly high heat pump efficiency and therefore allows a particularly compact design of a heat pump.
  • the dimensioning of the heat pump for example in a cylindrical shape, is such that the condenser wall 114 represents a cylinder with a diameter between 30 and 90 cm and a height between 40 and 100 cm.
  • the dimensioning can, however depending on the required performance class of the heat pump, but preferably takes place in the dimensions mentioned.
  • a very compact design is thus achieved, which is also simple and inexpensive to produce, because the number of interfaces, in particular for the evaporator space which is almost under vacuum, can be easily reduced if the evaporator base is designed according to preferred exemplary embodiments of the present invention, that it includes all liquid supply and discharge lines and therefore no liquid supply and discharge lines from the side or from above are necessary.
  • Fig. 1 the operating direction of the heat pump is as shown in Fig. 1 is shown.
  • the evaporator bottom defines the lower section of the heat pump during operation, but apart from connecting lines to other heat pumps or to corresponding pump units.
  • the steam generated in the evaporator chamber rises and is deflected by the engine and is fed into the condenser chamber from top to bottom, and that the condenser liquid is conducted from bottom to top and then fed into the condenser chamber from above and then flows from top to bottom in the condenser chamber, such as through individual droplets or through small liquid flows, in order to react with the compressed steam, which is preferably fed crosswise, for the purposes of condensation.
  • This "entangled" arrangement in that the evaporator is arranged almost completely or even completely within the condenser, enables a very efficient design of the heat pump with optimal use of space.
  • the condenser space After the condenser space extends to the bottom of the evaporator, the condenser space is formed within the entire "height" of the heat pump or at least within a substantial portion of the heat pump.
  • the evaporator space is as large as possible because it also extends almost almost over the entire height of the heat pump.
  • the interlocking arrangement in contrast to an arrangement in which the evaporator is arranged below the condenser, makes optimal use of the space.
  • each functional space is given the large volume where this functional space also requires the large volume.
  • the evaporator compartment has the large volume at the bottom, while the condenser compartment has the large volume at the top. Nevertheless, the corresponding small volume that remains for the respective functional space where the other functional space has the large volume also contributes to an increase in efficiency compared to a heat pump in which the two functional elements are arranged one above the other, as is the case, for example, in the WO 2014072239 A1 the case is.
  • the compressor is arranged on the upper side of the condenser chamber in such a way that the compressed steam is deflected by the compressor on the one hand and at the same time fed into an edge gap of the condenser chamber. Condensation is thus achieved with particularly high efficiency because a cross-flow direction of the steam to a condensation liquid flowing down is achieved.
  • This condensation with cross flow is particularly effective in the upper area, where the evaporator space is large, and does not require a particularly large area in the lower area, where the condenser space is small in favor of the evaporator space, in order nevertheless to condense vapor particles that have penetrated up to this area allow.
  • An evaporator bottom which is connected to the condenser bottom, is preferably designed in such a way that it accommodates the condenser inlet and outlet and the evaporator inlet and outlet, with additional bushings for sensors in the evaporator and in the Capacitor can be present. This ensures that no conduits for the condenser inlet and outlet through the evaporator, which is almost under vacuum, are necessary. This makes the entire heat pump less prone to failure, because any passage through the evaporator would be a possibility of a leak.
  • the condenser bottom is provided with a recess at the points where the condenser inlets and outlets are, to the effect that no condenser inlets / outlets run in the evaporator space, which is defined by the condenser bottom.
  • the condenser space is delimited by a condenser wall, which can also be attached to the evaporator bottom.
  • the evaporator base thus has an interface for both the condenser wall and the condenser base and additionally has all the liquid feeds for both the evaporator and the condenser.
  • the evaporator base is designed to have connecting pieces for the individual feeds, which have a cross section that differs from a cross section of the opening on the other side of the evaporator base.
  • the shape of the individual connecting piece is then designed such that the shape or cross-sectional shape changes over the length of the connecting piece, but the pipe diameter, which plays a role in the flow velocity, is almost the same within a tolerance of ⁇ 10%. This prevents water flowing through the connecting piece from cavitating. Because of the good flow conditions obtained through the shaping of the connecting piece, this ensures that the corresponding pipes / lines can be made as short as possible, which in turn contributes to a compact design of the entire heat pump.
  • the condenser inlet is divided almost in the form of "glasses" into a two-part or multi-part stream. This makes it possible to feed the condenser liquid in the condenser at its upper section at two or more points simultaneously. This achieves a strong and at the same time particularly uniform condenser flow from top to bottom, which enables a highly efficient condensation of the steam also introduced into the condenser from above.
  • Another smaller-sized supply in the evaporator bottom for condenser water can also be provided in order to connect a hose that supplies cooling fluid to the compressor motor of the heat pump, whereby the cooler liquid supplied to the evaporator is not used for cooling, but the warmer liquid supplied to the condenser Liquid that is still cool enough to cool the heat pump motor in typical operating situations.
  • the evaporator bottom is characterized by the fact that it has a combination functionality. On the one hand, it ensures that no condenser feed lines have to be led through the evaporator, which is at very low pressure. On the other hand, it represents an interface to the outside, which preferably has a circular shape, since a circular shape leaves as much evaporator surface as possible. All supply and discharge lines lead through one evaporator floor and run from there into either the evaporator room or the condenser room. In particular, manufacturing the evaporator base from plastic injection molding is particularly advantageous because the advantageous, relatively complicated shapes of the inlet / outlet connections can be carried out easily and inexpensively in plastic injection molding. On the other hand, due to the design of the evaporator bottom as an easily accessible workpiece, it is readily possible to produce the evaporator bottom with sufficient structural stability so that it can easily withstand the low evaporator pressure in particular.
  • Fig. 2 shows a heat pump according to an embodiment in connection with the first aspect, the convective shaft cooling.
  • the heat pump from Fig. 2 a condenser with a condenser housing 114 that includes a condenser space 104.
  • the compressor motor is attached, which is shown schematically in FIG Fig. 4 is shown.
  • This compressor motor is on in Fig. 2 not shown is attached to the condenser housing 114 and includes the stator and a rotor 307, the rotor 307 having a motor shaft 306 to which is attached a radial wheel 304 that extends into an evaporator zone that is shown in FIG Fig. 2 is not shown.
  • the heat pump further includes a control space 302 that is configured to receive steam compressed by the radial wheel and to conduct it into the condenser, as is shown schematically at 112.
  • the motor further includes a motor housing 300 that surrounds the compressor motor and is preferably configured to maintain a pressure that is at least equal to the pressure in the condenser.
  • the motor housing is configured to hold a pressure that is higher than an average pressure from the evaporator and the condenser, or that is higher than the pressure in the further gap 313 between the radial wheel and the control space (302), or that is greater than or equal to the pressure in the condenser.
  • the Motor housing is thus designed such that a pressure drop from the motor housing along the motor shaft in the direction of the control space takes place, through which working steam is drawn through the motor gap and the further gap past the motor shaft in order to cool the shaft.
  • a steam supply 310 is formed to supply steam in the motor housing 300 to a motor gap 311 that is present between the stator 308 and the shaft 306.
  • the motor further comprises a further gap 313, which extends from the motor gap 311 along the radial wheel to the control space 302.
  • This steam flow ensures the convective shaft cooling of the motor shaft through the motor gap 311 and the further gap 313, which adjoins the motor gap 311.
  • the radial wheel sucks steam downwards, past the shaft of the motor.
  • This steam is drawn into the engine gap via the steam supply, which is typically implemented as special bores.
  • Fig. 3 shows a further schematic embodiment of the convective shaft cooling according to the first aspect of the present invention, which is preferably combined there with the motor cooling according to the second aspect of the present invention.
  • convective shaft cooling on the one hand and motor cooling on the other are also used separately from one another.
  • engine cooling without a special separate convective shaft cooling already leads to considerably increased operational reliability.
  • convective motor shaft cooling without the additional motor cooling leads to increased operational reliability of the heat pump.
  • the two aspects can, as described below in Fig. 3 is shown, are connected to one another in a particularly favorable manner in order to implement both the convective shaft cooling and the motor cooling with a particularly advantageous construction of the motor housing and the compressor motor, which can additionally or additionally be supplemented in a further preferred exemplary embodiment in each case or together by a special ball bearing cooling.
  • Fig. 3 shows an embodiment with combined use of convective shaft cooling and engine cooling, wherein in the Fig. 3 Embodiment shown, the evaporator zone is shown at 102.
  • the evaporator zone is separated from the condenser zone, that is to say from the condenser region 104, by the condenser bottom 106.
  • Working steam shown schematically at 314, is drawn in by the rotating radial wheel 304, shown schematically and in section, and "pressed" into the route 302.
  • the route 302 is in the in Fig. 3 shown embodiment formed so that its cross section increases outwards. A further vapor compression takes place with this.
  • the first "stage” of steam compression takes place through the rotation of the radial wheel and the "suction" of the steam through the radial wheel.
  • the radial wheel feeds the steam into the entrance of the route, ie where the radial wheel "stops” when viewed upwards
  • the pre-compressed steam encounters a kind of steam build-up, which is due to the tapering of the route and also due to the curvature of the Routing exists. This leads to a further vapor compression, so that finally the compressed and thus heated vapor 112 flows into the condenser.
  • FIG. 10 also shows the steam supply openings 320 that are shown in a schematically illustrated engine wall 309 in FIG Fig. 3 are executed.
  • This motor wall 309 has the in Fig. 3 Embodiment shown holes for the steam supply openings 320 in the upper region, but these holes can be made at any point where steam can penetrate into the motor gap 311 and thus also into the further motor gap 313.
  • the exemplary embodiment shown furthermore includes, for implementing the motor cooling, a working medium inlet 330 which is designed to guide liquid working medium from the condenser for motor cooling to the motor wall.
  • the motor housing formed to maintain a maximum liquid level 322 of liquid working fluid in the operation of the heat pump.
  • the motor housing 300 is also designed to form a vapor space 323 above the maximum level.
  • the motor housing has arrangements for introducing liquid working fluid into the condenser 104 above the maximum level. This version is used in the Fig. 3 embodiment shown by a z. B. formed flat channel-shaped overflow 324, which forms the vapor discharge and is located somewhere in the upper condenser wall and has a length that defines the maximum level 322.
  • the overflow at the in Fig. 3 shown passive arrangement which can also alternatively be a tube with a corresponding length, for example, a pressure equalization between the motor housing and in particular the vapor space 323 of the motor housing and the condenser interior 104.
  • the pressure in the vapor space 323 of the motor housing is always almost the same or at most slightly higher than the pressure in the condenser due to a pressure loss along the overflow.
  • the boiling point of liquid 328 in the motor housing will be similar to the boiling point in the condenser housing.
  • heating of the motor wall 309 due to a power loss generated in the motor leads to bubble boiling in the liquid volume 328, which will be explained later.
  • Fig. 3 also shows various seals in schematic form at reference numeral 326 and at similar locations between the motor housing and the condenser housing on the one hand or between the motor wall 309 and the condenser housing 114 on the other hand. These seals are intended to symbolize that there should be a liquid and pressure tight connection here.
  • a separate space is defined by the motor housing, which, however, represents almost the same pressure area as the condenser. Due to the heating of the motor and the energy thus released on the motor wall 309, this supports a bubble boiling in the liquid volume 328, which in turn results in a particularly efficient distribution of the working medium in the volume 328 and thus particularly good cooling with a small volume of cooling liquid. It is also ensured that cooling is carried out with the working fluid which is at the most favorable temperature, namely the warmest temperature in the heat pump. This ensures that all condensation problems, that always occur on cold surfaces, for the motor wall as well as for the motor shaft and the areas in the motor gap 311 and the further gap 313 are excluded. Furthermore, in Fig.
  • the working fluid vapor 310 used for the convective wave cooling which is otherwise in the vapor space 323 of the motor housing.
  • This vapor like liquid 328, is at the optimal (warm) temperature.
  • the overflow 324 it is ensured by the overflow 324 that the pressure in the area 323 cannot rise above the condenser pressure due to the bubble boiling caused by the engine cooling or the engine wall 309.
  • the heat is dissipated due to the engine cooling through the steam discharge. This means that convective shaft cooling will always work in the same way. If the pressure rose too much, too much working fluid vapor could be forced through the motor gap 311 and the further gap 313.
  • the holes 320 for the steam supply will typically be formed in an array that can be arranged regularly or irregularly.
  • the individual bores are not larger than 5 mm in diameter and can be about a minimum size of 1 mm.
  • Fig. 6 shows a condenser, the condenser in Fig. 6 a steam introduction zone 102 that extends completely around the condensation zone 100.
  • Fig. 6 shown a part of a condenser having a condenser bottom 200.
  • a condenser housing section 202 is arranged on the condenser bottom Fig. 6 is drawn transparently, which, however, does not necessarily have to be transparent in nature, but can be formed, for example, from plastic, die-cast aluminum or something similar.
  • the side housing part 202 rests on a sealing rubber 201 in order to achieve a good seal with the bottom 200.
  • the condenser comprises a liquid outlet 203 and a liquid inlet 204 as well as a vapor supply 205 arranged centrally in the condenser, which flows from bottom to top Fig. 6 rejuvenated.
  • Fig. 6 represents the actually desired installation direction of a heat pump and a condenser of this heat pump, with in this installation direction in Fig. 6 the evaporator of a heat pump is arranged below the condenser.
  • the condensation zone 100 is delimited on the outside by a basket-like delimitation object 207, which, like the outer housing part 202, is drawn transparently and is normally configured like a basket.
  • a grating 209 is arranged, which is formed around packing elements which are in Fig. 6 not shown to wear. Like it out Fig. 6 can be seen from, the basket 207 only extends down to a certain point.
  • the basket 207 is provided permeable to steam in order to hold packing elements, such as so-called pall rings. These packing elements are introduced into the condensation zone, specifically only inside the basket 207, but not in the steam introduction zone 102. However, the packing elements are also filled so high outside the basket 207 that the height of the packing elements either reaches the lower limit of the basket 207 or slightly above.
  • the liquefier from Fig. 6 includes a working liquid feeder, which is in particular by the working liquid supply 204, which, as in Fig. 6 is shown wound around the steam supply in the form of an ascending turn, is formed by a liquid transport area 210 and by a liquid distributor element 212, which is preferably designed as a perforated plate.
  • the working fluid feeder is thus designed to feed the working fluid into the condensation zone.
  • a steam feeder is provided, which, as in Fig. 6 is shown, preferably composed of the funnel-shaped tapering supply area 205 and the upper steam guide area 213.
  • a wheel of a radial compressor is preferably used in the steam line area 213 and the radial compression leads to the fact that steam is sucked in from the bottom upwards through the feed 205 and is then already deflected outward to a certain extent 90 degrees due to the radial compression by the radial wheel, that is to say from a flow from the bottom up to a flow from the center outwards in Fig. 6 regarding element 213.
  • Fig. 6 another deflector is not shown, which deflects the steam which has already been deflected outwards again by 90 degrees, in order then to guide it from above into the gap 215, which to a certain extent represents the beginning of the steam introduction zone which extends laterally around the condensation zone.
  • the steam feeder is therefore preferably of an annular design and is provided with an annular gap for supplying the steam to be condensed, the working fluid supply being formed within the annular gap.
  • FIG. 7 shows a view of the "lid portion" of the condenser of FIG Fig. 6 from underneath.
  • the perforated plate 212 is from shown schematically below, which acts as a liquid distributor element.
  • the steam inlet gap 215 is drawn schematically and it follows from Fig. 7 that the steam inlet gap is only ring-shaped, such that no steam to be condensed is fed into the condensation zone directly from above or directly from below, but only around the side.
  • only liquid, but no steam flows through the holes in the distributor plate 212.
  • the vapor is only "sucked in” laterally into the condensation zone, specifically because of the liquid that has passed through the perforated plate 212.
  • the liquid distributor plate can be made of metal, plastic or a similar material and can be designed with different hole patterns. Furthermore, as it is in Fig. 6 is shown, preferably to provide a lateral boundary for liquid flowing out of the element 210, this lateral boundary being designated by 217. This ensures that liquid, which already exits the element 210 with a swirl due to the curved feed 204 and is distributed from the inside to the outside of the liquid distributor, does not spray over the edge into the steam introduction zone, unless the liquid has already passed through the Holes in the liquid distribution plate are dripped and condensed with steam.
  • Fig. 5 shows a complete heat pump in a sectional view, which includes both the evaporator bottom 108 and the condenser bottom 106. Like it in Fig. 5 or also in Fig. 1 is shown, the condenser bottom 106 has a tapering cross section from an inlet for the working fluid to be evaporated to a suction opening 115, which is coupled to the compressor or motor 110, where the preferably used radial wheel of the motor sucks off the steam generated in the evaporator chamber 102 ,
  • Fig. 5 shows a cross section through the entire heat pump.
  • a droplet separator 404 is arranged inside the condenser bottom.
  • This droplet separator comprises individual blades 405. These blades are introduced into corresponding grooves 406 in order that the droplet separator remains in place Fig. 5 are shown.
  • These grooves are arranged in the condenser bottom in a region which is directed towards the evaporator bottom, in the inside of the evaporator bottom.
  • the condenser bottom also has various guiding features, which can be designed as rods or tongues, in order to hold hoses, which are provided for condenser water guidance, for example, which are therefore plugged onto corresponding sections and couple the feed points of the condenser water supply.
  • This condenser water supply 402 can, depending on the implementation be trained as in the Fig. 6 and 7 is shown at reference numerals 102, 207 to 250.
  • the condenser preferably has a condenser liquid distribution arrangement which has two or more feed points. A first feed point is therefore connected to a first section of a condenser inlet. A second feed point is connected to a second section of the condenser inlet. If there are more feed points for the condenser liquid distribution device, the condenser inlet will be divided into further sections.
  • the top of the heat pump from Fig. 5 can thus be just like the upper area in Fig. 6 be designed to the effect that the condenser water supply via the perforated plate from Fig. 6 and Fig. 7 takes place, so that downward flowing condenser water 408 is obtained, into which the working steam 112 is preferably introduced laterally, so that the cross-flow condensation, which allows a particularly high efficiency, can be obtained.
  • the condensation zone can be provided with only an optional filling, in which the edge 207, which is also designated 409, remains free of packing elements or similar things, in that the working steam 112 not only at the top but also at the bottom can laterally penetrate into the condensation zone.
  • the imaginary boundary line 410 is said to be in Fig. 5 illustrate.
  • the entire region of the condenser is designed with its own condenser base 200, which is arranged above an evaporator base.
  • Fig. 4 shows a preferred embodiment of a heat pump and in particular a heat pump section, the "upper" area of the heat pump, as shown for example in Fig. 5 is shown.
  • the motor corresponds to M 110 from Fig. 5 the area surrounded by a motor wall 309, which is shown in the cross-sectional view in Fig. 4 is preferably formed on the outside in the liquid region 328 with cooling fins in order to enlarge the surface of the motor wall 309.
  • the area of the motor housing 300 corresponds to Fig. 4 the corresponding area 300 in Fig. 5
  • radial wheel 304 is also shown in a more detailed cross section.
  • the radial wheel 304 is attached to the motor shaft 306 in a fastening area which is fork-shaped in cross section.
  • the motor shaft 306 has a rotor 307, which is opposite the stator 308.
  • the rotor 307 schematically includes FIG Fig. 4 permanent magnets shown.
  • steam path 310 is set out through engine gap 311.
  • the motor gap 311 extends between and opens into the rotor and the stator Another gap 313, which runs along the fastening area of the shaft 306, which is fork-shaped in cross section, to the control space 302, as is also shown at 346.
  • Fig. 4 an emergency camp 344 is shown, which does not support the shaft in normal operation. Instead, the shaft is supported by the bearing section shown at 343.
  • the emergency bearing 344 is only available to support the shaft and thus the radial wheel in the event of damage, so that the rapidly rotating radial wheel cannot cause any greater damage in the heat pump in the event of damage.
  • Fig. 4 also shows various fasteners, such as screws, nuts, etc. and various seals in the form of various O-rings. It also shows Fig. 4 an additional convection element 342, to which reference will be made later Fig. 10 is received.
  • Fig. 4 also shows a splash guard 360 in the vapor space above the maximum volume in the motor housing, which is normally filled with liquid working fluid.
  • This splash guard is designed to intercept drops of liquid thrown into the vapor space during bubble boiling.
  • steam path 310 is as schematically shown in FIG Fig. 4 is indicated in such a way that it benefits from the splash guard 360, that is, because of the flow into the engine gap and the further gap, only working fluid vapor, but not liquid drops due to the boiling in the engine housing, are sucked in.
  • the heat pump with convective shaft cooling preferably has a steam supply which is designed in such a way that steam flow through the motor gap and the further gap does not pass through a bearing section which is designed to support the motor shaft with respect to the stator.
  • a bearing section which in the present case comprises two ball bearings, is sealed from the motor gap, namely, for. B. by O-rings 351.
  • the working steam can only, as it through the path 310 in Fig. 4 is shown, enter through the steam supply into an area within the motor wall 309, run downward from there in a free space and pass along the rotor 307 through the motor gap 311 into the further gap 313.
  • the motor housing is as shown in Fig. 4 is shown mounted in the operating position of the heat pump on top of the condenser housing 114 so that the stator is above the radial wheel and the steam flow 310 runs through the motor gap and the further gap from top to bottom.
  • the heat pump further includes the bearing section 343, which is designed to support the motor shaft with respect to the stator. Furthermore, the bearing section is arranged such that the rotor 307 and the stator 308 are arranged between the bearing section and the radial wheel 304.
  • This has the advantage that the bearing section 343 can be arranged in the steam area within the motor housing and the rotor / stator, where the greatest power loss occurs, below the maximum liquid level 322 ( Fig. 3 ) can be arranged. This creates an optimal arrangement by which each area is in the medium that is best for the area to achieve the purposes, namely motor cooling on the one hand and convective shaft cooling on the other hand and possibly ball bearing cooling, to which reference is still made Fig. 10 is received.
  • the motor housing also includes the working medium inlet 330 in order to guide liquid working medium from the condenser for cooling the motor to a wall of the compressor motor.
  • FIG. 10 FIG. 12 shows a specific implementation of this work fluid inlet 362, that of inlet 330 of FIG Fig. 3 equivalent.
  • This working fluid inlet 362 runs into a closed volume 364, which represents ball bearing cooling.
  • a derivative emerges from the ball bearing cooling that includes a tube 366 that does not place the working fluid on top of the volume of the working fluid 328, as in FIG Fig. 3 shown, leads, but that the working medium leads down to the wall of the motor, i.e. the element 309.
  • the tube 366 is designed to be arranged within the convection element 342, which is arranged around the motor wall 309, and at a certain distance, so that a volume increases inside the convection element 342 and outside the convection element 342 within the motor housing 300 liquid working fluid exists.
  • a bubble boiling due to the working fluid which is in contact with the motor wall 309, in particular in the lower region, where the fresh working fluid inlet 366 ends, creates a convection zone 367 within the volume of working fluid 328.
  • the boiling bubbles are torn from the bottom upwards by the bubble boiling , This leads to an ongoing "stirring” in that hot working fluid is brought from the bottom up.
  • the energy due to the bubble boiling then passes into the vapor bubble, which then ends up in the vapor volume 323 above the liquid volume 328.
  • the pressure generated there is brought directly into the condenser through the overflow 324, the overflow continuation 340 and the outlet 342. This means that there is constant heat removal from the motor into the condenser, which is mainly due to the discharge of steam and not due to the discharge of heated liquid.
  • the heat which is actually the engine's waste heat, preferably gets exactly where it should go through the steam discharge, namely into the condenser water to be heated. This keeps the entire engine heat in the system, which is particularly favorable for heating applications of the heat pump.
  • heat dissipation from the motor to the condenser is also favorable for cooling applications of the heat pump, because the condenser typically has an efficient heat dissipation, e.g. in the form of a heat exchanger or a direct heat dissipation in the area to be heated. It is therefore not necessary to create a separate engine waste heat device, but the heat dissipation from the condenser to the outside, which already exists from the heat pump, is "used” to a certain extent by the engine cooling.
  • the motor housing is also designed to maintain the maximum level of liquid working fluid during operation of the heat pump and to create the vapor space 323 above the level of liquid working fluid.
  • the steam feed is also designed such that it communicates with the steam space, so that the steam in the steam space for convective wave cooling through the motor gap and the further gap in Fig. 4 is directed.
  • the drain is arranged as an overflow in the motor housing to guide liquid working fluid above the level in the condenser and to further create a steam path between the steam space and the condenser.
  • the drain 324 is preferably both, namely both overflow and steam path.
  • the heat pump includes the in Fig. 10 Embodiment shown a special ball bearing cooling, which is formed in particular that the sealed volume 364 is formed with liquid working fluid around the bearing portion 343.
  • the inlet 362 enters this volume and the volume has an outlet 366 from the ball bearing cooling into the working fluid volume for engine cooling.
  • the working fluid inlet 362 in particular comprises the line section 366, which extends almost to the bottom of the motor housing 300 or to the bottom of the liquid working fluid 328 in the motor housing or at least to a region below the maximum level, in particular to liquid working fluid out of the ball bearing cooling and the liquid working fluid to the motor wall.
  • Fig. 10 and Fig. 4 also show the convection element which is spaced from the wall of the compressor motor 309 in the liquid working fluid and which is more permeable to the liquid working fluid in a lower region than in an upper region.
  • the convection element is designed in the form of a "crown", which is placed in the liquid volume in reverse.
  • the convection zone 367 can thus be formed as shown in FIG Fig. 10 is shown.
  • alternative convection elements 342 can be used which are in some way less permeable at the top than at the bottom.
  • a convection element could be used which has holes at the bottom which have a larger passage cross section in terms of shape or number than holes in the upper region.
  • Alternative elements for generating the convection flow 367 as shown in Fig. 10 are also usable.
  • the emergency bearing 344 which is designed to protect the motor shaft 306 between the rotor 370 and the radial wheel 304, is provided for securing the motor in the event of a bearing problem.
  • the further gap 313 extends through a bearing gap of the emergency camp or preferably through holes deliberately made in the emergency camp.
  • the emergency camp is provided with a large number of holes, so that the emergency camp itself represents the lowest possible flow resistance for the steam flow 10 for the purposes of convective wave cooling.
  • Fig. 11 shows a schematic cross section through a motor shaft 306, as can be used for preferred embodiments.
  • Motor shaft 306 includes a hatched core as shown in FIG Fig. 11 is shown, which is supported in its upper section, which represents the bearing section 343, preferably by two ball bearings 398 and 399.
  • the rotor is formed with permanent magnets 307.
  • These permanent magnets are placed on the motor shaft 306 and are held at the top and bottom by stabilizing bandages 397, which are preferably made of carbon.
  • the permanent magnets are held by a stabilizing sleeve 396, which is also preferably designed as a carbon sleeve. This securing or stabilizing sleeve means that the permanent magnets remain securely on the shaft 306 and cannot separate from the shaft due to the very strong centrifugal forces due to the high speed of the shaft.
  • the shaft is preferably made of aluminum and has a fastening section 395 which is fork-shaped in cross section and which forms a holder for the radial wheel 304 if the radial wheel 304 and the motor shaft are not formed in one piece but with two elements. If the radial wheel 304 is formed in one piece with the motor shaft 306, then the wheel mounting section 395 is not present, but then the radial wheel 304 directly connects to the motor shaft. In the area of the wheel holder 395 there is also how it looks Fig. 10 can be seen, the emergency camp 344, which is preferably also made of metal and in particular aluminum.
  • the motor housing 300 which is also shown in FIG Fig. 3 is shown, designed to obtain a pressure that is at most 20% greater than the pressure in the condenser housing in an operation of the heat pump.
  • the motor housing 300 can be designed to maintain a pressure which is so low that when the motor wall 309 is heated by the operation of the motor, a bubble boiling takes place in the liquid working fluid 328 and in the motor housing 300.
  • the bearing section 343 is preferably arranged above the maximum liquid level, so that even if there is a leak in the motor wall 309, no liquid Work equipment can come into the storage section.
  • the area of the motor which at least partially includes the rotor and the stator, is below the maximum level, since typically the greatest power loss occurs in the bearing area on the one hand, but also between the rotor and stator on the other hand, which can be optimally transported away by the convective bubble boiling ,
  • the overflow 324 is configured to have a first tube portion that protrudes into the motor housing, that it also has a second conduit portion 340 that extends from a curve portion 317 to a drain 342 that is further out of range is arranged in which the control space 302 introduces compressed working steam compressed by the compressor wheel 304 into the condenser.
  • Fig. 9 also shows a schematic representation of the heat pump for engine cooling.
  • the working material flow 324 is alternatively to Fig. 4 or Fig. 20.
  • the sequence does not necessarily have to be a passive sequence, but can also be an active sequence, which is controlled, for example, by a pump or another element and, depending on a level detection of level 322, sucks some working fluid out of the motor housing 300.
  • the tubular outlet 324 there could be a reclosable opening at the bottom of the motor housing 300 in order to allow a controlled amount of working fluid to drain from the motor housing into the condenser by briefly opening the reclosable opening.
  • Fig. 9 also shows the area to be heated or a heat exchanger 391, from which a condenser inlet 204 runs into the condenser and from which a condenser outlet 203 emerges.
  • a pump 392 is also provided to drive the circuit of condenser inlet 204 and condenser outlet 203.
  • This pump 392 preferably has a branch to the inlet 362, as is shown schematically. This means that no separate pump is required, but the pump for the condenser drain, which is present anyway, also drives a small part of the condenser drain into the feed line 362 and thus into the liquid volume 328.
  • FIG. 9 a general representation of the condenser 114, the compressor motor with motor wall 309 and the motor housing 300, as also shown in FIG Fig. 3 has been described.

Description

Die vorliegende Erfindung bezieht sich auf Wärmepumpen zum Heizen, Kühlen oder für eine sonstige Anwendung einer Wärmepumpe.The present invention relates to heat pumps for heating, cooling or for any other application of a heat pump.

Fig. 8A und Fig. 8B stellen eine Wärmepumpe dar, wie sie in dem europäischen Patent EP 2016349 B1 beschrieben ist. Die Wärmepumpe umfasst zunächst einen Verdampfer 10 zum Verdampfen von Wasser als Arbeitsflüssigkeit, um ausgangsseitig einen Dampf in einer Arbeitsdampfleitung 12 zu erzeugen. Der Verdampfer umfasst einen Verdampfungsraum (in Fig. 8A nicht gezeigt) und ist ausgebildet, um in dem Verdampfungsraum einen Verdampfungsdruck kleiner als 20 hPa zu erzeugen, so dass das Wasser bei Temperaturen unter 15 °C im Verdampfungsraum verdampft. Das Wasser ist z.B. Grundwasser, im Erdreich frei oder in Kollektorrohren zirkulierende Sole, also Wasser mit einem bestimmten Salzgehalt, Flusswasser, Seewasser oder Meerwasser. Es können alle Arten von Wasser, also kalkhaltiges Wasser, kalkfreies Wasser, salzhaltiges Wasser oder salzfreies Wasser verwendet werden. Dies liegt daran, dass alle Arten von Wasser, also alle diese "Wasserstoffe", die günstige Wasser-Eigenschaft haben, nämlich dass Wasser, das auch als "R 718" bekannt ist, ein für den Wärmepumpen-Prozess nutzbares Enthalpie-Differenz-Verhältnis von 6 hat, was dem mehr als 2-fachen des typischen nutzbaren Enthalpie-Differenz-Verhältnisses von z.B. R134a entspricht. Figures 8A and 8B represent a heat pump, as in the European patent EP 2016349 B1 is described. The heat pump initially comprises an evaporator 10 for evaporating water as the working liquid in order to generate a steam in a working steam line 12 on the outlet side. The evaporator comprises an evaporation space (in Figure 8A not shown) and is designed to generate an evaporation pressure of less than 20 hPa in the evaporation space, so that the water evaporates at temperatures below 15 ° C. in the evaporation space. The water is, for example, groundwater, free in the ground or circulating brine in collector pipes, i.e. water with a certain salinity, river water, sea water or sea water. All types of water, i.e. calcareous water, calcareous water, saline water or saline-free water can be used. This is because all types of water, ie all of these "hydrogens", have the favorable water property, namely that water, also known as "R 718", has an enthalpy-difference ratio that can be used for the heat pump process of 6 has, which corresponds to more than 2 times the typical usable enthalpy-difference ratio of, for example, R134a.

Der Wasserdampf wird durch die Saugleitung 12 einem Verdichter/Verflüssiger-System 14 zugeführt, das eine Strömungsmaschine wie z.B. einen Radialverdichter, beispielsweise in Form eines Turboverdichters aufweist, der in Fig. 8A mit 16 bezeichnet ist. Die Strömungsmaschine ist ausgebildet, um den Arbeitsdampf auf einen Dampfdruck zumindest größer als 25 hPa zu verdichten. 25 hPa korrespondiert mit einer Verflüssigungstemperatur von etwa 22 °C, was zumindest an relativ warmen Tagen bereits eine ausreichende Heizungs-Vorlauftemperatur einer Fußbodenheizung sein kann. Um höhere Vorlauftemperaturen zu generieren, können Drücke größer als 30 hPa mit der Strömungsmaschine 16 erzeugt werden, wobei ein Druck von 30 hPa eine Verflüssigungstemperatur von 24 °C hat, ein Druck von 60 hPa eine Verflüssigungstemperatur von 36 °C hat, und ein Druck von 100 hPa einer Verflüssigungstemperatur von 45 °C entspricht. Fußbodenheizungen sind ausgelegt, um mit einer Vorlauftemperatur von 45 °C auch an sehr kalten Tagen ausreichend heizen zu können.The water vapor is fed through the suction line 12 to a compressor / condenser system 14 which has a turbomachine such as a radial compressor, for example in the form of a turbocompressor, which in Figure 8A is denoted by 16. The turbomachine is designed to compress the working steam to a steam pressure at least greater than 25 hPa. 25 hPa corresponds to a condensing temperature of around 22 ° C, which can be a sufficient heating flow temperature for underfloor heating, at least on relatively warm days. To generate higher flow temperatures, pressures greater than 30 hPa can be generated with the fluid machine 16, a pressure of 30 hPa having a condensing temperature of 24 ° C, a pressure of 60 hPa having a condensing temperature of 36 ° C, and a pressure of 100 hPa corresponds to a condensing temperature of 45 ° C. underfloor heating are designed to be able to heat sufficiently with a flow temperature of 45 ° C even on very cold days.

Die Strömungsmaschine ist mit einem Verflüssiger 18 gekoppelt, der ausgebildet ist, um den verdichteten Arbeitsdampf zu verflüssigen. Durch das Verflüssigen wird die in dem Arbeitsdampf enthaltene Energie dem Verflüssiger 18 zugeführt, um dann über den Vorlauf 20a einem Heizsystem zugeführt zu werden. Über den Rücklauf 20b fließt das Arbeitsfluid wieder in den Verflüssiger zurück.The turbomachine is coupled to a condenser 18, which is designed to liquefy the compressed working steam. As a result of the liquefaction, the energy contained in the working steam is fed to the liquefier 18 in order to then be fed to a heating system via the flow 20a. The working fluid flows back into the condenser via the return 20b.

Erfindungsgemäß wird es bevorzugt, dem energiereichen Wasserdampf direkt durch das kältere Heizungswasser die Wärme (-energie) zu entziehen, welche vom Heizungswasser aufgenommen wird, so dass dieses sich erwärmt. Dem Dampf wird hierbei so viel Energie entzogen, dass dieser verflüssigt wird und ebenfalls am Heizungskreislauf teilnimmt.According to the invention, it is preferred to extract the heat (energy) from the high-energy water vapor directly through the colder heating water, which is absorbed by the heating water, so that it heats up. So much energy is extracted from the steam that it is liquefied and also participates in the heating circuit.

Damit findet ein Materialeintrag in den Verflüssiger bzw. das Heizungssystem statt, der durch einen Ablauf 22 reguliert wird, derart, dass der Verflüssiger in seinem Verflüssigerraum einen Wasserstand hat, der trotz des ständigen Zuführens von Wasserdampf und damit Kondensat immer unterhalb eines Maximalpegels bleibt.This results in an introduction of material into the condenser or the heating system, which is regulated by an outlet 22, in such a way that the condenser has a water level in its condenser space which, despite the constant supply of water vapor and thus condensate, always remains below a maximum level.

Wie es bereits ausgeführt worden ist, wird es bevorzugt, einen offenen Kreislauf zu nehmen, also das Wasser, das die Wärmequelle darstellt, direkt ohne Wärmetauscher zu verdampfen. Alternativ könnte jedoch auch das zu verdampfende Wasser zunächst über einen Wärmetauscher von einer externen Wärmequelle aufgeheizt werden. Darüber kann, um auch Verluste für den zweiten Wärmetauscher, der auf Verflüssiger-Seite bisher notwendigerweise vorhanden ist, zu vermeiden, auch dort das Medium direkt verwendet, werden, wenn an ein Haus mit Fußbodenheizung gedacht wird, das Wasser, das von dem Verdampfer stammt, direkt in der Fußbodenheizung zirkulieren zu lassen.As has already been stated, it is preferred to use an open circuit, ie to evaporate the water that is the heat source directly without a heat exchanger. Alternatively, however, the water to be evaporated could first be heated by an external heat source via a heat exchanger. In addition, in order to avoid losses for the second heat exchanger, which has hitherto been present on the condenser side, the medium can also be used there directly, if one thinks of a house with underfloor heating, the water that comes from the evaporator to circulate directly in the underfloor heating.

Alternativ kann jedoch auch auf Verflüssiger-Seite ein Wärmetauscher angeordnet werden, der mit dem Vorlauf 20a gespeist wird und der den Rücklauf 20b aufweist, wobei dieser Wärmetauscher das im Verflüssiger befindliche Wasser abkühlt und damit eine separate Fußbodenheizungsflüssigkeit, die typischerweise Wasser sein wird, aufheizt.Alternatively, however, a heat exchanger can also be arranged on the condenser side, which is fed with the flow 20a and which has the return 20b, this heat exchanger cooling the water in the condenser and thus heating up a separate underfloor heating liquid, which will typically be water.

Aufgrund der Tatsache, dass als Arbeitsmedium Wasser verwendet wird, und aufgrund der Tatsache, dass von dem Grundwasser nur der verdampfte Anteil in die Strömungsmaschine eingespeist wird, spielt der Reinheitsgrad des Wassers keine Rolle. Die Strömungsmaschine wird, genauso wie der Verflüssiger und die ggf. direkt gekoppelte Fußbodenheizung immer mit destilliertem Wasser versorgt, derart, dass das System im Vergleich zu heutigen Systemen einen reduzierten Wartungsaufwand hat. Anders ausgedrückt ist das System selbstreinigend, da dem System immer nur destilliertes Wasser zugeführt wird und das Wasser im Ablauf 22 somit nicht verschmutzt ist.Due to the fact that water is used as the working medium and the fact that only the evaporated portion of the groundwater is fed into the turbomachine, the degree of purity of the water is irrelevant. The fluid machine is always supplied with distilled water, just like the condenser and the possibly directly coupled underfloor heating, in such a way that the system requires less maintenance than today's systems. In other words, the system is self-cleaning, since only distilled water is supplied to the system and the water in the outlet 22 is therefore not contaminated.

Darüber hinaus sei darauf hingewiesen, dass Strömungsmaschinen die Eigenschaften haben, dass sie - ähnlich einer Flugzeugturbine - das verdichtete Medium nicht mit problematischen Stoffen, wie beispielsweise Öl, in Verbindung bringen. Stattdessen wird der Wasserdampf lediglich durch die Turbine bzw. den Turboverdichter verdichtet, jedoch nicht mit Öl oder einem sonstigen die Reinheit beeinträchtigenden Medium in Verbindung gebracht und damit verunreinigt.In addition, it should be pointed out that turbomachines have the properties that, similar to an aircraft turbine, they do not connect the compressed medium to problematic substances, such as oil. Instead, the water vapor is only compressed by the turbine or the turbocompressor, but is not associated with oil or another medium which impairs purity and is thus contaminated.

Das durch den Ablauf abgeführte destillierte Wasser kann somit - wenn keine sonstigen Vorschriften im Wege stehen - ohne Weiteres dem Grundwasser wieder zugeführt werden. Alternativ kann es jedoch auch z.B. im Garten oder in einer Freifläche versickert werden, oder es kann über den Kanal, sofern dies Vorschriften gebieten - einer Kläranlage zugeführt werden.The distilled water discharged through the drain can thus - if no other regulations stand in the way - be easily returned to the groundwater. Alternatively, however, it can also e.g. seep in the garden or in an open area, or it can be fed to a sewage treatment plant via the sewer, if required by regulations.

Die Kombination von Wasser als Arbeitsmittel mit dem um das 2-fache besseren nutzbaren Enthalpie-Differenz-Verhältnis im Vergleich zu R134a und aufgrund der damit reduzierten Anforderungen an die Geschlossenheit des Systems, und aufgrund des Einsatzes der Strömungsmaschine, durch den effizient und ohne Reinheitsbeeinträchtigungen die erforderlichen Verdichtungsfaktoren erreicht werden, wird ein effizienter und umweltneutraler Wärmepumpenprozess geschaffen.The combination of water as a working fluid with the twice the better usable enthalpy-difference ratio compared to R134a and because of the reduced requirements for the closed system, and because of the use of the turbomachine, by which the efficiency and without impairment of cleanliness necessary compression factors are achieved, an efficient and environmentally neutral heat pump process is created.

Fig. 8B zeigt eine Tabelle zur Illustration verschiedener Drücke und den diesen Drücken zugeordneten Verdampfungstemperaturen, woraus sich ergibt, dass insbesondere für Wasser als Arbeitsmedium recht niedrige Drücke im Verdampfer zu wählen sind. Figure 8B shows a table to illustrate different pressures and the evaporation temperatures assigned to these pressures, from which it follows that very low pressures in the evaporator should be selected, in particular for water as the working medium.

Die DE 4431887 A1 offenbart eine Wärmepumpenanlage mit einem leichtgewichtigen, großvolumigen Hochleistungs-Zentrifugalkompressor. Ein Dampf, der einen Kompressor einer zweiten Stufe verlässt, besitzt eine Sättigungstemperatur, die die Umgebungstemperatur oder diejenige eines verfügbaren Kühlwassers übersteigt, wodurch eine Wärmeabfuhr ermöglicht wird. Der komprimierte Dampf wird von dem Kompressor der zweiten Stufe in die Kondensatoreinheit überführt, die aus einer Schüttschicht besteht, die innerhalb einer Kühlwassersprüheinrichtung an einer Oberseite, die durch eine Wasserzirkulationspumpe versorgt wird, vorgesehen ist. Der komprimierte Wasserdampf steigt in dem Kondensor durch die Schüttschicht an, wo sie in direktem Gegenstromkontakt mit dem nach unten strömenden Kühlwasser gelangt. Der Dampf kondensiert und die latente Wärme der Kondensation, die durch das Kühlwasser absorbiert wird, wird an die Atmosphäre über das Kondensat und das Kühlwasser ausgestoßen, die zusammen aus dem System entfernt werden. Der Kondensor wird kontinuierlich mit nicht kondensierbaren Gasen mittels einer Vakuumpumpe über eine Rohrleitung gespült.The DE 4431887 A1 discloses a heat pump system with a lightweight, large volume, high performance centrifugal compressor. A vapor leaving a second stage compressor has a saturation temperature that exceeds the ambient temperature or that of an available cooling water, thereby allowing heat to be dissipated. The compressed steam is transferred from the second stage compressor to the condenser unit which consists of a bed layer which is inside a cooling water spray device is provided on an upper side, which is supplied by a water circulation pump. The compressed water vapor rises in the condenser through the fill layer, where it comes in direct countercurrent contact with the cooling water flowing down. The vapor condenses and the latent heat of condensation absorbed by the cooling water is expelled to the atmosphere via the condensate and cooling water, which are removed together from the system. The condenser is continuously flushed with non-condensable gases by means of a vacuum pump via a pipeline.

Die WO 2014072239 A1 offenbart einen Verflüssiger mit einer Kondensationszone zum Kondensieren von zu kondensierendem Dampf in einer Arbeitsflüssigkeit. Die Kondensationszone ist als Volumenzone ausgebildet und hat eine seitliche Begrenzung zwischen dem oberen Ende der Kondensationszone und dem unteren Ende. Ferner umfasst der Verflüssiger eine Dampfeinleitungszone, die sich entlang des seitlichen Endes der Kondensationszone erstreckt und ausgebildet ist, um zu kondensierenden Dampf seitlich über die seitliche Begrenzung in die Kondensationszone zuzuführen. Damit wird, ohne das Volumen des Verflüssigers zu vergrößern, die tatsächliche Kondensation zu einer Volumenkondensation gemacht, weil der zu verflüssigende Dampf nicht nur frontal von einer Seite in ein Kondensationsvolumen bzw. in die Kondensationszone eingeleitet wird, sondern seitlich und vorzugsweise von allen Seiten. Damit wird nicht nur sichergestellt, dass das zur Verfügung gestellte Kondensationsvolumen bei gleichen äußeren Abmessungen im Vergleich zu einer direkten Gegenstromkondensation vergrößert wird, sondern dass gleichzeitig auch die Effizienz des Kondensators verbessert wird, weil der zu verflüssigende Dampf in der Kondensationszone eine Stromrichtung quer zu der Strömungsrichtung der Kondensationsflüssigkeit aufweist. Die WO 2014/200476 A1 offenbart eine Wärmepumpe mit folgenden Merkmalen: einem Kondensierer mit einem Kondensierergehäuse; einem Verdichtermotor, der einen Rotor und einen Stator aufweist, wobei der Rotor eine Motorwelle aufweist, an der ein Radialrad angebracht ist, das sich in eine Verdampferzone erstreckt; einem Leitraum, der ausgebildet ist, um durch das Radialrad verdichteten Dampf aufzunehmen und in den Kondensierer zu leiten; einem Motorgehäuse, das den Verdichtermotor umgibt; und einer Dampfzuführung zum Zuführen von Dampf in dem Motorgehäuse zu einem Motorspalt zwischen dem Stator und dem Rotor, wobei der Verdichtermotor derart ausgebildet ist, dass sich ein weiterer Spalt von dem Motorspalt entlang des Radialrads zu dem Leitraum erstreckt.The WO 2014072239 A1 discloses a condenser with a condensation zone for condensing steam to be condensed in a working liquid. The condensation zone is designed as a volume zone and has a lateral boundary between the upper end of the condensation zone and the lower end. The liquefier further comprises a steam introduction zone which extends along the lateral end of the condensation zone and is designed to supply steam to be condensed laterally into the condensation zone via the lateral boundary. Thus, without increasing the volume of the condenser, the actual condensation is turned into a volume condensation, because the vapor to be liquefied is not only introduced into a condensation volume or into the condensation zone from the front, but laterally and preferably from all sides. This not only ensures that the available condensation volume with the same external dimensions is increased compared to direct countercurrent condensation, but also that the efficiency of the condenser is improved at the same time, because the steam to be liquefied in the condensation zone is a flow direction transverse to the flow direction of the condensation liquid. The WO 2014/200476 A1 discloses a heat pump having the following features: a condenser with a condenser housing; a compressor motor having a rotor and a stator, the rotor having a motor shaft to which a radial wheel is attached which extends into an evaporator zone; a control space which is designed to receive vapor condensed by the radial wheel and to conduct it into the condenser; a motor housing that surrounds the compressor motor; and a steam supply for supplying steam in the motor housing to a motor gap between the stator and the rotor, the compressor motor being designed such that a further gap extends from the motor gap along the radial wheel to the control space.

Generell problematisch bei Wärmepumpen ist die Tatsache, dass bewegliche Teile und insbesondere schnell bewegliche Teile zu kühlen sind. Hier sind insbesondere der Verdichtermotor und speziell die Motorwelle problematisch. Speziell für Wärmepumpen, bei denen als Verdichter Radialräder verwendet werden, die zum Erreichen einer kleinen Bauform sehr schnell betrieben werden, beispielsweise in Regionen größer als 50.000 Umdrehungen pro Minute, können Wellentemperaturen Werte erreichen, die problematisch sind, da sie zu einer Zerstörung der Bauteile führen können.A general problem with heat pumps is the fact that moving parts and especially fast moving parts have to be cooled. The compressor motor and especially the motor shaft are particularly problematic here. Especially for heat pumps in which radial wheels are used as compressors, which are operated very quickly to achieve a small design, for example in regions greater than 50,000 revolutions per minute, shaft temperatures can reach values that are problematic because they lead to the destruction of the components can.

Die Aufgabe der vorliegenden Erfindung besteht darin, ein sicheres Konzept für eine Wärmepumpe zu schaffen.The object of the present invention is to provide a safe concept for a heat pump.

Diese Aufgabe wird durch eine Wärmepumpe nach Patentanspruch 1 oder ein Verfahren zum Herstellen einer Wärmepumpe nach Patentanspruch 14, oder ein Verfahren zum Betreiben einer Wärmepumpe nach Patentanspruch 15 gelöst.This object is achieved by a heat pump according to claim 1 or a method for producing a heat pump according to claim 14, or a method for operating a heat pump according to claim 15.

Die Wärmepumpe gemäß einem Aspekt der vorliegenden Erfindung umfasst eine spezielle konvektive Wellenkühlung. Diese Wärmepumpe hat einen Kondensierer mit einem Kondensierergehäuse, einen Verdichtermotor, der an dem Kondensierergehäuse angebracht ist und einen Rotor und einen Stator aufweist, wobei der Rotor eine Motorwelle aufweist, an der ein Radialrad angebracht ist, das sich in eine Verdampferzone erstreckt, und einen Leitraum, der ausgebildet ist, um durch das Radialrad verdichteten Dampf aufzunehmen und in den Kondensierer zu leiten. Darüber hinaus hat diese Wärmepumpe ein Motorgehäuse, das den Verdichtermotor umgibt und vorzugsweise ausgebildet ist, um einen Druck zu halten, der wenigstens gleich dem Druck in dem Kondensierer ist. Es reicht aber auch bereits ein Druck aus, der größer als der Druck hinter dem Radialrad ist. Dieser Druck stellt sich bei bestimmten Ausführungen auf einen Druck ein, der in der Mitte zwischen dem Kondensiererdruck und dem Verdampferdruck liegt. Darüber hinaus ist eine Dampfzuführung in dem Motorgehäuse vorgesehen, um Dampf in dem Motorgehäuse zu einem Motorspalt zwischen dem Stator und der Motorwelle zuzuführen. Ferner ist der Motor dahin gehend ausgebildet, dass sich ein weiterer Spalt von dem Motorspalt zwischen dem Stator und der Motorwelle entlang des Radialrads bis hin zu dem Leitraum erstreckt.The heat pump according to one aspect of the present invention comprises special convective shaft cooling. This heat pump has a condenser with a condenser housing, a compressor motor which is attached to the condenser housing and has a rotor and a stator, the rotor having a motor shaft to which a radial wheel is attached, which extends into an evaporator zone, and a control space , which is designed to receive vapor condensed by the radial wheel and to conduct it into the condenser. In addition, this heat pump has a motor housing which surrounds the compressor motor and is preferably designed to maintain a pressure which is at least equal to the pressure in the condenser. However, a pressure that is greater than the pressure behind the radial wheel is also sufficient. In certain versions, this pressure adjusts to a pressure which lies in the middle between the condenser pressure and the evaporator pressure. In addition, a steam supply is provided in the motor housing to supply steam in the motor housing to a motor gap between the stator and the motor shaft. Furthermore, the motor is designed such that a further gap extends from the motor gap between the stator and the motor shaft along the radial wheel to the control space.

Dadurch wird erfindungsgemäß erreicht, dass in dem Motorgehäuse ein relativ hoher Druck, der höher als der mittlere Druck aus dem Kondensierer und dem Verdampfer und vorzugsweise gleich oder höher als der Kondensiererdruck ist, herrscht, während in dem weiteren Spalt, der sich entlang des Radialrads zu dem Leitraum erstreckt, ein geringerer Druck befindet. Dieser Druck, der gleich dem mittleren Druck aus dem Kondensierer und dem Verdampfer ist, existiert aufgrund der Tatsache, dass das Radialrad bei der Kompression des Dampfes aus dem Verdampfer einen Bereich mit hohem Druck vor dem Radialrad und einen Bereich mit kleinem Druck oder Unterdruck hinter dem Radialrad erzeugt. Insbesondere ist der Bereich mit hohem Druck vor dem Radialrad immer noch kleiner als der hohe Druck in dem Kondensator und der kleine Druck gewissermaßen "hinter" dem Radialrad ist noch kleiner als der hohe Druck am Ausgang des Radialrads Erst am Ausgang des Leitraums existiert dann der hohe Kondensatordruck.It is thereby achieved according to the invention that there is a relatively high pressure in the motor housing, which is higher than the mean pressure from the condenser and the evaporator and preferably equal to or higher than the condenser pressure, while in the further gap which increases along the radial wheel extends the control room, a lower pressure is located. This pressure, which is equal to the mean pressure from the condenser and the evaporator, exists due to the fact that when the vapor from the evaporator is compressed, the radial wheel has a high pressure area in front of the radial wheel and a low pressure or negative pressure area behind it Radial wheel generated. In particular, the area with high pressure in front of the radial wheel is still smaller than the high pressure in the condenser and the low pressure to a certain extent "behind" the radial wheel is even smaller than the high pressure at the outlet of the radial wheel. The high pressure then only exists at the outlet of the control space condenser pressure.

Dieses Druckgefälle, das an den Motorspalt "angekoppelt" ist, sorgt dafür, dass von dem Motorgehäuse über die Dampfzuführung Arbeitsdampf entlang des Motorspalts und des weiteren Spalts in den Kondensierer gezogen wird. Dieser Dampf ist zwar auf dem Temperaturniveau des Kondensierer-Arbeitsmittels oder darüber. Dies ist allerdings gerade von Vorteil, weil damit sämtliche Kondensationsprobleme innerhalb des Motors und insbesondere innerhalb der Motorwelle, die Korrosionen etc. unterstützen würden, vermieden werden.This pressure drop, which is “coupled” to the motor gap, ensures that working steam is drawn from the motor housing via the steam feed along the motor gap and the further gap into the condenser. This vapor is at or above the temperature level of the condenser working fluid. However, this is particularly advantageous because it avoids all condensation problems within the motor and in particular within the motor shaft, which would support corrosion, etc.

So wird bei diesem Aspekt der vorliegenden Erfindung gerade nicht die kälteste Arbeitsflüssigkeit, die nämlich im Verdampfer vorhanden ist, zur konvektiven Wellenkühlung genutzt. Es wird auch nicht der kalte Dampf im Verdampfer eingesetzt. Stattdessen wird zur konvektiven Wellenkühlung der Dampf auf Kondensierer oder Kondensatortemperatur, den es in der Wärmepumpe gibt, eingesetzt. Damit wird nach wie vor eine ausreichende Wellenkühlung erreicht, und zwar aufgrund der konvektiven Natur, d.h. dass die Motorwelle aufgrund der Dampfzuführung, des Motorspalts und des weiteren Spalts von einer signifikanten und insbesondere einstellbaren Menge an Dampf umspült wird. Gleichzeitig wird aufgrund der Tatsache, dass dieser Dampf im Vergleich zu dem Dampf im Verdampfer relativ warm ist, sichergestellt, dass keine Kondensation entlang der Motorwelle in dem Motorspalt bzw. dem weiteren Spalt stattfindet. Stattdessen wird hier immer eine Temperierung geschaffen, die höher ist als die kälteste Temperatur. Kondensation entsteht immer an der kältesten Temperatur in einem Volumen und damit nicht innerhalb des Motorspalts und des weiteren Spalts, da diese ja von dem warmen Dampf umspült werden.In this aspect of the present invention, the coldest working liquid that is present in the evaporator is not used for convective wave cooling. The cold steam is also not used in the evaporator. Instead, for convective wave cooling, the steam is used to condenser or condenser temperature, which is in the heat pump. Adequate wave cooling is still achieved, due to the convective nature, i.e. that a significant and in particular adjustable amount of steam flows around the motor shaft due to the steam supply, the motor gap and the further gap. At the same time, the fact that this steam is relatively warm compared to the steam in the evaporator ensures that no condensation takes place along the motor shaft in the motor gap or the further gap. Instead, a temperature control is always created that is higher than the coldest temperature. Condensation always arises at the coldest temperature in a volume and therefore not within the engine gap and the further gap, since the warm steam flows around them.

Damit führt die vorliegende Erfindung zu einer ausreichenden konvektiven Wellenkühlung. Dies verhindert zu hohe Temperaturen in der Motorwelle und damit einhergehende Verschleißerscheinungen. Darüber hinaus wird effektiv vermieden, dass eine Kondensation in dem Motor, z.B. bei Stillstand der Wärmepumpe, auftritt. Damit werden auch sämtliche Betriebssicherheitsprobleme und Korrosionsprobleme, die mit einer solchen Kondensation einhergehen würden, ebenfalls wirksam eliminiert. Die vorliegende Erfindung führt gemäß dem Aspekt der konvektiven Wellenkühlung zu einer signifikant betriebssicheren Wärmepumpe.The present invention thus leads to sufficient convective wave cooling. This prevents excessive temperatures in the motor shaft and the associated signs of wear. It also effectively prevents condensation in the motor, e.g. when the heat pump is at a standstill. This also effectively eliminates all operational safety problems and corrosion problems that would be associated with such condensation. According to the aspect of convective shaft cooling, the present invention leads to a significantly reliable heat pump.

Bei einem weiteren Aspekt der vorliegenden Erfindung, der sich auf eine Wärmepumpe mit Motorkühlung bezieht, umfasst die Wärmepumpe einen Kondensierer mit einem Kondensierergehäuse, einen Verdichtermotor, der an dem Kondensierergehäuse angebracht ist und einen Rotor und einen Stator aufweist. Der Rotor umfasst eine Motorwelle, an der ein Verdichterrad zum Verdichten von Arbeitsmitteldampf angebracht ist. Ferner hat der Verdichtermotor eine Motorwand. Die Wärmepumpe umfasst ein Motorgehäuse, das den Verdichtermotor umgibt und vorzugsweise ausgebildet ist, um einen Druck zu halten, der wenigstens gleich dem Druck in dem Kondensator ist, und der einen Arbeitsmittelzulauf hat, um flüssiges Arbeitsmittel aus dem Kondensierer zur Motorkühlung an die Motorwand zu führen. Der Druck im Motorgehäuse kann hier jedoch ebenfalls niedriger sein, da die Wärmeabfuhr von dem Motorgehäuse durch Sieden bzw. Verdunsten stattfindet. Die Wärmeenergie an der Motorwand wird also hauptsächlich durch den Dampf von der Motorwand weggebracht, wobei dieser erwärmte Dampf dann abgeführt wird, wie beispielsweise in den Kondensierer. Alternativ kann der Dampf von der Motorkühlung aber auch in den Verdampfer oder nach außen gebracht werden. Bevorzugt wird aber die Leitung des erwärmten Dampfes in den Kondensierer. Im Gegensatz zu einer Wasserkühlung, bei der ein Motor durch vorbeiströmendes Wasser gekühlt wird, findet die Kühlung bei diesem Aspekt der Erfindung durch Verdampfen statt, so dass durch die bereitgestellte Dampfabfuhr die abzutransportierende Wärmeenergie weggebracht wird. Ein Vorteil ist, dass zur Kühlung weniger Flüssigkeit gebraucht wird und der Dampf einfach weggeleitet werden kann, z. B. automatisch in den Kondensierer, in dem der Dampf dann wieder kondensiert und die Wärmeleistung des Motor damit an die Kondensiererflüssigkeit abgibt.In another aspect of the present invention, which relates to a heat pump with motor cooling, the heat pump comprises a condenser with a condenser housing, a compressor motor, which is attached to the condenser housing and has a rotor and a stator. The rotor includes a motor shaft on which a compressor wheel for compressing working fluid vapor is attached. The compressor motor also has a motor wall. The heat pump comprises a motor housing which surrounds the compressor motor and which is preferably designed to maintain a pressure which is at least equal to the pressure in the condenser and which has a working medium inlet in order to feed liquid working medium from the condenser to the motor wall for cooling the motor , However, the pressure in the motor housing can also be lower here, since the heat is removed from the motor housing by boiling or evaporation. The thermal energy on the motor wall is thus mainly removed from the motor wall by the steam, and this heated steam is then removed, such as in the condenser. Alternatively, the steam from the engine cooling can also be brought into the evaporator or to the outside. However, the conduction of the heated steam into the condenser is preferred. In contrast to water cooling, in which an engine is cooled by water flowing past, the cooling in this aspect of the invention takes place by evaporation, so that the heat energy to be removed is removed by the steam removal provided. An advantage is that less liquid is needed for cooling and the steam can simply be carried away, e.g. B. automatically in the condenser, in which the steam then condenses again and thus releases the thermal power of the motor to the condenser liquid.

Das Motorgehäuse ist daher ausgebildet, um in dem Betrieb der Wärmepumpe einen Dampfraum zu bilden, in dem sich das aufgrund der Blasensiedung oder Verdunstung befindliche Arbeitsmedium befindet. Das Motorgehäuse ist ferner ausgebildet ist, um den Dampf aus dem Dampfraum in dem Motorgehäuse durch eine Dampfabführung abzuleiten. Diese Ableitung findet vorzugsweise in den Kondensierer statt, so dass die Dampfabführung durch ein gasdurchlässige Verbindung zwischen dem Kondensierer und dem Motorgehäuse erreicht wird.The motor housing is therefore designed to form a vapor space in the operation of the heat pump, in which the working medium due to the bubble boiling or evaporation is located. The motor housing is also designed to discharge the steam from the steam space in the motor housing by a steam discharge. This discharge preferably takes place in the condenser, so that the vapor discharge is achieved by a gas-permeable connection between the condenser and the motor housing.

Das Motorgehäuse ist vorzugsweise ferner ausgebildet, um in einem Betrieb der Wärmepumpe einen maximalen Pegel an flüssigem Arbeitsmittel in dem Motorgehäuse zu halten, und um ferner oberhalb des maximalen des Pegels einen Dampfraum zu bilden. Das Motorgehäuse ist ferner ausgebildet, um Arbeitsmittel oberhalb des maximalen Pegels in den Kondensierer zu leiten. Diese Ausführung erlaubt es, die Kühlung durch Dampferzeugung sehr robust zu halten, da der Pegel an Arbeitsflüssigkeit immer sicherstellt, dass an der Motorwand genug Arbeitsflüssigkeit zur Blasensiedung vorhanden ist. Alternativ kann statt des Pegels an Arbeitsflüssigkeit, der immer gehalten wird, auch Arbeitsflüssigkeit auf die Motorwand gesprüht werden. Die gesprühte Flüssigkeit ist dann so dosiert, dass sie beim Kontakt mit der Motorwand verdampft und dadurch die Kühlleistung für den Motor erreicht.The motor housing is preferably further configured to maintain a maximum level of liquid working fluid in the motor housing during operation of the heat pump and to further form a vapor space above the maximum level. The motor housing is also designed to guide working fluid into the condenser above the maximum level. This design makes it possible to keep the cooling by steam generation very robust, since the level of working fluid always ensures that there is enough working fluid on the motor wall for bubble boiling. Alternatively, instead of the level of working fluid that is always held, working fluid can also be sprayed onto the motor wall. The sprayed liquid is then dosed that it evaporates when it comes into contact with the engine wall, thereby achieving the cooling capacity for the engine.

Der Motor wird somit an seiner Motorwand mit flüssigem Arbeitsmittel effektiv gekühlt. Dieses flüssige Arbeitsmittel ist jedoch nicht das kalte Arbeitsmittel aus dem Verdampfer, sondern das warme Arbeitsmittel aus dem Kondensierer. Die Verwendung des warmen Arbeitsmittels aus dem Kondensierer schafft dennoch eine ausreichende Motorkühlung. Gleichzeitig wird jedoch sichergestellt, dass der Motor nicht zu stark gekühlt wird und insbesondere nicht dahin gehend abgekühlt wird, dass er der kälteste Teil im Kondensierer bzw. auf dem Kondensierergehäuse ist. Dies würde nämlich dazu führen, dass z.B. bei Stillstand des Motors aber auch im Betrieb eine Kondensation von Arbeitsmitteldampf außen am Motorgehäuse stattfinden würde, die zu Korrosions- und weiteren Problemen führen würde. Stattdessen wird sichergestellt, dass der Motor zwar gut gekühlt ist, jedoch gleichzeitig immer das wärmste Teil der Wärmepumpe ist, dahin gehend, dass eine Kondensation, die ja immer am kältesten "Ende" stattfindet, gerade an dem Verdichtermotor nicht stattfindet.The motor is thus effectively cooled with liquid working fluid on its motor wall. However, this liquid working fluid is not the cold working fluid from the evaporator, but the warm working fluid from the condenser. However, the use of warm working fluid from the condenser creates sufficient motor cooling. At the same time, however, it is ensured that the motor is not cooled too much and, in particular, is not cooled to the extent that it is the coldest part in the condenser or on the condenser housing. This would lead to e.g. when the engine is stopped, but also during operation, condensation of working fluid vapor would take place on the outside of the engine housing, which would lead to corrosion and further problems. Instead, it is ensured that the motor is well cooled, but at the same time is always the warmest part of the heat pump, in such a way that condensation, which always takes place at the coldest "end", does not take place on the compressor motor.

Vorzugsweise wird das flüssige Arbeitsmittel im Motorgehäuse auf nahezu demselben Druck gehalten, auf dem der Kondensierer ist. Dies führt dazu, dass das Arbeitsmittel, das den Motor kühlt, nahe an seiner Siedegrenze ist, da dieses Arbeitsmittel Kondensiererarbeitsmittel ist und auf ähnlicher Temperatur wie im Kondensierer ist. Wird nun die Motorwand aufgrund einer Reibung wegen des Motorbetriebs erwärmt, so geht die thermische Energie in das flüssige Arbeitsmittel über. Aufgrund der Tatsache, dass das flüssige Arbeitsmittel nahe am Siedepunkt ist, startet nun in dem Motorgehäuse in dem flüssigen Arbeitsmittel, das das Motorgehäuse bis zu dem maximalen Pegel auffüllt, eine Blasensiedung.The liquid working fluid in the motor housing is preferably kept at almost the same pressure as the condenser. As a result, the working fluid that cools the motor is close to its boiling limit, since this working fluid is a condenser fluid and is at a similar temperature to that in the condenser. If the motor wall is warmed up due to friction due to motor operation, the thermal energy is transferred to the liquid working fluid. Due to the fact that the liquid working fluid is close to the boiling point, a bubble boil now starts in the motor housing in the liquid working fluid that fills the motor housing up to the maximum level.

Diese Blasensiedung ermöglicht eine außerordentlich effiziente Kühlung aufgrund der sehr starken Durchmischung des Volumens an flüssigem Arbeitsmittel in dem Motorgehäuse. Diese durch Siedung unterstützte Kühlung kann ferner durch ein vorzugsweise vorgesehenes Konvektionselement signifikant unterstützt werden, so dass am Ende eine sehr effiziente Motorkühlung mit einem relativen kleinen Volumen oder gar keinem stehenden Volumen an flüssigem Arbeitsmittel, die zudem nicht weiter gesteuert werden muss, weil sie selbststeuernd ist, erreicht wird. Damit wird mit einem geringen technischen Aufwand eine effiziente Motorkühlung erreicht, die wiederum zu einer Betriebssicherheit der Wärmepumpe signifikant beiträgt.This bubble boiling enables extremely efficient cooling due to the very strong mixing of the volume of liquid working fluid in the motor housing. This cooling assisted by boiling can also be significantly supported by a preferably provided convection element, so that in the end a very efficient engine cooling with a relatively small volume or no standing volume of liquid working fluid, which also does not have to be controlled further because it is self-controlling , is achieved. Efficient engine cooling is achieved with little technical effort, which in turn contributes significantly to the operational safety of the heat pump.

Bevorzugte Ausführungsbeispiele der vorliegenden Erfindung werden nachfolgend Bezug nehmend auf die beiliegenden Zeichnungen detailliert erläutert. Es zeigen:

Fig. 1
eine schematische Ansicht einer Wärmepumpe mit einer verschränkten Verdampfer/Kondensierer-Anordnung;
Fig. 2
eine schematische Darstellung einer Wärmepumpe mit konvektiver Wellenkühlung gemäß einem Aspekt;
Fig. 3
eine schematische Darstellung einer Wärmepumpe mit konvektiver Wellenkühlung einerseits und Motorkühlung gemäß einem weiteren Aspekt andererseits;
Fig. 4
eine Schnittdarstellung einer Wärmepumpe gemäß einem Ausführungsbeispiel mit konvektiver Wellenkühlung einerseits und Motorkühlung andererseits unter spezieller Berücksichtigung der konvektiven Wellenkühlung;
Fig. 5
eine Schnittdarstellung einer Wärmepumpe mit einem Verdampferboden und einem Kondensatorboden gemäß dem Ausführungsbeispiel von Fig. 1;
Fig. 6
eine perspektivische Darstellung eines Verflüssigers, wie er in der WO 2014072239 A1 gezeigt ist;
Fig. 7
eine Darstellung der Flüssigkeitsverteilerplatte einerseits und der Dampfeinlasszone mit Dampfeinlassspalt andererseits aus der WO 2014072239 A1 ;
Fig. 8a
eine schematische Darstellung einer bekannten Wärmepumpe zum Verdampfen von Wasser;
Fig. 8b
eine Tabelle zur Veranschaulichung von Drücken und Verdampfungstemperaturen von Wasser als Arbeitsflüssigkeit;
Fig. 9
eine schematische Darstellung einer Wärmepumpe mit Motorkühlung gemäß dem zweiten Aspekt;
Fig. 10
eine Wärmepumpe gemäß einem Ausführungsbeispiel mit einer konvektiven Wellenkühlung gemäß dem ersten Aspekt und einer Motorkühlung gemäß dem zweiten Aspekt, wobei besonderer Wert auf die Motorkühlung gelegt ist; und
Fig. 11
einen Querschnitt durch eine Motorwelle mit einem Lagerabschnitt gemäß Ausführungsbeispielen der vorliegenden Erfindung.
Preferred embodiments of the present invention are explained in detail below with reference to the accompanying drawings. Show it:
Fig. 1
a schematic view of a heat pump with an entangled evaporator / condenser arrangement;
Fig. 2
a schematic representation of a heat pump with convective shaft cooling according to one aspect;
Fig. 3
a schematic representation of a heat pump with convective shaft cooling on the one hand and engine cooling according to another aspect on the other;
Fig. 4
a sectional view of a heat pump according to an embodiment with convective shaft cooling on the one hand and engine cooling on the other with special consideration of the convective shaft cooling;
Fig. 5
a sectional view of a heat pump with an evaporator bottom and a condenser bottom according to the embodiment of Fig. 1 ;
Fig. 6
a perspective view of a condenser, as in the WO 2014072239 A1 is shown;
Fig. 7
a representation of the liquid distribution plate on the one hand and the steam inlet zone with steam inlet gap on the other hand from the WO 2014072239 A1 ;
Fig. 8a
a schematic representation of a known heat pump for evaporating water;
Fig. 8b
a table illustrating the pressures and evaporation temperatures of water as the working liquid;
Fig. 9
a schematic representation of a heat pump with engine cooling according to the second aspect;
Fig. 10
a heat pump according to an embodiment with a convective shaft cooling according to the first aspect and an engine cooling according to the second aspect, special emphasis being placed on engine cooling; and
Fig. 11
a cross section through a motor shaft with a bearing portion according to embodiments of the present invention.

Fig. 1 zeigt eine Wärmepumpe 100 mit einem Verdampfer zum Verdampfen von Arbeitsflüssigkeit in einem Verdampferraum 102. Die Wärmepumpe umfasst ferner einen Kondensator zum Verflüssigen von verdampfter Arbeitsflüssigkeit in einem Kondensatorraum 104, der von einem Kondensatorboden 106 begrenzt ist. Wie es in Fig. 1 gezeigt ist, die als Schnittdarstellung oder als Seitenansicht angesehen werden kann, ist der Verdampferraum 102 zumindest teilweise von dem Kondensatorraum 104 umgeben. Ferner ist der Verdampferraum 102 durch den Kondensatorboden 106 von dem Kondensatorraum 104 getrennt. Darüber hinaus ist der Kondensatorboden mit einem Verdampferboden 108 verbunden, um den Verdampferraum 102 zu definieren. In einer Implementierung ist oberhalb am Verdampferraum 102 oder an anderer Stelle ein Kompressor 110 vorgesehen, der in Fig. 1 nicht näher ausgeführt ist, der jedoch prinzipiell ausgebildet ist, um verdampfte Arbeitsflüssigkeit zu komprimieren und als komprimierten Dampf 112 in den Kondensatorraum 104 zu leiten. Der Kondensatorraum ist ferner nach außen hin durch eine Kondensatorwand 114 begrenzt. Die Kondensatorwand 114 ist ebenfalls wie der Kondensatorboden 106 an dem Verdampferboden 108 befestigt. Insbesondere ist die Dimensionierung des Kondensatorbodens 106 in dem Bereich, der die Schnittstelle zum Verdampferboden 108 bildet, so, dass der Kondensatorboden bei dem in Fig. 1 gezeigten Ausführungsbeispiel vollständig von der Kondensatorraumwand 114 umgeben ist. Dies bedeutet, dass sich der Kondensatorraum, wie es in Fig. 1 gezeigt ist, bis zum Verdampferboden erstreckt, und dass sich der Verdampferraum gleichzeitig sehr weit nach oben, typischerweise nahezu durch fast den gesamten Kondensatorraum 104 erstreckt. Fig. 1 shows a heat pump 100 with an evaporator for evaporating working fluid in an evaporator space 102. The heat pump further comprises a condenser for liquefying evaporated working fluid in a condenser space 104, which is delimited by a condenser bottom 106. Like it in Fig. 1 is shown, which can be viewed as a sectional view or a side view, the evaporator chamber 102 is at least partially surrounded by the condenser chamber 104. Furthermore, the evaporator space 102 is separated from the condenser space 104 by the condenser bottom 106. In addition, the condenser bottom is connected to an evaporator bottom 108 to define the evaporator space 102. In one implementation, a compressor 110 is provided above the evaporator chamber 102 or elsewhere Fig. 1 is not detailed, but is principally designed to compress vaporized working fluid and to conduct it as compressed vapor 112 into the condenser chamber 104. The condenser space is further delimited on the outside by a condenser wall 114. The condenser wall 114, like the condenser bottom 106, is also fastened to the evaporator bottom 108. In particular, the dimensioning of the condenser bottom 106 in the region which forms the interface to the evaporator bottom 108 is such that the condenser bottom in the case of the Fig. 1 The embodiment shown is completely surrounded by the capacitor chamber wall 114. This means that the capacitor compartment is as it is in Fig. 1 is shown extends to the bottom of the evaporator, and that the evaporator space at the same time extends very far up, typically almost through almost the entire condenser space 104.

Diese "verschränkte" oder ineinandergreifende Anordnung von Kondensator und Verdampfer, die sich dadurch auszeichnet, dass der Kondensatorboden mit dem Verdampferboden verbunden ist, liefert eine besonders hohe Wärmepumpeneffizienz und erlaubt daher eine besonders kompakte Bauform einer Wärmepumpe. Größenordnungsmäßig ist die Dimensionierung der Wärmepumpe z.B. in einer zylindrischen Form so, dass die Kondensatorwand 114 einen Zylinder mit einem Durchmesser zwischen 30 und 90 cm und einer Höhe zwischen 40 und 100 cm darstellt. Die Dimensionierung kann jedoch je nach erforderliche Leistungsklasse der Wärmepumpe gewählt werden, findet jedoch vorzugsweise in den genannten Dimensionen statt. Damit wird eine sehr kompakte Bauform erreicht, die zudem einfach und günstig herstellbar ist, weil die Anzahl der Schnittstellen, insbesondere für den fast unter Vakuum stehenden Verdampferraum ohne weiteres reduziert werden kann, wenn der Verdampferboden gemäß bevorzugten Ausführungsbeispielen der vorliegenden Erfindung dahin gehend ausgeführt wird, dass er sämtliche Flüssigkeits-Zu- und Ableitungen umfasst und damit keine Flüssigkeits-Zu- und Ableitungen von der Seite oder von oben nötig sind.This "entangled" or interlocking arrangement of condenser and evaporator, which is distinguished by the fact that the condenser bottom is connected to the evaporator bottom, delivers a particularly high heat pump efficiency and therefore allows a particularly compact design of a heat pump. The dimensioning of the heat pump, for example in a cylindrical shape, is such that the condenser wall 114 represents a cylinder with a diameter between 30 and 90 cm and a height between 40 and 100 cm. The dimensioning can, however depending on the required performance class of the heat pump, but preferably takes place in the dimensions mentioned. A very compact design is thus achieved, which is also simple and inexpensive to produce, because the number of interfaces, in particular for the evaporator space which is almost under vacuum, can be easily reduced if the evaporator base is designed according to preferred exemplary embodiments of the present invention, that it includes all liquid supply and discharge lines and therefore no liquid supply and discharge lines from the side or from above are necessary.

Ferner sei darauf hingewiesen, dass die Betriebsrichtung der Wärmepumpe so ist, wie sie in Fig. 1 gezeigt ist. Dies bedeutet, dass der Verdampferboden im Betrieb den unteren Abschnitt der Wärmepumpe definiert, jedoch abgesehen von Verbindungsleitungen mit anderen Wärmepumpen oder zu entsprechenden Pumpeneinheiten. Dies bedeutet, dass im Betrieb der im Verdampferraum erzeugte Dampf nach oben steigt und durch den Motor umgelenkt wird und von oben nach unten in den Kondensatorraum eingespeist wird, und dass die Kondensatorflüssigkeit von unten nach oben geführt wird, und dann von oben in den Kondensatorraum zugeführt wird und dann im Kondensatorraum von oben nach unten fließt, wie beispielsweise durch einzelne Tröpfchen oder durch kleine Flüssigkeitsströme, um mit dem vorzugsweise quer zugeführten komprimierten Dampf zu Zwecken einer Kondensation zu reagieren.It should also be noted that the operating direction of the heat pump is as shown in Fig. 1 is shown. This means that the evaporator bottom defines the lower section of the heat pump during operation, but apart from connecting lines to other heat pumps or to corresponding pump units. This means that during operation the steam generated in the evaporator chamber rises and is deflected by the engine and is fed into the condenser chamber from top to bottom, and that the condenser liquid is conducted from bottom to top and then fed into the condenser chamber from above and then flows from top to bottom in the condenser chamber, such as through individual droplets or through small liquid flows, in order to react with the compressed steam, which is preferably fed crosswise, for the purposes of condensation.

Diese ineinander "verschränkte" Anordnung, dahin gehend, dass der Verdampfer fast vollständig oder sogar vollständig innerhalb des Kondensators angeordnet ist, ermöglicht eine sehr effiziente Ausführung der Wärmepumpe mit optimaler Platzausnutzung. Nachdem der Kondensatorraum sich bis zum Verdampferboden hin erstreckt, ist der Kondensatorraum innerhalb der gesamten "Höhe" der Wärmepumpe oder zumindest innerhalb eines wesentlichen Abschnitts der Wärmepumpe ausgebildet. Gleichzeitig ist jedoch auch der Verdampferraum so groß als möglich, weil er sich ebenfalls nahezu fast über die gesamte Höhe der Wärmepumpe erstreckt. Durch die ineinander verschränkte Anordnung im Gegensatz zu einer Anordnung, bei der der Verdampfer unterhalb des Kondensators angeordnet ist, wird der Raum optimal genutzt. Dies ermöglicht zum einen einen besonders effizienten Betrieb der Wärmepumpe und zum anderen einen besonders platzsparenden und kompakten Aufbau, weil sowohl der Verdampfer als auch der Verflüssiger sich über die gesamte Höhe erstrecken. Damit geht zwar die "Dicke" des Verdampferraums und auch des Verflüssigerraums zurück. Es wurde jedoch herausgefunden, dass die Reduktion der "Dicke" des Verdampferraums, der sich innerhalb des Kondensators verjüngt, unproblematisch ist, weil die Hauptverdampfung im unteren Bereich stattfindet, wo der Verdampferraum nahezu das gesamte Volumen, das zur Verfügung steht, ausfüllt. Andererseits ist die Reduktion der Dicke des Kondensatorraums besonders im unteren Bereich, also dort wo der Verdampferraum nahezu den gesamten zur Verfügung stehenden Bereich ausfüllt, unkritisch, weil die Hauptkondensation oben stattfindet, also dort, wo der Verdampferraum bereits relativ dünn ist und damit ausreichend Platz für den Kondensatorraum zurücklässt. Die ineinander verschränkte Anordnung ist somit optimal dahin gehend, dass jedem Funktionsraum dort das große Volumen gegeben wird, wo dieser Funktionsraum das große Volumen auch benötigt. Der Verdampferraum hat unten das große Volumen, während der Kondensatorraum oben das große Volumen hat. Dennoch trägt auch das entsprechende kleine Volumen, das für den jeweiligen Funktionsraum dort verbleibt, wo der andere Funktionsraum das große Volumen hat, zu einer Effizienzsteigerung bei im Vergleich zu einer Wärmepumpe, bei der die beiden Funktionselemente übereinander angeordnet sind, wie es z.B. in der WO 2014072239 A1 der Fall ist.This "entangled" arrangement, in that the evaporator is arranged almost completely or even completely within the condenser, enables a very efficient design of the heat pump with optimal use of space. After the condenser space extends to the bottom of the evaporator, the condenser space is formed within the entire "height" of the heat pump or at least within a substantial portion of the heat pump. At the same time, however, the evaporator space is as large as possible because it also extends almost almost over the entire height of the heat pump. The interlocking arrangement, in contrast to an arrangement in which the evaporator is arranged below the condenser, makes optimal use of the space. On the one hand, this enables a particularly efficient operation of the heat pump and, on the other hand, a particularly space-saving and compact structure, because both the evaporator and the condenser extend over the entire height. Thus, the "thickness" of the evaporator chamber and also the condenser chamber decrease. However, it has been found that the reduction in the "thickness" of the evaporator space that tapers within the condenser is unproblematic because the main evaporation takes place in the lower area, where the evaporator space fills almost the entire volume that is available. On the other hand, the reduction in the thickness of the condenser chamber is not critical, especially in the lower region, i.e. where the evaporator chamber fills almost the entire available area, because the main condensation takes place at the top, i.e. where the evaporator chamber is already relatively thin and therefore has sufficient space for leaves the condenser space. The interlocking arrangement is thus optimal in that each functional space is given the large volume where this functional space also requires the large volume. The evaporator compartment has the large volume at the bottom, while the condenser compartment has the large volume at the top. Nevertheless, the corresponding small volume that remains for the respective functional space where the other functional space has the large volume also contributes to an increase in efficiency compared to a heat pump in which the two functional elements are arranged one above the other, as is the case, for example, in the WO 2014072239 A1 the case is.

Bei bevorzugten Ausführungsbeispielen ist der Kompressor derart an der Oberseite des Kondensatorraums angeordnet, dass der komprimierte Dampf durch den Kompressor einerseits umgelenkt und gleichzeitig in einen Randspalt des Kondensatorraums eingespeist wird. Damit wird eine Kondensation mit besonders hoher Effizienz erreicht, weil eine Querstromrichtung des Dampfes zu einer herabfließenden Kondensationsflüssigkeit erreicht wird. Diese Kondensation mit Querströmung ist besonders im oberen Bereich, wo der Verdampferraum groß ist, wirksam und benötigt im unteren Bereich, wo der Kondensatorraum zugunsten des Verdampferraums klein ist, keinen besonders großen Bereich mehr, um dennoch eine Kondensation von bis zu diesem Bereich vorgedrungenen Dampfpartikeln zu erlauben.In preferred exemplary embodiments, the compressor is arranged on the upper side of the condenser chamber in such a way that the compressed steam is deflected by the compressor on the one hand and at the same time fed into an edge gap of the condenser chamber. Condensation is thus achieved with particularly high efficiency because a cross-flow direction of the steam to a condensation liquid flowing down is achieved. This condensation with cross flow is particularly effective in the upper area, where the evaporator space is large, and does not require a particularly large area in the lower area, where the condenser space is small in favor of the evaporator space, in order nevertheless to condense vapor particles that have penetrated up to this area allow.

Ein Verdampferboden, der mit dem Kondensatorboden verbunden ist, ist vorzugsweise so ausgebildet, dass er den Kondensator-Zu- und Ablauf und den Verdampfer-Zu- und Ablauf in sich aufnimmt, wobei zusätzlich noch bestimmte Durchführungen für Sensoren in den Verdampfer bzw. in den Kondensator vorhanden sein können. Damit wird erreicht, dass keine Durchführungen von Leitungen für den Kondensator-Zu- und Ablauf durch den nahezu unter Vakuum stehenden Verdampfer nötig sind. Dadurch wird die die gesamte Wärmepumpe weniger fehleranfällig, weil jede Durchführung durch den Verdampfer eine Möglichkeit für ein Leck darstellen würde. Dazu ist der Kondensatorboden an den Stellen, an denen die Kondensator-Zu- und Abläufe sind, mit einer jeweiligen Aussparung versehen, dahin gehend, dass in dem Verdampferraum, der durch den Kondensatorboden definiert wird, keine Kondensator-Zu/Abführungen verlaufen.An evaporator bottom, which is connected to the condenser bottom, is preferably designed in such a way that it accommodates the condenser inlet and outlet and the evaporator inlet and outlet, with additional bushings for sensors in the evaporator and in the Capacitor can be present. This ensures that no conduits for the condenser inlet and outlet through the evaporator, which is almost under vacuum, are necessary. This makes the entire heat pump less prone to failure, because any passage through the evaporator would be a possibility of a leak. For this purpose, the condenser bottom is provided with a recess at the points where the condenser inlets and outlets are, to the effect that no condenser inlets / outlets run in the evaporator space, which is defined by the condenser bottom.

Der Kondensatorraum wird durch eine Kondensatorwand begrenzt, die ebenfalls an dem Verdampferboden anbringbar ist. Der Verdampferboden hat somit eine Schnittstelle sowohl für die Kondensatorwand als auch den Kondensatorboden und hat zusätzlich sämtliche Flüssigkeits-Zuführungen sowohl für den Verdampfer als auch den Verflüssiger.The condenser space is delimited by a condenser wall, which can also be attached to the evaporator bottom. The evaporator base thus has an interface for both the condenser wall and the condenser base and additionally has all the liquid feeds for both the evaporator and the condenser.

Bei bestimmten Ausführungen ist der Verdampferboden ausgebildet, um Anschlussstutzen für die einzelnen Zuführungen zu haben, die einen Querschnitt haben, der sich von einem Querschnitt der Öffnung auf der anderen Seite des Verdampferbodens unterscheidet. Die Form der einzelnen Anschlussstutzen ist dann so ausgebildet, dass sich die Form bzw. Querschnittsform über der Länge des Anschlussstutzens verändert, jedoch der Rohrdurchmesser, der für die Strömungsgeschwindigkeit eine Rolle spielt, in einer Toleranz von ± 10 % nahezu gleich ist. Damit wird verhindert, dass durch den Anschlussstutzen fließendes Wasser zu kavitieren beginnt. Damit wird aufgrund der guten durch die Formung der Anschlussstutzen erhaltenen Strömungsverhältnisse sichergestellt, dass die entsprechenden Rohre/Leitungen so kurz wie möglich gemacht werden können, was wiederum zu einer kompakten Bauform der gesamten Wärmepumpe beiträgt.In certain designs, the evaporator base is designed to have connecting pieces for the individual feeds, which have a cross section that differs from a cross section of the opening on the other side of the evaporator base. The shape of the individual connecting piece is then designed such that the shape or cross-sectional shape changes over the length of the connecting piece, but the pipe diameter, which plays a role in the flow velocity, is almost the same within a tolerance of ± 10%. This prevents water flowing through the connecting piece from cavitating. Because of the good flow conditions obtained through the shaping of the connecting piece, this ensures that the corresponding pipes / lines can be made as short as possible, which in turn contributes to a compact design of the entire heat pump.

Bei einer speziellen Implementierung des Verdampferbodens wird der Kondensatorzulauf nahezu in Form einer "Brille" in einen zwei- oder mehrteiligen Strom aufgeteilt. Damit ist es möglich, die Kondensatorflüssigkeit im Kondensator an seinem oberen Abschnitt an zwei oder mehreren Punkten gleichzeitig einzuspeisen. Damit wird eine starke und gleichzeitig besonders gleichmäßige Kondensatorströmung von oben nach unten erreicht, die es ermöglicht, dass eine hocheffiziente Kondensation des ebenfalls von oben in den Kondensator eingeführten Dampfes erreicht wird.In a special implementation of the evaporator bottom, the condenser inlet is divided almost in the form of "glasses" into a two-part or multi-part stream. This makes it possible to feed the condenser liquid in the condenser at its upper section at two or more points simultaneously. This achieves a strong and at the same time particularly uniform condenser flow from top to bottom, which enables a highly efficient condensation of the steam also introduced into the condenser from above.

Eine weitere kleiner dimensionierte Zuführung im Verdampferboden für Kondensatorwasser kann ebenfalls vorgesehen sein, um damit einen Schlauch zu verbinden, der dem Kompressormotor der Wärmepumpe Kühlflüssigkeit zuführt, wobei zur Kühlung nicht die kalte, dem Verdampfer zugeführte Flüssigkeit verwendet wird, sondern die wärmere, dem Kondensator zugeführte Flüssigkeit, die jedoch immer noch bei typischen Betriebssituationen kühl genug ist, um den Motor der Wärmepumpe zu kühlen.Another smaller-sized supply in the evaporator bottom for condenser water can also be provided in order to connect a hose that supplies cooling fluid to the compressor motor of the heat pump, whereby the cooler liquid supplied to the evaporator is not used for cooling, but the warmer liquid supplied to the condenser Liquid that is still cool enough to cool the heat pump motor in typical operating situations.

Der Verdampferboden zeichnet sich dadurch aus, dass er eine Kombinationsfunktionalität hat. Zum einen stellt er sicher, dass keine Kondensatorzuleitungen durch den unter sehr geringem Druck stehenden Verdampfer hindurchgeführt werden müssen. Andererseits stellt er eine Schnittstelle nach außen dar, die vorzugsweise eine kreisrunde Form hat, da bei einer kreisrunden Form möglichst viel Verdampferfläche verbleibt. Alle Zu- und Ableitungen führen durch den einen Verdampferboden und laufen von dort in entweder den Verdampferraum oder den Kondensatorraum. Insbesondere eine Herstellung des Verdampferbodens aus Kunststoffspritzguss ist besonders vorteilhaft, weil die vorteilhaften relativ komplizierten Formgebungen der Zu/Ablaufstutzen in Kunststoffspritzguss ohne weiteres und preisgünstig ausgeführt werden können. Andererseits ist es aufgrund der Ausführung des Verdampferbodens als gut zugängliches Werkstück ohne weiteres möglich, den Verdampferboden mit ausreichender struktureller Stabilität herzustellen, damit er insbesondere dem niedrigen Verdampferdruck ohne weiteres standhalten kann.The evaporator bottom is characterized by the fact that it has a combination functionality. On the one hand, it ensures that no condenser feed lines have to be led through the evaporator, which is at very low pressure. On the other hand, it represents an interface to the outside, which preferably has a circular shape, since a circular shape leaves as much evaporator surface as possible. All supply and discharge lines lead through one evaporator floor and run from there into either the evaporator room or the condenser room. In particular, manufacturing the evaporator base from plastic injection molding is particularly advantageous because the advantageous, relatively complicated shapes of the inlet / outlet connections can be carried out easily and inexpensively in plastic injection molding. On the other hand, due to the design of the evaporator bottom as an easily accessible workpiece, it is readily possible to produce the evaporator bottom with sufficient structural stability so that it can easily withstand the low evaporator pressure in particular.

In der vorliegenden Anmeldung betreffen gleiche Bezugszeichen gleiche oder gleichwirkende Elemente, wobei nicht alle Bezugszeichen in allen Zeichnungen, sofern sie sich wiederholen, erneut dargelegt werden.In the present application, the same reference numerals relate to the same elements or elements having the same effect, although not all reference numerals in all the drawings, if they are repeated, are repeated.

Fig. 2 zeigt eine Wärmepumpe gemäß einem Ausführungsbeispiel in Verbindung mit dem ersten Aspekt, der konvektiven Wellenkühlung. So umfasst die Wärmepumpe von Fig. 2 einen Kondensierer mit einem Kondensierergehäuse 114, der einen Kondensiererraum 104 umfasst. Ferner ist der Verdichtermotor angebracht, welcher durch den Stator 308 schematisch in Fig. 4 dargestellt ist. Dieser Verdichtermotor ist auf in Fig. 2 nicht gezeigte Art und Weise an dem Kondensierergehäuse 114 angebracht und umfasst den Stator und einen Rotor 307, wobei der Rotor 307 eine Motorwelle 306 aufweist, an der ein Radialrad 304 angebracht, das sich in eine Verdampferzone hinein erstreckt, die in Fig. 2 nicht dargestellt ist. Ferner umfasst die Wärmepumpe einen Leitraum 302, der ausgebildet ist, um durch das Radialrad verdichteten Dampf aufzunehmen und in den Kondensierer zu leiten, wie es bei 112 schematisch dargestellt ist. Fig. 2 shows a heat pump according to an embodiment in connection with the first aspect, the convective shaft cooling. The heat pump from Fig. 2 a condenser with a condenser housing 114 that includes a condenser space 104. Furthermore, the compressor motor is attached, which is shown schematically in FIG Fig. 4 is shown. This compressor motor is on in Fig. 2 not shown is attached to the condenser housing 114 and includes the stator and a rotor 307, the rotor 307 having a motor shaft 306 to which is attached a radial wheel 304 that extends into an evaporator zone that is shown in FIG Fig. 2 is not shown. The heat pump further includes a control space 302 that is configured to receive steam compressed by the radial wheel and to conduct it into the condenser, as is shown schematically at 112.

Ferner umfasst der Motor ein Motorgehäuse 300, das den Verdichtermotor umgibt und vorzugsweise ausgebildet ist, um einen Druck zu halten, der wenigstens gleich dem Druck in dem Kondensierer ist. Alternativ ist das Motorgehäuse ausgebildet, um einen Druck zu halten, der höher als ein mittlerer Druck aus dem Verdampfer und dem Kondensierer ist, oder der höher als der Druck in dem weiteren Spalt 313 zwischen dem Radialrad und dem Leitraum (302) ist, oder der größer oder gleich dem Druck in dem Kondensierer ist. Das Motorgehäuse ist also derart ausgebildet, damit ein Druckabfall vom Motorgehäuse entlang der Motorwelle in Richtung des Leitraums stattfindet, durch den Arbeitsdampf durch den Motorspalt und den weiteren Spalt an der Motorwelle vorbeigezogen wird, um die Welle zu kühlen.The motor further includes a motor housing 300 that surrounds the compressor motor and is preferably configured to maintain a pressure that is at least equal to the pressure in the condenser. Alternatively, the motor housing is configured to hold a pressure that is higher than an average pressure from the evaporator and the condenser, or that is higher than the pressure in the further gap 313 between the radial wheel and the control space (302), or that is greater than or equal to the pressure in the condenser. The Motor housing is thus designed such that a pressure drop from the motor housing along the motor shaft in the direction of the control space takes place, through which working steam is drawn through the motor gap and the further gap past the motor shaft in order to cool the shaft.

Dieses Gebiet in dem Motorgehäuse mit dem nötigen Druck ist in Fig. 2 bei 312 dargestellt. Außerdem ist eine Dampfzuführung 310 ausgebildet, um Dampf in dem Motorgehäuse 300 zu einem Motorspalt 311 zuzuführen, der zwischen dem Stator 308 und der Welle 306 vorhanden ist. Ferner umfasst der Motor einen weiteren Spalt 313, der sich von dem Motorspalt 311 entlang des Radialrads zu dem Leitraum 302 erstreckt.This area in the motor housing with the necessary pressure is in Fig. 2 represented at 312. In addition, a steam supply 310 is formed to supply steam in the motor housing 300 to a motor gap 311 that is present between the stator 308 and the shaft 306. The motor further comprises a further gap 313, which extends from the motor gap 311 along the radial wheel to the control space 302.

Bei der erfindungsgemäßen Anordnung herrscht im Kondensierer ein relativ großer Druck p3. Dagegen herrscht im Leitweg oder Leitraum 302 ein mittlerer Druck p2. Der kleinste Druck herrscht, abgesehen vom Verdampfer, hinter dem Radialrad, und zwar dort, wo das Radialrad an der Motorwelle befestigt ist, also in dem weiteren Spalt 313. In dem Motorgehäuse 300 existiert ein Druck p4, der entweder gleich dem Druck p3 oder größer als der Druck p3 ist. Dadurch existiert ein Druckgefälle vom Motorgehäuse zu dem Ende des weiteren Spalts. Dieses Druckgefälle führt dazu, dass eine Dampfströmung durch die Dampfzuführung hindurch in den Motorspalt und den weiteren Spalt bis in den Leitweg 302 stattfindet. Diese Dampfströmung nimmt Arbeitsdampf aus dem Motorgehäuse an der Motorwelle vorbei in den Kondensierer. Diese Dampfströmung sorgt für die konvektive Wellenkühlung der Motorwelle durch den Motorspalt 311 und den weiteren Spalt 313, der sich an den Motorspalt 311 anschließt. Das Radialrad saugt also Dampf nach unten heraus, an der Welle des Motors vorbei. Dieser Dampf wird über die Dampfzuführung, die typischerweise als spezielle ausgeführte Bohrungen implementiert sind, in den Motorspalt hinein gezogen.In the arrangement according to the invention, there is a relatively high pressure p 3 in the condenser. In contrast, there is an average pressure p 2 in the route or control room 302. The lowest pressure, apart from the evaporator, prevails behind the radial wheel, specifically where the radial wheel is attached to the motor shaft, that is to say in the further gap 313. In the motor housing 300 there is a pressure p 4 which is either equal to the pressure p 3 or greater than the pressure p 3 . This creates a pressure drop from the motor housing to the end of the further gap. This pressure drop means that a steam flow takes place through the steam feed into the motor gap and the further gap up to the route 302. This steam flow takes working steam from the motor housing past the motor shaft into the condenser. This steam flow ensures the convective shaft cooling of the motor shaft through the motor gap 311 and the further gap 313, which adjoins the motor gap 311. The radial wheel sucks steam downwards, past the shaft of the motor. This steam is drawn into the engine gap via the steam supply, which is typically implemented as special bores.

Fig. 3 zeigt eine weitere schematische Ausführungsform der konvektiven Wellenkühlung gemäß dem ersten Aspekt der vorliegenden Erfindung, die dort vorzugsweise mit der Motorkühlung gemäß dem zweiten Aspekt der vorliegenden Erfindung kombiniert ist. Fig. 3 shows a further schematic embodiment of the convective shaft cooling according to the first aspect of the present invention, which is preferably combined there with the motor cooling according to the second aspect of the present invention.

Es sei jedoch an dieser Stelle generell darauf hingewiesen, dass die beiden Aspekte konvektive Wellenkühlung einerseits und Motorkühlung andererseits auch separat voneinander eingesetzt werden. So führt eine Motorkühlung ohne eine spezielle separate konvektive Wellenkühlung bereits zu einer erheblich erhöhten Betriebssicherheit. Darüber hinaus führt auch eine konvektive Motorwellenkühlung ohne die zusätzliche Motorkühlung zu einer erhöhten Betriebssicherheit der Wärmepumpe. Die beiden Aspekte können jedoch, wie es nachfolgend in Fig. 3 dargestellt ist, besonders günstig miteinander verbunden werden, um mit einer besonders vorteilhaften Konstruktion des Motorgehäuses und des Verdichtermotors sowohl die konvektive Wellenkühlung als auch die Motorkühlung zu implementieren, welche zusätzlich noch bei einem weiteren bevorzugten Ausführungsbeispiel jeweils oder gemeinsam durch eine spezielle Kugellagerkühlung ergänzt werden können.At this point, however, it should be generally pointed out that the two aspects of convective shaft cooling on the one hand and motor cooling on the other are also used separately from one another. For example, engine cooling without a special separate convective shaft cooling already leads to considerably increased operational reliability. In addition, convective motor shaft cooling without the additional motor cooling leads to increased operational reliability of the heat pump. However, the two aspects can, as described below in Fig. 3 is shown, are connected to one another in a particularly favorable manner in order to implement both the convective shaft cooling and the motor cooling with a particularly advantageous construction of the motor housing and the compressor motor, which can additionally or additionally be supplemented in a further preferred exemplary embodiment in each case or together by a special ball bearing cooling.

Fig. 3 zeigt ein Ausführungsbeispiel mit kombinierter Verwendung von konvektiver Wellenkühlung und Motorkühlung, wobei bei dem in Fig. 3 gezeigten Ausführungsbeispiel die Verdampferzone bei 102 gezeigt ist. Die Verdampferzone wird von der Kondensiererzone, also von dem Kondensiererbereich 104 durch den Kondensiererboden 106 getrennt. Arbeitsdampf, der schematisch bei 314 dargestellt ist, wird durch das sich drehende schematisch und im Schnitt dargestellte Radialrad 304 angesaugt und in den Leitweg 302 hinein "gepresst". Der Leitweg 302 ist bei dem in Fig. 3 gezeigten Ausführungsbeispiel so ausgebildet, dass sich sein Querschnitt nach außen hin vergrößert. Damit findet eine weitere Dampfkompression statt. Die erste "Stufe" der Dampfkompression findet bereits durch die Drehung des Radialrads und das "Ansaugen" des Dampfs durch das Radialrad statt. Dann jedoch, wenn das Radialrad den Dampf in den Eingang des Leitwegs einspeist, also dort, wo das Radialrad betrachtet nach oben "aufhört", stößt der bereits vorkomprimierte Dampf gewissermaßen auf einen Dampfstau, der aufgrund der Verjüngung des Leitwegs und auch aufgrund der Krümmung des Leitwegs vorhanden ist. Dies führt zu einer weiteren Dampfkompression, so dass schließlich der komprimierte und damit erwärmte Dampf 112 in den Kondensierer strömt. Fig. 3 shows an embodiment with combined use of convective shaft cooling and engine cooling, wherein in the Fig. 3 Embodiment shown, the evaporator zone is shown at 102. The evaporator zone is separated from the condenser zone, that is to say from the condenser region 104, by the condenser bottom 106. Working steam, shown schematically at 314, is drawn in by the rotating radial wheel 304, shown schematically and in section, and "pressed" into the route 302. The route 302 is in the in Fig. 3 shown embodiment formed so that its cross section increases outwards. A further vapor compression takes place with this. The first "stage" of steam compression takes place through the rotation of the radial wheel and the "suction" of the steam through the radial wheel. However, when the radial wheel feeds the steam into the entrance of the route, ie where the radial wheel "stops" when viewed upwards, the pre-compressed steam encounters a kind of steam build-up, which is due to the tapering of the route and also due to the curvature of the Routing exists. This leads to a further vapor compression, so that finally the compressed and thus heated vapor 112 flows into the condenser.

Fig. 3 zeigt ferner die Dampfzuführungsöffnungen 320, die in einer schematisch dargestellten Motorwand 309 in Fig. 3 ausgeführt sind. Diese Motorwand 309 hat bei dem in Fig. 3 gezeigten Ausführungsbeispiel Bohrungen für die Dampfzuführungsöffnungen 320 im oberen Bereich, wobei diese Bohrungen jedoch an beliebigen Stellen ausgeführt sein können, an denen Dampf in den Motorspalt 311 und damit auch in den weiteren Motorspalt 313 eindringen kann. Die dadurch verursachte Dampfströmung 310 führt zu dem gewünschten Effekt der konvektiven Wellenkühlung. Fig. 3 FIG. 10 also shows the steam supply openings 320 that are shown in a schematically illustrated engine wall 309 in FIG Fig. 3 are executed. This motor wall 309 has the in Fig. 3 Embodiment shown holes for the steam supply openings 320 in the upper region, but these holes can be made at any point where steam can penetrate into the motor gap 311 and thus also into the further motor gap 313. The steam flow 310 caused thereby leads to the desired effect of convective wave cooling.

Das in Fig. 3 gezeigte Ausführungsbeispiel umfasst ferner zur Implementierung der Motorkühlung einen Arbeitsmittelzulauf 330, der ausgebildet ist, um flüssiges Arbeitsmittel aus dem Kondensierer zur Motorkühlung an die Motorwand zu führen. Ferner ist das Motorgehäuse ausgebildet, um in dem Betrieb der Wärmepumpe einen maximalen Flüssigkeitspegel 322 an flüssigem Arbeitsmittel zu halten. Darüber hinaus ist das Motorgehäuse 300 ebenfalls ausgebildet, um oberhalb des maximalen Pegels einen Dampfraum 323 zu bilden. Ferner hat das Motorgehäuse Vorkehrungen, um flüssiges Arbeitsmittel oberhalb des maximalen Pegels in den Kondensierer 104 zu leiten. Diese Ausführung wird bei dem in Fig. 3 gezeigten Ausführungsbeispiel durch einen z. B. flach ausgeführten kanalförmigen Überlauf 324 ausgebildet, der die Dampfabführung bildet und irgendwo in der oberen Kondensiererwand angeordnet ist und eine Länge hat, die den maximalen Pegel 322 definiert. Wird durch die Kondensiererflüssigkeitszuführung 330 zu viel Arbeitsflüssigkeit in das Motorgehäuse, also den Flüssigkeitsbereich 328 eingeführt, so läuft das flüssige Arbeitsmittel durch den Überlauf 324 hindurch in das Kondensierervolumen. Darüber hinaus stellt der Überlauf auch bei der in Fig. 3 gezeigten passiven Anordnung, die z.B. auch alternativ ein Röhrchen mit einer entsprechenden Länge sein kann, einen Druckausgleich zwischen dem Motorgehäuse und insbesondere dem Dampfraum 323 des Motorgehäuses und dem Kondensierer-Innenraum 104 her. Damit ist der Druck im Dampfraum 323 des Motorgehäuses immer nahezu gleich oder höchstens aufgrund eines Druckverlusts entlang des Überlaufs etwas höher als der Druck im Kondensierer. Damit wird der Siedepunkt der Flüssigkeit 328 im Motorgehäuse ähnlich dem Siedepunkt im Kondensierergehäuse sein. Dadurch führt eine Erwärmung der Motorwand 309 aufgrund einer im Motor erzeugten Verlustleistung dazu, dass eine Blasensiedung in dem Flüssigkeitsvolumen 328 stattfindet, die später noch erläutert wird.This in Fig. 3 The exemplary embodiment shown furthermore includes, for implementing the motor cooling, a working medium inlet 330 which is designed to guide liquid working medium from the condenser for motor cooling to the motor wall. Furthermore, the motor housing formed to maintain a maximum liquid level 322 of liquid working fluid in the operation of the heat pump. In addition, the motor housing 300 is also designed to form a vapor space 323 above the maximum level. In addition, the motor housing has arrangements for introducing liquid working fluid into the condenser 104 above the maximum level. This version is used in the Fig. 3 embodiment shown by a z. B. formed flat channel-shaped overflow 324, which forms the vapor discharge and is located somewhere in the upper condenser wall and has a length that defines the maximum level 322. If too much working liquid is introduced into the motor housing, ie the liquid area 328, through the condenser liquid supply 330, the liquid working medium runs through the overflow 324 into the condenser volume. In addition, the overflow at the in Fig. 3 shown passive arrangement, which can also alternatively be a tube with a corresponding length, for example, a pressure equalization between the motor housing and in particular the vapor space 323 of the motor housing and the condenser interior 104. Thus the pressure in the vapor space 323 of the motor housing is always almost the same or at most slightly higher than the pressure in the condenser due to a pressure loss along the overflow. Thus the boiling point of liquid 328 in the motor housing will be similar to the boiling point in the condenser housing. As a result, heating of the motor wall 309 due to a power loss generated in the motor leads to bubble boiling in the liquid volume 328, which will be explained later.

Fig. 3 zeigt ferner diverse Abdichtungen in schematischer Form beim Bezugszeichen 326 und an ähnlichen Stellen zwischen dem Motorgehäuse und dem Kondensierergehäuse einerseits oder aber auch zwischen der Motorwand 309 und dem Kondensierergehäuse 114 andererseits. Diese Abdichtungen sollen symbolisieren, dass hier eine flüssigkeits- und druckdichte Verbindung sein soll. Fig. 3 also shows various seals in schematic form at reference numeral 326 and at similar locations between the motor housing and the condenser housing on the one hand or between the motor wall 309 and the condenser housing 114 on the other hand. These seals are intended to symbolize that there should be a liquid and pressure tight connection here.

Durch das Motorgehäuse wird ein separater Raum definiert, der jedoch ein nahezu gleiches Druckgebiet wie der Kondensator darstellt. Dies unterstützt aufgrund einer Erwärmung des Motors und der damit abgegebenen Energie an der Motorwand 309 eine Blasensiedung im Flüssigkeitsvolumen 328, die wiederum eine besonders effiziente Verteilung des Arbeitsmittels im Volumen 328 und damit eine besonders gute Kühlung mit einem kleinen Volumen an Kühlflüssigkeit zur Folge hat. Ferner wird sichergestellt, dass mit dem Arbeitsmittel gekühlt wird, das auf der günstigsten Temperatur, nämlich der wärmsten Temperatur in der Wärmepumpe ist. Dadurch wird sichergestellt, dass sämtliche Kondensationsprobleme, die immer an kalten Oberflächen auftreten, sowohl für die Motorwand als auch für die Motorwelle und die Bereiche im Motorspalt 311 und dem weiteren Spalt 313 ausgeschlossen sind. Ferner ist bei dem in Fig. 3 gezeigten Ausführungsbeispiel der für die konvektive Wellenkühlung verwendete Arbeitsmitteldampf 310 Dampf, der sonst im Dampfraum 323 des Motorgehäuses ist. Dieser Dampf hat ebenfalls wie die Flüssigkeit 328 die optimale (warme) Temperatur. Ferner wird durch den Überlauf 324 sichergestellt, dass der Druck im Bereich 323 aufgrund der Blasensiedung, die durch die Motorkühlung bzw. die Motorwand 309 bewirkt wird, nicht über den Kondensiererdruck steigen kann. Ferner wird durch die Dampfabführung die Wärmeenergie aufgrund der Motorkühlung abgeführt. Damit wird die konvektive Wellenkühlung immer gleich arbeiten. Würde nämlich der Druck zu stark ansteigen, so könnte zu viel Arbeitsmitteldampf durch den Motorspalt 311 und den weiteren Spalt 313 gepresst werden.A separate space is defined by the motor housing, which, however, represents almost the same pressure area as the condenser. Due to the heating of the motor and the energy thus released on the motor wall 309, this supports a bubble boiling in the liquid volume 328, which in turn results in a particularly efficient distribution of the working medium in the volume 328 and thus particularly good cooling with a small volume of cooling liquid. It is also ensured that cooling is carried out with the working fluid which is at the most favorable temperature, namely the warmest temperature in the heat pump. This ensures that all condensation problems, that always occur on cold surfaces, for the motor wall as well as for the motor shaft and the areas in the motor gap 311 and the further gap 313 are excluded. Furthermore, in Fig. 3 Embodiment shown, the working fluid vapor 310 used for the convective wave cooling, which is otherwise in the vapor space 323 of the motor housing. This vapor, like liquid 328, is at the optimal (warm) temperature. Furthermore, it is ensured by the overflow 324 that the pressure in the area 323 cannot rise above the condenser pressure due to the bubble boiling caused by the engine cooling or the engine wall 309. Furthermore, the heat is dissipated due to the engine cooling through the steam discharge. This means that convective shaft cooling will always work in the same way. If the pressure rose too much, too much working fluid vapor could be forced through the motor gap 311 and the further gap 313.

Die Bohrungen 320 für die Dampfzuführung werden typischerweise in einem Array ausgebildet sein, das regelmäßig oder unregelmäßig angeordnet sein kann. Die einzelnen Bohrungen sind vom Durchmesser her nicht größer als 5 mm und können bei etwa einer minimalen Größe von 1 mm liegen.The holes 320 for the steam supply will typically be formed in an array that can be arranged regularly or irregularly. The individual bores are not larger than 5 mm in diameter and can be about a minimum size of 1 mm.

Fig. 6 zeigt einen Verflüssiger, wobei der Verflüssiger in Fig. 6 eine Dampfeinleitungszone 102 aufweist, die sich vollständig um die Kondensationszone 100 herum erstreckt. Insbesondere ist in Fig. 6 ein Teil eines Verflüssigers dargestellt, der einen Verflüssigerboden 200 aufweist. Auf dem Verflüssigerboden ist ein Verflüssigergehäuseabschnitt 202 angeordnet, der aufgrund der Darstellung in Fig. 6 durchsichtig gezeichnet ist, der jedoch in Natur nicht unbedingt durchsichtig sein muss, sondern z.B. aus Kunststoff, Aluminiumdruckguss oder etwas Ähnlichem gebildet sein kann. Das seitliche Gehäuseteil 202 liegt auf einem Dichtungsgummi 201 auf, um eine gute Abdichtung mit dem Boden 200 zu erreichen. Ferner umfasst der Verflüssiger einen Flüssigkeitsablauf 203 sowie einen Flüssigkeitszulauf 204 sowie eine in dem Verflüssiger zentral angeordnete Dampfzuführung 205, die sich von unten nach oben in Fig. 6 verjüngt. Es sei darauf hingewiesen, dass Fig. 6 die eigentlich gewünschte Aufstellrichtung einer Wärmepumpe und eines Verflüssigers dieser Wärmepumpe darstellt, wobei in dieser Aufstellrichtung in Fig. 6 der Verdampfer einer Wärmepumpe unterhalb des Verflüssigers angeordnet ist. Die Kondensationszone 100 wird nach außen durch einen korbartigen Begrenzungsgegenstand 207 begrenzt, der ebenso wie das äußere Gehäuseteil 202 durchsichtig gezeichnet ist und normalerweise korbartig ausgebildet ist. Fig. 6 shows a condenser, the condenser in Fig. 6 a steam introduction zone 102 that extends completely around the condensation zone 100. In particular, in Fig. 6 shown a part of a condenser having a condenser bottom 200. A condenser housing section 202 is arranged on the condenser bottom Fig. 6 is drawn transparently, which, however, does not necessarily have to be transparent in nature, but can be formed, for example, from plastic, die-cast aluminum or something similar. The side housing part 202 rests on a sealing rubber 201 in order to achieve a good seal with the bottom 200. Furthermore, the condenser comprises a liquid outlet 203 and a liquid inlet 204 as well as a vapor supply 205 arranged centrally in the condenser, which flows from bottom to top Fig. 6 rejuvenated. It should be noted that Fig. 6 represents the actually desired installation direction of a heat pump and a condenser of this heat pump, with in this installation direction in Fig. 6 the evaporator of a heat pump is arranged below the condenser. The condensation zone 100 is delimited on the outside by a basket-like delimitation object 207, which, like the outer housing part 202, is drawn transparently and is normally configured like a basket.

Ferner ist ein Gitter 209 angeordnet, das ausgebildet ist um Füllkörper, die in Fig. 6 nicht gezeigt sind, zu tragen. Wie es aus Fig. 6 ersichtlich aus, erstreckt sich der Korb 207 lediglich bis zu einem gewissen Punkt nach unten. Der Korb 207 ist dampfdurchlässig vorgesehen, um Füllkörper zu halten, wie beispielsweise sogenannte Pallringe. Diese Füllkörper werden in die Kondensationszone eingebracht, und zwar lediglich innerhalb des Korbs 207, jedoch nicht in der Dampfeinleitungszone 102. Die Füllkörper werden jedoch so hoch auch außerhalb des Korbs 207 eingefüllt, dass sich die Höhe der Füllkörper entweder bis zu der unteren Begrenzung des Korbs 207 oder etwas darüber erstreckt.Furthermore, a grating 209 is arranged, which is formed around packing elements which are in Fig. 6 not shown to wear. Like it out Fig. 6 can be seen from, the basket 207 only extends down to a certain point. The basket 207 is provided permeable to steam in order to hold packing elements, such as so-called pall rings. These packing elements are introduced into the condensation zone, specifically only inside the basket 207, but not in the steam introduction zone 102. However, the packing elements are also filled so high outside the basket 207 that the height of the packing elements either reaches the lower limit of the basket 207 or slightly above.

Der Verflüssiger von Fig. 6 umfasst einen Arbeitsflüssigkeitszuführer, der insbesondere durch die Arbeitsflüssigkeitszuführung 204, die, wie es in Fig. 6 gezeigt ist, gewunden um die Dampfzuführung in Form einer aufsteigenden Windung angeordnet ist, durch einen Flüssigkeitstransportbereich 210 und durch ein Flüssigkeitsverteilerelement 212 gebildet wird, das vorzugsweise als Lochblech ausgebildet ist. Insbesondere ist der Arbeitsflüssigkeitszuführer also ausgebildet, um die Arbeitsflüssigkeit in die Kondensationszone zuzuführen.The liquefier from Fig. 6 includes a working liquid feeder, which is in particular by the working liquid supply 204, which, as in Fig. 6 is shown wound around the steam supply in the form of an ascending turn, is formed by a liquid transport area 210 and by a liquid distributor element 212, which is preferably designed as a perforated plate. In particular, the working fluid feeder is thus designed to feed the working fluid into the condensation zone.

Darüber hinaus ist auch ein Dampfzuführer vorgesehen, der sich, wie es in Fig. 6 gezeigt ist, vorzugsweise aus dem trichterförmig sich verjüngenden Zuführungsbereich 205 und dem oberen Dampfführungsbereich 213 zusammensetzt. In dem Dampfleitungsbereich 213 wird vorzugsweise ein Rad eines Radialkompressors eingesetzt und die Radialkompression führt dazu, dass durch die Zuführung 205 Dampf von unten nach oben gesaugt wird und dann aufgrund der Radialkompression durch das Radialrad bereits gewissermaßen 90 Grad nach außen umgelenkt wird, also von einer Strömung von unten nach oben zu einer Strömung von der Mitte nach außen in Fig. 6 bezüglich des Elements 213.In addition, a steam feeder is provided, which, as in Fig. 6 is shown, preferably composed of the funnel-shaped tapering supply area 205 and the upper steam guide area 213. A wheel of a radial compressor is preferably used in the steam line area 213 and the radial compression leads to the fact that steam is sucked in from the bottom upwards through the feed 205 and is then already deflected outward to a certain extent 90 degrees due to the radial compression by the radial wheel, that is to say from a flow from the bottom up to a flow from the center outwards in Fig. 6 regarding element 213.

In Fig. 6 nicht gezeigt ist ein weiterer Umlenker, der den bereits nach außen umgelenkten Dampf noch einmal um 90 Grad umlenkt, um ihn dann von oben in den Spalt 215 zu leiten, der gewissermaßen den Beginn der Dampfeinleitungszone darstellt, die sich seitlich um die Kondensationszone herum erstreckt. Der Dampfzuführer ist daher vorzugsweise ringförmig ausgebildet und mit einem ringförmigen Spalt zum Zuführen des zu kondensierenden Dampfes versehen, wobei die Arbeitsflüssigkeitszuführung innerhalb des ringförmigen Spalts ausgebildet ist.In Fig. 6 another deflector is not shown, which deflects the steam which has already been deflected outwards again by 90 degrees, in order then to guide it from above into the gap 215, which to a certain extent represents the beginning of the steam introduction zone which extends laterally around the condensation zone. The steam feeder is therefore preferably of an annular design and is provided with an annular gap for supplying the steam to be condensed, the working fluid supply being formed within the annular gap.

Zur Veranschaulichung wird auf Fig. 7 verwiesen. Fig. 7 zeigt eine Ansicht des "Deckelbereichs" des Verflüssigers von Fig. 6 von unten. Insbesondere ist das Lochblech 212 von unten schematisch dargestellt, das als Flüssigkeitsverteilerelement wirkt. Der Dampfeinlassspalt 215 ist schematisch gezeichnet, und es ergibt sich aus Fig. 7, dass der Dampfeinlassspalt lediglich ringförmig ausgebildet ist, derart, dass in die Kondensationszone direkt von oben bzw. direkt von unten kein zu kondensierender Dampf eingespeist wird, sondern nur seitlich herum. Durch die Löcher des Verteilerblechs 212 fließt somit lediglich Flüssigkeit, jedoch kein Dampf. Der Dampf wird erst seitlich in die Kondensationszone "eingesaugt", und zwar aufgrund der Flüssigkeit, die durch das Lochblech 212 hindurchgetreten ist. Die Flüssigkeitsverteilerplatte kann aus Metall, Kunststoff oder einem ähnlichen Material ausgebildet sein und ist mit unterschiedlichen Lochmustern ausführbar. Ferner wird es, wie es in Fig. 6 gezeigt ist, bevorzugt eine seitliche Begrenzung für aus dem Element 210 fließende Flüssigkeit vorzusehen, wobei diese seitliche Begrenzung mit 217 bezeichnet ist. Damit wird sichergestellt, dass Flüssigkeit, die aus dem Element 210 aufgrund der geschwungenen Zuführung 204 bereits mit einem Drall austritt und sich von innen nach außen auf dem Flüssigkeitsverteiler verteilt, nicht über den Rand in die Dampfeinleitungszone spritzt, sofern die Flüssigkeit nicht bereits vorher durch die Löcher der Flüssigkeitsverteilerplatte getropft und mit Dampf kondensiert ist.For illustration purposes, click on Fig. 7 directed. Fig. 7 shows a view of the "lid portion" of the condenser of FIG Fig. 6 from underneath. In particular, the perforated plate 212 is from shown schematically below, which acts as a liquid distributor element. The steam inlet gap 215 is drawn schematically and it follows from Fig. 7 that the steam inlet gap is only ring-shaped, such that no steam to be condensed is fed into the condensation zone directly from above or directly from below, but only around the side. Thus, only liquid, but no steam, flows through the holes in the distributor plate 212. The vapor is only "sucked in" laterally into the condensation zone, specifically because of the liquid that has passed through the perforated plate 212. The liquid distributor plate can be made of metal, plastic or a similar material and can be designed with different hole patterns. Furthermore, as it is in Fig. 6 is shown, preferably to provide a lateral boundary for liquid flowing out of the element 210, this lateral boundary being designated by 217. This ensures that liquid, which already exits the element 210 with a swirl due to the curved feed 204 and is distributed from the inside to the outside of the liquid distributor, does not spray over the edge into the steam introduction zone, unless the liquid has already passed through the Holes in the liquid distribution plate are dripped and condensed with steam.

Fig. 5 zeigt eine komplette Wärmepumpe in Schnittdarstellung, die sowohl den Verdampferboden 108 als auch den Kondensatorboden 106 umfasst. Wie es in Fig. 5 oder auch in Fig. 1 gezeigt ist, hat der Kondensatorboden 106 einen sich verjüngenden Querschnitt von einem Zulauf für die zu verdampfende Arbeitsflüssigkeit zu einer Absaugöffnung 115, die mit dem Kompressor bzw. Motor 110 gekoppelt ist, wo also das vorzugsweise verwendete Radialrad des Motors den im Verdampferraum 102 erzeugten Dampf absaugt. Fig. 5 shows a complete heat pump in a sectional view, which includes both the evaporator bottom 108 and the condenser bottom 106. Like it in Fig. 5 or also in Fig. 1 is shown, the condenser bottom 106 has a tapering cross section from an inlet for the working fluid to be evaporated to a suction opening 115, which is coupled to the compressor or motor 110, where the preferably used radial wheel of the motor sucks off the steam generated in the evaporator chamber 102 ,

Fig. 5 zeigt einen Querschnitt durch die gesamte Wärmepumpe. Insbesondere ist innerhalb des Kondensatorbodens ein Tropfenabscheider 404 angeordnet. Dieser Tropfenabscheider umfasst einzelne Schaufeln 405. Diese Schaufeln sind, damit der Tropfenabscheider an Ort und Stelle bleibt, in entsprechenden Nuten 406 eingebracht, die in Fig. 5 gezeigt sind. Diese Nuten sind in dem Kondensatorboden in einem Bereich, der zu dem Verdampferboden hin gerichtet ist, in der Innenseite des Verdampferbodens angeordnet. Darüber hinaus hat der Kondensatorboden ferner diverse Führungsmerkmale, die als Stäbchen oder Zungen ausgebildet sein können, um Schläuche zu halten, die für eine Kondensatorwasserführung beispielsweise vorgesehen sind, die also auf entsprechende Abschnitte aufgesteckt werden und die Einspeisepunkte der Kondensatorwasserzuführung ankoppeln. Diese Kondensatorwasserzuführung 402 kann je nach Implementierung so ausgebildet sein, wie es in den Fig. 6 und 7 bei den Bezugszeichen 102, 207 bis 250 gezeigt ist. Ferner hat der Kondensator vorzugsweise eine Kondensatorflüssigkeitsverteilungsanordnung, die zwei oder auch mehr Einspeisepunkte aufweist. Ein erster Einspeisepunkt ist daher mit einem ersten Abschnitt eines Kondensatorzulaufs verbunden. Ein zweiter Einspeisepunkt ist mit einem zweiten Abschnitt des Kondensatorzulaufs verbunden. Sollten mehr Einspeisepunkte für die Kondensatorflüssigkeitsverteilungseinrichtung vorhanden sein, so wird der Kondensatorzulauf in weitere Abschnitte aufgeteilt sein. Fig. 5 shows a cross section through the entire heat pump. In particular, a droplet separator 404 is arranged inside the condenser bottom. This droplet separator comprises individual blades 405. These blades are introduced into corresponding grooves 406 in order that the droplet separator remains in place Fig. 5 are shown. These grooves are arranged in the condenser bottom in a region which is directed towards the evaporator bottom, in the inside of the evaporator bottom. In addition, the condenser bottom also has various guiding features, which can be designed as rods or tongues, in order to hold hoses, which are provided for condenser water guidance, for example, which are therefore plugged onto corresponding sections and couple the feed points of the condenser water supply. This condenser water supply 402 can, depending on the implementation be trained as in the Fig. 6 and 7 is shown at reference numerals 102, 207 to 250. Furthermore, the condenser preferably has a condenser liquid distribution arrangement which has two or more feed points. A first feed point is therefore connected to a first section of a condenser inlet. A second feed point is connected to a second section of the condenser inlet. If there are more feed points for the condenser liquid distribution device, the condenser inlet will be divided into further sections.

Der obere Bereich der Wärmepumpe von Fig. 5 kann somit genauso wie der obere Bereich in Fig. 6 ausgebildet sein, dahin gehend, dass die Kondensatorwasserzuführung über das Lochblech von Fig. 6 und Fig. 7 stattfindet, so dass abwärts rieselndes Kondensatorwasser 408 erhalten wird, in das der Arbeitsdampf 112 vorzugsweise seitlich eingeführt wird, so dass die Querstrom-Kondensation, die eine besonders hohe Effizienz erlaubt, erhalten werden kann. Wie es auch in Fig. 6 dargestellt ist, kann die Kondensationszone mit einer lediglich optionalen Füllung versehen sein, bei der der Rand 207, der auch mit 409 bezeichnet ist, frei bleibt von Füllkörpern oder ähnlichen Dingen, dahin gehend, dass der Arbeitsdampf 112 nicht nur oben, sondern auch unten noch seitlich in die Kondensationszone eindringen kann. Die gedachte Begrenzungslinie 410 soll das in Fig. 5 veranschaulichen. Bei dem in Fig. 5 gezeigten Ausführungsbeispiel ist jedoch der gesamte Bereich des Kondensators mit einem eigenen Kondensatorboden 200 ausgebildet, der oberhalb eines Verdampferbodens angeordnet ist.The top of the heat pump from Fig. 5 can thus be just like the upper area in Fig. 6 be designed to the effect that the condenser water supply via the perforated plate from Fig. 6 and Fig. 7 takes place, so that downward flowing condenser water 408 is obtained, into which the working steam 112 is preferably introduced laterally, so that the cross-flow condensation, which allows a particularly high efficiency, can be obtained. As it is in Fig. 6 is shown, the condensation zone can be provided with only an optional filling, in which the edge 207, which is also designated 409, remains free of packing elements or similar things, in that the working steam 112 not only at the top but also at the bottom can laterally penetrate into the condensation zone. The imaginary boundary line 410 is said to be in Fig. 5 illustrate. At the in Fig. 5 In the exemplary embodiment shown, however, the entire region of the condenser is designed with its own condenser base 200, which is arranged above an evaporator base.

Fig. 4 zeigt ein bevorzugtes Ausführungsbeispiel einer Wärmepumpe und insbesondere eines Wärmepumpenabschnitts, der den "oberen" Bereich der Wärmepumpe, wie sie beispielsweise in Fig. 5 dargestellt ist, zeigt. Insbesondere entspricht der Motor M 110 von Fig. 5 dem Bereich, der von einer Motorwand 309 umgeben ist, die bei der Querschnittsdarstellung in Fig. 4 in dem Flüssigkeitsbereich 328 außen vorzugsweise mit Kühlrippen ausgebildet ist, um die Oberfläche der Motorwand 309 zu vergrößern. Ferner entspricht der Bereich des Motorgehäuses 300 in Fig. 4 dem entsprechenden Bereich 300 in Fig. 5. In Fig. 4 ist ferner das Radialrad 304 in einem detaillierteren Querschnitt dargestellt. Das Radialrad 304 ist an der Motorwelle 306 in einem im Querschnitt gabelförmigen Befestigungsbereich angebracht. Die Motorwelle 306 hat einen Rotor 307, der dem Stator 308 gegenüberliegt. Der Rotor 307 umfasst schematisch in Fig. 4 dargestellte Permanentmagnete. Insbesondere ist der Dampfweg 310 durch den Motorspalt 311 dargelegt. Der Motorspalt 311 erstreckt sich zwischen dem Rotor und dem Stator und mündet in dem weiteren Spalt 313, der entlang des im Querschnitt gabelförmigen Befestigungsbereichs der Welle 306 bis zum Leitraum 302 verläuft, wie es bei 346 ebenfalls dargestellt ist. Fig. 4 shows a preferred embodiment of a heat pump and in particular a heat pump section, the "upper" area of the heat pump, as shown for example in Fig. 5 is shown. In particular, the motor corresponds to M 110 from Fig. 5 the area surrounded by a motor wall 309, which is shown in the cross-sectional view in Fig. 4 is preferably formed on the outside in the liquid region 328 with cooling fins in order to enlarge the surface of the motor wall 309. Furthermore, the area of the motor housing 300 corresponds to Fig. 4 the corresponding area 300 in Fig. 5 , In Fig. 4 radial wheel 304 is also shown in a more detailed cross section. The radial wheel 304 is attached to the motor shaft 306 in a fastening area which is fork-shaped in cross section. The motor shaft 306 has a rotor 307, which is opposite the stator 308. The rotor 307 schematically includes FIG Fig. 4 permanent magnets shown. In particular, steam path 310 is set out through engine gap 311. The motor gap 311 extends between and opens into the rotor and the stator Another gap 313, which runs along the fastening area of the shaft 306, which is fork-shaped in cross section, to the control space 302, as is also shown at 346.

Darüber hinaus ist in Fig. 4 ein Notlager 344 dargestellt, das im Normalbetrieb die Welle nicht lagert. Stattdessen wird die Welle durch den Lagerabschnitt, der bei 343 gezeigt ist, gelagert. Das Notlager 344 ist lediglich vorhanden, um im Falle eines Schadens die Welle und damit das Radialrad zu lagern, damit das sich schnell drehende Radialrad im Falle eines Schadens keinen größeren Schaden in der Wärmepumpe anrichten kann. Fig. 4 zeigt ferner verschiedene Befestigungselemente, wie Schrauben, Muttern, etc. und verschiedene Abdichtungen in Form von diversen O-Ringen. Darüber hinaus zeigt Fig. 4 ein zusätzliches Konvektionselement 342, auf das später noch Bezug nehmend auf Fig. 10 eingegangen wird.In addition, in Fig. 4 an emergency camp 344 is shown, which does not support the shaft in normal operation. Instead, the shaft is supported by the bearing section shown at 343. The emergency bearing 344 is only available to support the shaft and thus the radial wheel in the event of damage, so that the rapidly rotating radial wheel cannot cause any greater damage in the heat pump in the event of damage. Fig. 4 also shows various fasteners, such as screws, nuts, etc. and various seals in the form of various O-rings. It also shows Fig. 4 an additional convection element 342, to which reference will be made later Fig. 10 is received.

Fig. 4 zeigt ferner einen Spritzschutz 360 im Dampfraum oberhalb des maximalen Volumens im Motorgehäuse, das normal mit flüssigem Arbeitsmittel gefüllt ist. Dieser Spritzschutz ist ausgebildet, um bei der Blasensiedung in den Dampfraum geschleuderte Flüssigkeitstropfen abzufangen. Vorzugsweise ist der Dampfweg 310, wie er schematisch in Fig. 4 angedeutet ist, so ausgebildet, dass er von dem Spritzschutz 360 profitiert, d.h. dass aufgrund der Strömung in den Motorspalt und den weiteren Spalt lediglich Arbeitsmitteldampf, nicht aber Flüssigkeitstropfen aufgrund der Siedung im Motorgehäuse angesaugt werden. Fig. 4 also shows a splash guard 360 in the vapor space above the maximum volume in the motor housing, which is normally filled with liquid working fluid. This splash guard is designed to intercept drops of liquid thrown into the vapor space during bubble boiling. Preferably, steam path 310 is as schematically shown in FIG Fig. 4 is indicated in such a way that it benefits from the splash guard 360, that is, because of the flow into the engine gap and the further gap, only working fluid vapor, but not liquid drops due to the boiling in the engine housing, are sucked in.

Die Wärmepumpe mit konvektiver Wellenkühlung hat vorzugsweise eine Dampfzuführung, die so ausgebildet ist, dass eine Dampfströmung durch den Motorspalt und den weiteren Spalt einen Lagerabschnitt, der ausgebildet ist, um die Motorwelle bezüglich des Stators zu lagern, nicht durchtritt. Dies ist in Fig. 4 angedeutet. Der Lagerabschnitt 343, der im vorliegenden Fall zwei Kugellager umfasst, ist von dem Motorspalt abgedichtet, und zwar z. B. durch O-Ringe 351. Damit kann der Arbeitsdampf lediglich, wie es durch den Weg 310 in Fig. 4 dargestellt ist, durch die Dampfzuführung in einen Bereich innerhalb der Motorwand 309 eintreten, von dort in einem freien Raum nach unten laufen und an dem Rotor 307 entlang durch den Motorspalt 311 in den weiteren Spalt 313 gelangen. Vorteilhaft daran ist, dass die Kugellager nicht von Dampf umströmt werden, dass also eine Lagerschmierung in den abgeschlossenen Kugellagern verbleibt und nicht durch den Motorspalt hindurchgezogen wird. Ferner wird auch sichergestellt, dass das Kugellager nicht befeuchtet wird, sondern immer in dem definierten Zustand beim Einbau verbleibt. Bei einem weiteren Ausführungsbeispiel ist das Motorgehäuse, wie es in Fig. 4 gezeigt ist, in der Betriebsposition der Wärmepumpe oben auf dem Kondensierergehäuse 114 angebracht, so dass sich der Stator oberhalb des Radialrads befindet und die Dampfströmung 310 durch den Motorspalt und den weiteren Spalt von oben nach unten verläuft.The heat pump with convective shaft cooling preferably has a steam supply which is designed in such a way that steam flow through the motor gap and the further gap does not pass through a bearing section which is designed to support the motor shaft with respect to the stator. This is in Fig. 4 indicated. The bearing section 343, which in the present case comprises two ball bearings, is sealed from the motor gap, namely, for. B. by O-rings 351. Thus, the working steam can only, as it through the path 310 in Fig. 4 is shown, enter through the steam supply into an area within the motor wall 309, run downward from there in a free space and pass along the rotor 307 through the motor gap 311 into the further gap 313. The advantage of this is that steam does not flow around the ball bearings, so that bearing lubrication remains in the sealed ball bearings and is not pulled through the motor gap. It also ensures that the ball bearing is not moistened, but always remains in the defined state during installation. In a further exemplary embodiment, the motor housing is as shown in Fig. 4 is shown mounted in the operating position of the heat pump on top of the condenser housing 114 so that the stator is above the radial wheel and the steam flow 310 runs through the motor gap and the further gap from top to bottom.

Ferner umfasst die Wärmepumpe den Lagerabschnitt 343, der ausgebildet ist, um die Motorwelle bezüglich des Stators zu lagern. Ferner ist der Lagerabschnitt so angeordnet, dass zwischen dem Lagerabschnitt und dem Radialrad 304 der Rotor 307 und der Stator 308 angeordnet sind. Dies hat den Vorteil, dass der Lagerabschnitt 343 im Dampfbereich innerhalb des Motorgehäuses angeordnet werden kann und der Rotor/Stator, dort wo die größte Verlustleistung entsteht, unterhalb des maximalen Flüssigkeitspegels 322 (Fig. 3) angeordnet werden kann. Damit ist eine optimale Anordnung geschaffen, durch die jeder Bereich in dem Medium ist, das für den Bereich am besten ist, um die Zwecke zu erreichen, nämlich die Motorkühlung einerseits und die konvektive Wellenkühlung andererseits und gegebenenfalls eine Kugellagerkühlung, auf die noch Bezug nehmend auf Fig. 10 eingegangen wird.The heat pump further includes the bearing section 343, which is designed to support the motor shaft with respect to the stator. Furthermore, the bearing section is arranged such that the rotor 307 and the stator 308 are arranged between the bearing section and the radial wheel 304. This has the advantage that the bearing section 343 can be arranged in the steam area within the motor housing and the rotor / stator, where the greatest power loss occurs, below the maximum liquid level 322 ( Fig. 3 ) can be arranged. This creates an optimal arrangement by which each area is in the medium that is best for the area to achieve the purposes, namely motor cooling on the one hand and convective shaft cooling on the other hand and possibly ball bearing cooling, to which reference is still made Fig. 10 is received.

Das Motorgehäuse umfasst ferner den Arbeitsmittelzulauf 330, um flüssiges Arbeitsmittel aus dem Kondensierer zur Motorkühlung an eine Wand des Verdichtermotors zu führen. Fig. 10 zeigt eine spezielle Implementierung dieses Arbeitsmittelzulaufs 362, der dem Zulauf 330 von Fig. 3 entspricht. Dieser Arbeitsmittelzulauf 362 verläuft in ein geschlossenes Volumen 364, das eine Kugellagerkühlung darstellt. Aus der Kugellagerkühlung tritt eine Ableitung heraus, die ein Röhrchen 366 umfasst, das das Arbeitsmittel nicht oben auf das Volumen des Arbeitsmittels 328, wie in Fig. 3 gezeigt, führt, sondern das das Arbeitsmittel unten an die Wand des Motors, also das Element 309, führt. Insbesondere ist das Röhrchen 366 ausgebildet, um innerhalb des Konvektionselements 342 angeordnet zu sein, das um die Motorwand 309 herum angeordnet ist, und zwar in einem gewissen Abstand, so dass innerhalb des Konvektionselements 342 und außerhalb des Konvektionselements 342 innerhalb des Motorgehäuses 300 ein Volumen an flüssigem Arbeitsfluid existiert.The motor housing also includes the working medium inlet 330 in order to guide liquid working medium from the condenser for cooling the motor to a wall of the compressor motor. Fig. 10 FIG. 12 shows a specific implementation of this work fluid inlet 362, that of inlet 330 of FIG Fig. 3 equivalent. This working fluid inlet 362 runs into a closed volume 364, which represents ball bearing cooling. A derivative emerges from the ball bearing cooling that includes a tube 366 that does not place the working fluid on top of the volume of the working fluid 328, as in FIG Fig. 3 shown, leads, but that the working medium leads down to the wall of the motor, i.e. the element 309. In particular, the tube 366 is designed to be arranged within the convection element 342, which is arranged around the motor wall 309, and at a certain distance, so that a volume increases inside the convection element 342 and outside the convection element 342 within the motor housing 300 liquid working fluid exists.

Durch eine Blasensiedung aufgrund des Arbeitsmittels, das in Kontakt mit der Motorwand 309 insbesondere im unteren Bereich ist, wo der frische Arbeitsmittelzulauf 366 endet, entsteht eine Konvektionszone 367 innerhalb des Volumens an Arbeitsflüssigkeit 328. Insbesondere werden die Siedeblasen durch das Blasensieden von unten nach oben gerissen. Dies führt zu einem laufenden "Umrühren", dahin gehend, dass heiße Arbeitsflüssigkeit von unten nach oben gebracht wird. Die Energie aufgrund des Blasensiedens geht dann in die Dampfblase über, die dann im Dampfvolumen 323 oberhalb des Flüssigkeitsvolumens 328 landet. Der dort entstehende Druck wird unmittelbar durch den Überlauf 324, die Überlauffortsetzung 340 und den Ablauf 342 in den Kondensierer gebracht. Damit findet ein dauernder Wärmeabtrag vom Motor in den Kondensierer statt, der hauptsächlich aufgrund der Ableitung von Dampf und nicht aufgrund der Ableitung von erwärmter Flüssigkeit stattfindet.A bubble boiling due to the working fluid, which is in contact with the motor wall 309, in particular in the lower region, where the fresh working fluid inlet 366 ends, creates a convection zone 367 within the volume of working fluid 328. In particular, the boiling bubbles are torn from the bottom upwards by the bubble boiling , This leads to an ongoing "stirring" in that hot working fluid is brought from the bottom up. The energy due to the bubble boiling then passes into the vapor bubble, which then ends up in the vapor volume 323 above the liquid volume 328. The pressure generated there is brought directly into the condenser through the overflow 324, the overflow continuation 340 and the outlet 342. This means that there is constant heat removal from the motor into the condenser, which is mainly due to the discharge of steam and not due to the discharge of heated liquid.

Dies bedeutet, dass die Wärme, die ja eigentlich die Abwärme des Motors ist, durch die Dampfabführung vorzugsweise genau dort hingelangt, wo sie hin soll, nämlich in das zu wärmende Kondensiererwasser. Damit wird die komplette Motorwärme im System gehalten, was insbesondere für Heizanwendungen der Wärmepumpe besonders günstig ist. Aber auch für Kühlungsanwendungen der Wärmepumpe ist die Wärmeabführung vom Motor in den Kondensierer günstig, weil der Kondensierer typischerweise mit einer effizienten Wärmeabführung, z.B. in Form eines Wärmetauschers oder einer direkten Wärmeabführung im zu wärmenden Gebiet gekoppelt ist. Es muss also keine eigene Motorabwärmevorrichtung geschaffen werden, sondern die von der Wärmepumpe ohnehin existierende Wärmeableitung vom Kondensierer nach außen wird durch die Motorkühlung gewissermaßen "mit benutzt".This means that the heat, which is actually the engine's waste heat, preferably gets exactly where it should go through the steam discharge, namely into the condenser water to be heated. This keeps the entire engine heat in the system, which is particularly favorable for heating applications of the heat pump. However, heat dissipation from the motor to the condenser is also favorable for cooling applications of the heat pump, because the condenser typically has an efficient heat dissipation, e.g. in the form of a heat exchanger or a direct heat dissipation in the area to be heated. It is therefore not necessary to create a separate engine waste heat device, but the heat dissipation from the condenser to the outside, which already exists from the heat pump, is "used" to a certain extent by the engine cooling.

Das Motorgehäuse ist ferner ausgebildet, um in einem Betrieb der Wärmepumpe den Maximalpegel an flüssigem Arbeitsmittel zu halten und um oberhalb des Pegels an flüssigem Arbeitsmittel den Dampfraum 323 zu schaffen. Die Dampfzuführung ist ferner derart ausgebildet, dass sie mit dem Dampfraum kommuniziert, so dass der Dampf im Dampfraum zur konvektiven Wellenkühlung durch den Motorspalt und den weiteren Spalt in Fig. 4 geleitet wird.The motor housing is also designed to maintain the maximum level of liquid working fluid during operation of the heat pump and to create the vapor space 323 above the level of liquid working fluid. The steam feed is also designed such that it communicates with the steam space, so that the steam in the steam space for convective wave cooling through the motor gap and the further gap in Fig. 4 is directed.

Bei der in Fig. 10 und Fig. 4 gezeigten Wärmepumpe ist der Ablauf als Überlauf im Motorgehäuse angeordnet, um flüssiges Arbeitsmittel oberhalb des Pegels in den Kondensierer zu leiten und um ferner einen Dampfweg zwischen dem Dampfraum und dem Kondensierer zu schaffen. Vorzugsweise ist der Ablauf 324 beides, nämlich sowohl Überlauf als auch Dampfweg. Diese Funktionalitäten können jedoch durch eine alternative Ausführung des Überlaufs einerseits und eines Dampfraums andererseits auch unter Verwendung verschiedener Elemente implementiert werden.At the in Fig. 10 and Fig. 4 shown heat pump, the drain is arranged as an overflow in the motor housing to guide liquid working fluid above the level in the condenser and to further create a steam path between the steam space and the condenser. The drain 324 is preferably both, namely both overflow and steam path. These functionalities can, however, be implemented by using an alternative design of the overflow on the one hand and a steam room on the other hand using different elements.

Die Wärmepumpe umfasst bei dem in Fig. 10 gezeigten Ausführungsbeispiel eine besondere Kugellagerkühlung, die insbesondere dadurch ausgebildet ist, dass um den Lagerabschnitt 343 das abgedichtete Volumen 364 mit flüssigem Arbeitsmittel ausgebildet ist. Der Zulauf 362 tritt in dieses Volumen ein und das Volumen hat einen Ablauf 366 von der Kugellagerkühlung in das Arbeitsmittelvolumen zur Motorkühlung. Damit wird eine separate Kugellagerkühlung geschaffen, die jedoch außen um das Kugellager herum verläuft und nicht innerhalb des Lagers, so dass durch diese Kugellagerkühlung zwar effizient gekühlt wird, jedoch nicht die Schmierfüllung des Lagers beeinträchtigt wird.The heat pump includes the in Fig. 10 Embodiment shown a special ball bearing cooling, which is formed in particular that the sealed volume 364 is formed with liquid working fluid around the bearing portion 343. The inlet 362 enters this volume and the volume has an outlet 366 from the ball bearing cooling into the working fluid volume for engine cooling. This creates a separate ball bearing cooling, which, however, runs around the outside of the ball bearing and not within the bearing, so that cooling through this ball bearing is efficient, but does not impair the lubricating filling of the bearing.

Wie es ferner in Fig. 10 gezeigt ist, umfasst der Arbeitsmittelzulauf 362 insbesondere den Leitungsabschnitt 366, der sich nahezu bis zum Boden des Motorgehäuses 300 bzw. bis zum Grund des flüssigen Arbeitsmittels 328 im Motorgehäuse erstreckt oder aber wenigstens bis zu einem Bereich unterhalb des maximalen Pegels erstreckt, um insbesondere flüssiges Arbeitsmittel aus der Kugellagerkühlung heraus zu führen und das flüssige Arbeitsmittel der Motorwand zuzuführen.As further stated in Fig. 10 is shown, the working fluid inlet 362 in particular comprises the line section 366, which extends almost to the bottom of the motor housing 300 or to the bottom of the liquid working fluid 328 in the motor housing or at least to a region below the maximum level, in particular to liquid working fluid out of the ball bearing cooling and the liquid working fluid to the motor wall.

Fig. 10 und Fig. 4 zeigen ferner das Konvektionselement, das von der Wand des Verdichtermotors 309 beabstandet in dem flüssigen Arbeitsmittel angeordnet ist, und das in einem unteren Bereich durchlässiger für das flüssige Arbeitsmittel als in einem oberen Bereich ist. Insbesondere ist bei dem in Fig. 10 gezeigten Ausführungsbeispiel der obere Bereich nicht durchlässig und der untere Bereich relativ stark durchlässig, und das Konvektionselement ist bei der Ausführung in Form einer "Krone" ausgebildet, die umgekehrt in das Flüssigkeitsvolumen gesetzt ist. Damit kann die Konvektionszone 367 ausgebildet werden, wie sie in Fig. 10 dargestellt ist. Es können jedoch alternative Konvektionselemente 342 verwendet werden, die in irgendeiner Weise oben weniger durchlässig als unten sind. So könnte beispielsweise ein Konvektionselement genommen werden, das unten Löcher hat, die in Form oder Anzahl einen größeren Durchlassquerschnitt aufweisen als Löcher im oberen Bereich. Alternative Elemente zur Erzeugung der Konvektionsströmung 367, wie sie in Fig. 10 dargestellt ist, sind ebenfalls verwendbar. Fig. 10 and Fig. 4 also show the convection element which is spaced from the wall of the compressor motor 309 in the liquid working fluid and which is more permeable to the liquid working fluid in a lower region than in an upper region. In particular, in Fig. 10 In the embodiment shown, the upper area is not permeable and the lower area is relatively permeable, and the convection element is designed in the form of a "crown", which is placed in the liquid volume in reverse. The convection zone 367 can thus be formed as shown in FIG Fig. 10 is shown. However, alternative convection elements 342 can be used which are in some way less permeable at the top than at the bottom. For example, a convection element could be used which has holes at the bottom which have a larger passage cross section in terms of shape or number than holes in the upper region. Alternative elements for generating the convection flow 367 as shown in Fig. 10 are also usable.

Zur Motorsicherung im Falle eines Lagerproblems ist das Notlager 344 vorgesehen, das ausgebildet ist, um die Motorwelle 306 zwischen dem Rotor 370 und dem Radialrad 304 abzusichern. Insbesondere erstreckt sich der weitere Spalt 313 durch einen Lagerspalt des Notlagers oder vorzugsweise durch absichtlich in dem Notlager eingebrachte Bohrungen. Bei einer Implementierung ist das Notlager mit einer Vielzahl von Bohrungen versehen, so dass das Notlager selbst einen möglichst geringen Strömungswiderstand für die Dampfströmung 10 zu Zwecken der konvektiven Wellenkühlung darstellt.The emergency bearing 344, which is designed to protect the motor shaft 306 between the rotor 370 and the radial wheel 304, is provided for securing the motor in the event of a bearing problem. In particular, the further gap 313 extends through a bearing gap of the emergency camp or preferably through holes deliberately made in the emergency camp. In one implementation, the emergency camp is provided with a large number of holes, so that the emergency camp itself represents the lowest possible flow resistance for the steam flow 10 for the purposes of convective wave cooling.

Fig. 11 zeigt einen schematischen Querschnitt durch eine Motorwelle 306, wie sie für bevorzugte Ausführungsformen einsetzbar ist. Die Motorwelle 306 umfasst einen schraffierten Kern, wie er in Fig. 11 dargestellt ist, der in seinem oberen Abschnitt, der den Lagerabschnitt 343 darstellt, von vorzugsweise zwei Kugellagern 398 und 399 gelagert ist. Weiter unten an der Welle 306 ist der Rotor mit Permanentmagneten 307 ausgebildet. Diese Permanentmagnete sind auf der Motorwelle 306 aufgesetzt und werden oben und unten durch Stabilisierungsbandagen 397 gehalten, die vorzugsweise aus Karbon sind. Ferner werden die Permanentmagnete durch eine Stabilisierungshülse 396 gehalten, die ebenfalls als Karbonhülse vorzugsweise ausgebildet ist. Diese Sicherungs- oder Stabilisierungshülse führt dazu, dass die Permanentmagnete sicher auf der Welle 306 bleiben und sich nicht aufgrund der sehr starken Fliehkräfte aufgrund der hohen Drehzahl der Welle von der Welle lösen können. Fig. 11 shows a schematic cross section through a motor shaft 306, as can be used for preferred embodiments. Motor shaft 306 includes a hatched core as shown in FIG Fig. 11 is shown, which is supported in its upper section, which represents the bearing section 343, preferably by two ball bearings 398 and 399. Further down on the shaft 306, the rotor is formed with permanent magnets 307. These permanent magnets are placed on the motor shaft 306 and are held at the top and bottom by stabilizing bandages 397, which are preferably made of carbon. Furthermore, the permanent magnets are held by a stabilizing sleeve 396, which is also preferably designed as a carbon sleeve. This securing or stabilizing sleeve means that the permanent magnets remain securely on the shaft 306 and cannot separate from the shaft due to the very strong centrifugal forces due to the high speed of the shaft.

Vorzugsweise ist die Welle aus Aluminium ausgebildet und hat einen im Querschnitt gabelförmigen Befestigungsabschnitt 395, der eine Halterung für das Radialrad 304 darstellt, wenn das Radialrad 304 und die Motorwelle nicht einstückig, sondern mit zwei Elementen ausgebildet sind. Ist das Radialrad 304 mit der Motorwelle 306 einstückig ausgebildet, so ist der Radhalterungsabschnitt 395 nicht vorhanden, sondern dann schließt das Radialrad 304 unmittelbar an die Motorwelle an. In dem Bereich der Radhalterung 395 befindet sich auch, wie es aus Fig. 10 ersichtlich ist, das Notlager 344, das vorzugsweise ebenfalls aus Metall und insbesondere Aluminium ausgebildet ist.The shaft is preferably made of aluminum and has a fastening section 395 which is fork-shaped in cross section and which forms a holder for the radial wheel 304 if the radial wheel 304 and the motor shaft are not formed in one piece but with two elements. If the radial wheel 304 is formed in one piece with the motor shaft 306, then the wheel mounting section 395 is not present, but then the radial wheel 304 directly connects to the motor shaft. In the area of the wheel holder 395 there is also how it looks Fig. 10 can be seen, the emergency camp 344, which is preferably also made of metal and in particular aluminum.

Nachfolgend werden spezielle bevorzugte Ausführungsbeispiele des zweiten Aspekts bezüglich der Motorkühlung anhand von Fig. 10 dargestellt. Insbesondere ist das Motorgehäuse 300, das auch in Fig. 3 dargestellt ist, ausgebildet, um einen Druck zu erhalten, der höchstens um 20 % größer als der Druck im Kondensierergehäuse in einem Betrieb der Wärmepumpe ist. Ferner kann das Motorgehäuse 300 ausgebildet sein, um einen Druck zu erhalten, der so niedrig ist, dass bei einer Erwärmung der Motorwand 309 durch den Betrieb des Motors eine Blasensiedung in dem flüssigen Arbeitsmittel 328 und in dem Motorgehäuse 300 stattfindet.In the following, specific preferred exemplary embodiments of the second aspect with regard to engine cooling are described with reference to FIG Fig. 10 shown. In particular, the motor housing 300, which is also shown in FIG Fig. 3 is shown, designed to obtain a pressure that is at most 20% greater than the pressure in the condenser housing in an operation of the heat pump. Furthermore, the motor housing 300 can be designed to maintain a pressure which is so low that when the motor wall 309 is heated by the operation of the motor, a bubble boiling takes place in the liquid working fluid 328 and in the motor housing 300.

Vorzugsweise ist ferner der Lagerabschnitt 343 oberhalb des maximalen Flüssigkeitspegels angeordnet, so dass selbst bei einer Undichtigkeit der Motorwand 309 kein flüssiges Arbeitsmittel in den Lagerabschnitt kommen kann. Dagegen ist der Bereich des Motors, der zumindest teilweise den Rotor und den Stator umfasst, unterhalb des maximalen Pegels, da typischerweise im Lagerbereich einerseits, aber auch zwischen Rotor und Stator andererseits die größte Verlustleistung anfällt, die durch die konvektive Blasensiedung optimal weg transportiert werden kann.Furthermore, the bearing section 343 is preferably arranged above the maximum liquid level, so that even if there is a leak in the motor wall 309, no liquid Work equipment can come into the storage section. In contrast, the area of the motor, which at least partially includes the rotor and the stator, is below the maximum level, since typically the greatest power loss occurs in the bearing area on the one hand, but also between the rotor and stator on the other hand, which can be optimally transported away by the convective bubble boiling ,

Wie es insbesondere in Fig. 4 gezeigt ist, ist der Überlauf 324 so ausgebildet, dass er einen ersten Röhrenabschnitt aufweist, der in das Motorgehäuse vorsteht, dass er ferner einen zweiten Leitungsabschnitt 340 hat, der sich von einem Kurvenabschnitt 317 aus zu einem Ablauf 342 erstreckt, der ferner außerhalb eines Bereichs angeordnet ist, in dem der Leitraum 302 durch das Verdichterrad 304 verdichteten Arbeitsdampf in den Kondensierer einführt.As it is particularly in Fig. 4 As shown, the overflow 324 is configured to have a first tube portion that protrudes into the motor housing, that it also has a second conduit portion 340 that extends from a curve portion 317 to a drain 342 that is further out of range is arranged in which the control space 302 introduces compressed working steam compressed by the compressor wheel 304 into the condenser.

Fig. 9 zeigt ferner eine schematische Darstellung der Wärmepumpe zur Motorkühlung. Insbesondere ist der Arbeitsmittelablauf 324 alternativ zu Fig. 4 oder Fig. 20 ausgebildet. Der Ablauf muss nicht unbedingt ein passiver Ablauf sein, sondern kann auch ein aktiver Ablauf sein, der z.B. durch eine Pumpe oder ein anderes Element gesteuert wird und abhängig von einer Pegelerfassung des Pegels 322 etwas Arbeitsmittel aus dem Motorgehäuse 300 absaugt. Alternativ könnte auch statt des röhrenförmigen Ablaufs 324 eine wiederverschließbare Öffnung am Boden des Motorgehäuses 300 sein, um durch kurzes Öffnen der wiederverschließbaren Öffnung eine gesteuerte Menge an Arbeitsmittel von dem Motorgehäuse in den Kondensierer ablaufen zu lassen. Fig. 9 also shows a schematic representation of the heat pump for engine cooling. In particular, the working material flow 324 is alternatively to Fig. 4 or Fig. 20. The sequence does not necessarily have to be a passive sequence, but can also be an active sequence, which is controlled, for example, by a pump or another element and, depending on a level detection of level 322, sucks some working fluid out of the motor housing 300. Alternatively, instead of the tubular outlet 324, there could be a reclosable opening at the bottom of the motor housing 300 in order to allow a controlled amount of working fluid to drain from the motor housing into the condenser by briefly opening the reclosable opening.

Fig. 9 zeigt ferner das zu erwärmende Gebiet bzw. einen Wärmetauscher 391, von dem ein Kondensiererzulauf 204 in den Kondensierer verläuft, und aus dem ein Kondensierer-ablauf 203 austritt. Ferner ist eine Pumpe 392 vorgesehen, um den Kreislauf aus Kondensierer-Zulauf 204 und Kondensierer-Ablauf 203 zu treiben. Diese Pumpe 392 hat vorzugsweise eine Abzweigung zu dem Zulauf 362, wie es schematisch dargestellt ist. Damit wird keine eigene Pumpe benötigt, sondern die ohnehin vorhandene Pumpe für den Kondensiererablauf treibt auch einen kleinen Teil des Kondensiererablaufs in die Zulaufleitung 362 und damit in das Flüssigkeitsvolumen 328. Fig. 9 also shows the area to be heated or a heat exchanger 391, from which a condenser inlet 204 runs into the condenser and from which a condenser outlet 203 emerges. A pump 392 is also provided to drive the circuit of condenser inlet 204 and condenser outlet 203. This pump 392 preferably has a branch to the inlet 362, as is shown schematically. This means that no separate pump is required, but the pump for the condenser drain, which is present anyway, also drives a small part of the condenser drain into the feed line 362 and thus into the liquid volume 328.

Darüber hinaus zeigt Fig. 9 eine allgemeine Darstellung des Kondensierers 114, des Verdichtermotors mit Motorwand 309 und des Motorgehäuses 300, wie sie auch anhand von Fig. 3 beschrieben worden ist.It also shows Fig. 9 a general representation of the condenser 114, the compressor motor with motor wall 309 and the motor housing 300, as also shown in FIG Fig. 3 has been described.

Claims (15)

  1. Heat pump comprising:
    a condenser with a condenser housing (114);
    an evaporator with an evaporator zone (102);
    a compressor with a compressor engine that is mounted to the condenser housing (114) and comprises a rotor (307) and a stator (308), the rotor comprising an engine shaft (306) to which a radial wheel (304) is mounted, extending into the evaporator zone (102);
    a routing area (302) configured to receive vapor compressed by the radial wheel (304) and to route the same into the condenser (114);
    an engine housing (300) surrounding the compressor engine; and
    a vapor supply (320) for supplying vapor (310) in the engine housing (300) to an engine gap (311) between the stator and the rotor (307),
    wherein the compressor engine is configured such that a further gap (313) extends from the engine gap (311) along the radial wheel (304) to the routing area (302), such that the vapor (310) is drawn into the condenser along the engine gap (311) and the further gap (313) from the engine housing (300) via the vapor supply (320).
  2. Heat pump according to claim 1,
    wherein the vapor supply (320) is configured such that a vapor flow (10) through the engine gap (311) and the further gap (313) does not pass through a support portion (333) configured to support the engine shaft (306) with respect to the stator (308).
  3. Heat pump according to claim 1 or 2, wherein the engine housing (300) is arranged on top of the condenser housing (114) in operating direction of the heat pump, such that the stator (308) is above the radial wheel (304) and the vapor flow (310) passes through the engine gap (311) and the further gap (313) from top to bottom.
  4. Heat pump according to one of the preceding claims comprising a support portion (343) configured to support the engine shaft (306) with respect to the stator (308), wherein the support portion is arranged such that the rotor (307) and the stator (308) of the compressor engine are arranged between the support portion and the radial wheel.
  5. Heat pump according to one of the preceding claims,
    wherein the engine housing (300) comprises a working medium feed (330, 362) to supply liquid working medium from the condenser to a wall (309) of the compressor engine for engine cooling, and wherein the engine housing (300) further comprises a vapor exhaust (324) to discharge vapor out of the vapor area (323) in the engine housing.
  6. Heat pump according to claim 5,
    wherein the engine housing (300) is further configured to maintain a level (322) of liquid working medium during operation of the heat pump and to provide a vapor area (323) above the level of liquid working medium, wherein the vapor supply (320) is configured to communicate with the vapor area (323).
  7. Heat pump according to claim 6,
    wherein an overflow (324) is arranged in the engine housing (300) to route liquid working medium above the level (322) into the condenser (114) and to provide, as vapor exhaust (324), a vapor path between the vapor area (323) and the condenser (114).
  8. Heat pump according to one of claims 5 to 7,
    comprising a support portion configured to support the engine shaft with respect to the stator, wherein the support portion is arranged such that the rotor and the stator of the compressor engine are arranged between the support portion and the radial wheel, wherein a volume (364) sealed from the support portion (343) is configured and wherein the working medium feed (362) is configured to route the liquid working medium into the sealed volume (364) for support cooling.
  9. Heat pump according to claim 8, wherein the working medium feed (362) is further configured to guide liquid working medium out of the sealed volume (366) to the wall (309) of the compressor engine.
  10. Heat pump according to one of the preceding claims,
    wherein the engine housing is configured to hold a level (323) of liquid working medium during operation of the heat pump, such that the liquid working medium at least partly surrounds a wall of the compressor engine, wherein the wall of the compressor engine is configured around the stator, wherein the engine housing (300) is further configured to have an internal pressure equal to or greater than a pressure in the condenser (114), such that when heating the wall of the compressor engine, bulk boiling (367) takes place in the liquid working medium (328) due to engine power loss.
  11. Heat pump according to one of claims 6 to 10, further comprising a convection element (342) that is arranged spaced apart from the wall (309) of the compressor engine in the liquid working medium (328) and that is more permeable for the liquid operating medium in a lower area than in an upper area.
  12. Heat pump according to claim 11, wherein the convection element (342) is crown-shaped, wherein an area of the convection element defines the bottom area with crown prongs and the upper area of the convection element (342) is impermeable for the liquid working medium.
  13. Heat pump according to one of the preceding claims, wherein an emergency support (344) for securing the engine shaft (306) is arranged between the rotor (307) and the radial wheel (304), wherein the further gap extends through bores in the emergency support (344) or through a support gap of the emergency support.
  14. Method for producing a heat pump, comprising: a condenser with a condenser housing (114); an evaporator with an evaporator zone (102); a compressor with a compressor engine that is mounted to the condenser housing (114) and comprises a rotor (307) and a stator (308), the rotor comprising an engine shaft (306) to which a radial wheel (304) is mounted, extending into the evaporator zone (102); a routing area (302) configured to receive vapor compressed by the radial wheel (304) and to route the same into the condenser (114); an engine housing (300) surrounding the compressor engine, and a vapor supply (320) for supplying vapor (310) in the engine housing (300) to an engine gap (311) between the stator and the rotor (307), the method comprising:
    forming the compressor engine such that a further gap (313) extends from the engine gap (311) along the radial wheel (304) to the routing area (302), such that the vapor (310) is drawn into the condenser along the engine gap (311) and the further gap (313) from the engine housing (300) via the vapor supply (320).
  15. Method for operating a heat pump, comprising: a condenser with a condenser housing (114); an evaporator with an evaporator zone (102); a compressor with a compressor engine that is mounted to the condenser housing (114) and comprises a rotor (307) and a stator (308), the rotor comprising an engine shaft (306) to which a radial wheel (304) is mounted, extending into the evaporator zone (102); a routing area (302) configured to receive vapor compressed by the radial wheel (304) and to route the same into the condenser (114); an engine housing (300) surrounding the compressor engine; an engine gap (311) between the stator and the rotor (307), wherein the compressor engine is configured such that a further gap (313) extends from the engine gap (311) along the radial wheel (304) to the routing area (302); the method comprising:
    supplying vapor (310) in the engine housing (300) through a vapor supply (320) in the engine gap (311) and the further gap (313) to the radial wheel (304) and into the routing area (302), wherein the vapor (310) is drawn into the condenser along the engine gap (311) and the further gap (313) from the engine housing (300) via the vapor supply (320).
EP17709020.6A 2016-03-02 2017-02-28 Heat pump with convective shaft cooling Active EP3423762B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016203407.3A DE102016203407A1 (en) 2016-03-02 2016-03-02 Heat pump with convective wave cooling
PCT/EP2017/054624 WO2017148932A1 (en) 2016-03-02 2017-02-28 Heat pump with convective shaft cooling

Publications (2)

Publication Number Publication Date
EP3423762A1 EP3423762A1 (en) 2019-01-09
EP3423762B1 true EP3423762B1 (en) 2020-01-29

Family

ID=58231591

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17709020.6A Active EP3423762B1 (en) 2016-03-02 2017-02-28 Heat pump with convective shaft cooling

Country Status (3)

Country Link
EP (1) EP3423762B1 (en)
DE (1) DE102016203407A1 (en)
WO (1) WO2017148932A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017215085A1 (en) * 2017-08-29 2019-02-28 Efficient Energy Gmbh Heat pump with a cooling device for cooling a Leitraums or a suction mouth
DE102019133241A1 (en) * 2019-12-05 2021-06-10 Efficient Energy Gmbh SPECIAL MEASURES FOR TEMPERATURE CONTROL OF A ROTOR OF AN ELECTRIC MOTOR
DE102019135317A1 (en) * 2019-12-19 2021-06-24 Efficient Energy Gmbh HEAT PUMP WITH EFFICIENT DIFFUSER
FR3106943B1 (en) 2020-02-05 2023-05-26 Leviathan Dynamics ROTOR COOLING DEVICE AND ROTATING MACHINE COMPRISING IT

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW233337B (en) * 1992-01-02 1994-11-01 Carrier Corp
IL106945A (en) 1993-09-08 1997-04-15 Ide Technologies Ltd Centrifugal compressor and heat pump containing it
KR100421390B1 (en) * 2001-11-20 2004-03-09 엘지전자 주식회사 Turbo compressor cooling structure
DE502006009456D1 (en) 2006-04-04 2011-06-16 Efficient Energy Gmbh HEAT PUMP
US7704056B2 (en) * 2007-02-21 2010-04-27 Honeywell International Inc. Two-stage vapor cycle compressor
BE1019030A5 (en) * 2009-08-03 2012-01-10 Atlas Copco Airpower Nv TURBO COMPRESSOR SYSTEM.
US8931304B2 (en) * 2010-07-20 2015-01-13 Hamilton Sundstrand Corporation Centrifugal compressor cooling path arrangement
DE102012220199A1 (en) 2012-11-06 2014-05-08 Efficient Energy Gmbh Condenser, liquefying process and heat pump
CN105358921B (en) * 2013-06-12 2018-02-23 丹佛斯公司 Compressor with rotor cooling channel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3423762A1 (en) 2019-01-09
DE102016203407A1 (en) 2017-09-07
WO2017148932A1 (en) 2017-09-08

Similar Documents

Publication Publication Date Title
EP3423762B1 (en) Heat pump with convective shaft cooling
EP2341300B1 (en) Heat pump
DE102016203414B4 (en) Heat pump with a third-party gas collecting chamber, method for operating a heat pump and method for producing a heat pump
EP2909452B1 (en) Apparatus for producing electrical energy with an orc cycle
DE102012220199A1 (en) Condenser, liquefying process and heat pump
EP3161320B1 (en) Side channel pump
WO2017157806A1 (en) Two-stage heat pump system, method for operating a heat pump system, and method for manufacturing a heat pump system
WO2017148930A1 (en) Electric motor, heat pump having the electric motor, method for producing the electric motor, and method for operating the electric motor
WO2017148934A1 (en) Heat pump with a motor cooling arrangement
EP3676544B1 (en) Heat pump comprising a cooling device for cooling a guide space and a suction mouth
DE102017217730B4 (en) CONDENSER WITH A FILLING AND HEAT PUMP
EP3423766A1 (en) Heat pump with a gas trap, method for operating a heat pump with a gas trap, and method for producing a heat pump with a gas trap
DE1751041A1 (en) Method and device for drying compressed air
DE102016204153A1 (en) Heat pump system with pumps, method for operating a heat pump system and method for producing a heat pump system
DE102015209848A1 (en) Heat pump with entangled evaporator / condenser arrangement and evaporator bottom
DE2405300A1 (en) STEAM COMPRESSION AND COOLING PROCESS AND COOLING SYSTEM FOR CARRYING OUT THE PROCESS
WO2018015451A1 (en) Heat pump having a level-regulating throttle and method for producing a heat pump
DE102012220186A1 (en) Mist separator and evaporator
EP2343489B1 (en) Heat pump
DE102016204152A1 (en) Heat pump system with heat exchangers, method for operating a heat pump system and method for producing a heat pump system
EP0060391A2 (en) Fluid-pumping method within an absorption heat pump for carrying out the method

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180827

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190821

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1228783

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017003632

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200621

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200529

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200228

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017003632

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1228783

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230222

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230228

Year of fee payment: 7

Ref country code: GB

Payment date: 20230220

Year of fee payment: 7

Ref country code: DE

Payment date: 20221206

Year of fee payment: 7

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230519

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502017003632

Country of ref document: DE

Owner name: VERTIV SRL, IT

Free format text: FORMER OWNER: EFFICIENT ENERGY GMBH, 85622 FELDKIRCHEN, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20240215 AND 20240221