WO2018229864A1 - Air conditioning device - Google Patents

Air conditioning device Download PDF

Info

Publication number
WO2018229864A1
WO2018229864A1 PCT/JP2017/021800 JP2017021800W WO2018229864A1 WO 2018229864 A1 WO2018229864 A1 WO 2018229864A1 JP 2017021800 W JP2017021800 W JP 2017021800W WO 2018229864 A1 WO2018229864 A1 WO 2018229864A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
refrigerant
adjustment valve
compressor
control device
Prior art date
Application number
PCT/JP2017/021800
Other languages
French (fr)
Japanese (ja)
Inventor
圭吾 岡島
昌彦 中川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201780090051.XA priority Critical patent/CN110709648B/en
Priority to JP2019524594A priority patent/JP6755396B2/en
Priority to PCT/JP2017/021800 priority patent/WO2018229864A1/en
Publication of WO2018229864A1 publication Critical patent/WO2018229864A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles

Definitions

  • This invention relates to an air conditioner using a non-azeotropic refrigerant mixture.
  • an air conditioner having a refrigerant circuit in which a compressor, a condenser, an expansion valve, an evaporator, and an accumulator are sequentially connected by piping (for example, see Patent Document 1).
  • the air conditioner of Patent Document 1 increases the temperature of the air cooled by the evaporator with a condenser that acts as a reheater, and suppresses the temperature drop of the air blown into the room. Yes.
  • the refrigerant circulating in the refrigerant circuit includes a single refrigerant and a mixed refrigerant.
  • a mixed refrigerant an azeotropic mixed refrigerant in which refrigerants having the same boiling point are mixed with a refrigerant having different boiling points is mixed.
  • an azeotropic refrigerant mixture There is an azeotropic refrigerant mixture.
  • the non-azeotropic refrigerant mixture includes a low boiling point refrigerant having a relatively low boiling point and a high boiling point refrigerant having a relatively high boiling point.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an air conditioner that realizes an efficient operation utilizing the characteristics of a non-azeotropic refrigerant mixture.
  • the air conditioner according to the present invention includes a compressor, a condenser, a throttling device, an evaporator, and an accumulator, which are sequentially connected and include a first refrigerant and a second refrigerant having a boiling point higher than that of the first refrigerant.
  • the second adjusting valve are respectively controlled to adjust the ratio of the first refrigerant in the non-azeotropic refrigerant mixture sucked into the compressor.
  • the ratio of the first refrigerant in the non-azeotropic refrigerant mixture to be sucked into the compressor is adjusted by controlling the first regulating valve and the second regulating valve, respectively. Since the pressure can be increased and the high pressure and the temperature of the refrigerant discharged from the compressor can be increased, efficient operation utilizing the characteristics of the non-azeotropic refrigerant mixture can be realized.
  • FIG. FIG. 1 is a diagram showing a configuration related to the refrigerant circuit of the air-conditioning conditioning system according to Embodiment 1 of the present invention.
  • the air conditioning system 100 includes an air conditioning apparatus 200 and a controller 300.
  • the air conditioner 200 is a dehumidifier installed in a room such as a room.
  • the air conditioner 200 may be an industrial dehumidifier or a dehumidifier installed in a general household.
  • the air conditioner 200 includes a compressor 1, a condenser 2, an expansion device 3, an evaporator 4, an accumulator (ACC) 6, a hot gas electromagnetic valve 7, a first electromagnetic valve 8, and a second electromagnetic valve 9. Yes.
  • the first electromagnetic valve 8 is provided on the upstream side of the accumulator 6, that is, between the evaporator 4 and the accumulator 6.
  • the second electromagnetic valve 9 is provided on the downstream side of the accumulator 6, that is, between the accumulator 6 and the compressor 1.
  • the main pipe 20 includes a discharge pipe 21 arranged on the high pressure side, a liquid pipe 22 arranged on the high pressure side, a liquid pipe 23 arranged on the low pressure side, and a suction pipe arranged on the low pressure side. 24.
  • the discharge pipe 21 is a pipe connecting the discharge side of the compressor 1 and the inflow side of the condenser 2.
  • High-pressure refrigerant discharged from the compressor 1 flows through the discharge pipe 21.
  • the liquid pipe 22 is a pipe that connects the outflow side of the condenser 2 and the inflow side of the expansion device 3.
  • a high-pressure liquid refrigerant flowing out of the condenser 2 flows through the liquid pipe 22.
  • the liquid pipe 23 is a pipe connecting the outflow side of the expansion device 3 and the inflow side of the evaporator 4.
  • the low-pressure two-phase refrigerant that has flowed out of the expansion device 3 flows through the liquid pipe 23.
  • the suction pipe 24 is a pipe connecting the outflow side of the evaporator 4 and the suction side of the compressor 1.
  • the low-pressure gas refrigerant collected from the evaporator 4 flows through the suction pipe 24.
  • the suction pipe 24 has a bypass pipe 24 a that connects between the evaporator 4 and the first electromagnetic valve 8, between the second electromagnetic valve 9 and the compressor 1, and bypasses the accumulator 6. More specifically, the intake pipe 24 is provided with upstream branching means 24b upstream of the first electromagnetic valve 8, that is, between the evaporator 4 and the first electromagnetic valve 8. The intake pipe 24 is provided with a downstream branching unit 24 c downstream of the second electromagnetic valve 9, that is, between the second electromagnetic valve 9 and the compressor 1. That is, the upstream branching unit 24b and the downstream branching unit 24c are connected by the bypass pipe 24a.
  • the air conditioner 200 has a hot gas bypass circuit 15 that connects between the discharge side of the compressor 1 and the condenser 2 and between the condenser 2 and the expansion device 3.
  • the hot gas bypass circuit 15 includes a hot gas defrost pipe 25 and a hot gas solenoid valve 7. More specifically, the first branching means 25 a is provided in the middle of the discharge pipe 21, and the second branching means 25 b is provided in the middle of the liquid pipe 22. That is, the first branching means 25 a and the second branching means 25 b are connected by the hot gas defrost pipe 25, and the hot gas electromagnetic valve 7 is disposed in the hot gas defrost pipe 25.
  • the air conditioner 200 of the first embodiment uses a first refrigerant and a second refrigerant having a higher boiling point than the first refrigerant as refrigerant that circulates through the refrigerant circuit formed by the main circuit 10 and the hot gas bypass circuit 15.
  • a non-azeotropic refrigerant mixture is used.
  • the first refrigerant is a low-boiling refrigerant having a relatively low boiling point
  • the second refrigerant is a high-boiling refrigerant having a relatively high boiling point.
  • the non-azeotropic mixed refrigerant is, for example, R407C or R448A.
  • the non-azeotropic refrigerant mixture is a refrigerant mixture of R32, R125, R134a, R1234yf, and CO 2, and the condition that the ratio XR32 (wt%) of R32 is “33 ⁇ XR32 ⁇ 39”;
  • the ratio XR125 (wt%) of “27 ⁇ XR125 ⁇ 33”, the ratio XR134a (wt%) of R134a is “11 ⁇ XR134a ⁇ 17”, and the ratio XR1234yf (wt%) of R1234yf is The condition that “11 ⁇ XR1234yf ⁇ 17”, the condition that the CO 2 ratio XCO 2 (wt%) is “3 ⁇ XCO 2 ⁇ 9”, and the sum of XR32, XR125, XR134a, XR1234yf, and XCO 2 are A refriger
  • the compressor 1 compresses the refrigerant.
  • the compressor 1 may be a constant speed compressor or an inverter compressor provided with a motor driven by an inverter.
  • the condenser 2 condenses the refrigerant compressed in the compressor 1.
  • the condenser 2 is composed of, for example, a fin-and-tube heat exchanger, and exchanges heat between the refrigerant and air.
  • the expansion device 3 is composed of, for example, an electronic expansion valve, and expands the refrigerant condensed in the condenser 2.
  • the evaporator 4 evaporates the refrigerant expanded in the expansion device 3.
  • the evaporator 4 consists of a fin and tube type heat exchanger, for example, and heat-exchanges between a refrigerant
  • the compressor 1 causes liquid compression. That is, when the liquid refrigerant is sucked into the compressor 1, since the liquid is incompressible, a large pressure is generated inside the compressor 1, and a severe impact sound is generated. Further, since the liquid refrigerant dissolves in the oil in the compressor 1, the concentration of the oil is diluted and the viscosity of the oil is lowered, so that the compressor 1 may break down due to poor lubrication. In order to prevent such inconvenience, the accumulator 6 is provided in the main circuit 10 of the air conditioner 200.
  • Whether or not the liquid refrigerant has returned to the compressor 1 can be determined based on the value of the suction superheat degree (hereinafter referred to as suction SH).
  • suction SH can be obtained by subtracting the low-pressure saturation temperature from the suction temperature measured by the suction pipe temperature sensor 33.
  • the accumulator 6 is for separating the refrigerant flowing into the container into gas and liquid and returning the gas refrigerant to the compressor 1.
  • the hot gas solenoid valve 7 is an electromagnetic valve that is in an open state that allows the refrigerant to pass therethrough when in the ON state, and that is in a closed state that blocks the refrigerant when in the OFF state. If the hot gas solenoid valve 7 is in the ON state, the refrigerant discharged from the compressor 1 passes through the hot gas bypass circuit 15.
  • the first electromagnetic valve 8 and the second electromagnetic valve 9 are electromagnetic valves that are in an open state in which the refrigerant is allowed to pass in the ON state and are in a closed state in which the refrigerant is shut off in the OFF state.
  • the first electromagnetic valve 8 and the second electromagnetic valve 9 are in the ON state, the refrigerant that has passed through the evaporator 4 passes through the accumulator 6.
  • the first electromagnetic valve 8 corresponds to the “first regulating valve” of the present invention
  • the second electromagnetic valve 9 corresponds to the “second regulating valve” of the present invention.
  • the air conditioner 200 has a fan 5 shared by the evaporator 4 and the condenser 2.
  • the fan 5 can send wind to the evaporator 4 and can also send wind to the condenser 2. That is, the fan 5 acts to promote the evaporation of the refrigerant in the evaporator 4, that is, the release of cold heat, and to promote the condensation of the refrigerant in the condenser 2, that is, the release of hot heat.
  • the air conditioning apparatus 200 includes a discharge pipe temperature sensor 31, a high pressure sensor 32, a suction pipe temperature sensor 33, and a low pressure sensor 34.
  • the discharge pipe temperature sensor 31 is provided around the discharge port of the compressor 1 and measures a discharge temperature that is the temperature of the refrigerant discharged from the compressor 1.
  • the high pressure sensor 32 is provided around the discharge port of the compressor 1 and measures a high pressure that is the pressure of the refrigerant discharged from the compressor 1.
  • the suction pipe temperature sensor 33 is provided in the vicinity of the suction port of the compressor 1 and measures a suction temperature that is the temperature of the refrigerant sucked into the compressor 1.
  • the low-pressure sensor 34 is provided around the suction port of the compressor 1 and measures a low-pressure that is the pressure of the refrigerant sucked into the compressor 1.
  • the air conditioner 200 has the control apparatus 50 which controls the main circuit 10, the hot gas bypass circuit 15, and the fan 5.
  • the control device 50 controls operations of various actuators in the air conditioner 200 such as the compressor 1, the expansion device 3, the hot gas electromagnetic valve 7, the first electromagnetic valve 8, the second electromagnetic valve 9, and the fan 5.
  • the control device 50 adjusts the ratio of the first refrigerant in the non-azeotropic refrigerant mixture to be sucked into the compressor 1 by adjusting the open / close states of the first electromagnetic valve 8 and the second electromagnetic valve 9. It is.
  • the ratio of the first refrigerant in the non-azeotropic refrigerant mixture sucked into the compressor 1 is also simply referred to as “the ratio of the first refrigerant”.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the discharge pipe 21 and enters the condenser 2.
  • the gas refrigerant that has entered the condenser 2 is liquefied by releasing warm heat by exchanging heat with air.
  • the refrigerant liquefied in the condenser 2 flows into the expansion device 3 through the liquid pipe 22 and is decompressed in the expansion device 3 to be in a gas-liquid two-phase state.
  • the refrigerant that has become a gas-liquid two-phase state in the expansion device 3 flows into the evaporator 4 through the liquid pipe 23, and heat is exchanged with air in the evaporator 4, thereby releasing cold. Gasify. Further, the refrigerant gasified by the evaporator 4 passes through the suction pipe 24 and is sucked from the suction side of the compressor 1 and compressed again. That is, in the air conditioning apparatus 200, the refrigerant in the refrigerant circuit repeats the circulation process as described above, thereby forming a refrigeration cycle.
  • the indoor air sucked from the room passes through the evaporator 4 and then passes through the condenser 2. . Therefore, the indoor air is cooled when passing through the evaporator 4 and is heated when passing through the condenser 2. In other words, the room air receives cold heat when passing through the evaporator 4 and falls below the dew point. Therefore, a part of the room air is condensed on the evaporator 4 to be cooled and dehumidified.
  • the condenser 2 when the room air that has passed through the evaporator 4 passes through the condenser 2, it receives warm heat and reaches a predetermined temperature, and is discharged into the room as air having a low relative humidity. That is, in the air conditioner 200, the condenser 2 functions as a reheater that adds warm heat again to the cooled air when passing through the evaporator 4.
  • FIG. 2 is a block diagram showing a control system of the air conditioner of FIG. With reference to FIG. 2, the configuration content of the control device 50 will be specifically described.
  • the control device 50 includes a control unit 51, an operation unit 52, and a storage unit 53.
  • the operation unit 52 receives an input operation related to various settings such as a target temperature and a target pressure, and outputs a signal corresponding to the content of the input operation to the control unit 51.
  • the storage unit 53 includes a RAM (Random Access Memory) for storing various data, and a ROM (Read Only Memory) for storing a program for the control unit 51 to perform control in each operation mode. Has been.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • the control unit 51 is configured by, for example, a CPU (Central Processing Unit), a microcomputer, or a DSP (Digital Signal Processor).
  • the control unit 51 includes information on the discharge temperature measured by the discharge pipe temperature sensor 31, information on the high pressure measured by the high pressure sensor 32, information on the suction temperature measured by the suction pipe temperature sensor 33, and a low pressure sensor. Information on the low pressure measured by 34 is input.
  • the control unit 51 causes the air conditioner 200 to perform a dehumidifying operation, an operation in the heating amount up mode, and a defrosting operation.
  • the control unit 51 controls the operation of various actuators in the air conditioning apparatus 200 based on information output from various sensors, a signal output from the operation unit 52, a signal transmitted from the controller 300, and the like. It is.
  • the control unit 51 appropriately controls the open / closed state of the first electromagnetic valve 8 and the second electromagnetic valve 9 according to the program in the ROM of the storage unit 53 and adjusts the composition of the refrigerant to be sucked into the compressor 1. is there. That is, the control unit 51 performs opening / closing control of the first electromagnetic valve 8 and the second electromagnetic valve 9, and adjusts the amount of liquid refrigerant remaining in the accumulator 6, thereby controlling the refrigerant composition in the refrigerant circuit, that is, the refrigerant circuit. The ratio of the circulating low-boiling refrigerant is changed.
  • the controller 51 can increase the ratio of the first refrigerant by opening the first electromagnetic valve 8 and the second electromagnetic valve 9.
  • the ratio of the first refrigerant increases, the value of the low pressure measured by the low pressure sensor 34 increases, the amount of refrigerant circulating in the refrigerant circuit increases, the value of the high pressure measured by the high pressure sensor 32, and the discharge The discharge temperature value measured by the tube temperature sensor 31 increases. Therefore, since the temperature difference between the temperature of the evaporator 4 and the temperature of the refrigerant flowing into the evaporator 4 becomes large, the defrosting time in the defrosting operation can be shortened and the dehumidification efficiency can be increased.
  • the dehumidifying efficiency in the first embodiment is determined by using a value obtained by dividing the dehumidifying operation time by the defrosting time (dehumidifying operating time / defrosting time) as an index.
  • the controller 300 is connected to the control device 50 in a wired or wireless manner, and communicates with the control unit 51.
  • the controller 300 is provided with an ON switch for starting the operation of the air conditioner 200, an OFF switch for stopping the operation of the air conditioner 200, a heating amount adjustment switch for increasing the heating amount, and the like. Yes.
  • the controller 300 receives an input operation by a user and transmits a signal corresponding to the content of the input operation to the control unit 51.
  • the controller 51 determines whether the first solenoid valve 8 and the second solenoid valve 9 are open or closed during the dehumidifying operation by checking whether the suction SH is higher or lower than the first threshold value. More specifically, the control unit 51 obtains the suction SH by subtracting the low pressure saturation temperature from the suction temperature input from the suction pipe temperature sensor 33.
  • the low pressure saturation temperature is a value obtained by converting the value of the low pressure input from the low pressure sensor 34 into a saturation temperature.
  • the storage unit 53 stores, for example, a conversion table that is table information in which the low pressure and the saturation temperature are associated with each other, and the control unit 51 checks the low pressure information input from the low pressure sensor 34 against the conversion table. Thus, the low pressure saturation temperature is obtained.
  • control unit 51 determines whether or not the obtained suction SH is equal to or smaller than the first threshold value. If the suction SH is equal to or smaller than the first threshold value, the first electromagnetic valve 8 and the second electromagnetic valve 9 are opened. It is a state.
  • the control unit 51 when the first electromagnetic valve 8 and the second electromagnetic valve 9 are opened, the control unit 51 performs a COP-up operation that lowers the frequency of the compressor 1, that is, the operation frequency of the motor of the compressor 1. It may be.
  • the control unit 51 compresses when the first electromagnetic valve 8 and the second electromagnetic valve 9 are opened, or when the waiting time has elapsed since the first electromagnetic valve 8 and the second electromagnetic valve 9 are opened. The frequency of the machine 1 may be lowered.
  • the waiting time may be set and changed via the operation unit 52 or the controller 300, or the control unit 51 may automatically set the waiting time according to the operating state or the installation environment.
  • the control unit 51 may increase the frequency of the compressor 1 when the first electromagnetic valve 8 and the second electromagnetic valve 9 are closed.
  • Such a COP-up operation and the like can be performed by the control unit 51 during the defrosting operation and the operation in the heating amount increase mode.
  • the controller 51 obtains the intake SH over time even after the first electromagnetic valve 8 and the second electromagnetic valve 9 are opened, and determines whether or not the obtained intake SH is greater than or equal to the second threshold value. It is.
  • the control unit 51 closes the first electromagnetic valve 8 and the second electromagnetic valve 9 when the suction SH reaches the second threshold value.
  • the first threshold value is a temperature serving as a reference for opening the first electromagnetic valve 8 and the second electromagnetic valve 9 during the dehumidifying operation, and is set to 5K, for example.
  • the second threshold is a temperature that serves as a reference for closing the first electromagnetic valve 8 and the second electromagnetic valve 9 that are once opened during the dehumidifying operation.
  • the second threshold is set to a temperature higher than the first threshold, for example, 15K.
  • the first threshold value and the second threshold value can be appropriately changed according to the configuration content of the air conditioner 200 and the installation environment. The user can set and change the first threshold value and the second threshold value by operating the operation unit 52 or the controller 300.
  • the user can perform a setting operation of the heating amount up mode for increasing the heating amount by the condenser 2 via the operation unit 52 or the controller 300.
  • the controller 51 performs the opening / closing control of the first electromagnetic valve 8 and the second electromagnetic valve 9 according to the change of the discharge temperature measured by the discharge pipe temperature sensor 31, thereby increasing the heating capacity.
  • This is an operation mode that adjusts to realize a rapid dehumidifying operation.
  • the rapid dehumidifying operation is an operation that provides an air environment having a desired humidity in a time earlier than a normal dehumidifying operation by supplying air having a low relative humidity into the room.
  • the setting operation of the heating amount up mode in addition to the operation for instructing the start of the heating amount up mode, the operation for setting the time for starting the heating amount up mode or the time until the heating amount up mode is started is set. Operations are included. Further, the setting operation of the heating amount up mode includes an operation of setting the heating amount up continuation time, which is the time during which the control unit 51 continues the control in the heating amount up mode. That is, the user can set and change the heating amount increase duration by operating the operation unit 52 or the controller 300.
  • the controller 51 first opens the first electromagnetic valve 8 and the second electromagnetic valve 9 during the operation of the compressor 1. More specifically, the control unit 51 detects the start of the heating amount up mode according to a signal from the operation unit 52 or the controller 300 or a setting content in the operation unit 52 or the controller 300. When the control unit 51 detects the start of the heating amount up mode while the compressor 1 is operating, the control unit 51 opens the first electromagnetic valve 8 and the second electromagnetic valve 9. Further, when the control unit 51 detects the start of the heating amount up mode, if the compressor 1 is stopped, the control unit 51 waits until the compressor 1 starts operation, and when the compressor 1 starts operation. The first electromagnetic valve 8 and the second electromagnetic valve 9 are opened.
  • the controller 51 can increase the ratio of the first refrigerant by opening the first electromagnetic valve 8 and the second electromagnetic valve 9.
  • the ratio of the first refrigerant circulating in the refrigerant circuit increases, the low pressure increases, the amount of refrigerant circulating in the refrigerant circuit increases, and the high pressure and discharge temperature increase.
  • the control unit 51 causes the first electromagnetic valve 8 and the second electromagnetic valve 9 to maintain an open state until the discharge temperature input from the discharge pipe temperature sensor 31 reaches a closing threshold set to 120 ° C., for example.
  • the control unit 51 sets the first solenoid valve 8 and the discharge valve temperature when the discharge temperature input from the discharge pipe temperature sensor 31 rises to the closing threshold.
  • the second electromagnetic valve 9 is closed. Furthermore, after the control unit 51 closes the first electromagnetic valve 8 and the second electromagnetic valve 9, the discharge temperature input from the discharge pipe temperature sensor 31 is reduced to an open threshold that is set to 110 ° C., for example. Until this is done, the first electromagnetic valve 8 and the second electromagnetic valve 9 are kept in the closed state. And the control part 51 makes the 1st solenoid valve 8 and the 2nd solenoid valve 9 an open state, when the discharge temperature input from the discharge pipe temperature sensor 31 falls to an open threshold value.
  • the closing threshold is a temperature that serves as a reference timing for closing the first solenoid valve 8 and the second solenoid valve 9 during operation in the heating-up mode.
  • the closing threshold may be set to a temperature higher than the closing reference threshold.
  • the open threshold is a temperature that serves as a reference for reopening the first electromagnetic valve 8 and the second electromagnetic valve 9 once closed during operation in the heating amount increase mode, and is set to a temperature lower than the close threshold.
  • the open threshold value may be set to a temperature lower than the closed reference temperature and higher than the open reference temperature.
  • the closing threshold and the opening threshold can be appropriately changed according to the configuration content of the air conditioner 200 and the installation environment. The user can set and change the open threshold value and the close threshold value by operating the operation unit 52 or the controller 300.
  • control unit 51 has a heating amount up timer (not shown) that measures an elapsed time since the first electromagnetic valve 8 and the second electromagnetic valve 9 are opened. That is, the control part 51 starts time-measurement by the heating amount up timer when the first electromagnetic valve 8 and the second electromagnetic valve 9 are opened.
  • the heating amount up timer counts up, that is, when the heating amount up time elapses after the first electromagnetic valve 8 and the second electromagnetic valve 9 are initially opened.
  • the quantity up mode is terminated, and the normal operation is started.
  • the normal operation corresponds to a normal dehumidifying operation.
  • the control unit 51 determines whether or not the air conditioner 200 is in the defrosting operation based on the open / closed state of the hot gas solenoid valve 7. During the defrosting operation, the hot gas solenoid valve 7 is in an open state. That is, if the hot gas solenoid valve 7 is in the open state, the control unit 51 determines that the defrosting operation is being performed, and if the hot gas solenoid valve 7 is in the closed state, it is not in the defrosting operation. It comes to judge. In the first embodiment, the control unit 51 determines that the dehumidifying operation is being performed if the hot gas solenoid valve 7 is in a closed state.
  • the control unit 51 determines that the air conditioner 200 is in the defrosting operation, the control unit 51 opens the first electromagnetic valve 8 and the second electromagnetic valve 9 and sets the non-azeotropic refrigerant mixture to be sucked into the compressor 1.
  • the ratio of the first refrigerant is increased by changing the composition.
  • the control unit 51 opens the first electromagnetic valve 8 and the second electromagnetic valve 9 and then opens the first electromagnetic valve when the discharge temperature input from the discharge pipe temperature sensor 31 reaches the closed reference threshold.
  • the valve 8 and the second electromagnetic valve 9 are once closed to suppress an increase in discharge temperature.
  • the control unit 51 sets the first electromagnetic valve when the discharge temperature input from the discharge pipe temperature sensor 31 falls to the open reference threshold.
  • the valve 8 and the second electromagnetic valve 9 are opened again.
  • the closing reference threshold is a temperature serving as a reference for closing the first electromagnetic valve 8 and the second electromagnetic valve 9 during the defrosting operation, and is set to 115 ° C., for example.
  • the open reference threshold is a temperature that serves as a reference for the timing of reopening the first electromagnetic valve 8 and the second electromagnetic valve 9 that are once closed during the defrosting operation.
  • the open reference threshold is set to a temperature lower than the closed reference threshold, and is set to 105 ° C., for example.
  • the open reference threshold value and the closed reference threshold value can be appropriately changed according to the configuration content of the air conditioner 200, the installation environment, and the like. The user can set and change the open reference threshold and the closed reference threshold by operating the operation unit 52 or the controller 300.
  • the control unit 51 has a function of determining whether or not the defrosting operation end condition is satisfied, and ends the defrosting operation when the defrosting operation end condition is satisfied.
  • the controller 51 may be configured to start the defrosting operation by estimating that the evaporator 4 is in a frosting state when the dehumidifying operation is continuously performed for a predetermined set time.
  • a temperature sensor such as a thermistor is provided at the air suction port of the air conditioner 200, and the control unit 51 determines the set time for the dehumidifying operation based on the measured temperature of the temperature sensor You may make it determine the defrost time which is the time which continues a frost driving
  • control unit 51 may start timing when the defrosting operation is started, and end the defrosting operation when the defrosting time has elapsed. In this case, when the defrosting time has elapsed, the defrosting operation end condition is satisfied.
  • control unit 51 may determine the start and end timing of the defrosting operation according to the temperature of the evaporator 4.
  • an evaporation temperature sensor composed of a thermistor or the like may be provided in the evaporator 4.
  • the control part 51 starts defrost operation, when the temperature measured in the evaporation temperature sensor falls to the start threshold value, and then defrosts when the temperature measured in the evaporation temperature sensor rises to the end threshold value.
  • the end threshold is set to a temperature higher than the start threshold.
  • FIG. 3 is a flowchart showing operations centering on dehumidifying operation and defrosting operation of the air-conditioning apparatus of FIG. 1.
  • FIG. 4 is a flowchart showing the operation in the heating amount up mode of the air conditioner of FIG. Based on FIG.3 and FIG.4, the opening / closing control method of the 1st solenoid valve 8 and the 2nd solenoid valve 9 is demonstrated.
  • the operation control method centering on the dehumidification operation and defrost operation of an air conditioning apparatus is demonstrated.
  • the control unit 51 determines whether or not the compressor 1 is in operation (step S101). If the compressor 1 is not in operation, the control unit 51 waits until the compressor 1 starts operation (step S101 / NO). ). When the control unit 51 detects the start of the heating amount up mode during the operation of the compressor 1 (step S101 / YES) (step S102 / YES), the control unit 51 shifts to the heating amount up mode (see FIG. 4). When the control unit 51 is not operating the compressor 1 (step S101 / YES) and does not detect the start of the heating-up mode (step S102 / NO), is the air conditioning apparatus 200 performing the defrosting operation? It is determined whether or not (step S103).
  • control unit 51 determines whether or not the discharge temperature input from the discharge pipe temperature sensor 31 is equal to or higher than the closed reference threshold (step S105). If the discharge temperature is lower than the closing reference threshold (step S105 / NO), the controller 51 determines whether or not the defrosting operation end condition is satisfied (step S106). Control part 51 will return to processing of Step S102, if defrost operation end conditions are fulfilled (Step S106 / YES). If the defrosting operation end condition is not satisfied (step S106 / NO), the control unit 51 returns to the process of step S105.
  • step S105 when the discharge temperature reaches the closing reference threshold (step S105 / YES), the control unit 51 closes the first electromagnetic valve 8 and the second electromagnetic valve 9 to suppress an increase in the discharge temperature (step S107). . And the control part 51 determines whether the discharge temperature input from the discharge pipe temperature sensor 31 is below an open reference threshold value (step S108).
  • the control unit 51 When the discharge temperature is higher than the open reference threshold, the control unit 51 causes the first electromagnetic valve 8 and the second electromagnetic valve 9 to maintain a closed state (step S108 / NO). However, after the first solenoid valve 8 and the second solenoid valve 9 are closed in step S107, the control unit 51 sets the defrosting operation end condition until the discharge temperature falls to the open reference threshold (step S108 / NO). If satisfied, the process returns to step S102.
  • the control unit 51 opens the first electromagnetic valve 8 and the second electromagnetic valve 9 (step S109) when the discharge temperature falls to the open reference threshold (step S108 / YES). Next, the control unit 51 determines whether or not the defrosting operation end condition is satisfied (step S110). If the defrosting operation end condition is satisfied (step S110 / YES), the control unit 51 returns to the process of step S102. If the defrosting operation end condition is not satisfied (step S110 / NO), the control unit 51 returns to the process of step S105.
  • step S103 When the control unit 51 detects that the hot gas solenoid valve 7 is closed and determines that the air-conditioning apparatus 200 is in the dehumidifying operation (step S103 / NO), the control unit 51 obtains the intake SH and obtains the obtained intake. It is determined whether or not SH is equal to or less than a first threshold value (step S201).
  • step S201 / NO When the intake SH is a value higher than the first threshold value (step S201 / NO), it is considered that the compressor 1 does not cause liquid compression, so the control unit 51 applies the first electromagnetic valve 8 and the second electromagnetic valve 9 to each other. The process returns to step S102 while the closed state is maintained. On the other hand, if the intake SH is equal to or less than the first threshold (step S201 / YES), the control unit 51 opens the first electromagnetic valve 8 and the second electromagnetic valve 9 (step S202).
  • control unit 51 obtains the inhalation SH over time, and determines whether or not the obtained inhalation SH is equal to or greater than the second threshold (step S203).
  • the control unit 51 causes the first electromagnetic valve 8 and the second electromagnetic valve 9 to maintain the open state until the obtained suction SH reaches the second threshold value (step S203 / NO).
  • the control part 51 closes the 1st solenoid valve 8 and the 2nd solenoid valve 9 (step S204), and returns to the process of step S102.
  • step S301 the controller 51 determines whether or not the compressor 1 is in operation. Then, if the compressor 1 is not in operation, the control unit 51 waits until the compressor 1 starts operation (step S301 / NO).
  • the control unit 51 opens the first electromagnetic valve 8 and the second electromagnetic valve 9 to generate refrigerant. To increase the ratio of the first refrigerant. In that case, the control part 51 starts time-measurement by a heating amount up timer (step S302).
  • the control unit 51 determines whether or not the discharge temperature input from the discharge pipe temperature sensor 31 is equal to or higher than the closing threshold (step S303). If the discharge temperature is lower than the closing threshold, the controller 51 causes the first electromagnetic valve 8 and the second electromagnetic valve 9 to maintain the open state (step S303 / NO). On the other hand, when the discharge temperature rises to the open threshold (step S303 / YES), the controller 51 determines whether or not the heating amount up timer has counted up (step S304).
  • step S304 / YES When the heating amount up timer counts up (step S304 / YES), the control unit 51 ends the heating amount up mode (step S305) and shifts to normal operation. On the other hand, if the heating amount up timer does not count up (step S304 / NO), the controller 51 closes the first electromagnetic valve 8 and the second electromagnetic valve 9 (step S306).
  • step S307 / YES if the heating amount up timer counts up (step S307 / YES), the control part 51 will complete
  • step S309 / NO If the discharge temperature is higher than the open threshold (step S309 / NO), the controller 51 causes the first electromagnetic valve 8 and the second electromagnetic valve 9 to maintain the closed state, and returns to the process of step S307. On the other hand, when the discharge temperature falls to the opening threshold value (step S309 / YES), the control unit 51 opens the first electromagnetic valve 8 and the second electromagnetic valve 9 (step S310), and returns to the process of step S303.
  • the ratio of the first refrigerant in the non-azeotropic refrigerant mixture to be sucked into the compressor 1 is controlled by controlling the first electromagnetic valve 8 and the second electromagnetic valve 9, respectively. adjust. Therefore, the low pressure can be raised and the high pressure and the temperature of the refrigerant discharged from the compressor 1 can be raised, so that an efficient operation utilizing the characteristics of the non-azeotropic refrigerant mixture can be realized. it can.
  • the air-conditioning apparatus 200 increases the ratio of the first refrigerant that is a low boiling point refrigerant by opening the first electromagnetic valve 8 and the second electromagnetic valve 9 during the defrosting operation. Can do.
  • the temperature difference between the temperature of the evaporator 4 and the temperature of the refrigerant that circulates in the refrigerant circuit and enters the evaporator 4 becomes large, so that the defrosting time can be shortened. And since the ratio of the defrosting time with respect to a dehumidification driving
  • the control unit 51 performs opening / closing control of the first electromagnetic valve 8 and the second electromagnetic valve 9 based on the discharge temperature measured by the discharge pipe temperature sensor 31.
  • the control part 51 can adjust the heat exchange amount of the condenser 2 which acts as a reheater, it can implement
  • the control unit 51 can perform the COP-up operation, so that the operation efficiency can be increased.
  • a DC fan is mounted as the fan 5 during the COP-up operation, the COP can be further improved by adjusting the air volume.
  • control unit 51 opens the first electromagnetic valve 8 and the second electromagnetic valve 9, and then when the discharge temperature, which is the temperature of the refrigerant discharged from the compressor, reaches the closed reference threshold, Since the valve 8 and the second electromagnetic valve 9 are closed, an excessive increase in the discharge temperature can be suppressed. Moreover, since the 1st solenoid valve 8 and the 2nd solenoid valve 9 are solenoid valves which have an open state and a closed state, respectively, the air conditioning apparatus 200 improves the efficiency of air conditioning control by simple control. Can be achieved.
  • the air conditioner 200 opens the first electromagnetic valve 8 and the second electromagnetic valve 9 at a predetermined timing, and increases the ratio of the low-boiling-point refrigerant circulating in the refrigerant circuit, thereby increasing the low-pressure pressure, and the refrigerant circuit
  • the refrigerant circulation amount is increased, and the discharge temperature and the high pressure are increased. Therefore, it is possible to shorten the defrosting time, increase the defrosting efficiency, and improve the operation efficiency.
  • FIG. FIG. 5 is a diagram showing a configuration related to the refrigerant circuit of the air conditioning harmony system according to Embodiment 2 of the present invention.
  • the configuration of the air conditioning system 100A of the second embodiment is the same as that of the air conditioning system 100 of the first embodiment described above, but the configuration of the refrigerant circuit is different. That is, the main circuit 10 of the air conditioner 200 ⁇ / b> A is characterized in that it has a first adjustment valve 11 and a second adjustment valve 12 instead of the first electromagnetic valve 8 and the second electromagnetic valve 9.
  • the same reference numerals are used for the same components as those in the first embodiment, and the description thereof will be omitted. In the following, configurations and operations particularly related to the control of the first adjustment valve 11 and the second adjustment valve 12 will be described.
  • the air conditioning system 100A includes an air conditioning apparatus 200A and a controller 300.
  • the first adjustment valve 11 and the second adjustment valve 12 are provided in the suction pipe 24 of the main circuit 10.
  • the first regulating valve 11 is provided on the upstream side of the accumulator 6, that is, between the evaporator 4 and the accumulator 6.
  • the second adjustment valve 12 is provided on the downstream side of the accumulator 6, that is, between the accumulator 6 and the compressor 1.
  • Each of the first adjustment valve 11 and the second adjustment valve 12 includes, for example, an electronic expansion valve, and the opening degree can be adjusted.
  • the bypass pipe 24a of the second embodiment connects between the evaporator 4 and the first regulating valve 11 and between the second regulating valve 12 and the compressor 1. That is, in the suction pipe 24 of the second embodiment, the upstream branching means 24b is provided upstream of the first regulating valve 11, and the downstream branching means 24c is provided downstream of the second regulating valve 12.
  • FIG. 6 is a block diagram showing a control system of the air conditioner of FIG.
  • the control device 50 ⁇ / b> A includes a control unit 51 ⁇ / b> A, and the control unit 51 ⁇ / b> A adjusts the respective opening degrees of the first adjustment valve 11 and the second adjustment valve 12. That is, the control unit 51A determines the first adjustment valve 11 and the second adjustment valve 12 based on information output from various sensors, a signal output from the operation unit 52, a signal transmitted from the controller 300, and the like. It is comprised so that each opening may be adjusted.
  • the control unit 51A determines the respective opening degrees of the first regulating valve 11 and the second regulating valve 12 according to the change of the suction SH. That is, if the intake SH is equal to or less than the first threshold value, the control unit 51A operates the first adjustment valve 11 and the second adjustment valve 12 in the opening direction to open the first adjustment valve 11 and the second adjustment valve 12. Increase the degree.
  • the opening degree of the first regulating valve 11 and the second regulating valve 12 is increased, the ratio of the first refrigerant sucked into the compressor 1 is increased and the discharge temperature is increased, so that the temperature of the condenser 2 and the condenser 2 are increased.
  • the temperature difference from the temperature of the entering refrigerant increases. Therefore, when trying to obtain the same heat exchange amount in the condenser 2, if the compressor 1 is an inverter compressor, the operating frequency can be lowered as compared with the case where the compressor 1 is a constant speed compressor. Driving efficiency can be improved.
  • control unit 51A obtains the intake SH over time even after increasing the opening degree of the first adjustment valve 11 and the second adjustment valve 12, and determines whether the obtained intake SH is equal to or greater than the second threshold value. It comes to judge. Then, when the intake SH reaches the second threshold value, the control unit 51A operates the first adjustment valve 11 and the second adjustment valve 12 in the closing direction so that the first adjustment valve 11 and the second adjustment valve 12 The opening is made smaller.
  • the first threshold value is a temperature serving as a reference for the timing of operating the first regulating valve 11 and the second regulating valve 12 in the opening direction during the dehumidifying operation, and is set to 5K, for example.
  • the second threshold value is a temperature that serves as a reference for timing of operating the first adjustment valve 11 and the second adjustment valve 12 once operated in the opening direction during the dehumidifying operation.
  • the second threshold is set to a temperature higher than the first threshold, for example, 15K.
  • the first threshold value and the second threshold value can be appropriately changed according to the configuration content of the air conditioner 200A, the installation environment, and the like. The user can set and change the first threshold value and the second threshold value by operating the operation unit 52 or the controller 300.
  • the control unit 51A first operates the first adjustment valve 11 and the second adjustment valve 12 in the opening direction during the operation of the compressor 1, and the first adjustment valve 11 and the second adjustment valve 12 are operated. The degree of opening is increased. Then, the control unit 51A sets the current opening degree to the first adjustment valve 11 and the second adjustment valve 12 until the discharge temperature input from the discharge pipe temperature sensor 31 reaches a closing threshold set to 120 ° C., for example. Let it be maintained.
  • control unit 51A increases the opening degree of the first adjustment valve 11 and the second adjustment valve 12, and then the first adjustment valve when the discharge temperature input from the discharge pipe temperature sensor 31 rises to the closing threshold. 11 and the second regulating valve 12 are operated in the closing direction. Furthermore, after the control unit 51A reduces the opening degree of the first adjustment valve 11 and the second adjustment valve 12, the discharge temperature input from the discharge pipe temperature sensor 31 decreases to an open threshold value set to 110 ° C., for example. Until it does, the 1st regulating valve 11 and the 2nd regulating valve 12 maintain the present opening degree. And the control part 51 makes the 1st solenoid valve 8 and the 2nd solenoid valve 9 the open state, when the discharge temperature input from the discharge pipe temperature sensor 31 falls to an open threshold value.
  • the closing threshold is a temperature that serves as a reference for timing to reduce the opening degree of the first regulating valve 11 and the second regulating valve 12 during operation in the heating amount up mode.
  • the closing threshold may be set to a temperature higher than the closing reference threshold.
  • the open threshold is a temperature that serves as a reference for the timing of increasing the opening degree of the first and second regulating valves 11 and 12 once reduced during operation in the heating amount increase mode, and is set to a temperature lower than the closing threshold. Is done.
  • the open threshold value may be set to a temperature lower than the closed reference temperature and higher than the open reference temperature.
  • the closing threshold and the opening threshold can be appropriately changed according to the configuration content of the air conditioner 200A, the installation environment, and the like. The user can set and change the open threshold value and the close threshold value by operating the operation unit 52 or the controller 300.
  • the control unit 51A first operates the first adjustment valve 11 and the second adjustment valve 12 in the opening direction so that the opening degrees of the first adjustment valve 11 and the second adjustment valve 12 are increased. It has become. As a result, the control unit 51A changes the composition of the non-azeotropic refrigerant mixture that is sucked into the compressor 1 and increases the ratio of the first refrigerant.
  • control unit 51A increases the opening degree of the first adjustment valve 11 and the second adjustment valve 12, and then performs the first adjustment when the discharge temperature input from the discharge pipe temperature sensor 31 reaches the closed reference threshold value.
  • the valve 11 and the second regulating valve 12 are operated in the closing direction to suppress an increase in discharge temperature.
  • control unit 51A reduces the opening degree of the first adjustment valve 11 and the second adjustment valve 12, and then performs the first adjustment when the discharge temperature input from the discharge pipe temperature sensor 31 falls to the open reference threshold.
  • the opening degree of the valve 11 and the second regulating valve 12 is increased.
  • the closing reference threshold is a temperature that serves as a reference for timing to reduce the opening degree of the first adjusting valve 11 and the second adjusting valve 12 during the defrosting operation, and is set to 115 ° C., for example.
  • the open reference threshold is a temperature that serves as a reference for timing of increasing the opening degree of the first adjustment valve 11 and the second adjustment valve 12 once reduced during the defrosting operation.
  • the open reference threshold is set to a temperature lower than the closed reference threshold, and is set to 105 ° C., for example.
  • the closing reference threshold and the opening reference threshold can be appropriately changed according to the configuration content of the air conditioner 200A, the installation environment, and the like.
  • the user can set and change the open reference threshold and the closed reference threshold by operating the operation unit 52 or the controller 300.
  • Other functions of the control unit 51A are the same as those of the control unit 51 of the first embodiment.
  • FIG. 7 is a flowchart showing operations centering on the dehumidifying operation and the defrosting operation of the air-conditioning apparatus of FIG.
  • FIG. 8 is a flowchart showing the operation in the heating amount up mode of the air conditioner of FIG. Based on FIG.7 and FIG.8, the method of the opening degree adjustment control of the 1st regulating valve 11 and the 2nd regulating valve 12 is demonstrated.
  • the control unit 51A executes the processing from step S101 to step S103 in the same manner as in the case of FIG.
  • the control unit 51A detects that the hot gas solenoid valve 7 is open and determines that the air-conditioning apparatus 200 is in the defrosting operation (step S103 / YES)
  • the first adjustment valve 11 Then, the second adjustment valve 12 is operated in the opening direction (step S401).
  • control unit 51A executes the processing from step S105 to step S106 as in the case of FIG.
  • the control unit 51A operates the first adjustment valve 11 and the second adjustment valve 12 in the closing direction.
  • Step S402 the control unit 51A executes the process of step S108 in the same manner as in FIG. 3, and when the discharge temperature input from the discharge pipe temperature sensor 31 has dropped to the open reference threshold (step S108 / YES).
  • the first adjustment valve 11 and the second adjustment valve 12 are operated in the opening direction (step S403).
  • step S201 when the control unit 51A detects that the hot gas solenoid valve 7 is in the closed state and determines that the air conditioning apparatus 200 is in the dehumidifying operation (step S103 / NO), the process of step S201 is performed. The same processing as in the case of 3 is performed. If the intake SH is equal to or less than the first threshold value (step S201 / YES), the control unit 51A operates the first adjustment valve 11 and the second adjustment valve 12 in the opening direction (step S501), and illustrates the process of step S203. The same processing as in the case of 3 is performed. Then, when the intake SH reaches the second threshold value, the control unit 51A operates the first adjustment valve 11 and the second adjustment valve 12 in the closing direction (step S502), and returns to the process of step S102.
  • step S301 determines whether or not the compressor 1 is in operation.
  • the control unit 51 operates the first adjustment valve 11 and the second adjustment valve 12 in the opening direction. Increase the ratio of the first refrigerant.
  • the control unit 51A starts measuring time by the heating amount up timer (step S601).
  • control unit 51A executes the processing from step S303 to step S305 as in the case of FIG. Then, the control unit 51A determines that the discharge temperature input from the discharge pipe temperature sensor 31 is equal to or higher than the closing threshold (step S303 / YES) and the heating amount up timer has not counted up (step S304 / NO). The first adjustment valve 11 and the second adjustment valve 12 are operated in the closing direction (step S602).
  • control unit 51A executes the processing from step S307 to step S309 as in the case of FIG. Then, the control unit 51A operates the first adjustment valve 11 and the second adjustment valve 12 in the opening direction when the discharge temperature input from the discharge pipe temperature sensor 31 falls to the open threshold (NO in step S309). (Step S603), the process returns to Step S303.
  • the control unit 51A may finely adjust the opening degrees of the first adjustment valve 11 and the second adjustment valve 12 in accordance with information output from various sensors.
  • the control unit 51A illustrated the case where the first adjustment valve 11 and the second adjustment valve 12 maintain the current opening until the discharge temperature falls to the open threshold, but the present invention is not limited thereto. It is not something.
  • the control unit 51A may finely adjust the opening degrees of the first adjustment valve 11 and the second adjustment valve 12 in accordance with information output from various sensors. In this way, the ratio of the first refrigerant in the non-azeotropic refrigerant mixture that circulates in the refrigerant circuit can be adjusted more flexibly.
  • the ratio of the first refrigerant in the non-azeotropic refrigerant mixture to be sucked into the compressor 1 is controlled by controlling the first regulating valve 11 and the second regulating valve 12, respectively. adjust. Therefore, the low pressure can be raised, and the high pressure and the temperature of the refrigerant discharged from the compressor can be raised, so that an efficient operation utilizing the characteristics of the non-azeotropic refrigerant mixture can be realized. . Moreover, since the 1st adjustment valve 11 and the 2nd adjustment valve 12 are electronic expansion valves which can respectively adjust an opening degree, the ratio of a 1st refrigerant
  • coolant can be adjusted more flexibly.
  • the air conditioner 200A increases the opening of the first regulating valve 11 and the opening of the second regulating valve 12 at a predetermined timing, and increases the ratio of the low-boiling-point refrigerant circulating in the refrigerant circuit, thereby reducing the low pressure.
  • the pressure is increased, the refrigerant circulation amount in the refrigerant circuit is increased, and the discharge temperature and the high pressure are increased. Therefore, it is possible to shorten the defrosting time, increase the defrosting efficiency, and improve the operation efficiency.
  • the control unit 51A can perform the COP-up operation as with the control unit 51 of the first embodiment.
  • the control device 50 ⁇ / b> A stores a frequency adjustment table in which the opening adjustment amounts of the first adjustment valve 11 and the second adjustment valve 12 are associated with the frequency of the compressor 1 in the storage unit 53. Also good.
  • the frequency adjustment table may be configured such that the frequency of the compressor 1 decreases as the opening adjustment amount increases within a range in which the opening adjustment amount increases the opening. Further, the frequency adjustment table may be configured such that the frequency of the compressor 1 increases as the opening adjustment amount increases in a range where the opening adjustment amount indicates the amount by which the opening degree is decreased.
  • control unit 51 ⁇ / b> A adjusts the frequency of the opening adjustment amounts of the first adjustment valve 11 and the second adjustment valve 12 when the opening amounts of the first adjustment valve 11 and the second adjustment valve 12 are adjusted. You may make it adjust the frequency of the compressor 1 in light of a table. Other effects and the like are the same as those in the first embodiment.
  • each of the above embodiments is a preferred specific example in an air conditioning apparatus and an air conditioning system, and the technical scope of the present invention is not limited to these embodiments.
  • the air conditioners 200 and 200A are dehumidifiers is illustrated, but the present invention is not limited thereto, and the air conditioners 200 and 200A have an air conditioning function that performs a heating operation or a cooling operation. It may be a machine. That is, the air conditioners 200 and 200A may be any air conditioner that can execute at least the dehumidifying operation and the defrosting operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

This air conditioning device comprises: a primary circuit in which a compressor, a condenser, a limiting device, an evaporator, and an accumulator are sequentially connected, and in which a zeotropic mixture refrigerant containing a first refrigerant and a second refrigerant having a higher boiling point than the first refrigerant circulates; and a control device that controls the primary circuit. The primary circuit has a first regulating valve provided upstream of the accumulator, a second regulating valve provided downstream of the accumulator, and a bypass pipe that bypasses the accumulator. The control device adjusts the proportion of the first refrigerant in the zeotropic mixture refrigerant taken into the compressor by controlling the first regulating valve and the second regulating valve.

Description

空気調和装置Air conditioner
 この発明は、非共沸混合冷媒を利用した空気調和装置に関する。 This invention relates to an air conditioner using a non-azeotropic refrigerant mixture.
 従来から、圧縮機、凝縮器、膨張弁、蒸発器、及びアキュムレータが順次配管で接続された冷媒回路を有する空気調和装置が知られている(例えば、特許文献1参照)。特許文献1の空気調和装置は、除湿運転を行う際、蒸発器で冷やされた空気の温度を、再熱器として作用する凝縮器で上昇させて、室内に吹き出す空気の温度低下を抑制している。 Conventionally, an air conditioner having a refrigerant circuit in which a compressor, a condenser, an expansion valve, an evaporator, and an accumulator are sequentially connected by piping (for example, see Patent Document 1). When performing the dehumidifying operation, the air conditioner of Patent Document 1 increases the temperature of the air cooled by the evaporator with a condenser that acts as a reheater, and suppresses the temperature drop of the air blown into the room. Yes.
 ところで、冷媒回路を循環させる冷媒には、単一冷媒と混合冷媒とが存在し、混合冷媒には、沸点が等しい冷媒を混ぜ合わせた共沸混合冷媒と、沸点の異なる冷媒を混ぜ合わせた非共沸混合冷媒とがある。非共沸混合冷媒には、沸点が相対的に低い低沸点冷媒と、沸点が相対的に高い高沸点冷媒とが混在している。 By the way, the refrigerant circulating in the refrigerant circuit includes a single refrigerant and a mixed refrigerant. In the mixed refrigerant, an azeotropic mixed refrigerant in which refrigerants having the same boiling point are mixed with a refrigerant having different boiling points is mixed. There is an azeotropic refrigerant mixture. The non-azeotropic refrigerant mixture includes a low boiling point refrigerant having a relatively low boiling point and a high boiling point refrigerant having a relatively high boiling point.
特開2007-78242号公報JP 2007-78242 A
 しかしながら、特許文献1のような従来の空気調和装置に対し、非共沸混合冷媒を単純に適用した場合、非共沸混合冷媒には低沸点冷媒と高沸点冷媒とが混在するため、低沸点の単一冷媒を適用した場合と比べて吐出温度が上昇しにくい。すなわち、従来の空気調和装置は、非共沸混合冷媒の特性を活かした効率のよい運転を行うことができないという課題がある。 However, when a non-azeotropic refrigerant mixture is simply applied to a conventional air conditioner such as Patent Document 1, a low-boiling refrigerant and a low-boiling refrigerant are mixed together in the non-azeotropic refrigerant mixture. Compared with the case where a single refrigerant is applied, the discharge temperature is less likely to rise. That is, the conventional air conditioner has a problem that it cannot perform an efficient operation utilizing the characteristics of the non-azeotropic refrigerant mixture.
 本発明は、上記のような課題を解決するためになされたもので、非共沸混合冷媒の特性を活かした効率のよい運転を実現する空気調和装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an air conditioner that realizes an efficient operation utilizing the characteristics of a non-azeotropic refrigerant mixture.
 本発明に係る空気調和装置は、圧縮機、凝縮器、絞り装置、蒸発器、及びアキュムレータが順次接続され、第1冷媒と第1冷媒よりも沸点が高い第2冷媒とを含む非共沸混合冷媒が循環する主回路と、主回路を制御する制御装置と、を有し、主回路は、アキュムレータの上流側に設けられた第1調整弁と、アキュムレータの下流側に設けられた第2調整弁と、蒸発器と第1調整弁との間と、第2調整弁と圧縮機との間とを接続し、アキュムレータをバイパスするバイパス配管と、を有し、制御装置は、第1調整弁と第2調整弁とをそれぞれ制御することで、圧縮機に吸入させる非共沸混合冷媒における第1冷媒の比率を調整するものである。 The air conditioner according to the present invention includes a compressor, a condenser, a throttling device, an evaporator, and an accumulator, which are sequentially connected and include a first refrigerant and a second refrigerant having a boiling point higher than that of the first refrigerant. A main circuit through which the refrigerant circulates, and a control device that controls the main circuit, the main circuit including a first adjustment valve provided upstream of the accumulator and a second adjustment provided downstream of the accumulator A bypass pipe for connecting the valve, between the evaporator and the first regulating valve, between the second regulating valve and the compressor, and bypassing the accumulator, and the control device includes the first regulating valve And the second adjusting valve are respectively controlled to adjust the ratio of the first refrigerant in the non-azeotropic refrigerant mixture sucked into the compressor.
 本発明の空気調和装置によれば、第1調整弁と第2調整弁とをそれぞれ制御することにより、圧縮機に吸入させる非共沸混合冷媒における第1冷媒の比率を調整することから、低圧圧力を上昇させると共に、高圧圧力と圧縮機から吐出される冷媒の温度とを上昇させることができるため、非共沸混合冷媒の特性を活かした効率のよい運転を実現することができる。 According to the air conditioning apparatus of the present invention, the ratio of the first refrigerant in the non-azeotropic refrigerant mixture to be sucked into the compressor is adjusted by controlling the first regulating valve and the second regulating valve, respectively. Since the pressure can be increased and the high pressure and the temperature of the refrigerant discharged from the compressor can be increased, efficient operation utilizing the characteristics of the non-azeotropic refrigerant mixture can be realized.
本発明の実施の形態1に係る空調調和システムの冷媒回路に関連する構成を示した図である。It is the figure which showed the structure relevant to the refrigerant circuit of the air conditioning harmony system which concerns on Embodiment 1 of this invention. 図1の空気調和装置の制御系を示すブロック図である。It is a block diagram which shows the control system of the air conditioning apparatus of FIG. 図1の空気調和装置の除湿運転及び除霜運転を中心とした動作を示すフローチャートである。It is a flowchart which shows the operation | movement centering on the dehumidification operation and defrost operation of the air conditioning apparatus of FIG. 図1の空気調和装置の加熱量アップモードにおける動作を示すフローチャートである。It is a flowchart which shows the operation | movement in the heating amount up mode of the air conditioning apparatus of FIG. 本発明の実施の形態2に係る空調調和システムの冷媒回路に関連する構成を示した図である。It is the figure which showed the structure relevant to the refrigerant circuit of the air conditioning harmony system which concerns on Embodiment 2 of this invention. 図5の空気調和装置の制御系を示すブロック図である。It is a block diagram which shows the control system of the air conditioning apparatus of FIG. 図5の空気調和装置の除湿運転及び除霜運転を中心とした動作を示すフローチャートである。It is a flowchart which shows the operation | movement centering on the dehumidification driving | operation of the air conditioning apparatus of FIG. 図5の空気調和装置の加熱量アップモードにおける動作を示すフローチャートである。It is a flowchart which shows the operation | movement in the heating amount up mode of the air conditioning apparatus of FIG.
実施の形態1.
 図1は、本発明の実施の形態1に係る空調調和システムの冷媒回路に関連する構成を示した図である。図1に示すように、空気調和システム100は、空気調和装置200と、コントローラ300とにより構成されている。本実施の形態1において、空気調和装置200は、部屋などの室内に設置される除湿機である。空気調和装置200は、産業用の除湿機であってもよく、一般家庭に設置される除湿機であってもよい。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration related to the refrigerant circuit of the air-conditioning conditioning system according to Embodiment 1 of the present invention. As shown in FIG. 1, the air conditioning system 100 includes an air conditioning apparatus 200 and a controller 300. In the first embodiment, the air conditioner 200 is a dehumidifier installed in a room such as a room. The air conditioner 200 may be an industrial dehumidifier or a dehumidifier installed in a general household.
 空気調和装置200は、圧縮機1、凝縮器2、絞り装置3、蒸発器4、アキュムレータ(ACC)6、ホットガス電磁弁7、第1電磁弁8、及び第2電磁弁9を有している。第1電磁弁8は、アキュムレータ6の上流側、すなわち蒸発器4とアキュムレータ6との間に設けられている。第2電磁弁9は、アキュムレータ6の下流側、すなわちアキュムレータ6と圧縮機1との間に設けられている。 The air conditioner 200 includes a compressor 1, a condenser 2, an expansion device 3, an evaporator 4, an accumulator (ACC) 6, a hot gas electromagnetic valve 7, a first electromagnetic valve 8, and a second electromagnetic valve 9. Yes. The first electromagnetic valve 8 is provided on the upstream side of the accumulator 6, that is, between the evaporator 4 and the accumulator 6. The second electromagnetic valve 9 is provided on the downstream side of the accumulator 6, that is, between the accumulator 6 and the compressor 1.
 空気調和装置200は、圧縮機1、凝縮器2、絞り装置3、蒸発器4、第1電磁弁8、アキュムレータ6、及び第2電磁弁9が主配管20によって順次接続され、冷媒が循環する主回路10を有している。主配管20は、高圧側に配設された吐出配管21と、高圧側に配設された液管22と、低圧側に配設された液管23と、低圧側に配設された吸入配管24と、により構成されている。 In the air conditioner 200, the compressor 1, the condenser 2, the expansion device 3, the evaporator 4, the first electromagnetic valve 8, the accumulator 6, and the second electromagnetic valve 9 are sequentially connected by the main pipe 20, and the refrigerant circulates. A main circuit 10 is included. The main pipe 20 includes a discharge pipe 21 arranged on the high pressure side, a liquid pipe 22 arranged on the high pressure side, a liquid pipe 23 arranged on the low pressure side, and a suction pipe arranged on the low pressure side. 24.
 吐出配管21は、圧縮機1の吐出側と凝縮器2の流入側とを連結する配管である。吐出配管21には、圧縮機1から吐出された高圧の冷媒が流れる。液管22は、凝縮器2の流出側と絞り装置3の流入側とを連結する配管である。液管22には、凝縮器2から流出した高圧の液冷媒が流れる。液管23は、絞り装置3の流出側と蒸発器4の流入側とを連結する配管である。液管23には、絞り装置3から流出した低圧の二相冷媒が流れる。吸入配管24は、蒸発器4の流出側と圧縮機1の吸入側とを連結する配管である。吸入配管24には、蒸発器4から集出した低圧のガス冷媒が流れる。 The discharge pipe 21 is a pipe connecting the discharge side of the compressor 1 and the inflow side of the condenser 2. High-pressure refrigerant discharged from the compressor 1 flows through the discharge pipe 21. The liquid pipe 22 is a pipe that connects the outflow side of the condenser 2 and the inflow side of the expansion device 3. A high-pressure liquid refrigerant flowing out of the condenser 2 flows through the liquid pipe 22. The liquid pipe 23 is a pipe connecting the outflow side of the expansion device 3 and the inflow side of the evaporator 4. The low-pressure two-phase refrigerant that has flowed out of the expansion device 3 flows through the liquid pipe 23. The suction pipe 24 is a pipe connecting the outflow side of the evaporator 4 and the suction side of the compressor 1. The low-pressure gas refrigerant collected from the evaporator 4 flows through the suction pipe 24.
 吸入配管24は、蒸発器4と第1電磁弁8との間と、第2電磁弁9と圧縮機1との間とを接続し、アキュムレータ6をバイパスするバイパス配管24aを有している。より具体的に、吸入配管24には、第1電磁弁8の上流、すなわち蒸発器4と第1電磁弁8との間に、上流分岐手段24bが設けられている。また、吸入配管24には、第2電磁弁9の下流、すなわち第2電磁弁9と圧縮機1との間に、下流分岐手段24cが設けられている。つまり、上流分岐手段24bと下流分岐手段24cとの間が、バイパス配管24aによって連結されている。 The suction pipe 24 has a bypass pipe 24 a that connects between the evaporator 4 and the first electromagnetic valve 8, between the second electromagnetic valve 9 and the compressor 1, and bypasses the accumulator 6. More specifically, the intake pipe 24 is provided with upstream branching means 24b upstream of the first electromagnetic valve 8, that is, between the evaporator 4 and the first electromagnetic valve 8. The intake pipe 24 is provided with a downstream branching unit 24 c downstream of the second electromagnetic valve 9, that is, between the second electromagnetic valve 9 and the compressor 1. That is, the upstream branching unit 24b and the downstream branching unit 24c are connected by the bypass pipe 24a.
 また、空気調和装置200は、圧縮機1の吐出側と凝縮器2との間と、凝縮器2と絞り装置3との間とを接続するホットガスバイパス回路15を有している。ホットガスバイパス回路15は、ホットガスデフロスト配管25と、ホットガス電磁弁7と、を有している。より具体的に、吐出配管21の途中には、第1分岐手段25aが設けられており、液管22の途中には、第2分岐手段25bが設けられている。すなわち、第1分岐手段25aと第2分岐手段25bとの間が、ホットガスデフロスト配管25によって連結されており、ホットガスデフロスト配管25には、ホットガス電磁弁7が配設されている。 The air conditioner 200 has a hot gas bypass circuit 15 that connects between the discharge side of the compressor 1 and the condenser 2 and between the condenser 2 and the expansion device 3. The hot gas bypass circuit 15 includes a hot gas defrost pipe 25 and a hot gas solenoid valve 7. More specifically, the first branching means 25 a is provided in the middle of the discharge pipe 21, and the second branching means 25 b is provided in the middle of the liquid pipe 22. That is, the first branching means 25 a and the second branching means 25 b are connected by the hot gas defrost pipe 25, and the hot gas electromagnetic valve 7 is disposed in the hot gas defrost pipe 25.
 本実施の形態1の空気調和装置200は、主回路10及びホットガスバイパス回路15によって形成された冷媒回路を循環させる冷媒として、第1冷媒と第1冷媒よりも沸点が高い第2冷媒とを含む非共沸混合冷媒を使用するものである。非共沸混合冷媒において、第1冷媒は、沸点が相対的に低い低沸点冷媒であり、第2冷媒は、沸点が相対的に高い高沸点冷媒である。 The air conditioner 200 of the first embodiment uses a first refrigerant and a second refrigerant having a higher boiling point than the first refrigerant as refrigerant that circulates through the refrigerant circuit formed by the main circuit 10 and the hot gas bypass circuit 15. A non-azeotropic refrigerant mixture is used. In the non-azeotropic refrigerant mixture, the first refrigerant is a low-boiling refrigerant having a relatively low boiling point, and the second refrigerant is a high-boiling refrigerant having a relatively high boiling point.
 より具体的に、非共沸混合冷媒は、例えば、R407C又はR448Aである。非共沸混合冷媒は、R32と、R125と、R134aと、R1234yfと、COとの混合冷媒であり、R32の割合XR32(wt%)が「33<XR32<39」である条件と、R125の割合XR125(wt%)が「27<XR125<33」である条件と、R134aの割合XR134a(wt%)が「11<XR134a<17」である条件と、R1234yfの割合XR1234yf(wt%)が「11<XR1234yf<17」である条件と、COの割合XCO(wt%)が「3<XCO<9」である条件と、XR32とXR125とXR134aとXR1234yfとXCOとの総和が100である条件と、を全て満たす冷媒であってもよい。 More specifically, the non-azeotropic mixed refrigerant is, for example, R407C or R448A. The non-azeotropic refrigerant mixture is a refrigerant mixture of R32, R125, R134a, R1234yf, and CO 2, and the condition that the ratio XR32 (wt%) of R32 is “33 <XR32 <39”; The ratio XR125 (wt%) of “27 <XR125 <33”, the ratio XR134a (wt%) of R134a is “11 <XR134a <17”, and the ratio XR1234yf (wt%) of R1234yf is The condition that “11 <XR1234yf <17”, the condition that the CO 2 ratio XCO 2 (wt%) is “3 <XCO 2 <9”, and the sum of XR32, XR125, XR134a, XR1234yf, and XCO 2 are A refrigerant that satisfies all the conditions of 100 may be used.
 圧縮機1は、冷媒を圧縮するものである。圧縮機1は、定速圧縮機であってもよく、インバータによって駆動されるモータを備えたインバータ圧縮機であってもよい。凝縮器2は、圧縮機1において圧縮された冷媒を凝縮するものである。凝縮器2は、例えばフィンアンドチューブ型熱交換器からなり、冷媒と空気との間で熱交換させるものである。絞り装置3は、例えば電子膨張弁からなり、凝縮器2において凝縮された冷媒を膨張させるものである。蒸発器4は、絞り装置3において膨張した冷媒を蒸発させるものである。蒸発器4は、例えばフィンアンドチューブ型熱交換器からなり、冷媒と空気との間で熱交換させるものである。 The compressor 1 compresses the refrigerant. The compressor 1 may be a constant speed compressor or an inverter compressor provided with a motor driven by an inverter. The condenser 2 condenses the refrigerant compressed in the compressor 1. The condenser 2 is composed of, for example, a fin-and-tube heat exchanger, and exchanges heat between the refrigerant and air. The expansion device 3 is composed of, for example, an electronic expansion valve, and expands the refrigerant condensed in the condenser 2. The evaporator 4 evaporates the refrigerant expanded in the expansion device 3. The evaporator 4 consists of a fin and tube type heat exchanger, for example, and heat-exchanges between a refrigerant | coolant and air.
 ところで、蒸発器4で蒸発できなった冷媒が、液体の状態のまま圧縮機1に吸い込まれると、圧縮機1が液圧縮を起こす。すなわち、液冷媒が圧縮機1に吸い込まれると、液体は非圧縮性であるため、圧縮機1の内部で大きな圧力が生じ、激しい衝撃音が発生する。また、液冷媒が圧縮機1内の油に溶け込むことで、油の濃度が希釈され、油の粘度が低下するため、潤滑不良により圧縮機1が故障に至ることがある。こうした不都合を防止するために、空気調和装置200の主回路10には、アキュムレータ6が設けられている。液冷媒が圧縮機1に戻っているかどうかは、吸入過熱度(以下、吸入SHという)の値をもとに判断することができる。吸入SHは、詳しくは後述するが、吸入管温度センサ33が計測する吸入温度から低圧圧力飽和温度を減算することにより求めることができる。 By the way, when the refrigerant that has not been evaporated by the evaporator 4 is sucked into the compressor 1 in a liquid state, the compressor 1 causes liquid compression. That is, when the liquid refrigerant is sucked into the compressor 1, since the liquid is incompressible, a large pressure is generated inside the compressor 1, and a severe impact sound is generated. Further, since the liquid refrigerant dissolves in the oil in the compressor 1, the concentration of the oil is diluted and the viscosity of the oil is lowered, so that the compressor 1 may break down due to poor lubrication. In order to prevent such inconvenience, the accumulator 6 is provided in the main circuit 10 of the air conditioner 200. Whether or not the liquid refrigerant has returned to the compressor 1 can be determined based on the value of the suction superheat degree (hereinafter referred to as suction SH). As will be described in detail later, the suction SH can be obtained by subtracting the low-pressure saturation temperature from the suction temperature measured by the suction pipe temperature sensor 33.
 アキュムレータ6は、容器内に流入した冷媒を気体と液体とに分離させ、ガス冷媒を圧縮機1に戻すためのものである。ホットガス電磁弁7は、ON状態のときに冷媒を通過させる開の状態となり、OFF状態のときに冷媒を遮断する閉の状態となる電磁弁である。ホットガス電磁弁7がON状態にあれば、圧縮機1から吐出された冷媒がホットガスバイパス回路15を通過する。 The accumulator 6 is for separating the refrigerant flowing into the container into gas and liquid and returning the gas refrigerant to the compressor 1. The hot gas solenoid valve 7 is an electromagnetic valve that is in an open state that allows the refrigerant to pass therethrough when in the ON state, and that is in a closed state that blocks the refrigerant when in the OFF state. If the hot gas solenoid valve 7 is in the ON state, the refrigerant discharged from the compressor 1 passes through the hot gas bypass circuit 15.
 第1電磁弁8及び第2電磁弁9は、それぞれ、ON状態のときに冷媒を通過させる開の状態となり、OFF状態のときに冷媒を遮断する閉の状態となる電磁弁である。第1電磁弁8と第2電磁弁9とがON状態のときは、蒸発器4を通過した冷媒がアキュムレータ6を通過する。第1電磁弁8は、本発明の「第1調整弁」に相当し、第2電磁弁9は、本発明の「第2調整弁」に相当する。 The first electromagnetic valve 8 and the second electromagnetic valve 9 are electromagnetic valves that are in an open state in which the refrigerant is allowed to pass in the ON state and are in a closed state in which the refrigerant is shut off in the OFF state. When the first electromagnetic valve 8 and the second electromagnetic valve 9 are in the ON state, the refrigerant that has passed through the evaporator 4 passes through the accumulator 6. The first electromagnetic valve 8 corresponds to the “first regulating valve” of the present invention, and the second electromagnetic valve 9 corresponds to the “second regulating valve” of the present invention.
 また、空気調和装置200は、蒸発器4と凝縮器2とに共用のファン5を有している。ファン5は、蒸発器4に風を送ると共に、凝縮器2にも風を送ることができる。すなわち、ファン5は、蒸発器4における冷媒の蒸発、すなわち冷熱の放出を促進すると共に、凝縮器2における冷媒の凝縮、すなわち温熱の放出を促進するように作用する。 Further, the air conditioner 200 has a fan 5 shared by the evaporator 4 and the condenser 2. The fan 5 can send wind to the evaporator 4 and can also send wind to the condenser 2. That is, the fan 5 acts to promote the evaporation of the refrigerant in the evaporator 4, that is, the release of cold heat, and to promote the condensation of the refrigerant in the condenser 2, that is, the release of hot heat.
 さらに、空気調和装置200は、吐出管温度センサ31と、高圧圧力センサ32と、吸入管温度センサ33と、低圧圧力センサ34と、を有している。吐出管温度センサ31は、圧縮機1の吐出口周辺に設けられており、圧縮機1から吐出される冷媒の温度である吐出温度を計測するものである。高圧圧力センサ32は、圧縮機1の吐出口周辺に設けられており、圧縮機1から吐出される冷媒の圧力である高圧圧力を計測するものである。吸入管温度センサ33は、圧縮機1の吸入口周辺に設けられており、圧縮機1に吸入される冷媒の温度である吸入温度を計測するものである。低圧圧力センサ34は、圧縮機1の吸入口周辺に設けられており、圧縮機1に吸入される冷媒の圧力である低圧圧力を計測するものである。 Furthermore, the air conditioning apparatus 200 includes a discharge pipe temperature sensor 31, a high pressure sensor 32, a suction pipe temperature sensor 33, and a low pressure sensor 34. The discharge pipe temperature sensor 31 is provided around the discharge port of the compressor 1 and measures a discharge temperature that is the temperature of the refrigerant discharged from the compressor 1. The high pressure sensor 32 is provided around the discharge port of the compressor 1 and measures a high pressure that is the pressure of the refrigerant discharged from the compressor 1. The suction pipe temperature sensor 33 is provided in the vicinity of the suction port of the compressor 1 and measures a suction temperature that is the temperature of the refrigerant sucked into the compressor 1. The low-pressure sensor 34 is provided around the suction port of the compressor 1 and measures a low-pressure that is the pressure of the refrigerant sucked into the compressor 1.
 そして、空気調和装置200は、主回路10と、ホットガスバイパス回路15と、ファン5とを制御する制御装置50を有している。すなわち、制御装置50は、圧縮機1、絞り装置3、ホットガス電磁弁7、第1電磁弁8、第2電磁弁9、及びファン5などといった空気調和装置200内の各種アクチュエータの動作を制御し管理するものである。例えば、制御装置50は、第1電磁弁8及び第2電磁弁9のそれぞれの開閉状態を調整することにより、圧縮機1に吸入させる非共沸混合冷媒における第1冷媒の比率を調整するものである。以降では、圧縮機1に吸入させる非共沸混合冷媒における第1冷媒の比率を、単に「第1冷媒の比率」ともいう。 And the air conditioner 200 has the control apparatus 50 which controls the main circuit 10, the hot gas bypass circuit 15, and the fan 5. FIG. That is, the control device 50 controls operations of various actuators in the air conditioner 200 such as the compressor 1, the expansion device 3, the hot gas electromagnetic valve 7, the first electromagnetic valve 8, the second electromagnetic valve 9, and the fan 5. And manage. For example, the control device 50 adjusts the ratio of the first refrigerant in the non-azeotropic refrigerant mixture to be sucked into the compressor 1 by adjusting the open / close states of the first electromagnetic valve 8 and the second electromagnetic valve 9. It is. Hereinafter, the ratio of the first refrigerant in the non-azeotropic refrigerant mixture sucked into the compressor 1 is also simply referred to as “the ratio of the first refrigerant”.
(基本的な冷媒の流れ)
 次に、空気調和装置200の冷媒回路における基本的な冷媒の流れについて説明する。
 圧縮機1から吐き出された高温かつ高圧のガス冷媒は、吐出配管21を通り凝縮器2に入る。凝縮器2に入ったガス冷媒は、空気との間で熱交換することにより、温熱を放出して液化する。凝縮器2で液化した冷媒は、液管22を通って絞り装置3に流入し、絞り装置3において減圧されて気液二相の状態となる。そして、絞り装置3で気液二相の状態となった冷媒は、液管23を通って蒸発器4に流入し、蒸発器4において空気との間で熱交換することにより、冷熱を放出してガス化する。さらに、蒸発器4でガス化した冷媒は、吸入配管24を通り、圧縮機1の吸入側から吸い込まれて再び圧縮される。すなわち、空気調和装置200では、冷媒回路内の冷媒が上記のような循環工程を繰り返すことにより、冷凍サイクルが形成される。
(Basic refrigerant flow)
Next, the basic refrigerant flow in the refrigerant circuit of the air conditioner 200 will be described.
The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the discharge pipe 21 and enters the condenser 2. The gas refrigerant that has entered the condenser 2 is liquefied by releasing warm heat by exchanging heat with air. The refrigerant liquefied in the condenser 2 flows into the expansion device 3 through the liquid pipe 22 and is decompressed in the expansion device 3 to be in a gas-liquid two-phase state. Then, the refrigerant that has become a gas-liquid two-phase state in the expansion device 3 flows into the evaporator 4 through the liquid pipe 23, and heat is exchanged with air in the evaporator 4, thereby releasing cold. Gasify. Further, the refrigerant gasified by the evaporator 4 passes through the suction pipe 24 and is sucked from the suction side of the compressor 1 and compressed again. That is, in the air conditioning apparatus 200, the refrigerant in the refrigerant circuit repeats the circulation process as described above, thereby forming a refrigeration cycle.
 ところで、空気調和装置200では、図1に一点鎖線の白抜き矢印で示すように、室内から吸い込まれた室内空気は、蒸発器4を通過した後、凝縮器2を通過するようになっている。したがって、室内空気は、蒸発器4を通過する際に冷却され、凝縮器2を通過する際に加温される。すなわち、室内空気は、蒸発器4を通過する際に、冷熱を受け取り、露点以下となる。そのため、室内空気の一部は、蒸発器4に結露し、冷却及び減湿される。一方、蒸発器4を通過した室内空気は、凝縮器2を通過する際に、温熱を受け取って所定の温度となり、相対湿度の低い空気として室内に排出される。すなわち、空気調和装置200において、凝縮器2は、蒸発器4を通過する際に冷却された空気に再度温熱を加える再熱器として作用する。 By the way, in the air conditioner 200, as indicated by the dashed-dotted white arrow in FIG. 1, the indoor air sucked from the room passes through the evaporator 4 and then passes through the condenser 2. . Therefore, the indoor air is cooled when passing through the evaporator 4 and is heated when passing through the condenser 2. In other words, the room air receives cold heat when passing through the evaporator 4 and falls below the dew point. Therefore, a part of the room air is condensed on the evaporator 4 to be cooled and dehumidified. On the other hand, when the room air that has passed through the evaporator 4 passes through the condenser 2, it receives warm heat and reaches a predetermined temperature, and is discharged into the room as air having a low relative humidity. That is, in the air conditioner 200, the condenser 2 functions as a reheater that adds warm heat again to the cooled air when passing through the evaporator 4.
 図2は、図1の空気調和装置の制御系を示すブロック図である。図2を参照して、制御装置50の構成内容を具体的に説明する。図2に示すように、制御装置50は、制御部51と、操作部52と、記憶部53と、を有している。操作部52は、目標温度、目標圧力などの各種設定に関する入力操作を受け付け、入力操作の内容に応じた信号を制御部51へ出力するものである。記憶部53は、各種のデータを記憶するRAM(Random Access Memory)と、制御部51が各運転モードでの制御を行うためのプログラムなどを記憶するROM(Read Only Memory)と、を含んで構成されている。 FIG. 2 is a block diagram showing a control system of the air conditioner of FIG. With reference to FIG. 2, the configuration content of the control device 50 will be specifically described. As illustrated in FIG. 2, the control device 50 includes a control unit 51, an operation unit 52, and a storage unit 53. The operation unit 52 receives an input operation related to various settings such as a target temperature and a target pressure, and outputs a signal corresponding to the content of the input operation to the control unit 51. The storage unit 53 includes a RAM (Random Access Memory) for storing various data, and a ROM (Read Only Memory) for storing a program for the control unit 51 to perform control in each operation mode. Has been.
 制御部51は、例えば、CPU(Central Processing Unit)、マイコン、又はDSP(Digital Signal Processor)により構成されている。制御部51には、吐出管温度センサ31が計測した吐出温度の情報と、高圧圧力センサ32が計測した高圧圧力の情報と、吸入管温度センサ33が計測した吸入温度の情報と、低圧圧力センサ34が計測した低圧圧力の情報とが入力される。 The control unit 51 is configured by, for example, a CPU (Central Processing Unit), a microcomputer, or a DSP (Digital Signal Processor). The control unit 51 includes information on the discharge temperature measured by the discharge pipe temperature sensor 31, information on the high pressure measured by the high pressure sensor 32, information on the suction temperature measured by the suction pipe temperature sensor 33, and a low pressure sensor. Information on the low pressure measured by 34 is input.
 制御部51は、空気調和装置200に、除湿運転、加熱量アップモードでの運転、及び除霜運転を実行させるものである。制御部51は、各種センサから出力される情報、操作部52から出力される信号、及びコントローラ300から送信される信号などをもとに、空気調和装置200内の各種アクチュエータの動作を制御するものである。 The control unit 51 causes the air conditioner 200 to perform a dehumidifying operation, an operation in the heating amount up mode, and a defrosting operation. The control unit 51 controls the operation of various actuators in the air conditioning apparatus 200 based on information output from various sensors, a signal output from the operation unit 52, a signal transmitted from the controller 300, and the like. It is.
 例えば、制御部51は、記憶部53のROM内のプログラムに従って、第1電磁弁8及び第2電磁弁9の開閉状態を適宜制御し、圧縮機1に吸入させる冷媒の組成を調整するものである。すなわち、制御部51は、第1電磁弁8及び第2電磁弁9の開閉制御を行い、アキュムレータ6に留まる液冷媒の量を調整することにより、冷媒回路内における冷媒の組成、すなわち冷媒回路を循環する低沸点冷媒の比率を変更するものである。 For example, the control unit 51 appropriately controls the open / closed state of the first electromagnetic valve 8 and the second electromagnetic valve 9 according to the program in the ROM of the storage unit 53 and adjusts the composition of the refrigerant to be sucked into the compressor 1. is there. That is, the control unit 51 performs opening / closing control of the first electromagnetic valve 8 and the second electromagnetic valve 9, and adjusts the amount of liquid refrigerant remaining in the accumulator 6, thereby controlling the refrigerant composition in the refrigerant circuit, that is, the refrigerant circuit. The ratio of the circulating low-boiling refrigerant is changed.
 制御部51は、第1電磁弁8及び第2電磁弁9を開くことにより、第1冷媒の比率を上げることができる。第1冷媒の比率が上がると、低圧圧力センサ34が計測する低圧圧力の値が上昇し、冷媒回路内を循環する冷媒の量が増え、高圧圧力センサ32が計測する高圧圧力の値と、吐出管温度センサ31が計測する吐出温度の値が上昇する。ゆえに、蒸発器4の温度と、蒸発器4に流入する冷媒の温度との温度差が大きくなるため、除霜運転における除霜時間を短縮することができ、除湿効率を上げることができる。本実施の形態1における除湿効率は、除湿運転時間を除霜時間で除した値(除湿運転時間/除霜時間)を指標として定まる。 The controller 51 can increase the ratio of the first refrigerant by opening the first electromagnetic valve 8 and the second electromagnetic valve 9. When the ratio of the first refrigerant increases, the value of the low pressure measured by the low pressure sensor 34 increases, the amount of refrigerant circulating in the refrigerant circuit increases, the value of the high pressure measured by the high pressure sensor 32, and the discharge The discharge temperature value measured by the tube temperature sensor 31 increases. Therefore, since the temperature difference between the temperature of the evaporator 4 and the temperature of the refrigerant flowing into the evaporator 4 becomes large, the defrosting time in the defrosting operation can be shortened and the dehumidification efficiency can be increased. The dehumidifying efficiency in the first embodiment is determined by using a value obtained by dividing the dehumidifying operation time by the defrosting time (dehumidifying operating time / defrosting time) as an index.
 コントローラ300は、制御装置50と有線又は無線で接続されており、制御部51との間で通信を行うものである。コントローラ300には、空気調和装置200の運転を起動するためのONスイッチ、空気調和装置200の運転を停止するためのOFFスイッチ、及び加熱量を上昇させるための加熱量調整スイッチなどが設けられている。コントローラ300は、ユーザによる入力操作を受け付け、入力操作の内容に応じた信号を制御部51へ送信するものである。 The controller 300 is connected to the control device 50 in a wired or wireless manner, and communicates with the control unit 51. The controller 300 is provided with an ON switch for starting the operation of the air conditioner 200, an OFF switch for stopping the operation of the air conditioner 200, a heating amount adjustment switch for increasing the heating amount, and the like. Yes. The controller 300 receives an input operation by a user and transmits a signal corresponding to the content of the input operation to the control unit 51.
(除湿運転時)
 制御部51は、除湿運転中において、吸入SHが第1閾値と比べて高いか低いかをみて、第1電磁弁8及び第2電磁弁9の開閉状態を決定するようになっている。より具体的に、制御部51は、吸入管温度センサ33より入力した吸入温度から低圧圧力飽和温度を減算することにより、吸入SHを求めるものである。低圧圧力飽和温度は、低圧圧力センサ34より入力した低圧圧力の値を飽和温度換算した値である。記憶部53には、例えば、低圧圧力と飽和温度とを関連づけたテーブル情報である換算テーブルが格納されており、制御部51は、低圧圧力センサ34から入力した低圧圧力の情報を換算テーブルに照らして、低圧圧力飽和温度を求めるようになっている。そして、制御部51は、求めた吸入SHが第1閾値以下であるか否かを判定し、吸入SHが第1閾値以下であれば、第1電磁弁8及び第2電磁弁9を開の状態にするものである。
(During dehumidifying operation)
The controller 51 determines whether the first solenoid valve 8 and the second solenoid valve 9 are open or closed during the dehumidifying operation by checking whether the suction SH is higher or lower than the first threshold value. More specifically, the control unit 51 obtains the suction SH by subtracting the low pressure saturation temperature from the suction temperature input from the suction pipe temperature sensor 33. The low pressure saturation temperature is a value obtained by converting the value of the low pressure input from the low pressure sensor 34 into a saturation temperature. The storage unit 53 stores, for example, a conversion table that is table information in which the low pressure and the saturation temperature are associated with each other, and the control unit 51 checks the low pressure information input from the low pressure sensor 34 against the conversion table. Thus, the low pressure saturation temperature is obtained. Then, the control unit 51 determines whether or not the obtained suction SH is equal to or smaller than the first threshold value. If the suction SH is equal to or smaller than the first threshold value, the first electromagnetic valve 8 and the second electromagnetic valve 9 are opened. It is a state.
 第1電磁弁8及び第2電磁弁9が開の状態になると、圧縮機1に吸入される第1冷媒の比率が上がり、吐出温度が上昇するため、凝縮器2の温度と凝縮器2に入る冷媒の温度との温度差が大きくなる。よって、凝縮器2で同一の熱交換量を得ようとする場合、圧縮機1が、インバータにより周波数の調整が可能なインバータ圧縮機であれば、圧縮機1が定速圧縮機のときよりも運転周波数を下げることができるため、運転効率の向上を図ることができる。すなわち、圧縮機1としてインバータ圧縮機を搭載した空気調和装置200によれば、COP(Coefficient of Performance:成績係数)を上昇させることができる。 When the first solenoid valve 8 and the second solenoid valve 9 are in the open state, the ratio of the first refrigerant sucked into the compressor 1 increases and the discharge temperature rises. Therefore, the temperature of the condenser 2 and the condenser 2 are increased. The temperature difference from the temperature of the entering refrigerant increases. Therefore, when it is going to obtain the same heat exchange amount with the condenser 2, if the compressor 1 is an inverter compressor which can adjust a frequency with an inverter, compared with the time when the compressor 1 is a constant speed compressor. Since the operating frequency can be lowered, the driving efficiency can be improved. That is, according to the air conditioner 200 in which an inverter compressor is mounted as the compressor 1, it is possible to increase COP (Coefficient of Performance).
 より具体的に、制御部51は、第1電磁弁8及び第2電磁弁9を開いた場合に、圧縮機1の周波数、すなわち圧縮機1のモータの運転周波数を下げるCOPアップ運転を行うようにしてもよい。例えば、制御部51は、第1電磁弁8と第2電磁弁9とを開いたとき、又は第1電磁弁8と第2電磁弁9とを開いてから待ち時間が経過したときに、圧縮機1の周波数を下げるようにしてもよい。待ち時間は、操作部52又はコントローラ300を介して設定と変更とが行えるようにしてもよいし、制御部51が運転状態又は設置環境などに応じて自動的に設定するようにしてもよい。もっとも、制御部51は、第1電磁弁8と第2電磁弁9とを閉じた場合に、圧縮機1の周波数を上げるようにしてもよい。こうしたCOPアップ運転等を、制御部51は、除霜運転時及び加熱量アップモードでの運転時にも行うことができる。 More specifically, when the first electromagnetic valve 8 and the second electromagnetic valve 9 are opened, the control unit 51 performs a COP-up operation that lowers the frequency of the compressor 1, that is, the operation frequency of the motor of the compressor 1. It may be. For example, the control unit 51 compresses when the first electromagnetic valve 8 and the second electromagnetic valve 9 are opened, or when the waiting time has elapsed since the first electromagnetic valve 8 and the second electromagnetic valve 9 are opened. The frequency of the machine 1 may be lowered. The waiting time may be set and changed via the operation unit 52 or the controller 300, or the control unit 51 may automatically set the waiting time according to the operating state or the installation environment. However, the control unit 51 may increase the frequency of the compressor 1 when the first electromagnetic valve 8 and the second electromagnetic valve 9 are closed. Such a COP-up operation and the like can be performed by the control unit 51 during the defrosting operation and the operation in the heating amount increase mode.
 さらに、制御部51は、第1電磁弁8及び第2電磁弁9を開いた後も、経時的に吸入SHを求め、求めた吸入SHが第2閾値以上であるか否かを判定するものである。そして、制御部51は、吸入SHが第2閾値に到達したときに、第1電磁弁8及び第2電磁弁9を閉の状態にするものである。 Further, the controller 51 obtains the intake SH over time even after the first electromagnetic valve 8 and the second electromagnetic valve 9 are opened, and determines whether or not the obtained intake SH is greater than or equal to the second threshold value. It is. The control unit 51 closes the first electromagnetic valve 8 and the second electromagnetic valve 9 when the suction SH reaches the second threshold value.
 ここで、第1閾値は、除湿運転時に、第1電磁弁8及び第2電磁弁9を開くタイミングの基準となる温度であり、例えば5Kに設定される。第2閾値は、除湿運転時に、一旦開いた第1電磁弁8及び第2電磁弁9を閉じるタイミングの基準となる温度である。第2閾値は、第1閾値よりも高い温度に設定され、例えば15Kに設定される。第1閾値及び第2閾値は、空気調和装置200の構成内容及び設置環境などに応じて適宜変更することができる。ユーザは、操作部52又はコントローラ300を操作することにより、第1閾値及び第2閾値の設定と変更とを行うことができる。 Here, the first threshold value is a temperature serving as a reference for opening the first electromagnetic valve 8 and the second electromagnetic valve 9 during the dehumidifying operation, and is set to 5K, for example. The second threshold is a temperature that serves as a reference for closing the first electromagnetic valve 8 and the second electromagnetic valve 9 that are once opened during the dehumidifying operation. The second threshold is set to a temperature higher than the first threshold, for example, 15K. The first threshold value and the second threshold value can be appropriately changed according to the configuration content of the air conditioner 200 and the installation environment. The user can set and change the first threshold value and the second threshold value by operating the operation unit 52 or the controller 300.
(加熱量アップモードでの運転時)
 ユーザは、操作部52又はコントローラ300を介して、凝縮器2による加熱量を上昇させる加熱量アップモードの設定操作を行うことができる。加熱量アップモードとは、吐出管温度センサ31が計測する吐出温度の変化に応じて、制御部51が第1電磁弁8及び第2電磁弁9の開閉制御を実施することにより、加熱能力を調整して急速除湿運転を実現する運転モードである。ここで、急速除湿運転とは、相対湿度の低い空気を室内へ供給することにより、通常の除湿運転よりも早い時間で所望の湿度の空気環境を提供する運転である。
(During operation in heating up mode)
The user can perform a setting operation of the heating amount up mode for increasing the heating amount by the condenser 2 via the operation unit 52 or the controller 300. In the heating amount up mode, the controller 51 performs the opening / closing control of the first electromagnetic valve 8 and the second electromagnetic valve 9 according to the change of the discharge temperature measured by the discharge pipe temperature sensor 31, thereby increasing the heating capacity. This is an operation mode that adjusts to realize a rapid dehumidifying operation. Here, the rapid dehumidifying operation is an operation that provides an air environment having a desired humidity in a time earlier than a normal dehumidifying operation by supplying air having a low relative humidity into the room.
 加熱量アップモードの設定操作には、加熱量アップモードの開始を指示する操作の他、加熱量アップモードを開始する時刻を設定する操作、又は加熱量アップモードを開始するまでの時間を設定する操作などが含まれる。また、加熱量アップモードの設定操作には、制御部51が加熱量アップモードによる制御を継続する時間である加熱量アップ継続時間を設定する操作も含まれる。すなわち、ユーザは、操作部52又はコントローラ300を操作することにより、加熱量アップ継続時間の設定と変更とを行うことができる。 In the setting operation of the heating amount up mode, in addition to the operation for instructing the start of the heating amount up mode, the operation for setting the time for starting the heating amount up mode or the time until the heating amount up mode is started is set. Operations are included. Further, the setting operation of the heating amount up mode includes an operation of setting the heating amount up continuation time, which is the time during which the control unit 51 continues the control in the heating amount up mode. That is, the user can set and change the heating amount increase duration by operating the operation unit 52 or the controller 300.
 加熱量アップモードにおいて、制御部51は、圧縮機1の運転中に、まず、第1電磁弁8及び第2電磁弁9を開くようになっている。より具体的に、制御部51は、操作部52もしくはコントローラ300からの信号、又は操作部52又はコントローラ300での設定内容に応じて、加熱量アップモードの開始を検知するようになっている。制御部51は、圧縮機1が運転している状態において、加熱量アップモードの開始を検知すると、第1電磁弁8及び第2電磁弁9を開くようになっている。また、制御部51は、加熱量アップモードの開始を検知したとき、圧縮機1が停止していれば、圧縮機1が運転を開始するまで待機し、圧縮機1が運転を開始したときに、第1電磁弁8及び第2電磁弁9を開くようになっている。 In the heating amount up mode, the controller 51 first opens the first electromagnetic valve 8 and the second electromagnetic valve 9 during the operation of the compressor 1. More specifically, the control unit 51 detects the start of the heating amount up mode according to a signal from the operation unit 52 or the controller 300 or a setting content in the operation unit 52 or the controller 300. When the control unit 51 detects the start of the heating amount up mode while the compressor 1 is operating, the control unit 51 opens the first electromagnetic valve 8 and the second electromagnetic valve 9. Further, when the control unit 51 detects the start of the heating amount up mode, if the compressor 1 is stopped, the control unit 51 waits until the compressor 1 starts operation, and when the compressor 1 starts operation. The first electromagnetic valve 8 and the second electromagnetic valve 9 are opened.
 第1電磁弁8及び第2電磁弁9が開の状態になると、冷媒回路内の非共沸混合冷媒の組成が変わり、冷媒回路内を循環する第1冷媒の比率が上がる。つまり、制御部51は、第1電磁弁8及び第2電磁弁9を開くことにより、第1冷媒の比率を上げることができる。冷媒回路内を循環する第1冷媒の比率が上がると、低圧圧力が上昇し、冷媒回路内を循環する冷媒の量が増え、高圧圧力及び吐出温度が上昇する。制御部51は、吐出管温度センサ31から入力される吐出温度が、例えば120℃に設定される閉閾値に達するまで、第1電磁弁8及び第2電磁弁9に開の状態を維持させる。 When the first solenoid valve 8 and the second solenoid valve 9 are opened, the composition of the non-azeotropic refrigerant mixture in the refrigerant circuit changes, and the ratio of the first refrigerant circulating in the refrigerant circuit increases. That is, the controller 51 can increase the ratio of the first refrigerant by opening the first electromagnetic valve 8 and the second electromagnetic valve 9. When the ratio of the first refrigerant circulating in the refrigerant circuit increases, the low pressure increases, the amount of refrigerant circulating in the refrigerant circuit increases, and the high pressure and discharge temperature increase. The control unit 51 causes the first electromagnetic valve 8 and the second electromagnetic valve 9 to maintain an open state until the discharge temperature input from the discharge pipe temperature sensor 31 reaches a closing threshold set to 120 ° C., for example.
 制御部51は、第1電磁弁8及び第2電磁弁9を開の状態にした後、吐出管温度センサ31から入力される吐出温度が閉閾値まで上がったときに、第1電磁弁8及び第2電磁弁9の閉の状態にするものである。さらに、制御部51は、第1電磁弁8及び第2電磁弁9を閉の状態にした後、吐出管温度センサ31から入力される吐出温度が、例えば110℃の設定される開閾値に低下するまで、第1電磁弁8及び第2電磁弁9に閉の状態を維持させるものである。そして、制御部51は、吐出管温度センサ31から入力される吐出温度が開閾値まで低下したときに、第1電磁弁8及び第2電磁弁9を開の状態にするものである。 After the first solenoid valve 8 and the second solenoid valve 9 are opened, the control unit 51 sets the first solenoid valve 8 and the discharge valve temperature when the discharge temperature input from the discharge pipe temperature sensor 31 rises to the closing threshold. The second electromagnetic valve 9 is closed. Furthermore, after the control unit 51 closes the first electromagnetic valve 8 and the second electromagnetic valve 9, the discharge temperature input from the discharge pipe temperature sensor 31 is reduced to an open threshold that is set to 110 ° C., for example. Until this is done, the first electromagnetic valve 8 and the second electromagnetic valve 9 are kept in the closed state. And the control part 51 makes the 1st solenoid valve 8 and the 2nd solenoid valve 9 an open state, when the discharge temperature input from the discharge pipe temperature sensor 31 falls to an open threshold value.
 ここで、閉閾値は、加熱量アップモードでの運転時に、第1電磁弁8及び第2電磁弁9を閉じるタイミングの基準となる温度である。閉閾値は、閉基準閾値よりも高い温度に設定するとよい。開閾値は、加熱量アップモードでの運転時に、一旦閉じた第1電磁弁8及び第2電磁弁9を再度開くタイミングの基準となる温度であり、閉閾値よりも低い温度に設定される。開閾値は、閉基準温度よりも低く、開基準温度よりも高い温度に設定するとよい。閉閾値及び開閾値は、空気調和装置200の構成内容及び設置環境などに応じて適宜変更することができる。ユーザは、操作部52又はコントローラ300を操作することにより、開閾値及び閉閾値の設定と変更とを行うことができる。 Here, the closing threshold is a temperature that serves as a reference timing for closing the first solenoid valve 8 and the second solenoid valve 9 during operation in the heating-up mode. The closing threshold may be set to a temperature higher than the closing reference threshold. The open threshold is a temperature that serves as a reference for reopening the first electromagnetic valve 8 and the second electromagnetic valve 9 once closed during operation in the heating amount increase mode, and is set to a temperature lower than the close threshold. The open threshold value may be set to a temperature lower than the closed reference temperature and higher than the open reference temperature. The closing threshold and the opening threshold can be appropriately changed according to the configuration content of the air conditioner 200 and the installation environment. The user can set and change the open threshold value and the close threshold value by operating the operation unit 52 or the controller 300.
 加えて、制御部51は、第1電磁弁8及び第2電磁弁9を開いてからの経過時間を計時する加熱量アップタイマ(図示せず)を有している。すなわち、制御部51は、第1電磁弁8及び第2電磁弁9を開の状態にしたときに、加熱量アップタイマによる計時を開始するものである。そして、制御部51は、加熱量アップタイマがカウントアップしたとき、すなわち、第1電磁弁8及び第2電磁弁9を最初に開の状態にしてから加熱量アップ時間が経過したときに、加熱量アップモードを終了し、通常運転に移行するものである。本実施の形態1において、通常運転は、通常の除湿運転に相当する。 In addition, the control unit 51 has a heating amount up timer (not shown) that measures an elapsed time since the first electromagnetic valve 8 and the second electromagnetic valve 9 are opened. That is, the control part 51 starts time-measurement by the heating amount up timer when the first electromagnetic valve 8 and the second electromagnetic valve 9 are opened. When the heating amount up timer counts up, that is, when the heating amount up time elapses after the first electromagnetic valve 8 and the second electromagnetic valve 9 are initially opened, The quantity up mode is terminated, and the normal operation is started. In the first embodiment, the normal operation corresponds to a normal dehumidifying operation.
(除霜運転時:ホットガスデフロスト時)
 制御部51は、ホットガス電磁弁7の開閉状態をもとに、空気調和装置200が除霜運転中であるか否かを判定するようになっている。除霜運転中の場合、ホットガス電磁弁7は開の状態となっている。すなわち、制御部51は、ホットガス電磁弁7が開の状態であれば、除霜運転中であると判定し、ホットガス電磁弁7が閉の状態であれば、除霜運転中ではないと判定するようになっている。本実施の形態1において、制御部51は、ホットガス電磁弁7が閉の状態であれば、除湿運転中であると判定する。
(Defrost operation: Hot gas defrost)
The control unit 51 determines whether or not the air conditioner 200 is in the defrosting operation based on the open / closed state of the hot gas solenoid valve 7. During the defrosting operation, the hot gas solenoid valve 7 is in an open state. That is, if the hot gas solenoid valve 7 is in the open state, the control unit 51 determines that the defrosting operation is being performed, and if the hot gas solenoid valve 7 is in the closed state, it is not in the defrosting operation. It comes to judge. In the first embodiment, the control unit 51 determines that the dehumidifying operation is being performed if the hot gas solenoid valve 7 is in a closed state.
 制御部51は、空気調和装置200が除霜運転中であると判定した場合、第1電磁弁8及び第2電磁弁9を開の状態にし、圧縮機1に吸入させる非共沸混合冷媒の組成を変えて、第1冷媒の比率を上げるものである。また、制御部51は、第1電磁弁8及び第2電磁弁9を開の状態にした後、吐出管温度センサ31から入力される吐出温度が閉基準閾値に達したときに、第1電磁弁8及び第2電磁弁9を一度閉の状態にして、吐出温度の上昇を抑えるようになっている。さらに、制御部51は、第1電磁弁8及び第2電磁弁9を閉の状態にした後、吐出管温度センサ31から入力される吐出温度が開基準閾値まで下がったときに、第1電磁弁8及び第2電磁弁9を再度開の状態にするものである。 When the control unit 51 determines that the air conditioner 200 is in the defrosting operation, the control unit 51 opens the first electromagnetic valve 8 and the second electromagnetic valve 9 and sets the non-azeotropic refrigerant mixture to be sucked into the compressor 1. The ratio of the first refrigerant is increased by changing the composition. In addition, the control unit 51 opens the first electromagnetic valve 8 and the second electromagnetic valve 9 and then opens the first electromagnetic valve when the discharge temperature input from the discharge pipe temperature sensor 31 reaches the closed reference threshold. The valve 8 and the second electromagnetic valve 9 are once closed to suppress an increase in discharge temperature. Furthermore, after the first electromagnetic valve 8 and the second electromagnetic valve 9 are closed, the control unit 51 sets the first electromagnetic valve when the discharge temperature input from the discharge pipe temperature sensor 31 falls to the open reference threshold. The valve 8 and the second electromagnetic valve 9 are opened again.
 ここで、閉基準閾値は、除霜運転時に、第1電磁弁8及び第2電磁弁9を閉じるタイミングの基準となる温度であり、例えば115℃に設定さる。開基準閾値は、除霜運転時に、一旦閉じた第1電磁弁8及び第2電磁弁9を再度開くタイミングの基準となる温度である。開基準閾値は、閉基準閾値よりも低い温度に設定され、例えば105℃に設定される。開基準閾値及び閉基準閾値は、空気調和装置200の構成内容及び設置環境などに応じて適宜変更することができる。ユーザは、操作部52又はコントローラ300を操作することにより、開基準閾値及び閉基準閾値の設定と変更とを行うことができる。 Here, the closing reference threshold is a temperature serving as a reference for closing the first electromagnetic valve 8 and the second electromagnetic valve 9 during the defrosting operation, and is set to 115 ° C., for example. The open reference threshold is a temperature that serves as a reference for the timing of reopening the first electromagnetic valve 8 and the second electromagnetic valve 9 that are once closed during the defrosting operation. The open reference threshold is set to a temperature lower than the closed reference threshold, and is set to 105 ° C., for example. The open reference threshold value and the closed reference threshold value can be appropriately changed according to the configuration content of the air conditioner 200, the installation environment, and the like. The user can set and change the open reference threshold and the closed reference threshold by operating the operation unit 52 or the controller 300.
 制御部51は、除霜運転終了条件を満たしたか否かを判定する機能を有しており、除霜運転終了条件を満たしたときに、除霜運転を終了するようになっている。例えば、制御部51は、除湿運転を連続して所定の設定時間だけ行ったときに、蒸発器4が着霜状態にあると推定して除霜運転を開始するように構成してもよい。かかる構成を採る場合、例えば、空気調和装置200の空気吸込口に、サーミスタなどからなる温度センサを設け、制御部51が、温度センサの測定温度をもとに、除湿運転の設定時間と、除霜運転を継続する時間である除霜時間とを決定するようにしてもよい。そして、制御部51は、除霜運転を開始したときに計時を始め、除霜時間が経過したときに、除霜運転を終了するようにしてもよい。この場合、除霜時間が経過したときに、除霜運転終了条件を満たすこととなる。 The control unit 51 has a function of determining whether or not the defrosting operation end condition is satisfied, and ends the defrosting operation when the defrosting operation end condition is satisfied. For example, the controller 51 may be configured to start the defrosting operation by estimating that the evaporator 4 is in a frosting state when the dehumidifying operation is continuously performed for a predetermined set time. In the case of adopting such a configuration, for example, a temperature sensor such as a thermistor is provided at the air suction port of the air conditioner 200, and the control unit 51 determines the set time for the dehumidifying operation based on the measured temperature of the temperature sensor You may make it determine the defrost time which is the time which continues a frost driving | operation. Then, the control unit 51 may start timing when the defrosting operation is started, and end the defrosting operation when the defrosting time has elapsed. In this case, when the defrosting time has elapsed, the defrosting operation end condition is satisfied.
 また、制御部51は、蒸発器4の温度に応じて、除霜運転の開始と終了のタイミングを決定するようにしてもよい。かかる構成を採る場合、例えば、サーミスタなどからなる蒸発温度センサを蒸発器4に設けるようにしてもよい。そして、制御部51は、蒸発温度センサにおいて測定された温度が開始閾値まで低下したときに除霜運転を開始し、その後、蒸発温度センサにおいて測定された温度が終了閾値まで上昇したときに除霜運転を終了するようにしてもよい。この場合、蒸発温度センサにおいて測定された温度が終了閾値まで上昇したときに、除霜運転終了条件を満たすこととなる。なお、終了閾値は、開始閾値よりも高い温度に設定される。 Also, the control unit 51 may determine the start and end timing of the defrosting operation according to the temperature of the evaporator 4. In the case of adopting such a configuration, for example, an evaporation temperature sensor composed of a thermistor or the like may be provided in the evaporator 4. And the control part 51 starts defrost operation, when the temperature measured in the evaporation temperature sensor falls to the start threshold value, and then defrosts when the temperature measured in the evaporation temperature sensor rises to the end threshold value. You may make it complete | finish a driving | operation. In this case, when the temperature measured by the evaporation temperature sensor rises to the end threshold value, the defrosting operation end condition is satisfied. Note that the end threshold is set to a temperature higher than the start threshold.
(第1調整弁11及び第2調整弁12の開閉制御の方法)
 図3は、図1の空気調和装置の除湿運転及び除霜運転を中心とした動作を示すフローチャートである。図4は、図1の空気調和装置の加熱量アップモードにおける動作を示すフローチャートである。図3及び図4に基づいて、第1電磁弁8及び第2電磁弁9の開閉制御の方法について説明する。まず、図3を参照して、空気調和装置の除湿運転及び除霜運転を中心とした運転制御方法について説明する。
(Method for controlling opening and closing of the first regulating valve 11 and the second regulating valve 12)
FIG. 3 is a flowchart showing operations centering on dehumidifying operation and defrosting operation of the air-conditioning apparatus of FIG. 1. FIG. 4 is a flowchart showing the operation in the heating amount up mode of the air conditioner of FIG. Based on FIG.3 and FIG.4, the opening / closing control method of the 1st solenoid valve 8 and the 2nd solenoid valve 9 is demonstrated. First, with reference to FIG. 3, the operation control method centering on the dehumidification operation and defrost operation of an air conditioning apparatus is demonstrated.
 制御部51は、圧縮機1が運転中であるか否かを判定し(ステップS101)、圧縮機1が運転中でなければ、圧縮機1が運転を開始するまで待機する(ステップS101/NO)。制御部51は、圧縮機1の運転中において(ステップS101/YES)、加熱量アップモードの開始を検知した場合は(ステップS102/YES)、加熱量アップモード(図4参照)へ移行する。制御部51は、圧縮機1の運転中において(ステップS101/YES)、加熱量アップモードの開始を検知していない場合(ステップS102/NO)、空気調和装置200が除霜運転中であるか否かを判定する(ステップS103)。 The control unit 51 determines whether or not the compressor 1 is in operation (step S101). If the compressor 1 is not in operation, the control unit 51 waits until the compressor 1 starts operation (step S101 / NO). ). When the control unit 51 detects the start of the heating amount up mode during the operation of the compressor 1 (step S101 / YES) (step S102 / YES), the control unit 51 shifts to the heating amount up mode (see FIG. 4). When the control unit 51 is not operating the compressor 1 (step S101 / YES) and does not detect the start of the heating-up mode (step S102 / NO), is the air conditioning apparatus 200 performing the defrosting operation? It is determined whether or not (step S103).
(除霜運転)
 制御部51は、ホットガス電磁弁7が開の状態であることを検知して、空気調和装置200が除霜運転中であると判定すると(ステップS103/YES)、第1電磁弁8及び第2電磁弁9を開くことにより、第1冷媒の比率を上げる(ステップS104)。
(Defrosting operation)
When the control unit 51 detects that the hot gas solenoid valve 7 is open and determines that the air-conditioning apparatus 200 is in the defrosting operation (step S103 / YES), the control unit 51 and the first solenoid valve 8 2 The ratio of the first refrigerant is increased by opening the solenoid valve 9 (step S104).
 次いで、制御部51は、吐出管温度センサ31から入力される吐出温度が閉基準閾値以上であるか否かを判定する(ステップS105)。制御部51は、吐出温度が閉基準閾値未満であれば(ステップS105/NO)、除霜運転終了条件を満たすか否かを判定する(ステップS106)。制御部51は、除霜運転終了条件を満たせば(ステップS106/YES)、ステップS102の処理へ戻る。制御部51は、除霜運転終了条件を満たさなければ(ステップS106/NO)、ステップS105の処理へ戻る。 Next, the control unit 51 determines whether or not the discharge temperature input from the discharge pipe temperature sensor 31 is equal to or higher than the closed reference threshold (step S105). If the discharge temperature is lower than the closing reference threshold (step S105 / NO), the controller 51 determines whether or not the defrosting operation end condition is satisfied (step S106). Control part 51 will return to processing of Step S102, if defrost operation end conditions are fulfilled (Step S106 / YES). If the defrosting operation end condition is not satisfied (step S106 / NO), the control unit 51 returns to the process of step S105.
 一方、制御部51は、吐出温度が閉基準閾値に到達したときに(ステップS105/YES)、第1電磁弁8及び第2電磁弁9を閉じて、吐出温度の上昇を抑える(ステップS107)。そして、制御部51は、吐出管温度センサ31から入力される吐出温度が開基準閾値以下であるか否かを判定する(ステップS108)。 On the other hand, when the discharge temperature reaches the closing reference threshold (step S105 / YES), the control unit 51 closes the first electromagnetic valve 8 and the second electromagnetic valve 9 to suppress an increase in the discharge temperature (step S107). . And the control part 51 determines whether the discharge temperature input from the discharge pipe temperature sensor 31 is below an open reference threshold value (step S108).
 制御部51は、吐出温度が開基準閾値よりも高ければ、第1電磁弁8及び第2電磁弁9に閉の状態を維持させる(ステップS108/NO)。もっとも、制御部51は、ステップS107において第1電磁弁8及び第2電磁弁9を閉じた後、吐出温度が開基準閾値に下がるまでの間に(ステップS108/NO)除霜運転終了条件を満たせば、ステップS102の処理へ戻る。 When the discharge temperature is higher than the open reference threshold, the control unit 51 causes the first electromagnetic valve 8 and the second electromagnetic valve 9 to maintain a closed state (step S108 / NO). However, after the first solenoid valve 8 and the second solenoid valve 9 are closed in step S107, the control unit 51 sets the defrosting operation end condition until the discharge temperature falls to the open reference threshold (step S108 / NO). If satisfied, the process returns to step S102.
 制御部51は、吐出温度が開基準閾値まで下がったときに(ステップS108/YES)、第1電磁弁8及び第2電磁弁9を開く(ステップS109)。次いで、制御部51は、除霜運転終了条件を満たすか否かを判定する(ステップS110)。制御部51は、除霜運転終了条件を満たせば(ステップS110/YES)、ステップS102の処理へ戻り、除霜運転終了条件を満たさなければ(ステップS110/NO)、ステップS105の処理へ戻る。 The control unit 51 opens the first electromagnetic valve 8 and the second electromagnetic valve 9 (step S109) when the discharge temperature falls to the open reference threshold (step S108 / YES). Next, the control unit 51 determines whether or not the defrosting operation end condition is satisfied (step S110). If the defrosting operation end condition is satisfied (step S110 / YES), the control unit 51 returns to the process of step S102. If the defrosting operation end condition is not satisfied (step S110 / NO), the control unit 51 returns to the process of step S105.
(除湿運転)
 制御部51は、ホットガス電磁弁7が閉の状態であることを検知して、空気調和装置200が除湿運転中であると判定すると(ステップS103/NO)、吸入SHを求め、求めた吸入SHが第1閾値以下であるか否かを判定する(ステップS201)。
(Dehumidifying operation)
When the control unit 51 detects that the hot gas solenoid valve 7 is closed and determines that the air-conditioning apparatus 200 is in the dehumidifying operation (step S103 / NO), the control unit 51 obtains the intake SH and obtains the obtained intake. It is determined whether or not SH is equal to or less than a first threshold value (step S201).
 制御部51は、吸入SHが第1閾値より高い値の場合は(ステップS201/NO)、圧縮機1では液圧縮を起きないと考えられるため、第1電磁弁8及び第2電磁弁9に閉の状態を維持させたまま、ステップS102の処理へ戻る。一方、制御部51は、吸入SHが第1閾値以下であれば(ステップS201/YES)、第1電磁弁8及び第2電磁弁9を開く(ステップS202)。 When the intake SH is a value higher than the first threshold value (step S201 / NO), it is considered that the compressor 1 does not cause liquid compression, so the control unit 51 applies the first electromagnetic valve 8 and the second electromagnetic valve 9 to each other. The process returns to step S102 while the closed state is maintained. On the other hand, if the intake SH is equal to or less than the first threshold (step S201 / YES), the control unit 51 opens the first electromagnetic valve 8 and the second electromagnetic valve 9 (step S202).
 さらに、制御部51は、経時的に吸入SHを求め、求めた吸入SHが第2閾値以上であるか否かを判定する(ステップS203)。制御部51は、求めた吸入SHが第2閾値に到達するまで、第1電磁弁8及び第2電磁弁9に開の状態を維持させる(ステップS203/NO)。そして、制御部51は、吸入SHが第2閾値に到達したときに(ステップS203/YES)、第1電磁弁8及び第2電磁弁9を閉じ(ステップS204)、ステップS102の処理へ戻る。 Further, the control unit 51 obtains the inhalation SH over time, and determines whether or not the obtained inhalation SH is equal to or greater than the second threshold (step S203). The control unit 51 causes the first electromagnetic valve 8 and the second electromagnetic valve 9 to maintain the open state until the obtained suction SH reaches the second threshold value (step S203 / NO). And when the suction | inhalation SH reaches | attains 2nd threshold value (step S203 / YES), the control part 51 closes the 1st solenoid valve 8 and the 2nd solenoid valve 9 (step S204), and returns to the process of step S102.
 次に、図4を参照して、空気調和装置の加熱量アップモードでの運転制御方法について説明する。制御部51は、図3のステップS102において、加熱量アップモードの開始を検知すると(ステップS102/YES)、圧縮機1が運転中であるか否かを判定する(ステップS301)。そして、制御部51は、圧縮機1が運転中でなければ、圧縮機1が運転を開始するまで待機する(ステップS301/NO)。 Next, the operation control method in the heating amount up mode of the air conditioner will be described with reference to FIG. When detecting the start of the heating-up mode in step S102 of FIG. 3 (step S102 / YES), the controller 51 determines whether or not the compressor 1 is in operation (step S301). Then, if the compressor 1 is not in operation, the control unit 51 waits until the compressor 1 starts operation (step S301 / NO).
 制御部51は、圧縮機1が運転中である場合、又は圧縮機1が運転を開始したときに(ステップS301/YES)、第1電磁弁8及び第2電磁弁9を開くことにより、冷媒の組成を変え、第1冷媒の比率を上げる。その際、制御部51は、加熱量アップタイマによる計時を開始する(ステップS302)。 When the compressor 1 is in operation or when the compressor 1 starts operation (step S301 / YES), the control unit 51 opens the first electromagnetic valve 8 and the second electromagnetic valve 9 to generate refrigerant. To increase the ratio of the first refrigerant. In that case, the control part 51 starts time-measurement by a heating amount up timer (step S302).
 次いで、制御部51は、吐出管温度センサ31から入力される吐出温度が閉閾値以上であるか否かを判定する(ステップS303)。制御部51は、吐出温度が閉閾値よりも低ければ、第1電磁弁8及び第2電磁弁9に開の状態を維持させる(ステップS303/NO)。一方、制御部51は、吐出温度が開閾値まで上がったときに(ステップS303/YES)、加熱量アップタイマがカウントアップしたか否かを判定する(ステップS304)。 Next, the control unit 51 determines whether or not the discharge temperature input from the discharge pipe temperature sensor 31 is equal to or higher than the closing threshold (step S303). If the discharge temperature is lower than the closing threshold, the controller 51 causes the first electromagnetic valve 8 and the second electromagnetic valve 9 to maintain the open state (step S303 / NO). On the other hand, when the discharge temperature rises to the open threshold (step S303 / YES), the controller 51 determines whether or not the heating amount up timer has counted up (step S304).
 制御部51は、加熱量アップタイマがカウントアップすれば(ステップS304/YES)、加熱量アップモードを終了し(ステップS305)、通常運転に移行する。一方、制御部51は、加熱量アップタイマがカウントアップしなければ(ステップS304/NO)、第1電磁弁8及び第2電磁弁9を閉じる(ステップS306)。 When the heating amount up timer counts up (step S304 / YES), the control unit 51 ends the heating amount up mode (step S305) and shifts to normal operation. On the other hand, if the heating amount up timer does not count up (step S304 / NO), the controller 51 closes the first electromagnetic valve 8 and the second electromagnetic valve 9 (step S306).
 そして、制御部51は、加熱量アップタイマがカウントアップすれば(ステップS307/YES)、加熱量アップモードを終了し(ステップS308)、通常運転に移行する。一方、制御部51は、加熱量アップタイマがカウントアップしなければ(ステップS307/NO)、制御部51は、吐出管温度センサ31から入力される吐出温度が開閾値以下であるか否かを判定する(ステップS309)。 And if the heating amount up timer counts up (step S307 / YES), the control part 51 will complete | finish a heating amount up mode (step S308), and will transfer to a normal driving | operation. On the other hand, if the heating amount up timer does not count up (step S307 / NO), the control unit 51 determines whether or not the discharge temperature input from the discharge pipe temperature sensor 31 is equal to or lower than the open threshold. Determination is made (step S309).
 制御部51は、吐出温度が開閾値よりも高ければ(ステップS309/NO)、第1電磁弁8及び第2電磁弁9に閉の状態を維持させ、ステップS307の処理へ戻る。一方、制御部51は、吐出温度が開閾値まで下がったときに(ステップS309/YES)、第1電磁弁8及び第2電磁弁9を開いて(ステップS310)、ステップS303の処理へ戻る。 If the discharge temperature is higher than the open threshold (step S309 / NO), the controller 51 causes the first electromagnetic valve 8 and the second electromagnetic valve 9 to maintain the closed state, and returns to the process of step S307. On the other hand, when the discharge temperature falls to the opening threshold value (step S309 / YES), the control unit 51 opens the first electromagnetic valve 8 and the second electromagnetic valve 9 (step S310), and returns to the process of step S303.
 以上のように、空気調和装置200によれば、第1電磁弁8と第2電磁弁9とをそれぞれ制御することにより、圧縮機1に吸入させる非共沸混合冷媒における第1冷媒の比率を調整する。よって、低圧圧力を上昇させると共に、高圧圧力と圧縮機1から吐出される冷媒の温度とを上昇させることができるため、非共沸混合冷媒の特性を活かした効率のよい運転を実現することができる。 As described above, according to the air conditioner 200, the ratio of the first refrigerant in the non-azeotropic refrigerant mixture to be sucked into the compressor 1 is controlled by controlling the first electromagnetic valve 8 and the second electromagnetic valve 9, respectively. adjust. Therefore, the low pressure can be raised and the high pressure and the temperature of the refrigerant discharged from the compressor 1 can be raised, so that an efficient operation utilizing the characteristics of the non-azeotropic refrigerant mixture can be realized. it can.
 ところで、従来の空気調和装置は、非共沸混合冷媒を適用した場合、低沸点の単一冷媒を適用する場合よりも吐出温度が上昇しにくいため、除霜運転時に蒸発器4の除霜を行うための熱量が不足し、除霜が完了するまでに時間がかかるという課題がある。この点、本実施の形態1の空気調和装置200は、除霜運転中に第1電磁弁8と第2電磁弁9とを開くことにより、低沸点冷媒である第1冷媒の比率を上げることができる。そのため、蒸発器4の温度と、冷媒回路内を循環して蒸発器4に入る冷媒の温度との温度差が大きくなるため、除霜時間を短縮することができる。そして、除湿運転時間に対する除霜時間の割合を減らすことができるため、除霜効率の向上を図ることができる。 By the way, since the conventional air conditioning apparatus applies a non-azeotropic refrigerant mixture, the discharge temperature is less likely to rise than when a low-boiling point single refrigerant is applied. There is a problem that the amount of heat to perform is insufficient and it takes time to complete the defrosting. In this regard, the air-conditioning apparatus 200 according to the first embodiment increases the ratio of the first refrigerant that is a low boiling point refrigerant by opening the first electromagnetic valve 8 and the second electromagnetic valve 9 during the defrosting operation. Can do. Therefore, the temperature difference between the temperature of the evaporator 4 and the temperature of the refrigerant that circulates in the refrigerant circuit and enters the evaporator 4 becomes large, so that the defrosting time can be shortened. And since the ratio of the defrosting time with respect to a dehumidification driving | operation time can be reduced, the improvement of a defrosting efficiency can be aimed at.
 また、加熱量アップモードでは、制御部51が、吐出管温度センサ31において計測される吐出温度に基づいて、第1電磁弁8及び第2電磁弁9の開閉制御を実施する。これにより、制御部51は、再熱器として作用する凝縮器2の熱交換量を調整することができるため、急速除湿運転を実現することができる。加えて、空気調和装置200が圧縮機1としてインバータ圧縮機を搭載している場合、制御部51は、COPアップ運転を行うことができるため、運転効率を高めることができる。加えて、COPアップ運転時に、ファン5としてDCファンを搭載している場合は、風量を調整することで、さらにCOPを向上させることができる。 Further, in the heating amount up mode, the control unit 51 performs opening / closing control of the first electromagnetic valve 8 and the second electromagnetic valve 9 based on the discharge temperature measured by the discharge pipe temperature sensor 31. Thereby, since the control part 51 can adjust the heat exchange amount of the condenser 2 which acts as a reheater, it can implement | achieve a rapid dehumidification driving | operation. In addition, when the air conditioning apparatus 200 is equipped with an inverter compressor as the compressor 1, the control unit 51 can perform the COP-up operation, so that the operation efficiency can be increased. In addition, when a DC fan is mounted as the fan 5 during the COP-up operation, the COP can be further improved by adjusting the air volume.
 さらに、制御部51は、第1電磁弁8と第2電磁弁9とを開いた後、圧縮機から吐出される冷媒の温度である吐出温度が閉基準閾値に到達したときに、第1電磁弁8と第2電磁弁9とを閉じるため、吐出温度の過度な上昇を抑えることができる。また、第1電磁弁8と第2電磁弁9とは、それぞれ、開の状態と閉の状態とを有する電磁弁であるため、空気調和装置200は、単純な制御により、空調制御の効率化を図ることができる。 Further, the control unit 51 opens the first electromagnetic valve 8 and the second electromagnetic valve 9, and then when the discharge temperature, which is the temperature of the refrigerant discharged from the compressor, reaches the closed reference threshold, Since the valve 8 and the second electromagnetic valve 9 are closed, an excessive increase in the discharge temperature can be suppressed. Moreover, since the 1st solenoid valve 8 and the 2nd solenoid valve 9 are solenoid valves which have an open state and a closed state, respectively, the air conditioning apparatus 200 improves the efficiency of air conditioning control by simple control. Can be achieved.
 すなわち、空気調和装置200は、所定のタイミングで第1電磁弁8と第2電磁弁9とを開き、冷媒回路を循環する低沸点冷媒の比率を高めることで、低圧圧力を上昇させ、冷媒回路内の冷媒循環量をアップさせ、吐出温度及び高圧圧力を上昇させる。そのため、除霜時間の短縮化を図ると共に、除霜効率を高め、運転効率を向上させることができる。 That is, the air conditioner 200 opens the first electromagnetic valve 8 and the second electromagnetic valve 9 at a predetermined timing, and increases the ratio of the low-boiling-point refrigerant circulating in the refrigerant circuit, thereby increasing the low-pressure pressure, and the refrigerant circuit The refrigerant circulation amount is increased, and the discharge temperature and the high pressure are increased. Therefore, it is possible to shorten the defrosting time, increase the defrosting efficiency, and improve the operation efficiency.
実施の形態2.
 図5は、本発明の実施の形態2に係る空調調和システムの冷媒回路に関連する構成を示した図である。図5に示すように、本実施の形態2の空気調和システム100Aの構成は、前述した実施の形態1の空気調和システム100と同様であるが、冷媒回路の構成が異なっている。すなわち、空気調和装置200Aの主回路10が、第1電磁弁8及び第2電磁弁9の代わりに、第1調整弁11及び第2調整弁12を有している点に特徴がある。実施の形態1と同一の構成部材については同一の符号を用いて説明は省略し、以下では、特に第1調整弁11及び第2調整弁12の制御に関連する構成及び動作について説明する。
Embodiment 2. FIG.
FIG. 5 is a diagram showing a configuration related to the refrigerant circuit of the air conditioning harmony system according to Embodiment 2 of the present invention. As shown in FIG. 5, the configuration of the air conditioning system 100A of the second embodiment is the same as that of the air conditioning system 100 of the first embodiment described above, but the configuration of the refrigerant circuit is different. That is, the main circuit 10 of the air conditioner 200 </ b> A is characterized in that it has a first adjustment valve 11 and a second adjustment valve 12 instead of the first electromagnetic valve 8 and the second electromagnetic valve 9. The same reference numerals are used for the same components as those in the first embodiment, and the description thereof will be omitted. In the following, configurations and operations particularly related to the control of the first adjustment valve 11 and the second adjustment valve 12 will be described.
 図5に示すように、空気調和システム100Aは、空気調和装置200Aと、コントローラ300と、を有している。空気調和装置200Aでは、主回路10の吸入配管24に、第1調整弁11と第2調整弁12とが設けられている。第1調整弁11は、アキュムレータ6の上流側、すなわち蒸発器4とアキュムレータ6との間に設けられている。第2調整弁12は、アキュムレータ6の下流側、すなわちアキュムレータ6と圧縮機1との間に設けられている。第1調整弁11及び第2調整弁12は、それぞれ、例えば電子膨張弁からなり、開度の調整が可能になっている。 As shown in FIG. 5, the air conditioning system 100A includes an air conditioning apparatus 200A and a controller 300. In the air conditioner 200 </ b> A, the first adjustment valve 11 and the second adjustment valve 12 are provided in the suction pipe 24 of the main circuit 10. The first regulating valve 11 is provided on the upstream side of the accumulator 6, that is, between the evaporator 4 and the accumulator 6. The second adjustment valve 12 is provided on the downstream side of the accumulator 6, that is, between the accumulator 6 and the compressor 1. Each of the first adjustment valve 11 and the second adjustment valve 12 includes, for example, an electronic expansion valve, and the opening degree can be adjusted.
 本実施の形態2のバイパス配管24aは、蒸発器4と第1調整弁11との間と、第2調整弁12と圧縮機1との間とを接続するものである。すなわち、本実施の形態2の吸入配管24には、第1調整弁11の上流に上流分岐手段24bが設けられており、第2調整弁12の下流に下流分岐手段24cが設けられている。 The bypass pipe 24a of the second embodiment connects between the evaporator 4 and the first regulating valve 11 and between the second regulating valve 12 and the compressor 1. That is, in the suction pipe 24 of the second embodiment, the upstream branching means 24b is provided upstream of the first regulating valve 11, and the downstream branching means 24c is provided downstream of the second regulating valve 12.
 図6は、図5の空気調和装置の制御系を示すブロック図である。図6に示すように、制御装置50Aは、制御部51Aを有しており、制御部51Aは、第1調整弁11及び第2調整弁12のそれぞれの開度を調整するものである。すなわち、制御部51Aは、各種センサから出力される情報、操作部52から出力される信号、及びコントローラ300から送信される信号などをもとに、第1調整弁11及び第2調整弁12のそれぞれの開度を調整するように構成されている。 FIG. 6 is a block diagram showing a control system of the air conditioner of FIG. As shown in FIG. 6, the control device 50 </ b> A includes a control unit 51 </ b> A, and the control unit 51 </ b> A adjusts the respective opening degrees of the first adjustment valve 11 and the second adjustment valve 12. That is, the control unit 51A determines the first adjustment valve 11 and the second adjustment valve 12 based on information output from various sensors, a signal output from the operation unit 52, a signal transmitted from the controller 300, and the like. It is comprised so that each opening may be adjusted.
 除湿運転中において、制御部51Aは、吸入SHの変化に応じて、第1調整弁11及び第2調整弁12のそれぞれの開度を決定するようになっている。すなわち、制御部51Aは、吸入SHが第1閾値以下であれば、第1調整弁11及び第2調整弁12を開方向に動作させて、第1調整弁11及び第2調整弁12の開度を大きくするようになっている。 During the dehumidifying operation, the control unit 51A determines the respective opening degrees of the first regulating valve 11 and the second regulating valve 12 according to the change of the suction SH. That is, if the intake SH is equal to or less than the first threshold value, the control unit 51A operates the first adjustment valve 11 and the second adjustment valve 12 in the opening direction to open the first adjustment valve 11 and the second adjustment valve 12. Increase the degree.
 第1調整弁11及び第2調整弁12の開度を大きくすると、圧縮機1に吸入される第1冷媒の比率が上がり、吐出温度が上昇するため、凝縮器2の温度と凝縮器2に入る冷媒の温度との温度差が大きくなる。よって、凝縮器2で同一の熱交換量を得ようとする場合、圧縮機1がインバータ圧縮機であれば、圧縮機1が定速圧縮機のときよりも運転周波数を下げることができるため、運転効率の向上を図ることができる。 When the opening degree of the first regulating valve 11 and the second regulating valve 12 is increased, the ratio of the first refrigerant sucked into the compressor 1 is increased and the discharge temperature is increased, so that the temperature of the condenser 2 and the condenser 2 are increased. The temperature difference from the temperature of the entering refrigerant increases. Therefore, when trying to obtain the same heat exchange amount in the condenser 2, if the compressor 1 is an inverter compressor, the operating frequency can be lowered as compared with the case where the compressor 1 is a constant speed compressor. Driving efficiency can be improved.
 さらに、制御部51Aは、第1調整弁11及び第2調整弁12の開度を大きくした後も、経時的に吸入SHを求め、求めた吸入SHが第2閾値以上であるか否かを判定するようになっている。そして、制御部51Aは、吸入SHが第2閾値に到達したときに、第1調整弁11及び第2調整弁12を閉方向に動作させて、第1調整弁11及び第2調整弁12の開度を小さくするようになっている。 Further, the control unit 51A obtains the intake SH over time even after increasing the opening degree of the first adjustment valve 11 and the second adjustment valve 12, and determines whether the obtained intake SH is equal to or greater than the second threshold value. It comes to judge. Then, when the intake SH reaches the second threshold value, the control unit 51A operates the first adjustment valve 11 and the second adjustment valve 12 in the closing direction so that the first adjustment valve 11 and the second adjustment valve 12 The opening is made smaller.
 本実施の形態2において、第1閾値は、除湿運転時に、第1調整弁11及び第2調整弁12を開方向に動作させるタイミングの基準となる温度であり、例えば5Kに設定される。また、第2閾値は、除湿運転時に、一旦開方向に動作させた第1調整弁11及び第2調整弁12を閉方向に動作させるタイミングの基準となる温度である。第2閾値は、第1閾値よりも高い温度に設定され、例えば15Kに設定される。第1閾値及び第2閾値は、空気調和装置200Aの構成内容及び設置環境などに応じて適宜変更することができる。ユーザは、操作部52又はコントローラ300を操作することにより、第1閾値及び第2閾値の設定と変更とを行うことができる。 In the second embodiment, the first threshold value is a temperature serving as a reference for the timing of operating the first regulating valve 11 and the second regulating valve 12 in the opening direction during the dehumidifying operation, and is set to 5K, for example. In addition, the second threshold value is a temperature that serves as a reference for timing of operating the first adjustment valve 11 and the second adjustment valve 12 once operated in the opening direction during the dehumidifying operation. The second threshold is set to a temperature higher than the first threshold, for example, 15K. The first threshold value and the second threshold value can be appropriately changed according to the configuration content of the air conditioner 200A, the installation environment, and the like. The user can set and change the first threshold value and the second threshold value by operating the operation unit 52 or the controller 300.
 加熱量アップモードにおいて、制御部51Aは、圧縮機1の運転中に、まず、第1調整弁11及び第2調整弁12を開方向に動作させ、第1調整弁11及び第2調整弁12の開度を大きくするようになっている。そして、制御部51Aは、吐出管温度センサ31から入力される吐出温度が、例えば120℃に設定される閉閾値に達するまで、第1調整弁11及び第2調整弁12に現在の開度を維持させる。 In the heating amount increase mode, the control unit 51A first operates the first adjustment valve 11 and the second adjustment valve 12 in the opening direction during the operation of the compressor 1, and the first adjustment valve 11 and the second adjustment valve 12 are operated. The degree of opening is increased. Then, the control unit 51A sets the current opening degree to the first adjustment valve 11 and the second adjustment valve 12 until the discharge temperature input from the discharge pipe temperature sensor 31 reaches a closing threshold set to 120 ° C., for example. Let it be maintained.
 また、制御部51Aは、第1調整弁11及び第2調整弁12の開度を大きくした後、吐出管温度センサ31から入力される吐出温度が閉閾値まで上がったときに、第1調整弁11及び第2調整弁12を閉方向に動作させるものである。さらに、制御部51Aは、第1調整弁11及び第2調整弁12の開度を小さくした後、吐出管温度センサ31から入力される吐出温度が、例えば110℃の設定される開閾値に低下するまで、第1調整弁11及び第2調整弁12に現在の開度を維持させるものである。そして、制御部51は、吐出管温度センサ31から入力される吐出温度が開閾値まで低下したときに、第1電磁弁8及び第2電磁弁9の開の状態にするものである。 Further, the control unit 51A increases the opening degree of the first adjustment valve 11 and the second adjustment valve 12, and then the first adjustment valve when the discharge temperature input from the discharge pipe temperature sensor 31 rises to the closing threshold. 11 and the second regulating valve 12 are operated in the closing direction. Furthermore, after the control unit 51A reduces the opening degree of the first adjustment valve 11 and the second adjustment valve 12, the discharge temperature input from the discharge pipe temperature sensor 31 decreases to an open threshold value set to 110 ° C., for example. Until it does, the 1st regulating valve 11 and the 2nd regulating valve 12 maintain the present opening degree. And the control part 51 makes the 1st solenoid valve 8 and the 2nd solenoid valve 9 the open state, when the discharge temperature input from the discharge pipe temperature sensor 31 falls to an open threshold value.
 ここで、閉閾値は、加熱量アップモードでの運転時に、第1調整弁11及び第2調整弁12の開度を小さくするタイミングの基準となる温度である。閉閾値は、閉基準閾値よりも高い温度に設定するとよい。開閾値は、加熱量アップモードでの運転時に、一旦小さくした第1調整弁11及び第2調整弁12の開度を大きくするタイミングの基準となる温度であり、閉閾値よりも低い温度に設定される。開閾値は、閉基準温度よりも低く、開基準温度よりも高い温度に設定するとよい。閉閾値及び開閾値は、空気調和装置200Aの構成内容及び設置環境などに応じて適宜変更することができる。ユーザは、操作部52又はコントローラ300を操作することにより、開閾値及び閉閾値の設定と変更とを行うことができる。 Here, the closing threshold is a temperature that serves as a reference for timing to reduce the opening degree of the first regulating valve 11 and the second regulating valve 12 during operation in the heating amount up mode. The closing threshold may be set to a temperature higher than the closing reference threshold. The open threshold is a temperature that serves as a reference for the timing of increasing the opening degree of the first and second regulating valves 11 and 12 once reduced during operation in the heating amount increase mode, and is set to a temperature lower than the closing threshold. Is done. The open threshold value may be set to a temperature lower than the closed reference temperature and higher than the open reference temperature. The closing threshold and the opening threshold can be appropriately changed according to the configuration content of the air conditioner 200A, the installation environment, and the like. The user can set and change the open threshold value and the close threshold value by operating the operation unit 52 or the controller 300.
 除霜運転時において、制御部51Aは、まず、第1調整弁11及び第2調整弁12を開方向に動作させ、第1調整弁11及び第2調整弁12の開度を大きくするようになっている。これにより、制御部51Aは、圧縮機1に吸入させる非共沸混合冷媒の組成を変えて、第1冷媒の比率を上げるものである。 During the defrosting operation, the control unit 51A first operates the first adjustment valve 11 and the second adjustment valve 12 in the opening direction so that the opening degrees of the first adjustment valve 11 and the second adjustment valve 12 are increased. It has become. As a result, the control unit 51A changes the composition of the non-azeotropic refrigerant mixture that is sucked into the compressor 1 and increases the ratio of the first refrigerant.
 また、制御部51Aは、第1調整弁11及び第2調整弁12の開度を大きくした後、吐出管温度センサ31から入力される吐出温度が閉基準閾値に達したときに、第1調整弁11及び第2調整弁12を閉方向に動作させ、吐出温度の上昇を抑えるようになっている。さらに、制御部51Aは、第1調整弁11及び第2調整弁12の開度を小さくした後、吐出管温度センサ31から入力される吐出温度が開基準閾値まで下がったときに、第1調整弁11及び第2調整弁12の開度を大きくするようになっている。 Further, the control unit 51A increases the opening degree of the first adjustment valve 11 and the second adjustment valve 12, and then performs the first adjustment when the discharge temperature input from the discharge pipe temperature sensor 31 reaches the closed reference threshold value. The valve 11 and the second regulating valve 12 are operated in the closing direction to suppress an increase in discharge temperature. Further, the control unit 51A reduces the opening degree of the first adjustment valve 11 and the second adjustment valve 12, and then performs the first adjustment when the discharge temperature input from the discharge pipe temperature sensor 31 falls to the open reference threshold. The opening degree of the valve 11 and the second regulating valve 12 is increased.
 ここで、閉基準閾値は、除霜運転時に、第1調整弁11及び第2調整弁12の開度を小さくするタイミングの基準となる温度であり、例えば115℃に設定される。開基準閾値は、除霜運転時に、一旦小さくした第1調整弁11及び第2調整弁12の開度を大きくするタイミングの基準となる温度である。開基準閾値は、閉基準閾値よりも低い温度に設定され、例えば105℃に設定される。閉基準閾値及び開基準閾値は、空気調和装置200Aの構成内容及び設置環境などに応じて適宜変更することができる。ユーザは、操作部52又はコントローラ300を操作することにより、開基準閾値及び閉基準閾値の設定と変更とを行うことができる。制御部51Aの他の機能は、実施の形態1の制御部51と同様である。 Here, the closing reference threshold is a temperature that serves as a reference for timing to reduce the opening degree of the first adjusting valve 11 and the second adjusting valve 12 during the defrosting operation, and is set to 115 ° C., for example. The open reference threshold is a temperature that serves as a reference for timing of increasing the opening degree of the first adjustment valve 11 and the second adjustment valve 12 once reduced during the defrosting operation. The open reference threshold is set to a temperature lower than the closed reference threshold, and is set to 105 ° C., for example. The closing reference threshold and the opening reference threshold can be appropriately changed according to the configuration content of the air conditioner 200A, the installation environment, and the like. The user can set and change the open reference threshold and the closed reference threshold by operating the operation unit 52 or the controller 300. Other functions of the control unit 51A are the same as those of the control unit 51 of the first embodiment.
(第1電磁弁8及び第2電磁弁9の開度調整制御の方法)
 図7は、図5の空気調和装置の除湿運転及び除霜運転を中心とした動作を示すフローチャートである。図8は、図5の空気調和装置の加熱量アップモードにおける動作を示すフローチャートである。図7及び図8に基づき、第1調整弁11及び第2調整弁12の開度調整制御の方法について説明する。
(Method of opening degree adjustment control of the first solenoid valve 8 and the second solenoid valve 9)
FIG. 7 is a flowchart showing operations centering on the dehumidifying operation and the defrosting operation of the air-conditioning apparatus of FIG. FIG. 8 is a flowchart showing the operation in the heating amount up mode of the air conditioner of FIG. Based on FIG.7 and FIG.8, the method of the opening degree adjustment control of the 1st regulating valve 11 and the 2nd regulating valve 12 is demonstrated.
 まず、図7を参照して、空気調和装置の除湿運転及び除霜運転を中心とした運転制御方法について説明する。図3と同等の動作については同一の符号を用いて説明は省略する。 First, with reference to FIG. 7, the operation control method centering on the dehumidifying operation and the defrosting operation of the air conditioner will be described. About the operation | movement equivalent to FIG. 3, description is abbreviate | omitted using the same code | symbol.
 制御部51Aは、ステップS101からステップS103までの処理を、図3の場合と同様に実行する。そして、制御部51Aは、ホットガス電磁弁7が開の状態であることを検知して、空気調和装置200が除霜運転中であると判定すると(ステップS103/YES)、第1調整弁11及び第2調整弁12を開方向に動作させる(ステップS401)。 The control unit 51A executes the processing from step S101 to step S103 in the same manner as in the case of FIG. When the control unit 51A detects that the hot gas solenoid valve 7 is open and determines that the air-conditioning apparatus 200 is in the defrosting operation (step S103 / YES), the first adjustment valve 11 Then, the second adjustment valve 12 is operated in the opening direction (step S401).
 次いで、制御部51Aは、ステップS105からステップS106までの処理を、図3の場合と同様に実行する。そして、制御部51Aは、吐出管温度センサ31から入力される吐出温度が閉基準閾値に到達したときに(ステップS105/YES)、第1調整弁11及び第2調整弁12を閉方向に動作させる(ステップS402)。続いて、制御部51Aは、ステップS108の処理を、図3の場合と同様に実行し、吐出管温度センサ31から入力される吐出温度が開基準閾値まで下がったときに(ステップS108/YES)、第1調整弁11及び第2調整弁12を開方向に動作させる(ステップS403)。 Next, the control unit 51A executes the processing from step S105 to step S106 as in the case of FIG. When the discharge temperature input from the discharge pipe temperature sensor 31 reaches the close reference threshold (step S105 / YES), the control unit 51A operates the first adjustment valve 11 and the second adjustment valve 12 in the closing direction. (Step S402). Subsequently, the control unit 51A executes the process of step S108 in the same manner as in FIG. 3, and when the discharge temperature input from the discharge pipe temperature sensor 31 has dropped to the open reference threshold (step S108 / YES). The first adjustment valve 11 and the second adjustment valve 12 are operated in the opening direction (step S403).
 また、制御部51Aは、ホットガス電磁弁7が閉の状態であることを検知して、空気調和装置200が除湿運転中であると判定すると(ステップS103/NO)、ステップS201の処理を図3の場合と同様に実行する。制御部51Aは、吸入SHが第1閾値以下であれば(ステップS201/YES)、第1調整弁11及び第2調整弁12を開方向に動作させ(ステップS501)、ステップS203の処理を図3の場合と同様に実行する。そして、制御部51Aは、吸入SHが第2閾値に到達したときに、第1調整弁11及び第2調整弁12を閉方向に動作させ(ステップS502)、ステップS102の処理へ戻る。 Further, when the control unit 51A detects that the hot gas solenoid valve 7 is in the closed state and determines that the air conditioning apparatus 200 is in the dehumidifying operation (step S103 / NO), the process of step S201 is performed. The same processing as in the case of 3 is performed. If the intake SH is equal to or less than the first threshold value (step S201 / YES), the control unit 51A operates the first adjustment valve 11 and the second adjustment valve 12 in the opening direction (step S501), and illustrates the process of step S203. The same processing as in the case of 3 is performed. Then, when the intake SH reaches the second threshold value, the control unit 51A operates the first adjustment valve 11 and the second adjustment valve 12 in the closing direction (step S502), and returns to the process of step S102.
 次に、図8を参照して、空気調和装置の加熱量アップモードでの運転制御方法について説明する。図4と同等の動作については同一の符号を用いて説明は省略する。 Next, the operation control method in the heating amount up mode of the air conditioner will be described with reference to FIG. About the operation | movement equivalent to FIG. 4, description is abbreviate | omitted using the same code | symbol.
 制御部51Aは、図3のステップS102において、加熱量アップモードの開始を検知すると(ステップS102/YES)、圧縮機1が運転中であるか否かを判定する(ステップS301)。制御部51は、圧縮機1が運転中である場合、又は圧縮機1が運転を開始したとき(ステップS301/YES)、第1調整弁11及び第2調整弁12を開方向に動作させて、第1冷媒の比率を上げる。その際、制御部51Aは、加熱量アップタイマによる計時を開始する(ステップS601)。 When the controller 51A detects the start of the heating-up mode in step S102 of FIG. 3 (step S102 / YES), it determines whether or not the compressor 1 is in operation (step S301). When the compressor 1 is in operation or when the compressor 1 starts operation (step S301 / YES), the control unit 51 operates the first adjustment valve 11 and the second adjustment valve 12 in the opening direction. Increase the ratio of the first refrigerant. At that time, the control unit 51A starts measuring time by the heating amount up timer (step S601).
 次いで、制御部51Aは、ステップS303からステップS305までの処理を、図3の場合と同様に実行する。そして、制御部51Aは、吐出管温度センサ31から入力される吐出温度が閉閾値以上であり(ステップS303/YES)、かつ加熱量アップタイマがカウントアップしていなければ(ステップS304/NO)、第1調整弁11及び第2調整弁12を閉方向に動作させる(ステップS602)。 Next, the control unit 51A executes the processing from step S303 to step S305 as in the case of FIG. Then, the control unit 51A determines that the discharge temperature input from the discharge pipe temperature sensor 31 is equal to or higher than the closing threshold (step S303 / YES) and the heating amount up timer has not counted up (step S304 / NO). The first adjustment valve 11 and the second adjustment valve 12 are operated in the closing direction (step S602).
 次いで、制御部51Aは、ステップS307からステップS309までの処理を、図3の場合と同様に実行する。そして、制御部51Aは、吐出管温度センサ31から入力される吐出温度が開閾値まで下がったときに(ステップS309/NO)、第1調整弁11及び第2調整弁12を開方向に動作させ(ステップS603)、ステップS303の処理へ戻る。 Next, the control unit 51A executes the processing from step S307 to step S309 as in the case of FIG. Then, the control unit 51A operates the first adjustment valve 11 and the second adjustment valve 12 in the opening direction when the discharge temperature input from the discharge pipe temperature sensor 31 falls to the open threshold (NO in step S309). (Step S603), the process returns to Step S303.
 ところで、上記の説明では、吐出温度が閉閾値に達するまで、制御部51Aが第1調整弁11及び第2調整弁12に現在の開度を維持させる場合を例示したが、これに限定されるものではない。例えば、制御部51Aは、各種センサから出力される情報などに応じて、第1調整弁11及び第2調整弁12の開度を微調整するようにしてもよい。また、上記の説明では、吐出温度が開閾値に低下するまで、制御部51Aが第1調整弁11及び第2調整弁12に現在の開度を維持させる場合を例示したが、これに限定されるものではない。例えば、制御部51Aは、各種センサから出力される情報などに応じて、第1調整弁11及び第2調整弁12の開度を微調整するようにしてもよい。このようにすれば、冷媒回路内を循環させる非共沸混合冷媒における第1冷媒の比率を更に柔軟に調整することができる。 By the way, in the above description, the case where the controller 51A causes the first adjustment valve 11 and the second adjustment valve 12 to maintain the current opening until the discharge temperature reaches the closing threshold is illustrated, but the present invention is limited to this. It is not a thing. For example, the control unit 51A may finely adjust the opening degrees of the first adjustment valve 11 and the second adjustment valve 12 in accordance with information output from various sensors. In the above description, the control unit 51A illustrated the case where the first adjustment valve 11 and the second adjustment valve 12 maintain the current opening until the discharge temperature falls to the open threshold, but the present invention is not limited thereto. It is not something. For example, the control unit 51A may finely adjust the opening degrees of the first adjustment valve 11 and the second adjustment valve 12 in accordance with information output from various sensors. In this way, the ratio of the first refrigerant in the non-azeotropic refrigerant mixture that circulates in the refrigerant circuit can be adjusted more flexibly.
 以上のように、空気調和装置200Aによれば、第1調整弁11と第2調整弁12とをそれぞれ制御することにより、圧縮機1に吸入させる非共沸混合冷媒における第1冷媒の比率を調整する。よって、低圧圧力を上昇させると共に、高圧圧力と圧縮機から吐出される冷媒の温度とを上昇させることができるため、非共沸混合冷媒の特性を活かした効率のよい運転を実現することができる。また、第1調整弁11と第2調整弁12とは、それぞれ、開度の調整が可能な電子膨張弁であるため、第1冷媒の比率をより柔軟に調整することができる。 As described above, according to the air conditioner 200A, the ratio of the first refrigerant in the non-azeotropic refrigerant mixture to be sucked into the compressor 1 is controlled by controlling the first regulating valve 11 and the second regulating valve 12, respectively. adjust. Therefore, the low pressure can be raised, and the high pressure and the temperature of the refrigerant discharged from the compressor can be raised, so that an efficient operation utilizing the characteristics of the non-azeotropic refrigerant mixture can be realized. . Moreover, since the 1st adjustment valve 11 and the 2nd adjustment valve 12 are electronic expansion valves which can respectively adjust an opening degree, the ratio of a 1st refrigerant | coolant can be adjusted more flexibly.
 すなわち、空気調和装置200Aは、所定のタイミングで第1調整弁11の開度と第2調整弁12の開度とを大きくし、冷媒回路を循環する低沸点冷媒の比率を高めることで、低圧圧力を上昇させ、冷媒回路内の冷媒循環量をアップさせ、吐出温度及び高圧圧力を上昇させる。そのため、除霜時間の短縮化を図ると共に、除霜効率を高め、運転効率を向上させることができる。 That is, the air conditioner 200A increases the opening of the first regulating valve 11 and the opening of the second regulating valve 12 at a predetermined timing, and increases the ratio of the low-boiling-point refrigerant circulating in the refrigerant circuit, thereby reducing the low pressure. The pressure is increased, the refrigerant circulation amount in the refrigerant circuit is increased, and the discharge temperature and the high pressure are increased. Therefore, it is possible to shorten the defrosting time, increase the defrosting efficiency, and improve the operation efficiency.
 さらに、空気調和装置200Aが圧縮機1としてインバータ圧縮機を搭載している場合、制御部51Aは、実施の形態1の制御部51と同様に、COPアップ運転を行うことができる。ここで、制御装置50Aは、記憶部53に、第1調整弁11及び第2調整弁12のそれぞれの開度調整量と、圧縮機1の周波数とを関連づけた周波数調整テーブルを格納していてもよい。周波数調整テーブルは、開度調整量が開度を大きくする量を示す範囲では、開度調整量が大きくなれば、圧縮機1の周波数が小さくなるように構成するとよい。また、周波数調整テーブルは、開度調整量が開度を小さくする量を示す範囲では、開度調整量が大きくなれば、圧縮機1の周波数が大きくなるように構成するとよい。すなわち、制御部51Aは、第1調整弁11及び第2調整弁12のそれぞれの開度を調整したときに、第1調整弁11及び第2調整弁12のそれぞれの開度調整量を周波数調整テーブルに照らして、圧縮機1の周波数を調整するようにしてもよい。他の効果等については、実施の形態1と同様である。 Furthermore, when the air conditioner 200A is equipped with an inverter compressor as the compressor 1, the control unit 51A can perform the COP-up operation as with the control unit 51 of the first embodiment. Here, the control device 50 </ b> A stores a frequency adjustment table in which the opening adjustment amounts of the first adjustment valve 11 and the second adjustment valve 12 are associated with the frequency of the compressor 1 in the storage unit 53. Also good. The frequency adjustment table may be configured such that the frequency of the compressor 1 decreases as the opening adjustment amount increases within a range in which the opening adjustment amount increases the opening. Further, the frequency adjustment table may be configured such that the frequency of the compressor 1 increases as the opening adjustment amount increases in a range where the opening adjustment amount indicates the amount by which the opening degree is decreased. That is, the control unit 51 </ b> A adjusts the frequency of the opening adjustment amounts of the first adjustment valve 11 and the second adjustment valve 12 when the opening amounts of the first adjustment valve 11 and the second adjustment valve 12 are adjusted. You may make it adjust the frequency of the compressor 1 in light of a table. Other effects and the like are the same as those in the first embodiment.
 上記各実施の形態は、空気調和装置及び空気調和システムにおける好適な具体例であり、本発明の技術的範囲は、これらの態様に限定されるものではない。例えば、上記各実施の形態では、空気調和装置200及び200Aが除湿機である場合を例示したが、これに限らず、空気調和装置200及び200Aは、暖房運転又は冷房運転を行う機能を有する空調機であってもよい。すなわち、空気調和装置200及び200Aは、少なくとも除湿運転及び除霜運転を実行することができる空調機であればよい。 Each of the above embodiments is a preferred specific example in an air conditioning apparatus and an air conditioning system, and the technical scope of the present invention is not limited to these embodiments. For example, in each of the above-described embodiments, the case where the air conditioners 200 and 200A are dehumidifiers is illustrated, but the present invention is not limited thereto, and the air conditioners 200 and 200A have an air conditioning function that performs a heating operation or a cooling operation. It may be a machine. That is, the air conditioners 200 and 200A may be any air conditioner that can execute at least the dehumidifying operation and the defrosting operation.
 1 圧縮機、2 凝縮器、3 絞り装置、4 蒸発器、5 ファン、6 アキュムレータ、7 ホットガス電磁弁、8 第1電磁弁、9 第2電磁弁、10 主回路、11 第1調整弁、12 第2調整弁、15 ホットガスバイパス回路、20 主配管、21 吐出配管、22、23 液管、24 吸入配管、24a バイパス配管、24b 上流分岐手段、24c 下流分岐手段、25 ホットガスデフロスト配管、25a 第1分岐手段、25b 第2分岐手段、31 吐出管温度センサ、32 高圧圧力センサ、33 吸入管温度センサ、34 低圧圧力センサ、50、50A 制御装置、51、51A 制御部、52 操作部、53 記憶部、100、100A 空気調和システム、200、200A 空気調和装置、300 コントローラ。 1 compressor, 2 condenser, 3 throttle device, 4 evaporator, 5 fan, 6 accumulator, 7 hot gas solenoid valve, 8 1st solenoid valve, 9 2nd solenoid valve, 10 main circuit, 11 1st regulating valve, 12, 2nd regulating valve, 15 hot gas bypass circuit, 20 main piping, 21 discharge piping, 22, 23 liquid piping, 24 suction piping, 24a bypass piping, 24b upstream branching means, 24c downstream branching means, 25 hot gas defrost piping, 25a, first branching means, 25b, second branching means, 31 discharge pipe temperature sensor, 32 high pressure sensor, 33 suction pipe temperature sensor, 34 low pressure sensor, 50, 50A control device, 51, 51A control section, 52 operation section, 53 storage unit, 100, 100A air conditioning system, 200, 200A air conditioning device, 300 Controller.

Claims (14)

  1.  圧縮機、凝縮器、絞り装置、蒸発器、及びアキュムレータが順次接続され、第1冷媒と前記第1冷媒よりも沸点が高い第2冷媒とを含む非共沸混合冷媒が循環する主回路と、
     前記主回路を制御する制御装置と、
    を有し、
     前記主回路は、
     前記アキュムレータの上流側に設けられた第1調整弁と、
     前記アキュムレータの下流側に設けられた第2調整弁と、
     前記蒸発器と前記第1調整弁との間と、前記第2調整弁と前記圧縮機との間とを接続し、前記アキュムレータをバイパスするバイパス配管と、を有し、
     前記制御装置は、
     前記第1調整弁と前記第2調整弁とをそれぞれ制御することで、前記圧縮機に吸入させる前記非共沸混合冷媒における前記第1冷媒の比率を調整するものである、
     空気調和装置。
    A main circuit in which a compressor, a condenser, a throttling device, an evaporator, and an accumulator are sequentially connected, and a non-azeotropic refrigerant mixture including a first refrigerant and a second refrigerant having a boiling point higher than that of the first refrigerant circulates;
    A control device for controlling the main circuit;
    Have
    The main circuit is:
    A first regulating valve provided upstream of the accumulator;
    A second regulating valve provided downstream of the accumulator;
    A bypass pipe connecting between the evaporator and the first regulating valve, between the second regulating valve and the compressor, and bypassing the accumulator;
    The control device includes:
    The ratio of the first refrigerant in the non-azeotropic refrigerant mixture to be sucked into the compressor is adjusted by controlling the first adjustment valve and the second adjustment valve, respectively.
    Air conditioner.
  2.  前記圧縮機の吐出側と前記凝縮器との間と、前記凝縮器と前記絞り装置との間とを接続する回路であり、ホットガス電磁弁が設けられたホットガスバイパス回路、を更に有し、
     前記制御装置は、前記ホットガスバイパス回路を制御するものである、
     請求項1に記載の空気調和装置。
    A circuit connecting the discharge side of the compressor and the condenser, and between the condenser and the throttling device, further comprising a hot gas bypass circuit provided with a hot gas solenoid valve; ,
    The control device controls the hot gas bypass circuit.
    The air conditioning apparatus according to claim 1.
  3.  前記制御装置は、
     前記ホットガス電磁弁が開いている除霜運転中に、
     前記第1調整弁と前記第2調整弁とを開くことで、前記圧縮機に吸入させる前記非共沸混合冷媒における前記第1冷媒の比率を上げるものである、
     請求項2に記載の空気調和装置。
    The control device includes:
    During the defrosting operation in which the hot gas solenoid valve is open,
    The ratio of the first refrigerant in the non-azeotropic refrigerant mixture to be sucked into the compressor is increased by opening the first adjustment valve and the second adjustment valve.
    The air conditioning apparatus according to claim 2.
  4.  前記制御装置は、
     前記除霜運転中に、前記第1調整弁と前記第2調整弁とを開いた後、
     前記圧縮機から吐出される冷媒の温度である吐出温度が閉基準閾値に到達したときに、前記第1調整弁と前記第2調整弁とを閉じるものである、
     請求項3に記載の空気調和装置。
    The control device includes:
    During the defrosting operation, after opening the first adjustment valve and the second adjustment valve,
    When the discharge temperature, which is the temperature of the refrigerant discharged from the compressor, reaches a closing reference threshold, the first adjustment valve and the second adjustment valve are closed.
    The air conditioning apparatus according to claim 3.
  5.  前記制御装置は、
     前記除霜運転中に、前記第1調整弁と前記第2調整弁とを閉じた後、
     前記吐出温度が、前記閉基準閾値よりも低い温度に設定された開基準温度まで下がったときに、前記第1調整弁と前記第2調整弁とを開くものである、
     請求項4に記載の空気調和装置。
    The control device includes:
    During the defrosting operation, after closing the first adjustment valve and the second adjustment valve,
    The first regulating valve and the second regulating valve are opened when the discharge temperature falls to an open reference temperature set to a temperature lower than the closed reference threshold;
    The air conditioning apparatus according to claim 4.
  6.  前記制御装置は、
     前記凝縮器による加熱量を上昇させる加熱量アップモードの開始を検知したときに、
     前記第1調整弁と前記第2調整弁とを開くことで、前記圧縮機に吸入させる前記非共沸混合冷媒における前記第1冷媒の比率を上げるものである、
     請求項2~5の何れか一項に記載の空気調和装置。
    The control device includes:
    When detecting the start of the heating amount up mode for increasing the heating amount by the condenser,
    The ratio of the first refrigerant in the non-azeotropic refrigerant mixture to be sucked into the compressor is increased by opening the first adjustment valve and the second adjustment valve.
    The air conditioner according to any one of claims 2 to 5.
  7.  前記制御装置は、
     前記加熱量アップモードにおいて、前記第1調整弁と前記第2調整弁とを開いた後、
     前記圧縮機から吐出される冷媒の温度である吐出温度が閉閾値まで上がったときに、前記第1調整弁と前記第2調整弁とを閉じるものである、
     請求項6に記載の空気調和装置。
    The control device includes:
    In the heating amount up mode, after opening the first adjustment valve and the second adjustment valve,
    When the discharge temperature, which is the temperature of the refrigerant discharged from the compressor, rises to a closing threshold, the first adjustment valve and the second adjustment valve are closed.
    The air conditioning apparatus according to claim 6.
  8.  前記制御装置は、
     前記加熱量アップモードにおいて、前記第1調整弁と前記第2調整弁とを閉じた後、
     前記吐出温度が、前記閉閾値よりも低い温度に設定された開閾値まで下がったときに、前記第1調整弁と前記第2調整弁とを開くものである、
     請求項7に記載の空気調和装置。
    The control device includes:
    In the heating amount up mode, after closing the first adjustment valve and the second adjustment valve,
    The first regulating valve and the second regulating valve are opened when the discharge temperature falls to an opening threshold set to a temperature lower than the closing threshold;
    The air conditioning apparatus according to claim 7.
  9.  前記制御装置は、
     前記ホットガス電磁弁が閉じている除湿運転中に、
     前記圧縮機の吸入側の過熱度である吸入過熱度が第1閾値以下であれば、前記第1調整弁と前記第2調整弁とを開くことで、前記圧縮機に吸入させる前記非共沸混合冷媒における前記第1冷媒の比率を上げるものである、
     請求項2~8の何れか一項に記載の空気調和装置。
    The control device includes:
    During the dehumidifying operation in which the hot gas solenoid valve is closed,
    If the suction superheat degree, which is the superheat degree on the suction side of the compressor, is less than or equal to a first threshold value, the non-azeotropy that causes the compressor to suck by opening the first adjustment valve and the second adjustment valve. The ratio of the first refrigerant in the mixed refrigerant is increased.
    The air conditioner according to any one of claims 2 to 8.
  10.  前記制御装置は、
     前記除湿運転中に、前記第1調整弁と前記第2調整弁とを開いた後、
     前記吸入過熱度が、前記第1閾値よりも高い温度に設定された第2閾値に到達したときに、前記第1調整弁と前記第2調整弁とを閉じるものである、
     請求項9に記載の空気調和装置。
    The control device includes:
    During the dehumidifying operation, after opening the first adjustment valve and the second adjustment valve,
    When the suction superheat degree reaches a second threshold value set at a temperature higher than the first threshold value, the first regulating valve and the second regulating valve are closed.
    The air conditioning apparatus according to claim 9.
  11.  前記第1調整弁と前記第2調整弁とは、それぞれ、開の状態と閉の状態とを有する電磁弁であり、
     前記制御装置は、
     前記第1調整弁と前記第2調整弁とを開くとき、前記第1調整弁と前記第2調整弁とを、それぞれ、閉の状態から開の状態にするものである、
     請求項3~10の何れか一項に記載の空気調和装置。
    The first adjustment valve and the second adjustment valve are electromagnetic valves having an open state and a closed state, respectively.
    The control device includes:
    When opening the first regulating valve and the second regulating valve, the first regulating valve and the second regulating valve are respectively changed from a closed state to an opened state.
    The air conditioner according to any one of claims 3 to 10.
  12.  前記第1調整弁と前記第2調整弁とは、それぞれ、開度の調整が可能な電子膨張弁であり、
     前記制御装置は、
     前記第1調整弁と前記第2調整弁とを開くとき、前記第1調整弁と前記第2調整弁とのそれぞれの開度を大きくするものである、
     請求項3~10の何れか一項に記載の空気調和装置。
    Each of the first adjustment valve and the second adjustment valve is an electronic expansion valve capable of adjusting the opening degree.
    The control device includes:
    When opening the first adjustment valve and the second adjustment valve, each opening degree of the first adjustment valve and the second adjustment valve is increased.
    The air conditioner according to any one of claims 3 to 10.
  13.  前記圧縮機は、インバータにより周波数の調整が可能なインバータ圧縮機であり、
     前記制御装置は、
     前記第1調整弁と前記第2調整弁とを開いた場合に、前記圧縮機の周波数を下げるものである、
     請求項3~12の何れか一項に記載の空気調和装置。
    The compressor is an inverter compressor capable of adjusting the frequency by an inverter,
    The control device includes:
    When the first regulating valve and the second regulating valve are opened, the frequency of the compressor is lowered.
    The air conditioner according to any one of claims 3 to 12.
  14.  前記主回路は、前記蒸発器を通過して冷却された空気が、前記凝縮器を通過して加温されるようになっている、
     請求項1~13の何れか一項に記載の空気調和装置。
    The main circuit is configured such that air cooled by passing through the evaporator is heated by passing through the condenser.
    The air conditioner according to any one of claims 1 to 13.
PCT/JP2017/021800 2017-06-13 2017-06-13 Air conditioning device WO2018229864A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780090051.XA CN110709648B (en) 2017-06-13 2017-06-13 Air conditioner
JP2019524594A JP6755396B2 (en) 2017-06-13 2017-06-13 Air conditioner
PCT/JP2017/021800 WO2018229864A1 (en) 2017-06-13 2017-06-13 Air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/021800 WO2018229864A1 (en) 2017-06-13 2017-06-13 Air conditioning device

Publications (1)

Publication Number Publication Date
WO2018229864A1 true WO2018229864A1 (en) 2018-12-20

Family

ID=64660341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021800 WO2018229864A1 (en) 2017-06-13 2017-06-13 Air conditioning device

Country Status (3)

Country Link
JP (1) JP6755396B2 (en)
CN (1) CN110709648B (en)
WO (1) WO2018229864A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210794A1 (en) * 2021-03-31 2022-10-06 ダイキン工業株式会社 Heat pump device
WO2024039042A1 (en) * 2022-08-19 2024-02-22 삼성전자주식회사 Air conditioner and control method therefor
WO2024047831A1 (en) * 2022-09-01 2024-03-07 三菱電機株式会社 Refrigeration cycle device and air-conditioning device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08145489A (en) * 1994-11-25 1996-06-07 Hitachi Ltd Refrigerator and operating method therefor
JP2000266415A (en) * 1999-03-15 2000-09-29 Bosch Automotive Systems Corp Refrigerating cycle
JP2001165518A (en) * 1999-12-07 2001-06-22 Sanyo Electric Co Ltd Air-conditioning device
JP2009174800A (en) * 2008-01-25 2009-08-06 Mitsubishi Electric Corp Reheating dehumidifier and air conditioner
JP2010002074A (en) * 2008-06-18 2010-01-07 Mitsubishi Electric Corp Mixed refrigerant and refrigerating cycle device using the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1135341C (en) * 1994-05-30 2004-01-21 三菱电机株式会社 Refrigerating circulating system and refrigerating air conditioning device
JP2001141322A (en) * 1999-11-12 2001-05-25 Matsushita Refrig Co Ltd Heat pump device
JP4668021B2 (en) * 2005-09-14 2011-04-13 三菱電機株式会社 Air conditioner
JP5145026B2 (en) * 2007-12-26 2013-02-13 三洋電機株式会社 Air conditioner
JP5759018B2 (en) * 2011-12-22 2015-08-05 三菱電機株式会社 Refrigeration cycle equipment
CN203010777U (en) * 2012-11-30 2013-06-19 合肥通用制冷设备有限公司 Dual-refrigeration-cycle energy-saving air conditioning unit
JP6177424B2 (en) * 2014-03-17 2017-08-09 三菱電機株式会社 Refrigeration cycle equipment
JP6058219B2 (en) * 2014-05-19 2017-01-11 三菱電機株式会社 Air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08145489A (en) * 1994-11-25 1996-06-07 Hitachi Ltd Refrigerator and operating method therefor
JP2000266415A (en) * 1999-03-15 2000-09-29 Bosch Automotive Systems Corp Refrigerating cycle
JP2001165518A (en) * 1999-12-07 2001-06-22 Sanyo Electric Co Ltd Air-conditioning device
JP2009174800A (en) * 2008-01-25 2009-08-06 Mitsubishi Electric Corp Reheating dehumidifier and air conditioner
JP2010002074A (en) * 2008-06-18 2010-01-07 Mitsubishi Electric Corp Mixed refrigerant and refrigerating cycle device using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210794A1 (en) * 2021-03-31 2022-10-06 ダイキン工業株式会社 Heat pump device
WO2024039042A1 (en) * 2022-08-19 2024-02-22 삼성전자주식회사 Air conditioner and control method therefor
WO2024047831A1 (en) * 2022-09-01 2024-03-07 三菱電機株式会社 Refrigeration cycle device and air-conditioning device

Also Published As

Publication number Publication date
JP6755396B2 (en) 2020-09-16
JPWO2018229864A1 (en) 2019-12-26
CN110709648A (en) 2020-01-17
CN110709648B (en) 2021-06-22

Similar Documents

Publication Publication Date Title
JP4032634B2 (en) Air conditioner
JP5709993B2 (en) Refrigeration air conditioner
JP4767199B2 (en) Air conditioning system operation control method and air conditioning system
JP5137933B2 (en) Air conditioner
US20150059380A1 (en) Air-conditioning apparatus
JP2006300370A (en) Air conditioner
AU2002332260B2 (en) Air conditioner
JP6401015B2 (en) Air conditioner
JP2008157557A (en) Air-conditioning system
US11920841B2 (en) Air-conditioning apparatus
WO2018229864A1 (en) Air conditioning device
CN107709901B (en) Refrigerating circulatory device
JP2006284175A (en) Air conditioning device
JP3852553B2 (en) Air conditioner
JP2016008743A (en) Air conditioning device and refrigerant distribution unit
JP4187008B2 (en) Air conditioner
WO2017164152A1 (en) Air conditioning operation control device, air conditioning system, air conditioning control method, and program
JP2008175430A (en) Air conditioner
JP2002243307A (en) Air conditioning apparatus
JP4743223B2 (en) Air conditioner
WO2022029845A1 (en) Air conditioner
WO2017094172A1 (en) Air conditioning device
JP7258129B2 (en) air conditioner
JP4186492B2 (en) Air conditioner
WO2017094173A1 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17913744

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019524594

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17913744

Country of ref document: EP

Kind code of ref document: A1