JPH0338592Y2 - - Google Patents

Info

Publication number
JPH0338592Y2
JPH0338592Y2 JP1983063435U JP6343583U JPH0338592Y2 JP H0338592 Y2 JPH0338592 Y2 JP H0338592Y2 JP 1983063435 U JP1983063435 U JP 1983063435U JP 6343583 U JP6343583 U JP 6343583U JP H0338592 Y2 JPH0338592 Y2 JP H0338592Y2
Authority
JP
Japan
Prior art keywords
evaporator
refrigerant
temperature
regulating valve
pressure regulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983063435U
Other languages
Japanese (ja)
Other versions
JPS59168679U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6343583U priority Critical patent/JPS59168679U/en
Publication of JPS59168679U publication Critical patent/JPS59168679U/en
Application granted granted Critical
Publication of JPH0338592Y2 publication Critical patent/JPH0338592Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は高沸点冷媒と低沸点冷媒からなる混合
冷媒を用いた空気調和機に関する。
[Detailed Description of the Invention] The present invention relates to an air conditioner using a mixed refrigerant consisting of a high boiling point refrigerant and a low boiling point refrigerant.

第1図に従来の高沸点冷媒と低沸点冷媒からな
る混合冷媒を用いた空気調和機が示され、第1図
において圧縮機11、凝縮器12、絞り機構1
3、蒸発器14である。
FIG. 1 shows a conventional air conditioner using a mixed refrigerant consisting of a high boiling point refrigerant and a low boiling point refrigerant.
3. Evaporator 14.

運転時には、第1図中の矢印で示すように圧縮
機11で圧縮された冷媒は凝縮器12で凝縮さ
れ、絞り機構13で絞られ、蒸発器14で蒸発
し、圧縮機11に吸い込まれこれを繰り返す。
During operation, as shown by the arrow in FIG. 1, the refrigerant compressed by the compressor 11 is condensed in the condenser 12, throttled by the throttle mechanism 13, evaporated in the evaporator 14, and sucked into the compressor 11. repeat.

第2図には、第1図の空気調和機の冷凍サイク
ルをモリエル線図に表わしたものである。第2図
は横軸に冷媒のエンタルピ、縦軸に冷媒の圧力を
とつたものであり、21は飽和液線、22は飽和
蒸気線、23は臨界点、24は飽和液線21と飽
和蒸気線22の間の等温線、25は圧力が一定の
線を示す。第2図中の点26から27が冷媒の圧
縮過程、27から28が凝縮過程、28から29
が絞り膨張過程、29から26が蒸発過程であ
る。
FIG. 2 shows the refrigeration cycle of the air conditioner shown in FIG. 1 in a Mollier diagram. Figure 2 shows the enthalpy of the refrigerant on the horizontal axis and the pressure of the refrigerant on the vertical axis, where 21 is the saturated liquid line, 22 is the saturated vapor line, 23 is the critical point, and 24 is the saturated liquid line 21 and saturated vapor. The isotherm line between lines 22 and 25 indicates the line where the pressure is constant. Points 26 to 27 in Figure 2 are the refrigerant compression process, 27 to 28 are the condensation process, and 28 to 29
29 is the expansion process, and 29 to 26 are the evaporation processes.

第1図に示す従来のものにあつては第2図のモ
リエル線図にも示す様に飽和液線21と飽和蒸気
線22の間の等温線24は飽和液線21から飽和
蒸気線22に向つて行くに従つて右下りになつて
いるために運転時には蒸発過程の最初の状態(第
2図中の29の点)と蒸発過程の最後の状態(第
2図中の26の点)とでは温度差が大きく、従
来、単一の媒体を冷媒として用いた場合に比べ、
特に低外気温時蒸発器14の入口(29の点)に
おける冷媒の温度が低下し、蒸発器14の入口付
近の空気と熱交換をする部分には着霜する度合が
多く、その着霜の影響により運転が阻害されてい
た。即ち、第2図において、等温線24−1(冷
媒蒸発温度T0℃)を蒸発器の着霜温度とすると、
蒸発器の熱交換能力をできるだけ大とするため、
蒸発温度をこの着霜温度24−1に近づける必要
がある。しかし、混合冷媒を用いた場合は等温線
が右下りのため、蒸発器入口29の温度を着霜温
度24−1に近い等温線24−2(T1℃)とし
ても蒸発器出口26では蒸発温度はT2℃となり、
T1℃よりも高くなり、蒸発器の熱交換能力は低
下する。
In the conventional device shown in FIG. 1, as shown in the Mollier diagram in FIG. Since the direction is downward to the right as you move towards the direction, during operation the initial state of the evaporation process (point 29 in Figure 2) and the final state of the evaporation process (point 26 in Figure 2) are different. The difference in temperature is large, compared to when a single medium was used as a refrigerant.
In particular, when the outside temperature is low, the temperature of the refrigerant at the inlet of the evaporator 14 (point 29) decreases, and the portion that exchanges heat with the air near the inlet of the evaporator 14 has a high degree of frost formation. Driving was impaired by the influence. That is, in FIG. 2, if isotherm 24-1 (refrigerant evaporation temperature T 0 °C) is the frosting temperature of the evaporator, then
In order to maximize the heat exchange capacity of the evaporator,
It is necessary to bring the evaporation temperature close to this frosting temperature 24-1. However, when a mixed refrigerant is used, the isothermal line descends to the right, so even if the temperature at the evaporator inlet 29 is set at the isothermal line 24-2 (T 1 °C), which is close to the frosting temperature 24-1, no evaporation occurs at the evaporator outlet 26. The temperature will be T 2 ℃,
When the temperature becomes higher than T 1 °C, the heat exchange capacity of the evaporator decreases.

今この能力低下を補うため、蒸発器入口29の
温度を低めに設定すれば蒸発器入口部では着霜の
危険が発生する。
If the temperature at the evaporator inlet 29 is set lower to compensate for this decrease in capacity, there is a risk of frost formation at the evaporator inlet.

本考案は上記に鑑み混合媒体を冷媒とする冷凍
サイクルの蒸発器の入口部での温度低下により蒸
発器に着霜するのを防止しようとするものであつ
て、複数に分割された蒸発器の間に圧力を調整す
る圧力調整弁を設け、上流側蒸発器の蒸発圧力を
任意に設定できるようにして、蒸発器入口部分の
温度を調整可能としたものである。第3図に本考
案による混合冷媒を用いた空気調和機の冷媒系統
図が示され、第3図において31は圧縮機、32
は凝縮器、33は絞り機構、34は第1の蒸発
器、35は圧力調整弁、36は第2の蒸発器をそ
れぞれ示す。
In view of the above, the present invention aims to prevent frost formation on the evaporator due to a temperature drop at the inlet of the evaporator of a refrigeration cycle using a mixed medium as a refrigerant. A pressure regulating valve is provided in between to adjust the pressure, and the evaporation pressure of the upstream evaporator can be arbitrarily set, thereby making it possible to adjust the temperature at the evaporator inlet. FIG. 3 shows a refrigerant system diagram of an air conditioner using a mixed refrigerant according to the present invention. In FIG. 3, 31 is a compressor, 32
33 is a condenser, 33 is a throttle mechanism, 34 is a first evaporator, 35 is a pressure regulating valve, and 36 is a second evaporator.

第3図において、運転時混合冷媒は第3図の実
線矢印で示すように、圧縮機31で圧縮された
後、凝縮器32で凝縮され、絞り機構33で絞ら
れ、第1の蒸発器34で冷媒の一部が蒸発し、圧
力調整弁35で減圧され、第2の蒸発器36で再
び蒸発して、圧縮器31に吸入され、再び圧縮さ
れる。
In FIG. 3, the mixed refrigerant during operation is compressed by a compressor 31, condensed by a condenser 32, throttled by a throttle mechanism 33, and transferred to a first evaporator 34, as shown by the solid line arrow in FIG. A part of the refrigerant is evaporated, the pressure is reduced by the pressure regulating valve 35, it is evaporated again by the second evaporator 36, and the refrigerant is sucked into the compressor 31 and compressed again.

第4図には第3図の冷凍サイクルをモリエル線
図に表わしたものである。第4図において、41
は飽和液線、42は飽和蒸気線、43は臨界点、
44は飽和液線41と飽和蒸気線42との間の等
温線である。(今この等温線44を着霜温度T0
とする)又、第4図中の点46から47が圧縮過
程、47から48が凝縮過程、48から49が絞
り膨張過程、49から50が第1の蒸発器34に
よる蒸発過程、50から51が圧力調整弁35に
よる減圧過程、51から46が第2の蒸発器36
による蒸発過程を示す。第4図のモリエル線図上
において第1の蒸発器34の入口状態(第4図中
の49の点)および第2の蒸発器36の入口状態
(第4図中の51の点)の温度を絞り機構33お
よび圧力調整弁35で2段に調整して出来るだけ
着霜温度T0℃にぎりぎり近づけることにより、
第1の蒸発器34および第2の蒸発器36の入口
部の空気と接する部分に着霜することが防止で
き、且つ熱交換能力を大とし、安定した運転状態
を続けることができる。
FIG. 4 shows the refrigeration cycle of FIG. 3 in a Mollier diagram. In Figure 4, 41
is the saturated liquid line, 42 is the saturated vapor line, 43 is the critical point,
44 is an isothermal line between the saturated liquid line 41 and the saturated vapor line 42. (Now this isotherm 44 is the frosting temperature T 0
In addition, points 46 to 47 in FIG. 4 are the compression process, 47 to 48 are the condensation process, 48 to 49 are the throttle expansion process, 49 to 50 are the evaporation process by the first evaporator 34, and 50 to 51 is the pressure reduction process by the pressure regulating valve 35, and 51 to 46 are the second evaporator 36.
This shows the evaporation process. Temperatures at the inlet state of the first evaporator 34 (point 49 in FIG. 4) and the inlet state of the second evaporator 36 (point 51 in FIG. 4) on the Mollier diagram in FIG. By adjusting the temperature in two stages using the throttling mechanism 33 and the pressure regulating valve 35 to bring it as close as possible to the frosting temperature T 0 °C,
It is possible to prevent frost from forming on the inlet portions of the first evaporator 34 and the second evaporator 36 that come into contact with the air, and to increase the heat exchange capacity, so that stable operating conditions can be maintained.

また、第3図は蒸発器を2つに分け、それぞれ
を第1の蒸発器34,第2の蒸発器36としてこ
れらの間に圧力調整弁35を配設したがこの蒸発
器を第5図の如く多数に分け、それらの間に圧力
調整弁35を配設しても効果は同じである。さら
に、第3図は第1の蒸発器34と第2の蒸発器3
6の間に圧力調整弁35を配設したが第6図に示
すように多数の蒸発器37,39を並列に接続
し、それらの中間に圧力調整弁38を配設しても
効果は同じである。
In addition, in FIG. 3, the evaporator is divided into two parts, each of which is a first evaporator 34 and a second evaporator 36, with a pressure regulating valve 35 disposed between them. The same effect can be achieved even if the pressure regulating valve 35 is arranged between a large number of parts as shown in FIG. Furthermore, FIG. 3 shows a first evaporator 34 and a second evaporator 3.
Although a pressure regulating valve 35 is provided between the two evaporators 35 and 6, the effect is the same even if a large number of evaporators 37 and 39 are connected in parallel and a pressure regulating valve 38 is disposed between them as shown in FIG. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の非共沸混合冷媒を用いた空気調
和機の冷媒系統図、第2図は同上のモリエル線
図、第3図は本考案の1実施例の冷媒系統図、第
4図は同上のモリエル線図、第5図及び第6図は
それぞれ本考案の他の実施例を示す冷媒系統図で
ある。 蒸発器34,36,37,39、圧力調整弁3
5,38。
Fig. 1 is a refrigerant system diagram of an air conditioner using a conventional non-azeotropic mixed refrigerant, Fig. 2 is a Mollier diagram of the same as above, Fig. 3 is a refrigerant system diagram of an embodiment of the present invention, and Fig. 4 is a Mollier diagram similar to the above, and FIGS. 5 and 6 are refrigerant system diagrams showing other embodiments of the present invention, respectively. Evaporator 34, 36, 37, 39, pressure regulating valve 3
5,38.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 高沸点冷媒と低沸点冷媒からなる混合冷媒を用
いる空気調和機において、蒸発器を複数に分割
し、それら蒸発器の間に圧力を調整する圧力調整
弁を配設したことを特徴とする空気調和機。
An air conditioner using a mixed refrigerant consisting of a high boiling point refrigerant and a low boiling point refrigerant, characterized in that the evaporator is divided into a plurality of parts, and a pressure regulating valve for adjusting the pressure is arranged between the evaporators. Machine.
JP6343583U 1983-04-27 1983-04-27 air conditioner Granted JPS59168679U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6343583U JPS59168679U (en) 1983-04-27 1983-04-27 air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6343583U JPS59168679U (en) 1983-04-27 1983-04-27 air conditioner

Publications (2)

Publication Number Publication Date
JPS59168679U JPS59168679U (en) 1984-11-12
JPH0338592Y2 true JPH0338592Y2 (en) 1991-08-14

Family

ID=30193622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6343583U Granted JPS59168679U (en) 1983-04-27 1983-04-27 air conditioner

Country Status (1)

Country Link
JP (1) JPS59168679U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8877162B2 (en) 2000-05-10 2014-11-04 Novartis Ag Stable metal ion-lipid powdered pharmaceutical compositions for drug delivery
US9421166B2 (en) 2001-12-19 2016-08-23 Novartis Ag Pulmonary delivery of aminoglycoside
US9554993B2 (en) 1997-09-29 2017-01-31 Novartis Ag Pulmonary delivery particles comprising an active agent

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53101756A (en) * 1977-02-18 1978-09-05 Hitachi Ltd Refrigerating cycle
JPS5845459A (en) * 1981-09-11 1983-03-16 株式会社日立製作所 Two evaporation-temperature refrigerating cycle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53101756A (en) * 1977-02-18 1978-09-05 Hitachi Ltd Refrigerating cycle
JPS5845459A (en) * 1981-09-11 1983-03-16 株式会社日立製作所 Two evaporation-temperature refrigerating cycle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9554993B2 (en) 1997-09-29 2017-01-31 Novartis Ag Pulmonary delivery particles comprising an active agent
US8877162B2 (en) 2000-05-10 2014-11-04 Novartis Ag Stable metal ion-lipid powdered pharmaceutical compositions for drug delivery
US9439862B2 (en) 2000-05-10 2016-09-13 Novartis Ag Phospholipid-based powders for drug delivery
US9421166B2 (en) 2001-12-19 2016-08-23 Novartis Ag Pulmonary delivery of aminoglycoside

Also Published As

Publication number Publication date
JPS59168679U (en) 1984-11-12

Similar Documents

Publication Publication Date Title
CN214581894U (en) Temperature control system and temperature control device
JPH0338592Y2 (en)
US20040226686A1 (en) Heat pump and dehumidifying air-conditioning apparatus
KR100202037B1 (en) Cooling system of airconditioner
CN112944709A (en) Air source heat pump system and method for slowing down frosting rate
JPH0332904Y2 (en)
JPS6117318Y2 (en)
US20040118133A1 (en) Heat pump and dehumidifying air-conditioning apparatus
JP2004116978A (en) Controller for multi-room air conditioner
KR20100137050A (en) Refrigeration and air conditioning system
JPH02258467A (en) Heat pump type air conditioner for vehicle
CN1019894C (en) Refrigerating device with thermo-expansion valve as throttle controller
JPS5998244U (en) Multi-dimensional refrigerator
JPS5912514Y2 (en) refrigeration cycle
JPH03294750A (en) Freezing apparatus
JPS6124950A (en) Two-element refrigerator
JPH02161263A (en) Air conditioner
JPS6337865B2 (en)
JPH1019399A (en) Air conditioner
JPH03260543A (en) Air conditioner and controlling method therefor
JPS62194146A (en) Air-conditioning machine
KR0184207B1 (en) Refrigeration cycle apparatus of airconditioner
JP2685230B2 (en) Air conditioner
JPS6311580B2 (en)
JPS6225644Y2 (en)