JP3015560B2 - Heat storage type cooling device - Google Patents

Heat storage type cooling device

Info

Publication number
JP3015560B2
JP3015560B2 JP3320287A JP32028791A JP3015560B2 JP 3015560 B2 JP3015560 B2 JP 3015560B2 JP 3320287 A JP3320287 A JP 3320287A JP 32028791 A JP32028791 A JP 32028791A JP 3015560 B2 JP3015560 B2 JP 3015560B2
Authority
JP
Japan
Prior art keywords
heat storage
cooling
load
heat
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3320287A
Other languages
Japanese (ja)
Other versions
JPH05157297A (en
Inventor
守也 宮本
祥道 中川
宏明 浜
正美 今西
健三 倉橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3320287A priority Critical patent/JP3015560B2/en
Publication of JPH05157297A publication Critical patent/JPH05157297A/en
Application granted granted Critical
Publication of JP3015560B2 publication Critical patent/JP3015560B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は蓄熱式冷房装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a regenerative cooling system.

【0002】[0002]

【従来の技術】例えば特開平1−174864に公報さ
れているような蓄熱式冷房装置では、空調運転時間の全
冷房負荷に対する蓄熱の割合が空調運転時間を通して約
20%であり、蓄熱依存率が比較的少なくなるという問
題があった。
2. Description of the Related Art In a regenerative cooling system disclosed in, for example, Japanese Patent Application Laid-Open No. 1-174864, the ratio of heat storage to the total cooling load during air-conditioning operation time is about 20% throughout the air-conditioning operation time, and the heat storage dependence rate is low. There was a problem that it was relatively small.

【0003】すなわち、図15は従来の実施例であり、
圧縮機1、凝縮器2、冷媒の減圧を行なう第一の減圧機
構3、蒸発器4およびアキュムレータ5を主冷媒回路2
4で接続し、かつ蓄熱可能な媒体を内蔵する蓄熱槽7を
配置してある。また上記蓄熱槽7の内部には、蓄熱用熱
交換器8と液過冷却用熱交換器22を備えており、上記
蓄熱用熱交換器8は上記凝縮器2の出口側と圧縮機1の
吸入側の間に取付けられている。蓄熱用熱交換器8の入
口側には第二の絞り機構19が設けられており、液過冷
却用熱交換器22は、上記凝縮器2と第一の減圧機構3
の間に主冷媒回路24をバイパスする様に配設されてい
る。
FIG. 15 shows a conventional embodiment.
The compressor 1, the condenser 2, the first decompression mechanism 3 for decompressing the refrigerant, the evaporator 4, and the accumulator 5 are connected to the main refrigerant circuit 2.
4, a heat storage tank 7 containing a heat storage medium is arranged. A heat storage heat exchanger 8 and a liquid supercooling heat exchanger 22 are provided inside the heat storage tank 7. The heat storage heat exchanger 8 is connected to the outlet side of the condenser 2 and the compressor 1. Mounted between the suction sides. A second throttle mechanism 19 is provided on the inlet side of the heat storage heat exchanger 8, and the liquid subcooling heat exchanger 22 includes the condenser 2 and the first pressure reducing mechanism 3.
It is arranged so as to bypass the main refrigerant circuit 24.

【0004】上記のような構成の蓄熱式冷房装置によっ
て夜間の運転となる蓄熱運転時には、開閉装置11、1
2を閉じ、開閉装置10を開き、圧縮機1を運転させる
と、圧縮機1よりの高温高圧ガス冷媒は、凝縮器2で放
熱、自身は凝縮液化し、第二の減圧機構19を有する蓄
熱槽回路に入り、第二の減圧機構19で断熱膨張し、低
温の液ガス二相流体となって蓄熱槽熱交換器8に入り、
蓄熱媒体6から熱を奪い、自身は蒸発ガス化してアキュ
ムレータ5を経て圧縮機1に戻る。かかる動作により蓄
熱媒体6を凍結させるなどにより低温の熱を蓄える。
[0004] During the heat storage operation in which the regenerative cooling device having the above-described configuration operates at night, the switching devices 11 and 1 are operated.
When the compressor 2 is closed and the switchgear 10 is opened and the compressor 1 is operated, the high-temperature and high-pressure gas refrigerant from the compressor 1 radiates heat in the condenser 2, condensed and liquefied, and heat stored in the second decompression mechanism 19. After entering the tank circuit, it is adiabatically expanded by the second decompression mechanism 19, becomes a low-temperature liquid-gas two-phase fluid, and enters the heat storage tank heat exchanger 8,
The heat is taken from the heat storage medium 6, the gas itself evaporates and returns to the compressor 1 via the accumulator 5. By such an operation, heat of low temperature is stored by freezing the heat storage medium 6 or the like.

【0005】また、昼間、蓄熱利用により液過冷却運転
を行なう時は、図15中の、開閉装置10,12を閉
じ、開閉装置11を開き、圧縮機1を運転させると、圧
縮機1よりの高温高圧ガス冷媒は、凝縮器2で放熱し、
自身は凝縮液化し、液過冷却用回路23に送り込まれ、
蓄熱媒体6により液冷媒は更に冷却され、過冷却された
液となって第一の減圧機構3に送られ、ここで断熱膨張
し、低温の液ガス二相流体となって蒸発器4に入り、こ
こで周囲より熱を奪って冷房し、自身は蒸発してガス化
し、アキュムレータ5を経て圧縮機1に戻る。この時の
動作をモリエル線図上に表すと図16に示すように過冷
却エンタルピ分だけ横に広がった運転となり、圧縮機入
力エンタルピ(△ic)はそのままで、冷房のための蒸
発エンタルピは△ie1から△ie2に増大する。
In the daytime, when the subcooling operation is performed by utilizing heat storage, the switching devices 10 and 12 in FIG. 15 are closed, the switching device 11 is opened, and the compressor 1 is operated. Of the high-temperature and high-pressure gas refrigerant radiates heat in the condenser 2,
The liquid itself is condensed and liquefied and sent to the liquid supercooling circuit 23,
The liquid refrigerant is further cooled by the heat storage medium 6 and is sent to the first decompression mechanism 3 as a supercooled liquid, where it is adiabatically expanded and becomes a low-temperature liquid-gas two-phase fluid and enters the evaporator 4. Here, cooling is performed by removing heat from the surroundings, and the refrigerant itself evaporates and gasifies, and returns to the compressor 1 via the accumulator 5. When the operation at this time is represented on a Mollier diagram, as shown in FIG. 16, the operation spreads laterally by the amount of supercooling enthalpy, the compressor input enthalpy (そ の ま ま ic) remains unchanged, and the evaporation enthalpy for cooling is △. It increases from ie1 to $ ie2.

【0006】また、一般冷房運転時は、図15中の開閉
装置10,11を閉じ開閉装置12を開き、圧縮機1を
運転させると、圧縮機1よりの高圧ガス冷媒は、凝縮器
2で放熱、自身は凝縮液化し主回路24を通り第一の減
圧機構3に送られ、ここで断熱膨張し低温の液ガス二相
液体となって蒸発器4に入り、ここで周囲より熱を奪っ
て冷房し、自身は蒸発してガス化し、アキュムレータ5
を経て圧縮機1に戻る。
In general cooling operation, when the switching devices 10 and 11 in FIG. 15 are closed and the switching device 12 is opened to operate the compressor 1, the high-pressure gas refrigerant from the compressor 1 passes through the condenser 2. The heat is condensed and liquefied, passes through the main circuit 24, and is sent to the first decompression mechanism 3, where it is adiabatically expanded to become a low-temperature liquid-gas two-phase liquid and enters the evaporator 4, where it takes heat from the surroundings. Cools itself, evaporates and gasifies itself, and accumulator 5
And returns to the compressor 1.

【0007】[0007]

【発明が解決しようとする課題】上記のような各々の運
転を行なう従来の蓄熱式冷房装置では、一般冷房運転時
の能力よりも液過冷却運転時の能力の方が過冷却された
熱量分だけ大きい。しかし液過冷却運転時、その構成か
ら蓄熱運転によって蓄熱媒体に蓄熱された蓄熱量の利用
は、液過冷却冷房運転によってのみ利用されていたの
で、図16に示すように蓄熱利用率は△io/△ie
2、すなわち0.2〜0.3程度であり、蓄熱利用率は
軽負荷時であっても同程度である。従って、蓄熱残量が
十分にあっても、同じ割合でしか利用しないため、負荷
が軽くなると蓄熱量が余ってくることになる。このこと
は上記従来の蓄熱式冷凍サイクル装置では、蓄熱槽の大
きさの割りには蓄熱を効率良く利用する事が出来ず、蓄
熱利用といいながらも夜間電力の利用による経済的効果
は不十分であり、昼間の電力抑制が十分でない社会では
課題を残したままとなっている。
In the conventional regenerative cooling system which performs each of the above-mentioned operations, the capacity in the subcooling operation of the liquid is smaller than that in the general cooling operation. Only big. However, during the liquid supercooling operation, since the amount of heat stored in the heat storage medium by the heat storage operation is used only by the liquid supercooling cooling operation, the heat storage utilization rate is △ io as shown in FIG. / △ ie
2, that is, about 0.2 to 0.3, and the heat storage utilization rate is substantially the same even under a light load. Therefore, even if the remaining heat storage amount is sufficient, since only the same ratio is used, when the load is reduced, the heat storage amount becomes excessive. This means that in the above-mentioned conventional regenerative refrigeration cycle apparatus, it is not possible to efficiently use heat storage for the size of the heat storage tank, and the economic effect of using nighttime power is insufficient even though it is called heat storage. However, in a society where power control in the daytime is not sufficient, problems remain.

【0008】本発明は上記のような点に鑑みて開発され
たものであり、その目的とする処は、深夜電力時間帯に
蓄熱運転によって蓄熱媒体に蓄熱された蓄熱量をより効
率よく利用して昼間の電力使用時間を軽減させ、安価な
深夜電力料金でより効果的に冷却冷房を行なうことがで
きるようにした蓄熱式冷房装置を提供することにある。
The present invention has been developed in view of the above points, and a purpose thereof is to make more efficient use of the amount of heat stored in the heat storage medium by the heat storage operation during the midnight power hours. It is an object of the present invention to provide a regenerative cooling device capable of reducing power use time in the daytime and performing cooling and cooling more effectively at an inexpensive midnight power rate.

【0009】[0009]

【課題を解決するための手段】本発明の蓄熱式冷房装置
は、圧縮機、凝縮器、第1の減圧機構、及び蒸発器を配
管接続して形成され、上記圧縮機を作動させて上記蒸発
器で冷房する一般冷房運転を行う一般冷房用回路と、上
記蒸発器の入口側及び出口側に接続され、冷媒搬送装
置、蓄熱された蓄熱媒体と熱交換する蓄熱用熱交換器及
び第2の減圧機構を配管接続して形成され、上記冷媒搬
送装置を作動させ上記蒸発器により冷房する放冷運転を
行う放冷回路とを備えた蓄熱式冷房装置において、冷房
負荷対応手段により、全冷房負荷のうち、ベ−スロ−ド
蓄熱使用の放冷運転で負荷対応し、変動分を一般冷房
運転により負荷対応することにより、放冷運転で負荷対
応した残りの負荷を一般冷房運転で負荷対応するするも
のである。
A regenerative cooling device of the present invention is formed by connecting a compressor, a condenser, a first pressure reducing mechanism, and an evaporator with piping, and operating the compressor to evaporate the evaporator. A general cooling circuit for performing a general cooling operation for cooling with a heat exchanger, a refrigerant transfer device connected to the inlet side and the outlet side of the evaporator, a heat storage heat exchanger for performing heat exchange with the stored heat storage medium, and a second heat exchanger. A cooling circuit that is formed by connecting a pressure reducing mechanism to a pipe and that performs a cooling operation that cools by the evaporator by operating the refrigerant transport device. Of these, the base load corresponds to the load in the cooling operation using heat storage , and the variation corresponds to the load in the general cooling operation .
The remaining load corresponding to the load in the general cooling operation .

【0010】[0010]

【0011】[0011]

【作用】上記のような構成により、冷房負荷のうち、ベ
ースロードを蓄熱で賄うことで、常にほぼ一定の蓄熱が
利用されることにより、蓄熱管理が容易となり、また、
特に軽負荷時には蓄熱利用率を高くできる。
According to the above-described structure, the base load of the cooling load is covered by the heat storage, so that the substantially constant heat storage is always used, thereby facilitating the heat storage management.
Especially at a light load, the heat storage utilization rate can be increased.

【0012】[0012]

【実施例】実施例1. 以下、本発明の実施例1を図1〜図8に基づいて説明す
る。図1は本発明の蓄熱式冷房装置を示す図である。図
中1は圧縮機、2は凝縮器、3は第一の減圧機構、4は
蒸発器、5はアキュムレータで1〜5と順次接続され、
一般冷房用回路を形成している。6は7の蓄熱槽中に収
納されている蓄熱媒体、例えば水である。
[Embodiment 1] Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a view showing a regenerative cooling device of the present invention. In the figure, 1 is a compressor, 2 is a condenser, 3 is a first decompression mechanism, 4 is an evaporator, 5 is an accumulator and is sequentially connected to 1 to 5,
A general cooling circuit is formed. Reference numeral 6 denotes a heat storage medium, for example, water stored in the heat storage tank 7.

【0013】8は蓄熱媒体と熱交換する蓄熱用熱交換器
であり、8aの蓄熱用熱交換器入口と、蒸発器4の入口
の間には第二の減圧機構19が接続されており、蓄熱用
交換器出口8bと蒸発器4出口の間には冷媒搬送手段
(冷媒ガスポンプ)18を接続することにより冷媒ガス
ポンプ放冷回路を形成している。
Reference numeral 8 denotes a heat storage heat exchanger for exchanging heat with a heat storage medium. A second pressure reducing mechanism 19 is connected between the heat storage heat exchanger inlet 8a and the evaporator 4 inlet. For heat storage
A refrigerant gas pump cooling circuit is formed by connecting a refrigerant conveying means (refrigerant gas pump) 18 between the heat exchanger outlet 8b and the evaporator 4 outlet.

【0014】9は蓄熱用バイパス回路であり、第一の減
圧機構3の出口と蓄熱用熱交換器入口8aを接続してお
り、圧縮機1、凝縮器2、第一の減圧機構3、蓄熱用バ
イパス回路9、蓄熱用熱交換器及びアキュムレータ5を
順次接続して蓄熱回路を形成している。
Reference numeral 9 denotes a heat storage bypass circuit, which connects the outlet of the first pressure reducing mechanism 3 to the heat storage heat exchanger inlet 8a. The compressor 1, the condenser 2, the first pressure reducing mechanism 3, and the heat storage The bypass circuit 9 for heat storage, the heat exchanger for heat storage, and the accumulator 5 are sequentially connected to form a heat storage circuit.

【0015】図2は主として深夜電力時間帯の運転とな
る蓄熱運転時の動作を示す回路図であり、開閉装置1
0,11,12を閉じ、開閉装置13,14,15,1
6,20を開き、冷媒ガスポンプ18を停止したまま、
圧縮機1を運転させると、圧縮機1よりの高温高圧ガス
冷媒は室外熱交換器2で放熱、自身は凝縮液化し、第一
の減圧機構3で断熱膨張し、低温の液ガス二相流体とな
って蓄熱用熱交換器8に入り、蓄熱媒体から熱を奪い、
自身は蒸発ガス化してアキュムレータ5を経て、圧縮機
1に戻る。かかる動作により蓄熱媒体6を凍結させるな
どにより低温の熱を蓄える。その時の冷凍サイクルのモ
リエル線図上の運転状態を図3に示す。図中△icは圧
縮機エンタルピ△ieは蒸発エンタルピである。
FIG. 2 is a circuit diagram showing an operation during a heat storage operation mainly in the midnight power time zone.
0, 11, 12 are closed, and the switching devices 13, 14, 15, 1
6 and 20, opening the refrigerant gas pump 18,
When the compressor 1 is operated, the high-temperature and high-pressure gas refrigerant from the compressor 1 radiates heat in the outdoor heat exchanger 2, condensed and liquefied, adiabatically expanded in the first decompression mechanism 3, and formed a low-temperature liquid-gas two-phase fluid. And enters the heat exchanger 8 for heat storage, deprives the heat storage medium of heat,
The gas itself evaporates and returns to the compressor 1 via the accumulator 5. By such an operation, heat of low temperature is stored by freezing the heat storage medium 6 or the like. FIG. 3 shows an operation state on the Mollier diagram of the refrigeration cycle at that time. In the figure, △ ic is the compressor enthalpy and △ ie is the evaporation enthalpy.

【0016】また、昼間の冷房負荷が所定値以下の場
合、蓄熱利用により放冷運転を行な、図4に示すよう
に開閉装置10,14,16,20を閉じ、開閉装置1
1,12,15,17を開き圧縮機1を運転せずに冷媒
ガスポンプ18を運転させると、冷媒ガスポンプ18に
よって昇圧された低温、低圧のガス冷媒は、蓄熱用熱交
換器8に入り、蓄熱媒体に熱を与え、自身は凝縮液化
し、第二の減圧機構19によって断熱膨張し、低温の液
ガス二相流体となって、蒸発器4に流れ込みここで周囲
より熱を奪って冷房し、自身は蒸発してガス化し、再び
冷媒ガスポンプ18に戻る。
Further, when daytime cooling load is below a predetermined value, the row stomach the cooling operation by the heat storage use, closes the opening and closing device 10,14,16,20 as shown in FIG. 4, switchgear 1
When the refrigerant gas pump 18 is operated without opening the compressors 1, 12, 15, 17 without operating the compressor 1, the low-temperature, low-pressure gas refrigerant pressurized by the refrigerant gas pump 18 enters the heat exchanger 8 for heat storage, The medium is heated and condensed and liquefied, adiabatically expanded by the second decompression mechanism 19, becomes a low-temperature liquid-gas two-phase fluid, flows into the evaporator 4, where it takes heat from the surroundings to cool it. The gas itself vaporizes and returns to the refrigerant gas pump 18 again.

【0017】このときの冷凍サイクルのモリエル線図上
の変化を図5に示す。図中△igpは冷媒ガスポンプエ
ンタルピ、△icは圧縮機エンタルピ、△ieは蒸発エ
ンタルピである。この放冷運転は蒸発作用が凝縮温度よ
りわずかに低いほぼ同等の圧力でおこなわれるため、圧
縮機1のエンタルピに比べて大幅に小さいエンタルピで
同一の冷媒量を強制循環でき、圧縮機1に比べ高い成績
係数(C.O.P)の運転を達成する。また、蓄熱量を
所定値以上にすることにより、全ての冷房負荷を放冷運
転で行なえるとともに、ピーク負荷の時間帯を放冷運転
で行なうこともできる。
FIG. 5 shows a change in the Mollier diagram of the refrigeration cycle at this time. In the figure, △ igp is the refrigerant gas pump enthalpy, △ ic is the compressor enthalpy, and △ ie is the evaporation enthalpy. In this cooling operation, since the evaporating operation is performed at a pressure approximately equal to the condensing temperature, which is slightly lower than the condensing temperature, the same refrigerant amount can be forcibly circulated with an enthalpy much smaller than the enthalpy of the compressor 1, and compared with the compressor 1. Achieve high coefficient of performance (COP) driving. In addition, by setting the heat storage amount to a predetermined value or more, all the cooling loads can be performed by the cooling operation, and the time period of the peak load can be performed by the cooling operation.

【0018】昼間における冷房負荷が所定の値以上のと
きは、図6に示すように開閉装置13,14,20を閉
じ、開閉装置10,11,12,15,16,17を開
き、圧縮機1、冷媒ガスポンプ18を両方とも運転させ
ると、前記一般冷房運転と放冷運転を同時に運転した合
流運転となり、その時、蒸発器4では、一般冷房運転の
みや放冷運転のみを行なった時を合わせた冷媒流量が流
れる。このときの冷凍サイクルのモリエル線図上の変化
が図7であり、図中△icは圧縮機エンタルピ,△ic
cは一般冷房側凝縮エンタルピ,△icpは放冷側凝縮
エンタルピ,△igpは冷媒液ポンプエンタルピ,△i
eは蒸発エンタルピである。
When the cooling load in the daytime is equal to or more than a predetermined value, the switches 13, 14, 20 are closed and the switches 10, 11, 12, 15, 16, 17 are opened as shown in FIG. 1. When both of the refrigerant gas pumps 18 are operated, a combined operation is performed in which the general cooling operation and the cooling operation are simultaneously performed. At that time, the evaporator 4 is operated at the time when only the general cooling operation or only the cooling operation is performed. The flow of the refrigerant flows. The change on the Mollier diagram of the refrigeration cycle at this time is shown in FIG. 7, where Δic is the compressor enthalpy and Δic
c is general cooling side condensation enthalpy, Δicp is cooling side condensation enthalpy, Δigp is refrigerant liquid pump enthalpy, Δi
e is the enthalpy of evaporation.

【0019】この冷凍サイクルでは、圧縮機の冷媒循環
量に対する冷媒ガスポンプの冷媒循環量の比率が任意に
設計できるため、全冷房負荷に対する放冷運転と、一般
冷房運転の割合を任意に設定できる。しかし、実際は夜
間行なう蓄熱運転は圧縮機1(一般冷房運転の駆動源)
を使用するとともに昼間の冷房運転時間と夜間の蓄熱運
転時間がほぼ同一の為、一般冷房運転と放冷運転による
冷房能力はほぼ等しいことが妥当である。またここで、
放冷運転の占める割合が大きい程、蓄熱依存率が高いと
ともに同一冷房負荷運転時の蓄熱式冷房装置の消費電力
は小さい。
In this refrigeration cycle, the ratio of the refrigerant circulation amount of the refrigerant gas pump to the refrigerant circulation amount of the compressor can be arbitrarily designed. Therefore, the ratio of the cooling operation to the total cooling load and the ratio of the general cooling operation can be arbitrarily set. However, actually, the heat storage operation performed at night is performed by the compressor 1 (the driving source of the general cooling operation).
And the cooling operation time in the daytime and the heat storage operation time in the nighttime are almost the same, so it is appropriate that the cooling capacity by the general cooling operation and the cooling operation by the cooling operation is almost equal. Also here
The larger the ratio of the cooling operation, the higher the heat storage dependency ratio and the smaller the power consumption of the regenerative cooling device during the same cooling load operation.

【0020】上記に述べた昼間の冷房運転時の冷房負荷
1 と一般冷房運転負荷及び夜間の蓄熱運転負荷につい
て図8に例を示す。図中Q3 は蓄熱運転負荷、Q2 は放
冷運転負荷、Q1 −Q2 は一般冷房運転負荷である。図
8によると、夜間のQ3 の蓄熱運転の面積と昼間のQ2
の放冷運転負荷の面積がほぼ等しく、夜間の蓄熱を昼間
に使い切っていることを示している。さらに、冷房負荷
1 のうち、一般冷房運転負荷はQ1 −Q2 の量だけ賄
うようにしている。即ち、放冷運転負荷Q2 により賄っ
た負荷の残量を賄うようにしている。
[0020] An example in FIG. 8 for cooling load to Q 1 daytime cooling operation described above and general cooling operation load and nighttime heat storage operation load. Figure Q 3 are thermal storage operation load, Q 2 is allowed to cool operating load, Q 1 -Q 2 is generally cooling operation load. According to FIG. 8, Q of the area of the thermal storage operation daytime nighttime Q 3 2
Indicate that the area of the cooling operation load is almost equal, and the heat storage at night is used up during the day. Furthermore, among the cooling load Q 1, general cooling operation load so that cover only the amount of Q 1 -Q 2. In other words, so that cover the remaining amount of the load financed by cooling operation load Q 2.

【0021】実施例2. 以下、本発明の実施例2を図9〜図13に基づいて説明
する。図9は本発明の蓄熱式冷房装置を示す図である。
図中1は圧縮機、2は凝縮器、3は第一の減圧機構、4
は蒸発器、5はアキュムレータで1〜5と順次接続され
一般冷房用回路を形成している。6は7の蓄熱槽中に収
納されている蓄熱媒体、例えば水である。
Embodiment 2 FIG. Hereinafter, a second embodiment of the present invention will be described with reference to FIGS. FIG. 9 is a diagram showing a regenerative cooling device of the present invention.
In the figure, 1 is a compressor, 2 is a condenser, 3 is a first pressure reducing mechanism, 4
Is an evaporator, and 5 is an accumulator, which is sequentially connected to 1 to 5 to form a general cooling circuit. Reference numeral 6 denotes a heat storage medium, for example, water stored in the heat storage tank 7.

【0022】8は蓄熱媒体と熱交換する蓄熱用熱交換器
であり、8aの蓄熱用熱交換器入口と、蒸発器4の入口
の間には冷媒液ポンプ21、第二の減圧機構19が順次
接続されており、蓄熱用熱交換器出口8bと蒸発器4出
口を接続することにより冷媒液ポンプ放冷回路を形成し
ている。9は蓄熱用バイパス回路であり、第一の減圧機
構3の出口と、蓄熱用熱交換器入口8aを接続してお
り、圧縮機1、凝縮器2、第一の減圧機構3、蓄熱用バ
イパス回路9、蓄熱用熱交換器及びアキュムレータ5を
順次接続して蓄熱回路を形成している。
Reference numeral 8 denotes a heat storage heat exchanger for exchanging heat with the heat storage medium. A refrigerant liquid pump 21 and a second pressure reducing mechanism 19 are provided between the heat storage heat exchanger inlet 8a and the evaporator 4 inlet. The refrigerant liquid pump cooling circuit is formed by connecting the heat storage heat exchanger outlet 8b and the evaporator 4 outlet in order. Reference numeral 9 denotes a heat storage bypass circuit, which connects the outlet of the first pressure reducing mechanism 3 and the heat storage heat exchanger inlet 8a. The compressor 1, the condenser 2, the first pressure reducing mechanism 3, and the heat storage bypass The circuit 9, the heat storage heat exchanger, and the accumulator 5 are sequentially connected to form a heat storage circuit.

【0023】図10は主として深夜電力時間帯の運転と
なる蓄熱運転時の動作を示す回路図であり、開閉装置1
0,11,12を閉じ、開閉装置13,14,15,1
6を開き、冷媒液ポンプ21を停止したまま、圧縮機1
を運転させると、圧縮機1よりの高温高圧ガス冷媒は室
外熱交換器2で放熱、自身は凝縮液化し、第一の減圧機
構3で断熱膨張し、低温の液ガス二相流体となって蓄熱
用熱交換器8に入り、蓄熱媒体から熱を奪い、自身は蒸
発ガス化して、エキュムレータ5を経て、圧縮機1に戻
る。かかる動作により蓄熱媒体6を凍結させるなどによ
り低温の熱を蓄える。
FIG. 10 is a circuit diagram showing the operation during the heat storage operation mainly in the midnight power time zone.
0, 11, 12 are closed, and the switching devices 13, 14, 15, 1
6, the compressor 1 is stopped while the refrigerant liquid pump 21 is stopped.
Is operated, the high-temperature and high-pressure gas refrigerant from the compressor 1 radiates heat in the outdoor heat exchanger 2, condensed and liquefied, and adiabatically expanded in the first pressure reducing mechanism 3 to become a low-temperature liquid-gas two-phase fluid. The heat enters the heat exchanger 8 for heat storage, deprives the heat storage medium of heat, evaporates itself, and returns to the compressor 1 via the accumulator 5. By such an operation, heat of low temperature is stored by freezing the heat storage medium 6 or the like.

【0024】また、昼間の冷房負荷が所定値以下の場合
は、蓄熱利用により放冷運転を行なう時は、図11に示
すように開閉装置10,14,16を閉じ、開閉装置1
1,12,15,17を開き圧縮機1を運転せずに冷媒
液ポンプ21を運転させると、冷媒液ポンプ21によっ
て昇圧された低温、低圧の過冷却冷媒は、第二の減圧機
構19により若干断熱膨張し蒸発器4に入り、ここで周
囲より熱を奪って冷房し自身は蒸発してガス化し、蓄熱
用熱交換器で放熱、自身は凝縮液化し、冷媒液ポンプ2
1に戻る。
When the daytime cooling load is equal to or less than a predetermined value, when the cooling operation is performed by utilizing heat storage, the switching devices 10, 14, and 16 are closed as shown in FIG.
When the refrigerant liquid pump 21 is operated without opening the compressors 1, 12, 15 and 17 and the compressor 1 is not operated, the low-temperature, low-pressure supercooled refrigerant pressurized by the refrigerant liquid pump 21 is discharged by the second pressure reducing mechanism 19. It slightly expands adiabatically and enters the evaporator 4, where it takes heat from the surroundings to cool it, evaporates and gasifies itself, radiates heat in the heat storage heat exchanger, condenses and liquefies, and turns the refrigerant liquid pump 2
Return to 1.

【0025】このときの冷凍サイクルのモリエル線図上
の変化が図12であり、図中△iepは冷媒液ポンプエ
ンタルピ,△ieは蒸発エンタルピを示す。この放冷運
転は蒸発作用が凝縮圧力よりわずかに高いほぼ同等の圧
力で行なわれるため、系の圧損を吸収できる程度の楊程
を持つ、僅かな動力のポンプで済むこととなり、蓄熱媒
体には、冷房のための蒸発熱差とほぼ同量の凝縮熱差を
放出するだけで済み、ガスポンプのおよそ10倍の高い
成績係数(C.O.P)の運転を達成する。また、蓄熱
量を所定値以上にすることにより、全ての冷房負荷を放
冷運転で行なえるとともに、ピーク負荷の時間帯を放冷
で行うこともできる。
FIG. 12 shows a change in the Mollier diagram of the refrigeration cycle at this time. In the figure, Δiep indicates the refrigerant liquid pump enthalpy, and Δie indicates the evaporation enthalpy. In this cooling operation, the evaporating operation is performed at almost the same pressure, which is slightly higher than the condensing pressure. Only the same amount of heat of condensation as the heat of vaporization for cooling needs to be released, and a high coefficient of performance (COP) of about 10 times that of a gas pump is achieved. Further, by making the heat storage amount over a predetermined value, together performed in cool operating all cooling load, it can also be carried out in cooling <br/> OPERATION time zone peak load.

【0026】昼間における冷房負荷が所定の値以上のと
きは図13に示すように開閉装置13,14を閉じ、開
閉装置10,11,12,15,16,17を開き、圧
縮機1、冷媒液ポンプ21を両方とも運転させると、前
記一般冷房運転と放冷運転を同時に運転したものとな
り、その時蒸発器4では、一般冷房運転のみや放冷運転
のみを行った時の合計の冷媒流量となる。このときの冷
凍サイクルのモリエル線図上の変化が図14であり、図
中△icは圧縮機エンタルピ△iccは一般冷房側凝縮
エンタルピ、△icpは放冷側凝縮エンタルピ、△ie
pは冷媒液ポンプエンタルピ、△ieは蒸発エンタルピ
である。
When the cooling load in the daytime is equal to or greater than a predetermined value, the switches 13, 14 are closed and the switches 10, 11, 12, 15, 16, 17 are opened as shown in FIG. When both of the liquid pumps 21 are operated, the general cooling operation and the cooling operation are simultaneously performed. At that time, the evaporator 4 outputs the total refrigerant flow rate when only the general cooling operation or the cooling operation is performed. Become. The change on the Mollier diagram of the refrigeration cycle at this time is shown in FIG. 14, where Δic is the compressor enthalpy, △ icc is the general cooling-side condensation enthalpy, △ icp is the cooling-side condensation enthalpy, pie
p is the refrigerant liquid pump enthalpy, and Δie is the evaporation enthalpy.

【0027】この冷媒サイクルでは、圧縮機の冷媒循環
量に対する冷媒液ポンプの冷媒循環量の比率が任意に設
定できるため、全冷房負荷に対する放冷運転と一般冷房
運転の割合を任意に設定できる。しかし、実際は夜間行
う蓄熱運転は圧縮機1(一般冷房運転の駆動源)を使用
するとともに昼間の冷房運転時間と夜間の蓄熱運転時間
がほぼ同一のため一般冷房運転と放冷運転による冷房能
力のほぼ等しいことが妥当である。またここで、放冷運
転の占める割合が大きい程蓄熱依存率が高いとともに同
一冷房負荷運転時の蓄熱式冷房装置の消費電力は小さ
い。
In this refrigerant cycle, the ratio of the refrigerant circulation amount of the refrigerant liquid pump to the refrigerant circulation amount of the compressor can be arbitrarily set, so that the ratio of the cooling operation to the total cooling load and the general cooling operation can be arbitrarily set. However, actually, the heat storage operation performed at night uses the compressor 1 (the driving source of the general cooling operation), and since the cooling operation time in the daytime and the heat storage operation time in the night are almost the same, the cooling capacity of the general cooling operation and the cooling operation by the cooling operation is reduced. It is reasonable that they are approximately equal. Also, here, the larger the ratio of the cooling operation, the higher the heat storage dependency ratio and the smaller the power consumption of the heat storage type cooling device during the same cooling load operation.

【0028】[0028]

【発明の効果】以上のように、本発明の蓄熱式冷房装置
は、圧縮機、凝縮器、第1の減圧機構、及び蒸発器を配
管接続して形成され、上記圧縮機を作動させて上記蒸発
器で冷房する一般冷房運転を行う一般冷房用回路と、上
記蒸発器の入口側及び出口側に接続され、冷媒搬送装
置、蓄熱された蓄熱媒体と熱交換する蓄熱用熱交換器及
び第2の減圧機構を配管接続して形成され、上記冷媒搬
送装置を作動させ上記蒸発器により冷房する放冷運転を
行う放冷回路とを備えた蓄熱式冷房装置において、冷房
負荷対応手段により、全冷房負荷のうち、ベ−スロ−ド
を蓄熱使用の放冷運転で負荷対応し、変動分を一般冷房
運転により負荷対応することにより、放冷運転で負荷対
応した残りの負荷を一般冷房運転で負荷対応するするも
のであるので、蓄熱の利用量がほぼ一定となり、蓄熱量
をほぼ一定とでき、蓄熱量の管理が容易となるととも
に、蓄熱を使い切るようにできるため、昼間電力の節減
効果及び夜間電力の利用効果が大きい。また、冷房負荷
変動によって負荷が低下した場合に、ベ−スロ−ドを蓄
熱で賄っているので、負荷が低下する程、全冷房負荷に
占める放冷運転の割合が増加し、高い成績係数の運転と
なる。一方、冷房負荷の変動分を蓄熱で賄っていると負
荷が低下する程、全冷房負荷に占める放冷運転の割合が
低下し、低い成績係数の運転となるが、本発明では、
のような状況を回避できる。
As described above, the regenerative cooling device according to the present invention is provided.
Has a compressor, a condenser, a first decompression mechanism, and an evaporator.
The pipe is formed and the compressor is operated to evaporate
A general cooling circuit that performs general cooling operation in which cooling
Connected to the inlet and outlet sides of the evaporator,
Storage heat exchanger for exchanging heat with the stored heat storage medium
And a second pressure reducing mechanism connected by piping.
The cooling device is operated to cool down by the evaporator.
A regenerative cooling device provided with a cooling circuit for performing cooling.
By the load response means, the base load of the total cooling load
Load by cooling operation using heat storage, and general cooling
By responding to the load by operation,
The remaining load will be used for general cooling operation.
Therefore, the amount of heat storage becomes almost constant, the amount of heat storage can be made almost constant, the management of the amount of heat storage becomes easy, and the heat storage can be used up. Is big. In addition, when the load is reduced due to cooling load fluctuation, the base load is covered by heat storage. As the load decreases, the ratio of the cooling operation to the total cooling load increases, and the coefficient of performance increases. Driving. On the other hand, when the load of the cooling load is compensated for by the heat storage, as the load decreases, the ratio of the cooling operation to the total cooling load decreases, and the operation becomes a low coefficient of performance. Avoid the situation.

【0029】[0029]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例による蓄熱式冷房装置のサイ
クル図である。
FIG. 1 is a cycle diagram of a regenerative cooling device according to an embodiment of the present invention.

【図2】蓄熱運転時の動作図である。FIG. 2 is an operation diagram during a heat storage operation.

【図3】蓄熱運転時のモリエル線図である。FIG. 3 is a Mollier chart during a heat storage operation.

【図4】放冷運転時の動作図である。FIG. 4 is an operation diagram during a cooling operation.

【図5】放冷運転時のモリエル線図である。FIG. 5 is a Mollier chart during a cooling operation.

【図6】合流運転時の動作時である。FIG. 6 shows an operation during a merge operation.

【図7】合流運転時のモリエル線図である。FIG. 7 is a Mollier chart during a merging operation.

【図8】合流運転時の各運転と冷房負荷である。FIG. 8 shows each operation and the cooling load at the time of the merging operation.

【図9】本発明の実施例2の蓄熱式冷房装置のサイクル
図である。
FIG. 9 is a cycle diagram of a regenerative cooling device according to a second embodiment of the present invention.

【図10】実施例2の蓄冷運転時の動作図である。FIG. 10 is an operation diagram during a cold storage operation according to the second embodiment.

【図11】実施例2の放冷運転時の動作図である。FIG. 11 is an operation diagram at the time of a cooling operation according to the second embodiment.

【図12】実施例2の放冷運転時のモリエル線図であ
る。
FIG. 12 is a Mollier chart during a cooling operation according to the second embodiment.

【図13】実施例2の合流運転時の動作図である。FIG. 13 is an operation diagram at the time of a merge operation in the second embodiment.

【図14】実施例2の合流運転時のモリエル線図であ
る。
FIG. 14 is a Mollier chart at the time of a merge operation according to the second embodiment.

【図15】従来の蓄熱式冷房装置のサイクル図である。FIG. 15 is a cycle diagram of a conventional regenerative cooling device.

【図16】従来の液過冷却運転時のモリエル線図であ
る。
FIG. 16 is a Mollier chart during a conventional liquid subcooling operation.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 3 第一の減圧機構 4 蒸発器 6 蓄熱媒体 7 蓄熱槽 8 蓄熱用熱交換器 8a 蓄熱用熱交換器入口 8b 蓄熱用熱交換器出口 9 蓄熱用バイパス回路 10,11,12,13,14,15,16,17,2
0 開閉装置 18 冷媒ガスポンプ 19 第二の減圧機構 21 冷媒液ポンプ 22 液過冷却用熱交換器 23 液過冷却用回路 24 主冷媒回路
DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 3 First decompression mechanism 4 Evaporator 6 Heat storage medium 7 Heat storage tank 8 Heat storage heat exchanger 8a Heat storage heat exchanger inlet 8b Heat storage heat exchanger outlet 9 Heat storage bypass circuit 10, 11, 12, 13, 14, 15, 16, 17, 2
0 Switchgear 18 Refrigerant gas pump 19 Second decompression mechanism 21 Refrigerant liquid pump 22 Liquid supercooling heat exchanger 23 Liquid subcooling circuit 24 Main refrigerant circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浜 宏明 和歌山市手平6丁目5番66号 三菱電機 株式会社 和歌山製作所内 (72)発明者 今西 正美 和歌山市手平6丁目5番66号 三菱電機 株式会社 和歌山製作所内 (72)発明者 倉橋 健三 和歌山市手平6丁目5番66号 三菱電機 株式会社 和歌山製作所内 (56)参考文献 特開 平2−33573(JP,A) 特開 平3−191260(JP,A) 特開 平1−174864(JP,A) (58)調査した分野(Int.Cl.7,DB名) F24F 5/00 102 Z F25B 1/00 321 C F25B 5/00 A ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroaki Hama 6-66, Tehira, Wakayama-shi Mitsubishi Electric Corporation Wakayama Works (72) Inventor Masami Imanishi 6-66, Tepa, Wakayama-shi Mitsubishi Electric In Wakayama Works, Ltd. (72) Inventor Kenzo Kurahashi 6-5-66, Tehira, Wakayama City Mitsubishi Electric Wakayama Works, Ltd. (56) References JP-A-2-33573 (JP, A) JP-A-3-3 191260 (JP, A) JP-A-1-174864 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F24F 5/00 102 Z F25B 1/00 321 C F25B 5/00 A

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機、凝縮器、第1の減圧機構、及び
蒸発器を配管接続して形成され、上記圧縮機を作動させ
て上記蒸発器で冷房する一般冷房運転を行う一般冷房用
回路と、上記蒸発器の入口側及び出口側に接続され、冷
媒搬送装置、蓄熱された蓄熱媒体と熱交換する蓄熱用熱
交換器及び第2の減圧機構を配管接続して形成され、上
記冷媒搬送装置を作動させ上記蒸発器により冷房する放
冷運転を行う放冷回路とを備えた蓄熱式冷房装置におい
て、冷房負荷対応手段により、全冷房負荷のうち、ベ−
スロ−ドを蓄熱使用の放冷運転で負荷対応し、変動分を
一般冷房運転により負荷対応することにより、放冷運転
で負荷対応した残りの負荷を一般冷房運転で負荷対応す
ことを特徴とする蓄熱式冷房装置。
1. A general cooling circuit which is formed by connecting a compressor, a condenser, a first decompression mechanism, and an evaporator by piping, and performs a general cooling operation in which the compressor is operated to perform cooling by the evaporator. And a refrigerant transfer device connected to the inlet side and the outlet side of the evaporator, and formed by pipe connection of a refrigerant transfer device, a heat storage heat exchanger for exchanging heat with the stored heat storage medium, and a second pressure reducing mechanism. A regenerative cooling system comprising a cooling circuit for operating the apparatus and performing a cooling operation for cooling by the evaporator.
Cooling operation by loading load by cooling operation using heat storage and load change by general cooling operation
The remaining load corresponding to the load in
Regenerative cooling apparatus characterized by that.
JP3320287A 1991-12-04 1991-12-04 Heat storage type cooling device Expired - Lifetime JP3015560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3320287A JP3015560B2 (en) 1991-12-04 1991-12-04 Heat storage type cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3320287A JP3015560B2 (en) 1991-12-04 1991-12-04 Heat storage type cooling device

Publications (2)

Publication Number Publication Date
JPH05157297A JPH05157297A (en) 1993-06-22
JP3015560B2 true JP3015560B2 (en) 2000-03-06

Family

ID=18119822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3320287A Expired - Lifetime JP3015560B2 (en) 1991-12-04 1991-12-04 Heat storage type cooling device

Country Status (1)

Country Link
JP (1) JP3015560B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110425780A (en) * 2018-05-08 2019-11-08 约克(无锡)空调冷冻设备有限公司 Refrigeration system and method for controlling refrigeration system
CN109489286B (en) * 2018-12-19 2023-09-19 广东美的白色家电技术创新中心有限公司 Air conditioning system and air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794927B2 (en) * 1989-12-19 1995-10-11 ダイキン工業株式会社 Air conditioner

Also Published As

Publication number Publication date
JPH05157297A (en) 1993-06-22

Similar Documents

Publication Publication Date Title
US6237359B1 (en) Utilization of harvest and/or melt water from an ice machine for a refrigerant subcool/precool system and method therefor
JP3609096B2 (en) Combined cooling system for water cooling and heat storage
JP2014510895A (en) Thermal energy system and operating method thereof
JP3015560B2 (en) Heat storage type cooling device
JP3071328B2 (en) Heat storage type cooling device
JP2646877B2 (en) Thermal storage refrigeration cycle device
JP2757660B2 (en) Thermal storage type air conditioner
JP2833339B2 (en) Thermal storage type air conditioner
JP2751695B2 (en) Heat storage type cooling device
JP4270803B2 (en) Cold generation system
JP2000240980A (en) Refrigerator/air conditioner
JP2710883B2 (en) Operation control method in regenerative refrigerating cycle device
JP3020384B2 (en) Thermal storage type air conditioner
JP2855954B2 (en) Thermal storage type air conditioner
JPH10311614A (en) Heat storage type cooling device
JP2500979B2 (en) Thermal storage refrigeration cycle device
JPH0794927B2 (en) Air conditioner
JPH05118696A (en) Heat pump device
US20230366599A1 (en) A heat pump system
JPH11173689A (en) Heat storage type cooling device
JP2536219B2 (en) Thermal storage refrigeration cycle device
JP2661313B2 (en) Thermal storage refrigeration cycle device
KR20230155668A (en) Compressor refrigerant bypass circulation method in winter refrigerant cycle
JP3197107B2 (en) Thermal storage type air conditioner
JP2705270B2 (en) Thermal storage refrigeration cycle device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 12

EXPY Cancellation because of completion of term