JPH05157297A - Heat accumulating type cooling device - Google Patents

Heat accumulating type cooling device

Info

Publication number
JPH05157297A
JPH05157297A JP32028791A JP32028791A JPH05157297A JP H05157297 A JPH05157297 A JP H05157297A JP 32028791 A JP32028791 A JP 32028791A JP 32028791 A JP32028791 A JP 32028791A JP H05157297 A JPH05157297 A JP H05157297A
Authority
JP
Japan
Prior art keywords
heat
heat storage
evaporator
cooling
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32028791A
Other languages
Japanese (ja)
Other versions
JP3015560B2 (en
Inventor
Moriya Miyamoto
守也 宮本
Yoshinori Nakagawa
祥道 中川
Hiroaki Hama
宏明 浜
Masami Imanishi
正美 今西
Kenzo Kurahashi
健三 倉橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3320287A priority Critical patent/JP3015560B2/en
Publication of JPH05157297A publication Critical patent/JPH05157297A/en
Application granted granted Critical
Publication of JP3015560B2 publication Critical patent/JP3015560B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To permit effective room cooling by inexpensive midnight electric charge by a method wherein the amount of accumulated heat, accumulated in heat accumulating medium by heat accumulating operation in a midnight power time band, is utilized for cooling operation in daytime. CONSTITUTION:Upon heat accumulating operation in a midnight power time band, opening and closing devices 10-12 are closed and opening and closing devices 13-16, 20 are opened and a compressor 1 is operated while stopping a refrigerant gas pump 18 as it is. High-temperature high-pressure gas from the compressor 1 is condensed and liquefied in a condenser 2, expanded aditabatically in a first pressure reducing mechanism 3, changed into two-phase fluid of liquid and gas of a low temperature, enters a heat accumulating heat exchanger 8, deprives the accumulating medium 6 of heat, evaporated and gassified, then, is returned into the compressor 1. Upon utilizing the accumulated heat for the cooling operation in daytime, heat is supplied from a heat accumulating tank 7 into an evaporator 4 by a refrigerant gas pump 18 through the heat accumulating heat exchanger 8 and the second pressure reducing mechanism 19. According to this method, cooling can be effected effectively by inexpensive midnight electric charge.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は蓄熱式冷房装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage type cooling device.

【0002】[0002]

【従来の技術】例えば特開平1−174864に公報さ
れているような蓄熱式冷房装置では、空調運転時間の全
冷房負荷に対する蓄熱の割合が空調運転時間を通して約
20%であり、蓄熱依存率が比較的少なくなるという問
題があった。
2. Description of the Related Art In a heat storage type cooling device as disclosed in, for example, Japanese Patent Application Laid-Open No. 1-174864, the ratio of heat storage to the total cooling load during air conditioning operation time is about 20% throughout the air conditioning operation time, and the heat storage dependence rate is There was a problem that it was relatively small.

【0003】すなわち、図15は従来の実施例であり、
圧縮機1、凝縮器2、冷媒の減圧を行なう第一の減圧機
構3、蒸発器4およびアキュムレータ5を主冷媒回路2
4で接続し、かつ蓄熱可能な媒体を内蔵する蓄熱槽7を
配置してある。また上記蓄熱槽7の内部には、蓄熱用熱
交換器8と液過冷却用熱交換器22を備えており、上記
蓄熱用熱交換器8は上記凝縮器2の出口側と圧縮機1の
吸入側の間に取付けられている。蓄熱用熱交換器8の入
口側には第二の絞り機構19が設けられており、液過冷
却用熱交換器22は、上記凝縮器2と第一の減圧機構3
の間に主冷媒回路24をバイパスする様に配設されてい
る。
That is, FIG. 15 shows a conventional embodiment,
The compressor 1, the condenser 2, the first pressure reducing mechanism 3 for reducing the pressure of the refrigerant, the evaporator 4 and the accumulator 5 are connected to the main refrigerant circuit 2
A heat storage tank 7 which is connected by 4 and contains a medium capable of storing heat is arranged. Further, inside the heat storage tank 7, a heat storage heat exchanger 8 and a liquid subcooling heat exchanger 22 are provided, and the heat storage heat exchanger 8 is connected to the outlet side of the condenser 2 and the compressor 1. It is installed between the suction side. A second throttling mechanism 19 is provided on the inlet side of the heat storage heat exchanger 8, and the liquid subcooling heat exchanger 22 includes the condenser 2 and the first pressure reducing mechanism 3.
Is arranged so as to bypass the main refrigerant circuit 24.

【0004】上記のような構成の蓄熱式冷房装置によっ
て夜間の運転となる蓄熱運転時には、開閉装置11、1
2を閉じ、開閉装置11を開き、圧縮機1を運転させる
と、圧縮機1よりの高温高圧ガス冷媒は、凝縮器2で放
熱、自身は凝縮液化し、第二の減圧機構19を有する蓄
熱様回路に入り、第二の減圧機構19で断熱膨張し、低
温の液ガス二相流体となって蓄熱様熱交換器8に入り、
蓄熱媒体6から熱を奪い、自身は蒸発ガス化してアキュ
ムレータ5を経て圧縮機1に戻る。かかる動作により蓄
熱媒体6を凍結させるなどにより低温の熱を蓄える。
During the heat storage operation which is the nighttime operation by the heat storage type cooling device having the above-mentioned structure, the opening / closing devices 11, 1 are used.
When 2 is closed, the switchgear 11 is opened, and the compressor 1 is operated, the high-temperature high-pressure gas refrigerant from the compressor 1 dissipates heat in the condenser 2, condenses itself into liquid, and stores heat having the second pressure reducing mechanism 19. And enters the heat-like heat exchanger 8 as a low temperature liquid gas two-phase fluid by adiabatic expansion by the second pressure reducing mechanism 19.
The heat is removed from the heat storage medium 6, and the heat storage medium 6 itself evaporates to gas and returns to the compressor 1 via the accumulator 5. By this operation, the heat storage medium 6 is frozen to store low-temperature heat.

【0005】また、昼間、蓄熱利用により液過冷却運転
を行なう時は、図15中の、開閉装置10,12を閉
じ、開閉装置11を開き、圧縮機1を運転させると、圧
縮機1よりの高温高圧ガス冷媒は、凝縮器2で放熱し、
自身は凝縮液化し、液過冷却用回路23に送り込まれ、
蓄熱媒体6により液冷媒は更に冷却され、過冷却された
液となって第一の減圧機構3に送られ、ここで断熱膨張
し、低温の液ガス二相流体となって蒸発器4に入り、こ
こで周囲より熱を奪って冷房し、自身は蒸発してガス化
し、アキュムレータ5を経て圧縮機1に戻る。この時の
動作をモリエル線図上に表すと図16に示すように過冷
却エンタルピ分だけ横に広がった運転となり、圧縮機入
力エンタルピ(△ic)はそのままで、冷房のための蒸
発エンタルピは△ie1から△ie2に増大する。
When the liquid supercooling operation is performed by utilizing heat storage in the daytime, when the switchgear 10 and 12 in FIG. 15 are closed, the switchgear 11 is opened, and the compressor 1 is operated, the compressor 1 is operated. The high-temperature high-pressure gas refrigerant of is radiated by the condenser 2,
It is condensed and liquefied and sent to the liquid supercooling circuit 23,
The liquid refrigerant is further cooled by the heat storage medium 6, becomes supercooled liquid and is sent to the first pressure reducing mechanism 3, where it adiabatically expands and becomes a low temperature liquid gas two-phase fluid and enters the evaporator 4. Here, the heat is taken from the surroundings to cool it, and it is evaporated and gasified, and returns to the compressor 1 through the accumulator 5. When the operation at this time is represented on the Mollier diagram, the operation is expanded laterally by the supercooling enthalpy as shown in FIG. 16, the compressor input enthalpy (Δic) remains the same, and the evaporation enthalpy for cooling is Δ Increase from ie1 to Δie2.

【0006】また、一般冷房運転時は、図15中の開閉
装置10,11を閉じ開閉装置12を開き、圧縮機1を
運転させると、圧縮機1よりの高圧ガス冷媒は、凝縮器
2で放熱、自身は凝縮液化し主回路24を通り第一の減
圧機構3に送られ、ここで断熱膨張し低温の液ガス二相
液体となって蒸発器4に入り、ここで周囲より熱を奪っ
て冷房し、自身は蒸発してガス化し、アキュムレータを
経て圧縮機1に戻る。
Further, during the general cooling operation, when the switchgear 10 and 11 in FIG. 15 are closed and the switchgear 12 is opened and the compressor 1 is operated, the high pressure gas refrigerant from the compressor 1 is stored in the condenser 2. Dissipation of heat, condensed and liquefied, is sent to the first pressure reducing mechanism 3 through the main circuit 24, where it adiabatically expands and becomes a low-temperature liquid-gas two-phase liquid and enters the evaporator 4, where heat is taken from the surroundings. Then, it cools itself, evaporates and gasifies, and returns to the compressor 1 through the accumulator.

【0007】[0007]

【発明が解決しようとする課題】上記のような各々の運
転を行なう従来の蓄熱式冷房装置では、一般冷房運転時
の能力よりも液過冷却運転時の能力の方が過冷却された
熱量分だけ大きい。しかし液過冷却運転時、その構成か
ら蓄熱運転によって蓄熱媒体に蓄熱された蓄熱量の利用
は、液過冷却冷房運転によってのみ利用されていたの
で、図16に示すように蓄熱利用率は△io/△ie
2、すなわち0.2〜0.3程度であり、蓄熱利用率は
軽負荷時であっても同程度である。従って、蓄熱残量が
十分にあっても、同じ割合でしか利用しないため、負荷
が軽くなると蓄熱量が余ってくることになる。このこと
は上記従来の蓄熱式冷凍サイクル装置では、蓄熱槽の大
きさの割りには蓄熱を効率良く利用する事が出来ず、蓄
熱利用といいながらも夜間電力の利用による経済的効果
は不十分であり、昼間の電力抑制が十分でない社会では
課題を残したままとなっている。
In the conventional heat storage type cooling device which performs each of the above-mentioned operations, the capacity during the liquid subcooling operation is smaller than the capacity during the general cooling operation by the amount of heat which is supercooled. Only big. However, during the liquid subcooling operation, the heat storage amount stored in the heat storage medium by the heat storage operation is used only by the liquid subcooling cooling operation due to its configuration, so the heat storage utilization rate is Δio as shown in FIG. / △ ie
2, that is, about 0.2 to 0.3, and the heat storage utilization rate is about the same even when the load is light. Therefore, even if the remaining amount of heat storage is sufficient, it is used only at the same rate, and the amount of heat storage will be surplus when the load becomes light. This means that in the conventional heat storage type refrigeration cycle device described above, heat storage cannot be efficiently used for the size of the heat storage tank, and although it is called heat storage use, the economic effect of using night power is insufficient. Therefore, the problem remains in the society where the power control during the daytime is not sufficient.

【0008】本発明は上記のような点に鑑みて開発され
たものであり、その目的とする処は、深夜電力時間帯に
蓄熱運転によって蓄熱媒体に蓄熱された蓄熱量をより効
率よく利用して昼間の電力使用時間を軽減させ、安価な
深夜電力料金でより効果的に冷却冷房を行なうことがで
きるようにした蓄熱式冷房装置を提供することにある。
The present invention was developed in view of the above points, and its object is to make more efficient use of the heat storage amount stored in the heat storage medium by the heat storage operation during the midnight power time period. Another object of the present invention is to provide a heat storage type cooling device capable of reducing the power usage time in the daytime and performing cooling and cooling more effectively at an inexpensive midnight power rate.

【0009】[0009]

【課題を解決するための手段】そこで、本発明は上記目
的を有効に達するために次の様な構成にしてある。すな
わち、圧縮機、凝縮器、第1の減圧機構及び蒸発器を順
次接続して形成され、上記蒸発器を介して冷房をおこな
う冷房用回路と、上記蒸発器の入口側及び出口側に連通
する蓄熱用熱交換器を有する蓄冷用回路と、上記蓄熱用
熱変換器と熱交換関係に設けられ、上記蓄熱用熱交換器
を介して蓄冷される蓄熱槽と、上記蒸発器の出口側と上
記蓄熱用熱交換器との間に設けられた冷媒ガスポンプ
と、この冷媒ガスポンプと並列に設けられたバイパス回
路と、上記蓄熱槽への蓄冷時に上記凝縮器からの冷媒を
上記蒸発器をバイパスし、かつ上記蓄熱用熱交換器を介
して上記バイパス回路へ流通させる弁装置と、上記弁装
置と並列関係に接続された第2の減圧機構とを備え、上
記蓄熱槽へ蓄積された蓄熱エネルギーを上記蒸発器へ供
給する時、上記冷媒ガスポンプにより上記蓄熱用熱交換
器及び第2の減圧機構を介して上記蒸発器の入口側へ供
給するようにした構成である。
In order to effectively achieve the above object, the present invention has the following structure. That is, a compressor, a condenser, a first pressure reducing mechanism, and an evaporator are sequentially connected to each other, and are connected to a cooling circuit for performing cooling through the evaporator and an inlet side and an outlet side of the evaporator. A heat storage circuit having a heat storage heat exchanger, a heat storage tank provided in a heat exchange relationship with the heat storage heat converter, and storing heat via the heat storage heat exchanger, an outlet side of the evaporator, and the above Refrigerant gas pump provided between the heat storage heat exchanger, a bypass circuit provided in parallel with the refrigerant gas pump, the refrigerant from the condenser at the time of cold storage in the heat storage tank bypasses the evaporator, Further, a valve device for circulating the bypass circuit through the heat storage heat exchanger and a second pressure reducing mechanism connected in parallel with the valve device are provided, and the heat storage energy stored in the heat storage tank is stored as described above. When supplying to the evaporator, Through the heat storing heat exchanger and the second pressure reducing mechanism by medium gas pump is a configuration which is adapted to supply to the inlet side of the evaporator.

【0010】また、圧縮機、凝縮器、第1の減圧機構及
び蒸発器を順次接続して形成され、上記蒸発器を介して
冷房をおこなう冷房用回路と、上記蒸発器の入口側及び
出口側に連通する蓄熱用熱交換器を有する蓄冷用回路
と、上記蓄熱用熱交換器と熱交換関係に設けられ、上記
蓄熱用熱交換器を介して蓄冷される蓄熱槽と、上記蓄熱
槽への蓄冷時に、上記凝縮器からの冷媒を上記蒸発器を
バイパスして上記蓄熱用熱交換器へ流通させる弁装置
と、上記弁装置と並列関係に接続された冷媒液ポンプと
第2の減圧機構を備え、上記蓄熱槽へ蓄積された熱エネ
ルギーを上記蒸発器へ供給する時、上記蓄熱用熱交換
器、上記冷媒液ポンプ及び上記第2の減圧機構を介し
て、上記蒸発器の入口側へ供給させる様にした構成であ
る。
A cooling circuit, which is formed by sequentially connecting a compressor, a condenser, a first pressure reducing mechanism and an evaporator, and performs cooling through the evaporator, and an inlet side and an outlet side of the evaporator. A heat storage circuit having a heat storage heat exchanger that communicates with the heat storage tank provided in a heat exchange relationship with the heat storage heat exchanger, and a heat storage tank that stores heat via the heat storage heat exchanger, and to the heat storage tank. At the time of cold storage, a valve device that allows the refrigerant from the condenser to bypass the evaporator to flow to the heat storage heat exchanger, a refrigerant liquid pump connected in parallel with the valve device, and a second pressure reducing mechanism are provided. When the thermal energy stored in the heat storage tank is supplied to the evaporator, the heat energy is supplied to the inlet side of the evaporator through the heat storage heat exchanger, the refrigerant liquid pump, and the second pressure reducing mechanism. It is a configuration that allows it.

【0011】[0011]

【作用】上記の様な構成により、夜間蓄熱運転によって
蓄えた蓄冷熱を昼間の冷房運転時間に利用するときに
は、負荷が所定値より小さいときは蓄冷熱を利用して運
転する放冷運転のみを行なうことができ、また、負荷が
所定値より大きいときは放冷運転と一般冷房運転を同時
に行なう合流運転を行なうことができる。
With the above-described structure, when the cold storage heat stored in the nighttime heat storage operation is used for the daytime cooling operation time, only the cold discharge operation is performed in which the cold storage heat is used when the load is smaller than a predetermined value. When the load is larger than a predetermined value, the cooling operation and the general cooling operation can be performed at the same time.

【0012】[0012]

【実施例】【Example】

実施例1.以下、本発明の実施例1を図1〜図8に基づ
いて説明する。図1は本発明の蓄熱式冷房装置を示す図
である。図中1は圧縮機、2は凝縮器、3は第一の減圧
機構、4は蒸発器、5はアキュムレータで1〜5と順次
接続され、一般冷房用回路を形成している。6は7の蓄
熱槽中に収納されている蓄熱媒体、例えば水である。
Example 1. The first embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a diagram showing a heat storage type cooling device of the present invention. In the figure, 1 is a compressor, 2 is a condenser, 3 is a first pressure reducing mechanism, 4 is an evaporator, and 5 is an accumulator, which are sequentially connected to 1 to 5 to form a general cooling circuit. 6 is a heat storage medium, for example, water, which is stored in the heat storage tank of 7.

【0013】8は蓄熱媒体と熱交換する蓄熱用熱交換器
であり、8aの蓄熱用熱交換器入口と、蒸発器4の入口
の間には第二の減圧機構19が接続されており、蓄熱用
交換器出口08bと蒸発器4出口の間には冷媒ガスポン
プ18を接続することにより冷媒液ポンプ放冷回路を形
成している。
A heat storage heat exchanger 8 exchanges heat with a heat storage medium. A second pressure reducing mechanism 19 is connected between the heat storage heat exchanger inlet 8a and the evaporator 4 inlet. A refrigerant gas pump 18 is connected between the heat storage exchanger outlet 08b and the evaporator 4 outlet to form a refrigerant liquid pump cooling circuit.

【0014】9は蓄熱用バイパス回路であり、第一の減
圧機構3の出口と蓄熱用熱交換器入口8aを接続してお
り、圧縮機1、凝縮器2、第一の減圧機構3、蓄熱用バ
イパス回路9、蓄熱用熱交換器及びアキュムレータ5を
順次接続して蓄熱回路を形成している。
Reference numeral 9 denotes a heat storage bypass circuit, which connects the outlet of the first pressure reducing mechanism 3 and the heat storage heat exchanger inlet 8a to the compressor 1, the condenser 2, the first pressure reducing mechanism 3, and the heat storage. The bypass circuit 9, the heat storage heat exchanger, and the accumulator 5 are sequentially connected to form a heat storage circuit.

【0015】図2は主として深夜電力時間帯の運転とな
る蓄熱運転時の動作を示す回路図であり、開閉装置1
0,11,12を閉じ、開閉装置13,14,15,1
6,20を開き、冷媒ガスポンプ18を停止したまま、
圧縮機1を運転させると、圧縮機1よりの高温高圧ガス
冷媒は室外熱交換器2で放熱、自身は凝縮液化し、第一
の減圧機構3で断熱膨張し、低温の液ガス二相流体とな
って蓄熱用熱交換器8に入り、蓄熱媒体から熱を奪い、
自身は蒸発ガス化してアキュムレータ5を経て、圧縮機
1に戻る。かかる動作により蓄熱媒体6を凍結させるな
どにより低温の熱を蓄える。その時の冷凍サイクルのモ
リエル線図上の運転状態を図3に示す。図中△icは圧
縮機エンタルピ△ieは蒸発エンタルピである。
FIG. 2 is a circuit diagram showing the operation during heat storage operation, which is mainly the operation in the midnight power time zone.
0, 11, 12 are closed, and switchgear 13, 14, 15, 1
6 and 20 are opened and the refrigerant gas pump 18 is stopped,
When the compressor 1 is operated, the high-temperature high-pressure gas refrigerant from the compressor 1 radiates heat in the outdoor heat exchanger 2, condenses itself into liquid, and adiabatically expands in the first decompression mechanism 3, resulting in a low-temperature liquid-gas two-phase fluid. Becomes the heat storage heat exchanger 8 and takes heat from the heat storage medium,
The gas itself evaporates and returns to the compressor 1 through the accumulator 5. By this operation, the heat storage medium 6 is frozen to store low-temperature heat. Fig. 3 shows the operating state of the refrigeration cycle on the Mollier diagram at that time. In the figure, Δic is the compressor enthalpy Δie is the evaporation enthalpy.

【0016】また、昼間の冷房負荷が所定値以下の場
合、蓄熱利用により放冷運転を行なう時は、図4に示す
ように開閉装置10,14,16,20を閉じ、開閉装
置11,12,15,17,20を開き圧縮機1を運転
せずに冷媒ガスポンプ18を運転させると、冷媒ガスポ
ンプ18によって昇圧された低温、低圧のガス冷媒は、
蓄熱用熱交換器8に入り、蓄熱媒体に熱を与え、自身は
凝縮液化し、第二の減圧機構19によって断熱膨張し、
低温の液ガス二相流体となって、蒸発器4に流れ込みこ
こで周囲より熱を奪って冷房し、自身は蒸発してガス化
し、再び冷凍ガスポンプ21に戻る。
When the cooling load in the daytime is less than a predetermined value and the cooling operation is performed by utilizing heat storage, the switchgear 10, 14, 16, 20 is closed and the switchgear 11, 12 is closed as shown in FIG. , 15, 17, 20 are opened and the refrigerant gas pump 18 is operated without operating the compressor 1, the low temperature and low pressure gas refrigerant boosted by the refrigerant gas pump 18 is
Enters the heat storage heat exchanger 8, applies heat to the heat storage medium, condenses itself into liquid, and adiabatically expands by the second pressure reducing mechanism 19,
It becomes a low-temperature liquid gas two-phase fluid and flows into the evaporator 4, where it takes heat from the surroundings and is cooled, and itself evaporates and gasifies, and then returns to the refrigeration gas pump 21 again.

【0017】このときの冷凍サイクルのモリエル線図上
の変化を図5に示す。図中△igpは冷媒ガスポンプエ
ンタルピ、△icは圧縮機エンタルピ、△ieは蒸発エ
ンタルピである。この放冷運転は蒸発作用が凝縮温度よ
りわずかに低いほぼ同等の圧力でおこなわれるため、圧
縮機1のエンタルピに比べて大幅に小さいエンタルピで
同一の冷媒量を強制循環でき、圧縮機1に比べ高C.
O.Pの運転を達成する。また、蓄熱量を所定値以上に
することにより、全ての冷房負荷を放冷運転で行なえる
とともに、ピーク負荷の時間帯を放冷運転で行なうこと
もできる。
FIG. 5 shows a change on the Mollier diagram of the refrigeration cycle at this time. In the figure, Δigp is the refrigerant gas pump enthalpy, Δic is the compressor enthalpy, and Δie is the evaporation enthalpy. Since this cooling operation is performed at an almost equivalent pressure at which the evaporation action is slightly lower than the condensation temperature, the same amount of refrigerant can be forcedly circulated with an enthalpy significantly smaller than the enthalpy of the compressor 1, and compared with the compressor 1. High C.
O. Achieve P operation. Further, by setting the heat storage amount to a predetermined value or more, it is possible to perform all the cooling loads by the cooling operation and also perform the cooling operation during the peak load time.

【0018】昼間における冷房負荷が所定の値以上のと
きは、図6に示すように開閉装置13,14,20を閉
じ、開閉装置10,11,12,15,16,17を開
き、圧縮機1、冷媒ガスポンプ18を両方とも運転させ
ると、前記一般冷房運転と放冷運転を同時に運転した合
流運転となり、その時、蒸発器4では、一般冷房運転の
みや放冷運転のみを行なった時を合わせた冷媒流量が流
れる。このときの冷凍サイクルのモリエル線図上の変化
が図7であり、図中△icは圧縮機エンタルピ,△ic
cは一般冷房側凝縮エンタルピ,△icpは放冷側凝縮
エンタルピ,△igpは冷媒液ポンプエンタルピ,△i
eは蒸発エンタルピである。
When the cooling load in the daytime is equal to or more than a predetermined value, the opening / closing devices 13, 14, 20 are closed and the opening / closing devices 10, 11, 12, 15, 16, 17 are opened as shown in FIG. 1. When both the refrigerant gas pumps 18 are operated, the general cooling operation and the cooling operation are simultaneously performed, and the combined operation is performed. At that time, in the evaporator 4, the time when only the general cooling operation or only the cooling operation is performed is combined. A large amount of refrigerant flows. The change on the Mollier diagram of the refrigeration cycle at this time is shown in FIG. 7, where Δic is the compressor enthalpy, Δic
c is the general cooling side condensation enthalpy, Δicp is the cooling side condensation enthalpy, Δigp is the refrigerant liquid pump enthalpy, Δi
e is the enthalpy of vaporization.

【0019】この冷凍サイクルでは、圧縮機の冷媒循環
量に対する冷媒ガスポンプの冷媒循環量の比率が任意に
設計できるため、全冷房負荷に対する放冷運転と、一般
冷房運転の割合を任意に設定できる。しかし、実際は夜
間行なう蓄熱運転は圧縮機1(一般冷房運転の駆動源)
を使用するとともに昼間の冷房運転時間と夜間の蓄熱運
転時間がほぼ同一の為、一般冷房運転と放冷運転による
冷房能力はほぼ等しいことが妥当である。またここで、
放冷運転の占める割合が大きい程、蓄熱依存率が高いと
ともに冷房運転時の蓄熱式冷房装置の消費電力は小さ
い。
In this refrigeration cycle, since the ratio of the refrigerant circulation amount of the refrigerant gas pump to the refrigerant circulation amount of the compressor can be designed arbitrarily, the ratio of the cooling operation to the total cooling load and the general cooling operation can be set arbitrarily. However, in actuality, the heat storage operation performed at night is the compressor 1 (drive source for general cooling operation).
Since the cooling operation time in the daytime and the heat storage operation time in the nighttime are almost the same, it is appropriate that the cooling capacity by the general cooling operation and the cooling capacity by the cooling operation are almost the same. Also here
The larger the proportion of the cooling operation, the higher the heat storage dependency rate and the smaller the power consumption of the heat storage type cooling device during the cooling operation.

【0020】上記に述べた昼間の冷房運転時の冷房負荷
と一般冷房負荷及び夜間の蓄冷運転負荷ついて図8に例
を示す。図中Q3 は蓄冷運転負荷、Q2 は放冷運転負
荷、Q1 −Q2 は一般冷房運転負荷である。
An example of the cooling load during the daytime cooling operation, the general cooling load and the nighttime cold storage operation load described above is shown in FIG. Figure Q 3 are cold-storage operation load, Q 2 is allowed to cool operating load, Q 1 -Q 2 is generally cooling operation load.

【0021】実施例2.以下、本発明の実施例2を図9
〜図13に基づいて説明する。図9は本発明の蓄熱式冷
房装置を示す図である。図中1は圧縮機、2は凝縮器、
3は第一の減圧機構、4は蒸発器、5はアキュムレータ
で1〜5と順次接続され一般冷房用回路を形成してい
る。6は7の蓄熱槽中に収納されている蓄熱媒体、例え
ば水である。
Example 2. Embodiment 2 of the present invention will be described below with reference to FIG.
~ It demonstrates based on FIG. FIG. 9: is a figure which shows the heat storage type cooling device of this invention. In the figure, 1 is a compressor, 2 is a condenser,
3 is a first decompression mechanism, 4 is an evaporator, and 5 is an accumulator, which are sequentially connected to 1 to 5 to form a general cooling circuit. 6 is a heat storage medium, for example, water, which is stored in the heat storage tank of 7.

【0022】8は蓄熱媒体と熱交換する蓄熱用熱交換器
であり、8aの蓄熱用熱交換器入口と、蒸発器4の入口
の間には冷媒液ポンプ21、第二の減圧機構19が順次
接続されており、蓄熱用熱交換器出口8bと蒸発器4出
口を接続することにより冷媒液ポンプ放冷回路を形成し
ている。9は蓄熱用バイパス回路であり、第一の減圧機
構3の出口と、蓄熱用熱交換器入口8aを接続してお
り、圧縮機1、凝縮器2、第一の減圧機構3、蓄熱用バ
イパス回路9、蓄熱用熱交換器及びアキュムレータ5を
順次接続して蓄熱回路を形成している。
Reference numeral 8 denotes a heat storage heat exchanger for exchanging heat with the heat storage medium. A refrigerant liquid pump 21 and a second pressure reducing mechanism 19 are provided between the heat storage heat exchanger inlet 8a and the evaporator 4 inlet. They are sequentially connected, and a refrigerant liquid pump cooling circuit is formed by connecting the heat storage heat exchanger outlet 8b and the evaporator 4 outlet. Reference numeral 9 denotes a heat storage bypass circuit, which connects the outlet of the first pressure reducing mechanism 3 and the heat storage heat exchanger inlet 8a, and includes the compressor 1, the condenser 2, the first pressure reducing mechanism 3, and the heat storage bypass. The circuit 9, the heat storage heat exchanger, and the accumulator 5 are sequentially connected to form a heat storage circuit.

【0023】図10は主として深夜電力時間帯の運転と
なる蓄熱運転時の動作を示す回路図であり、開閉装置1
0,11,12を閉じ、開閉装置13,14,15,1
6を開き、冷媒液ポンプ21を停止したまま、圧縮機1
を運転させると、圧縮機1よりの高温高圧ガス冷媒は室
外熱交換器2で放熱、自身は凝縮液化し、第一の減圧機
構3で断熱膨張し、低温の液ガス二相流体となって蓄熱
用熱交換器8に入り、蓄熱媒体から熱を奪い、自身は蒸
発ガス化して、エキュムレータ5を経て、圧縮機1に戻
る。かかる動作により蓄熱媒体6を凍結させるなどによ
り低温の熱を蓄える。
FIG. 10 is a circuit diagram showing the operation during the heat storage operation, which is the operation mainly in the midnight power time zone.
0, 11, 12 are closed, and switchgear 13, 14, 15, 1
6, the compressor 1 is opened with the refrigerant liquid pump 21 stopped.
When operating, the high temperature high pressure gas refrigerant from the compressor 1 radiates heat in the outdoor heat exchanger 2, condenses itself into liquid, and adiabatically expands in the first pressure reducing mechanism 3 to become a low temperature liquid gas two-phase fluid. The heat enters the heat storage heat exchanger 8, takes heat from the heat storage medium, vaporizes itself, and returns to the compressor 1 via the accumulator 5. By this operation, the heat storage medium 6 is frozen to store low-temperature heat.

【0024】また、昼間の冷房負荷が所定値以下の場合
は、蓄熱利用により放冷運転を行なう時は、図11に示
すように開閉装置10,14,16を閉じ、開閉装置1
1,12,15,17を開き圧縮機1を運転せずに冷媒
液ポンプ21を運転させると、冷媒液ポンプ21によっ
て昇圧された低温、低圧の過冷却冷媒は、第二の減圧機
構19により若干断熱膨張し蒸発器4に入り、ここで周
囲より熱を奪って冷房し自身は蒸発してガス化し、アキ
ュムレータ5を経て圧縮機1に戻る。
When the cooling load in the daytime is less than a predetermined value, when the cooling operation is performed by utilizing the heat storage, the opening / closing devices 10, 14, 16 are closed as shown in FIG.
When the refrigerant liquid pump 21 is operated without opening the compressors 1, 1, 15, 15 and 17, the low-temperature, low-pressure supercooled refrigerant boosted by the refrigerant liquid pump 21 is caused by the second pressure reducing mechanism 19. It slightly expands adiabatically and enters the evaporator 4, where it takes heat from the surroundings and is cooled to evaporate itself into gas, and returns to the compressor 1 via the accumulator 5.

【0025】このときの冷凍サイクルのモリエル線図上
の変化が図12であり、図中△iepは冷媒液ポンプエ
ンタルピ,△ieは蒸発エンタルピを示す。この放冷運
転は蒸発作用が凝縮圧力よりわずかに高いほぼ同等の圧
力で行なわれ、しかも熱搬送のほとんどを潜熱変化によ
り賄うため、冷媒液ポンプ21は液を循環させ得て且つ
前述の液の均等分配のための圧損を吸収することができ
る程度の楊程を持つ、僅かな動力のポンプで済むことと
なり、蓄熱媒体には、冷房のための蒸発熱差とほぼ同量
の凝縮熱差を放出するだけで済み、ガスポンプのおよそ
10倍の高C.O.Pの運転を達成する。また、高熱量
を所定値以上にすることにより、全ての冷房負荷を放冷
運転で行なえるとともに、ピーク負荷の時間帯を放冷運
動で行うこともできる。
The change on the Mollier diagram of the refrigeration cycle at this time is shown in FIG. 12, where Δiep is the refrigerant liquid pump enthalpy and Δie is the evaporation enthalpy. This cooling operation is performed at an almost equivalent pressure at which the evaporation action is slightly higher than the condensing pressure, and most of the heat transfer is covered by the latent heat change, so that the refrigerant liquid pump 21 can circulate the liquid and the above-mentioned liquid A pump with a small power enough to absorb the pressure loss for even distribution will suffice, and a condensation heat difference of about the same amount as the evaporation heat difference for cooling will be released to the heat storage medium. Only 10 times as high as the gas pump. O. Achieve P operation. Further, by setting the amount of high heat to a predetermined value or more, it is possible to perform all the cooling loads in the cooling operation and perform the cooling operation during the peak load time.

【0026】昼間における冷房負荷が所定の値以上のと
きは図13に示すように開閉装置13,14を閉じ、開
閉装置10,11,12,15,16,17を開き、圧
縮機1、冷媒液ポンプ21を両方とも運転させると、前
記一般冷房運転と放冷運転を同時に運転したものとな
り、その時蒸発器4では、一般冷房運転のみや放冷運転
のみを行った時の合計の冷媒流量となる。このときの冷
凍サイクルのモリエル線図上の変化が図14であり、図
中△icは圧縮機エンタルピ△iccは一般冷房側凝縮
エンタルピ、△icpは放冷側凝縮エンタルピ、△ie
pは冷媒液ポンプエンタルピ、△ieは蒸発エンタルピ
である。
When the cooling load in the daytime is equal to or greater than a predetermined value, the switchgear 13, 14 is closed and the switchgear 10, 11, 12, 15, 16, 17 is opened as shown in FIG. When both of the liquid pumps 21 are operated, the general cooling operation and the cooling operation are simultaneously performed. At that time, in the evaporator 4, the total refrigerant flow rate when only the general cooling operation or only the cooling operation is performed. Become. The change on the Mollier diagram of the refrigeration cycle at this time is shown in FIG. 14, in which Δic is the compressor enthalpy Δicc is the general cooling side condensation enthalpy, Δicp is the cooling side condensation enthalpy, and Δie.
p is the refrigerant liquid pump enthalpy, and Δie is the evaporation enthalpy.

【0027】この冷媒サイクルでは、圧縮機の冷媒循環
量に対する冷媒液ポンプの冷媒循環量の比率が任意に設
定できるため、全冷房負荷に対する放冷運転と一般冷房
運転の割合を任意に設定できる。しかし、実際は夜間行
う蓄熱運転は圧縮機1(一般冷房運転の駆動源)を使用
するとともに昼間の冷房運転時間と夜間の蓄熱運転時間
がほぼ同一のため一般冷房運転と放冷運転による冷房能
力のほぼ等しいことが妥当である。またここで、放冷運
転の占める割合が大きい程蓄熱依存率が高いとともに冷
房運転時の蓄熱式冷房装置の消費電力は小さい。
In this refrigerant cycle, since the ratio of the refrigerant circulation amount of the refrigerant liquid pump to the refrigerant circulation amount of the compressor can be set arbitrarily, the ratio of the cooling operation and the general cooling operation to the total cooling load can be set arbitrarily. However, in actuality, the heat storage operation performed at night uses the compressor 1 (driving source for the general cooling operation), and since the daytime cooling operation time and the nighttime heat storage operation time are almost the same, the cooling capacity by the general cooling operation and the cooling operation is reduced. It is reasonable that they are almost equal. Further, here, the larger the proportion of the cooling operation, the higher the heat storage dependency rate, and the smaller the power consumption of the heat storage type cooling device during the cooling operation.

【0028】[0028]

【発明の効果】以上、上記のように本発明の蓄熱式冷房
装置では、昼間の冷房負荷に対する蓄熱依存率が高くな
るとともに、その依存率を任意に設計できるため、ピー
ク時間帯に圧縮機を運転せずに、蓄熱依存率100%で
運転できる。また、夏場のピーク負荷時の蓄熱依頼率が
50%とすると負荷がそれより小さい時、例えば朝夕は
蓄熱依存率80%であるとか、中間期は1日全ての冷房
負荷を蓄熱で賄うことができる。
As described above, in the heat storage type cooling device of the present invention, the heat storage dependency rate on the cooling load during the daytime becomes high and the dependency rate can be arbitrarily designed, so that the compressor can be operated during peak hours. It can be operated with 100% heat storage dependency without running. In addition, if the heat storage request rate during the peak load in the summer is 50%, when the load is smaller than that, for example, the heat storage dependency rate is 80% in the morning and evening, or during the interim period, the entire cooling load for one day can be covered by heat storage. it can.

【0029】また、蓄熱を利用する冷凍サイクルは、圧
縮機による一般冷房運転と同一の冷房能力を発揮するた
めの、運転消費電力が圧縮機に比べて大巾に低減でき、
C.P.Oが高くなるという効果がある。
Further, the refrigeration cycle utilizing the heat storage exhibits the same cooling capacity as the general cooling operation by the compressor, so that the operating power consumption can be greatly reduced as compared with the compressor,
C. P. There is an effect that O becomes high.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による蓄熱式冷房装置のサイ
クル図である。
FIG. 1 is a cycle diagram of a heat storage type cooling device according to an embodiment of the present invention.

【図2】蓄熱運転時の動作図である。FIG. 2 is an operation diagram during heat storage operation.

【図3】蓄熱運転時のモリエル線図である。FIG. 3 is a Mollier diagram during heat storage operation.

【図4】放冷運転時の動作図である。FIG. 4 is an operation diagram during a cooling operation.

【図5】放冷運転時のモリエル線図である。FIG. 5 is a Mollier diagram during a cooling operation.

【図6】合流運転時の動作時である。FIG. 6 shows an operation during a merge operation.

【図7】合流運転時のモリエル線図である。FIG. 7 is a Mollier diagram during the merge operation.

【図8】合流運転時の各運転と冷房負荷である。FIG. 8 shows each operation and cooling load at the time of merging operation.

【図9】本発明の実施例2の蓄熱式冷房装置のサイクル
図である。
FIG. 9 is a cycle diagram of a heat storage type cooling device according to a second embodiment of the present invention.

【図10】実施例2の蓄冷運転時の動作図である。FIG. 10 is an operation diagram of the second embodiment during a cold storage operation.

【図11】実施例2の放冷運転時の動作図である。FIG. 11 is an operation diagram of the second embodiment during a cooling operation.

【図12】実施例2の放冷運転時のモリエル線図であ
る。
FIG. 12 is a Mollier diagram during the cooling operation of the second embodiment.

【図13】実施例2の合流運転時の動作図である。FIG. 13 is an operation diagram of the second embodiment during a merge operation.

【図14】実施例2の合流運転時のモリエル線図であ
る。
FIG. 14 is a Mollier diagram during the merge operation of the second embodiment.

【図15】従来の蓄熱式冷房装置のサイクル図である。FIG. 15 is a cycle diagram of a conventional heat storage type cooling device.

【図16】従来の液過冷却運転時のモリエル線図であ
る。
FIG. 16 is a Mollier diagram during a conventional liquid supercooling operation.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 3 第一の減圧機構 4 蒸発器 6 蓄熱媒体 7 蓄熱槽 8 蓄熱用熱交換器 8a 蓄熱用熱交換器入口 8b 蓄熱用熱交換器出口 9 蓄熱用バイパス回路 10,11,12,13,14,15,16,17,2
0 開閉装置 18 冷媒ガスポンプ 19 第二の減圧機構 21 冷媒液ポンプ 22 液過冷却用熱交換器 23 液過冷却用回路 24 主冷媒回路
1 Compressor 2 Condenser 3 First decompression mechanism 4 Evaporator 6 Heat storage medium 7 Heat storage tank 8 Heat storage heat exchanger 8a Heat storage heat exchanger inlet 8b Heat storage heat exchanger outlet 9 Heat storage bypass circuit 10, 11, 12, 13, 14, 15, 16, 17, 2
0 Switchgear 18 Refrigerant gas pump 19 Second pressure reducing mechanism 21 Refrigerant liquid pump 22 Liquid supercooling heat exchanger 23 Liquid supercooling circuit 24 Main refrigerant circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 今西 正美 和歌山市手平6丁目5番66号 三菱電機株 式会社和歌山製作所内 (72)発明者 倉橋 健三 和歌山市手平6丁目5番66号 三菱電機株 式会社和歌山製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masami Imanishi 6-566 Tehira, Wakayama City Wakayama Works, Mitsubishi Electric Corporation (72) Inventor Kenzo Kurahashi 6-566 Tehira, Wakayama Mitsubishi Electric Company Co., Ltd. Wakayama Factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、凝縮器、第1の減圧機構及び蒸
発器を順次接続して形成され、上記蒸発器を介して冷房
をおこなう冷房用回路と、上記蒸発器の入口側及び出口
側に連通する蓄熱用熱交換器を有する蓄冷用回路と、上
記蓄熱用熱変換器と熱交換関係に設けられ、上記蓄熱用
熱交換器を介して蓄冷される蓄熱槽と、上記蒸発器の出
口側と上記蓄熱用熱交換器との間に設けられた冷媒ガス
ポンプと、この冷媒ガスポンプと並列に設けられたバイ
パス回路と、上記蓄熱槽への蓄冷時に上記凝縮器からの
冷媒を上記蒸発器をバイパスし、かつ上記蓄熱用熱交換
器を介して上記バイパス回路へ流通させる弁装置と、上
記弁装置と並列関係に接続された第2の減圧機構とを備
え、上記蓄熱槽へ蓄積された蓄熱エネルギーを上記蒸発
器へ供給する時、上記冷媒ガスポンプにより上記蓄熱用
熱交換器及び第2の減圧機構を介して上記蒸発器の入口
側へ供給するようにしたことを特徴とする蓄熱式冷房装
置。
1. A cooling circuit, which is formed by sequentially connecting a compressor, a condenser, a first pressure reducing mechanism and an evaporator, and performs cooling through the evaporator, and an inlet side and an outlet side of the evaporator. A heat storage circuit having a heat storage heat exchanger that communicates with the heat storage tank and a heat storage tank that is provided in a heat exchange relationship with the heat storage heat converter and stores heat via the heat storage heat exchanger, and an outlet of the evaporator. A refrigerant gas pump provided between the side and the heat storage heat exchanger, a bypass circuit provided in parallel with the refrigerant gas pump, the refrigerant from the condenser at the time of cold storage in the heat storage tank to the evaporator. A heat storage device that includes a valve device that bypasses and circulates to the bypass circuit through the heat storage heat exchanger, and a second pressure reducing mechanism that is connected in parallel with the valve device, and that stores heat in the heat storage tank. When supplying energy to the above evaporator, A heat storage type cooling device characterized in that the refrigerant gas pump supplies the heat to the inlet side of the evaporator through the heat storage heat exchanger and the second pressure reducing mechanism.
【請求項2】 圧縮機、凝縮器、第1の減圧機構及び蒸
発器を順次接続して形成され、上記蒸発器を介して冷房
をおこなう冷房用回路と、上記蒸発器の入口側及び出口
側に連通する蓄熱用熱交換器を有する蓄冷用回路と、上
記蓄熱用熱交換器と熱交換関係に設けられ、上記蓄熱用
熱交換器を介して蓄冷される蓄熱槽と、上記蓄熱槽への
蓄冷時に、上記凝縮器からの冷媒を上記蒸発器をバイパ
スして上記蓄熱用熱交換器へ流通させる弁装置と、上記
弁装置と並列関係に接続された冷媒液ポンプと第2の減
圧機構を備え、上記蓄熱槽へ蓄積された熱エネルギーを
上記蒸発器へ供給する時、上記蓄熱用交換器、上記冷媒
液ポンプ及び上記第2の減圧機構を介して、上記蒸発器
の入口側へ供給させる様にしたことを特徴とする蓄熱式
冷房装置。
2. A cooling circuit, which is formed by sequentially connecting a compressor, a condenser, a first pressure reducing mechanism and an evaporator, and performs cooling through the evaporator, and an inlet side and an outlet side of the evaporator. A heat storage circuit having a heat storage heat exchanger that communicates with the heat storage tank provided in a heat exchange relationship with the heat storage heat exchanger, and a heat storage tank that stores heat via the heat storage heat exchanger, and to the heat storage tank. At the time of cold storage, a valve device that allows the refrigerant from the condenser to bypass the evaporator to flow to the heat storage heat exchanger, a refrigerant liquid pump connected in parallel with the valve device, and a second pressure reducing mechanism are provided. When the thermal energy stored in the heat storage tank is supplied to the evaporator, the heat energy is supplied to the inlet side of the evaporator via the heat storage exchanger, the refrigerant liquid pump, and the second pressure reducing mechanism. A heat storage type cooling device characterized by the above.
JP3320287A 1991-12-04 1991-12-04 Heat storage type cooling device Expired - Lifetime JP3015560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3320287A JP3015560B2 (en) 1991-12-04 1991-12-04 Heat storage type cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3320287A JP3015560B2 (en) 1991-12-04 1991-12-04 Heat storage type cooling device

Publications (2)

Publication Number Publication Date
JPH05157297A true JPH05157297A (en) 1993-06-22
JP3015560B2 JP3015560B2 (en) 2000-03-06

Family

ID=18119822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3320287A Expired - Lifetime JP3015560B2 (en) 1991-12-04 1991-12-04 Heat storage type cooling device

Country Status (1)

Country Link
JP (1) JP3015560B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109489286A (en) * 2018-12-19 2019-03-19 广东美的白色家电技术创新中心有限公司 Air-conditioning system and air conditioner
CN110425780A (en) * 2018-05-08 2019-11-08 约克(无锡)空调冷冻设备有限公司 Refrigeration system and method for controlling refrigeration system
CN117948728A (en) * 2024-03-27 2024-04-30 山东弘林电子科技有限公司 Refrigerating system, new energy refrigerator car and use method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03191260A (en) * 1989-12-19 1991-08-21 Daikin Ind Ltd Air conditioning apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03191260A (en) * 1989-12-19 1991-08-21 Daikin Ind Ltd Air conditioning apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110425780A (en) * 2018-05-08 2019-11-08 约克(无锡)空调冷冻设备有限公司 Refrigeration system and method for controlling refrigeration system
CN109489286A (en) * 2018-12-19 2019-03-19 广东美的白色家电技术创新中心有限公司 Air-conditioning system and air conditioner
CN109489286B (en) * 2018-12-19 2023-09-19 广东美的白色家电技术创新中心有限公司 Air conditioning system and air conditioner
CN117948728A (en) * 2024-03-27 2024-04-30 山东弘林电子科技有限公司 Refrigerating system, new energy refrigerator car and use method

Also Published As

Publication number Publication date
JP3015560B2 (en) 2000-03-06

Similar Documents

Publication Publication Date Title
KR100227878B1 (en) Combined multi-modal air conditioning apparatus and negative energy storage system
JP2894421B2 (en) Thermal storage type air conditioner and defrosting method
US20020033024A1 (en) Utilization of harvest and/or melt water from an ice machine for a refrigerant subcool/precool system and method therefor
CN2906415Y (en) Double-stage cold-accumulation system
JPH10223442A (en) Transforming apparatus cooling system and operation method thereof
JP2000205774A (en) Capsulated heat storage apparatus
JPH05157297A (en) Heat accumulating type cooling device
JP2646877B2 (en) Thermal storage refrigeration cycle device
JP2757660B2 (en) Thermal storage type air conditioner
JP2710883B2 (en) Operation control method in regenerative refrigerating cycle device
JPH1089729A (en) Ice heat storage device by supercooled water and operation method
JP4270803B2 (en) Cold generation system
JP2000240980A (en) Refrigerator/air conditioner
JP3370501B2 (en) Cooling system
JP2751695B2 (en) Heat storage type cooling device
JP3614626B2 (en) Air conditioner and method of operating air conditioner
JPH10311614A (en) Heat storage type cooling device
JP2661313B2 (en) Thermal storage refrigeration cycle device
JPH06159743A (en) Heat accumulation type cooling device
JP2855954B2 (en) Thermal storage type air conditioner
JPH05118696A (en) Heat pump device
JPH05180519A (en) Heat regenerating freezing cycle device
JPH07269983A (en) Air conditioner for shop
JPH11173689A (en) Heat storage type cooling device
JP2536219B2 (en) Thermal storage refrigeration cycle device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20071217

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20091217

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20111217

EXPY Cancellation because of completion of term