JP2705270B2 - Thermal storage refrigeration cycle device - Google Patents

Thermal storage refrigeration cycle device

Info

Publication number
JP2705270B2
JP2705270B2 JP2054012A JP5401290A JP2705270B2 JP 2705270 B2 JP2705270 B2 JP 2705270B2 JP 2054012 A JP2054012 A JP 2054012A JP 5401290 A JP5401290 A JP 5401290A JP 2705270 B2 JP2705270 B2 JP 2705270B2
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
heat storage
storage
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2054012A
Other languages
Japanese (ja)
Other versions
JPH03255852A (en
Inventor
宏明 浜
孝治 石川
靖幸 船橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2054012A priority Critical patent/JP2705270B2/en
Publication of JPH03255852A publication Critical patent/JPH03255852A/en
Application granted granted Critical
Publication of JP2705270B2 publication Critical patent/JP2705270B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、蓄熱槽を有する蓄熱式冷凍サイクル装置
に関するものである。
Description: TECHNICAL FIELD The present invention relates to a heat storage refrigeration cycle apparatus having a heat storage tank.

[従来の技術] 以下、従来の実施例について述べる。即ち、第8図
は、例えば特開昭63−116055号公報に示された従来の蓄
熱式冷凍装置を示すサイクル説明図であり、同図におい
て、(1)は圧縮機、(2)は熱源側熱交換器、(3)
は第1の絞り装置、(4)はエアコンの室内機などの利
用側熱交換器、(6)は蓄熱槽で、内部に蓄熱媒体
(7)と熱交換器(9)を収納している。熱交換器
(9)は、蓄熱用熱交換器(92)と蓄熱利用用熱交換器
(91)を有する。(10)は第1の蓄熱用バイパス路で、
(10a)(10b)は第1の蓄熱用バイパス路用の開閉装
置、(11)は第2の絞り装置(13)は蓄熱利用用バイパ
ス路で、(13a)(13b)は蓄熱利用用バイパス路用の開
閉装置、(15)は冷媒循環ポンプ、(16)は低圧側気液
分離装置、(17)は高圧側液溜、(18)は第2の蓄熱用
バイパス路で、(18a)(18b)は第2の蓄熱用バイパス
路用の開閉装置を示す。
[Prior Art] Hereinafter, a conventional example will be described. That is, FIG. 8 is a cycle explanatory view showing a conventional regenerative refrigerating apparatus disclosed in, for example, JP-A-63-116055, wherein (1) is a compressor, and (2) is a heat source. Side heat exchanger, (3)
Is a first expansion device, (4) is a use-side heat exchanger such as an indoor unit of an air conditioner, and (6) is a heat storage tank, in which a heat storage medium (7) and a heat exchanger (9) are housed. . The heat exchanger (9) has a heat storage heat exchanger (92) and a heat storage heat exchanger (91). (10) is the first heat storage bypass path,
(10a) and (10b) are opening / closing devices for the first heat storage bypass path, (11) are second expansion devices (13) are heat storage utilization bypass paths, and (13a) and (13b) are heat storage utilization bypass paths. (15) is a refrigerant circulation pump, (16) is a low-pressure side gas-liquid separator, (17) is a high-pressure side liquid reservoir, (18) is a second heat storage bypass path, and (18a) (18b) shows a switching device for the second heat storage bypass path.

次に動作について説明する。 Next, the operation will be described.

蓄熱運転、即ち、蓄熱槽(6)の中に蓄熱媒体(7)
である水を凍結させるなどにより低温の熱を蓄えるため
に、開閉装置(10b)(13a)(18a)を閉じ開閉装置(1
0a)(13b)(18b)を開き、圧縮機(1)及び冷媒循環
ポンプ(15)を運転させると、圧縮機(1)よりの高温
高圧ガス冷媒は、熱源側熱交換器(2)で放熱、自身は
擬縮液化し、液溜(17)、蓄熱利用用バイパス路(13)
を経て、第2の絞り装置(11)で断熱膨張し低温の液ガ
ス二相流体となって低圧側気液分離装置(16)に入る。
ここで低温の液だけが、冷媒循環ポンプ(15)で第2の
蓄熱用バイパス路(18)を経て蓄熱用熱交換器(92)に
入り、蓄熱媒体(7)から熱を奪い、自身蒸発ガス化し
て低圧側気液分離装置(16)に戻り、前述のガスと一緒
に圧縮機(1)に戻る。
Thermal storage operation, that is, the thermal storage medium (7) in the thermal storage tank (6)
Close the switchgear (10b) (13a) (18a) to store low-temperature heat by freezing the water
0a) When (13b) and (18b) are opened and the compressor (1) and the refrigerant circulation pump (15) are operated, the high-temperature and high-pressure gas refrigerant from the compressor (1) passes through the heat source side heat exchanger (2). Dissipates heat, turns itself into pseudo-condensed liquid, pool (17), heat storage bypass (13)
After that, the adiabatic expansion is performed by the second expansion device (11), and the low-pressure liquid-gas two-phase fluid enters the low-pressure side gas-liquid separation device (16).
Here, only the low-temperature liquid enters the heat-storage heat exchanger (92) through the second heat-storage bypass (18) by the refrigerant circulation pump (15), takes heat from the heat-storage medium (7), and evaporates itself. It is gasified and returns to the low-pressure side gas-liquid separator (16), and returns to the compressor (1) together with the aforementioned gas.

冷房運転は、室内の利用側熱交換器(4)で吸収した
熱の放熱の仕方で、3種類の運転方式がある。
The cooling operation has three types of operation methods in which heat absorbed by the indoor use side heat exchanger (4) is radiated.

第1は蓄熱媒体にすべての熱を捨てる方式で、蓄冷熱
で全ての擬縮負荷を賄うことから、以下、蓄冷擬縮冷房
運転と呼ぶこととする。この運転は、開閉装置(10b)
(18a)を閉じ、開閉装置(10a)(18a)を開き、圧縮
機(1)は停止し、冷媒循環ポンプ(15)のみを運転さ
せると、低温の液冷媒は、利用側熱交換器(4)へ、第
1の絞り装置(3)を経て送り込まれる。ここで周囲よ
り熱を奪って冷房し、自身は蒸発してガス化し蓄熱用熱
交換器(92)に送られる。ここで、ガスは低温の蓄熱媒
体(7)で冷却され、自身は擬縮して低温液となり低圧
側気液分離装置(16)に戻る。
The first is a method in which all the heat is discarded to the heat storage medium, and all the pseudo-shrinkage loads are covered by the cold storage heat. This operation is a switchgear (10b)
(18a) is closed, the switching devices (10a) and (18a) are opened, the compressor (1) is stopped, and only the refrigerant circulation pump (15) is operated. 4) through a first aperture device (3). Here, heat is taken from the surroundings to cool, and the gas itself evaporates and is gasified and sent to the heat storage heat exchanger (92). Here, the gas is cooled by the low-temperature heat storage medium (7), and is pseudo-shrinked to become a low-temperature liquid and returns to the low-pressure side gas-liquid separator (16).

第2は大気中と蓄熱媒体の両方に熱を捨てる方式で、
熱源側熱交換器(2)で擬縮させた液冷媒を蓄冷熱で更
に冷却することから、以下、液過冷却運転と呼ぶことと
する。この運転は、開閉装置(10a)(13b)(18b)を
閉じ、開閉装置(10b)(13a)(18a)を開き、圧縮機
(1)及び冷媒循環ポンプ(15)を運転させると、圧縮
機(1)よりの高温高圧ガス冷媒は、熱源側熱交換器
(2)で放熱、自身は擬縮液化し、液溜(17)を経て蓄
熱利用用熱交換器(91)に入る。ここで、液冷媒は低温
の蓄熱媒体(7)で更に冷却され、自身は過冷却液とな
って、第2の絞り装置(11)で断熱膨張し低温の液ガス
二相流体となって低圧側気液分離装置(16)に入る。こ
こで低温の液だけが、冷媒循環ポンプ(15)で、第1の
絞り装置(3)を経て利用側熱交換器(4)へ送り込ま
れる。ここで周囲より熱を奪って冷房し、自身は蒸発し
てガス化し、第1の蓄熱用バイパス路(10)を経て低圧
側気液分離装置(16)に戻り、前述のガスと一緒に圧縮
機に戻る。
The second method is to dissipate heat to both the atmosphere and the heat storage medium.
Since the liquid refrigerant simulated by the heat source-side heat exchanger (2) is further cooled by cold storage heat, it is hereinafter referred to as a liquid supercooling operation. This operation is performed by closing the switchgears (10a) (13b) (18b) and opening the switchgears (10b) (13a) (18a) to operate the compressor (1) and the refrigerant circulation pump (15). The high-temperature and high-pressure gas refrigerant from the machine (1) radiates heat in the heat-source-side heat exchanger (2), liquefies itself, and enters the heat storage utilization heat exchanger (91) through the liquid reservoir (17). Here, the liquid refrigerant is further cooled by the low-temperature heat storage medium (7), itself becomes a supercooled liquid, adiabatically expanded by the second expansion device (11), becomes a low-temperature liquid-gas two-phase fluid, and becomes low-pressure liquid. Enter the side gas-liquid separator (16). Here, only the low-temperature liquid is sent to the use side heat exchanger (4) via the first expansion device (3) by the refrigerant circulation pump (15). Here, it cools by taking heat from the surroundings, evaporates and gasifies itself, returns to the low-pressure side gas-liquid separator (16) via the first heat storage bypass (10), and is compressed together with the aforementioned gas. Return to the machine.

第3は大気中にのみ放熱する方式で、蓄熱とは無関係
の運転となるため一般冷房冷凍サイクル運転と呼ぶこと
とする。この運転は、開閉装置(10a)(13a)(18b)
を閉じ、開閉装置(10b)(13b)(18a)を開き、圧縮
機(1)及び冷媒循環ポンプ(15)を運転させると、圧
縮機(1)、熱源側熱交換器(2)、液溜(17)、蓄熱
利用用バイパス路(13)、第2の絞り装置(11)及び低
圧側気液分離装置(16)は上記蓄熱運転時と同様の動作
をし、冷媒循環ポンプ(15)、第1の絞り装置(3)、
利用側熱交換器(4)、第1の蓄熱用バイパス路(1
0)、及び低圧側気液分離装置(16)は上記液過冷却運
転時と同様の動作をする。
The third is a method of releasing heat only to the atmosphere, which is called an ordinary cooling refrigeration cycle operation because the operation is unrelated to heat storage. This operation is performed by the switchgear (10a) (13a) (18b)
Is closed, the switchgears (10b), (13b), and (18a) are opened, and the compressor (1) and the refrigerant circulation pump (15) are operated, so that the compressor (1), the heat source side heat exchanger (2), the liquid The reservoir (17), the heat storage utilization bypass path (13), the second expansion device (11), and the low-pressure gas-liquid separator (16) operate in the same manner as in the above-described heat storage operation, and the refrigerant circulation pump (15) , A first diaphragm device (3),
User side heat exchanger (4), first heat storage bypass (1
0) and the low-pressure side gas-liquid separator (16) operate in the same manner as in the above liquid supercooling operation.

このシステムの冷房能力は、一般冷房冷凍サイクル運
転時の能力よりも液過冷却冷房運転時の能力が、過冷却
された熱量分大きい。従って、設備の容量は液過冷却冷
房運転時の性能にて決定し、システムの一般的な運転
は、夜間に蓄熱運転を行い、負荷が小さいときは蓄冷擬
縮冷房運転にて冷房し、負荷が大きいときは液過冷却冷
房運転にて冷房し、蓄熱が無くなったときは一般冷房冷
凍サイクル運転にて冷房する。
As for the cooling capacity of this system, the capacity in the liquid subcooling cooling operation is larger than the capacity in the general cooling refrigeration cycle operation by the amount of supercooled heat. Therefore, the capacity of the equipment is determined by the performance during the liquid supercooling cooling operation, and the general operation of the system is to perform the heat storage operation at night, and when the load is small, the cooling is performed by the cool storage pseudo shrinkage cooling operation, and the load is reduced. Is large, cooling is performed by liquid supercooling cooling operation, and when heat storage is lost, cooling is performed by general cooling refrigeration cycle operation.

[発明が解決しようとする課題] 従来の蓄熱式冷凍サイクル装置は以上のように構成さ
れているので、冷媒循環ポンプ(15)はすべての運転モ
ードにて稼動しなければならず、また冷凍サイクルの最
大能力を賄うだけの冷媒循環量を確保しなければなら
ず、省エネルギーに反するばかりでなく、冷媒循環ポン
プ(15)のトラブル時、冷房を停止しなければならない
という問題があった。
[Problems to be Solved by the Invention] Since the conventional regenerative refrigeration cycle apparatus is configured as described above, the refrigerant circulation pump (15) must operate in all operation modes, and the refrigeration cycle Therefore, there is a problem that not only energy saving but also cooling must be stopped when trouble occurs in the refrigerant circulation pump (15).

この発明は上記のような問題点を解消するためになさ
れたもので、安価で省エネルギーで、且つ冷却運転を停
止しなければならないようなトラブルが発生しにくい蓄
熱式冷凍サイクル装置を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a regenerative refrigeration cycle device that is inexpensive, energy-saving, and hardly causes troubles such as a need to stop a cooling operation. And

[課題を解決するための手段] この発明の請求項1に係わる蓄熱式冷凍サイクル装置
は、圧縮機、熱源側熱交換器、第1の絞り装置、及び利
用側熱交換器を順次接続して形成された冷凍サイクル
と、蓄熱用熱交換器を有し上記圧縮機の吸入側と上記熱
源側熱交換器の出口側とを接続し蓄熱運転時形成される
蓄熱用バイパス路と、上記熱源側熱交換器の出口側と上
記蓄熱用熱交換器の一端側との間に設けられた第2の絞
り装置と、この第2の絞り装置の入口側と出口側とを接
続し一般冷房及び液過冷却運転時形成される第2の絞り
装置用バイパス路と、内部に蓄熱媒体を収容し上記蓄熱
用熱交換器と熱交換可能に設けられた蓄熱槽と、上記蓄
熱用熱交換器の他端側と上記第1の絞り装置の入口側と
を接続し蓄冷擬縮運転時及び液過冷却運転時形成される
蓄熱利用用バイパス路と、上記熱源側熱交換器の入口側
と上記第2の絞り装置の出口側とを接続し蓄冷擬縮運転
時形成される熱源側熱交換器用バイパス路とを備え、一
般冷房時は、上記圧縮機から上記熱源側熱交換器、上記
第1の絞り装置、及び上記利用側熱交換器等を介して上
記圧縮機へいたる冷却回路を、蓄熱運転時は、上記圧縮
機から上記熱源側熱交換器、上記第2の絞り装置、及び
上記蓄熱用熱交換器等を介して上記圧縮機へいたる蓄熱
回路を、蓄冷擬縮運転時は、上記圧縮機から高圧ガス状
態で上記蓄熱用熱交換器、上記蓄熱利用用バイパス路、
上記第1の絞り装置、及び利用側熱交換器等を介して上
記圧縮機へいたる蓄冷擬縮回路を、液過冷却運転時は、
上記圧縮機から上記熱源側熱交換器、上記蓄熱用熱交換
器、上記蓄熱利用用バイパス路、上記第1の絞り装置、
及び上記利用側熱交換器等を介して上記圧縮機へいたる
液過冷却回路をそれぞれ構成し、蓄熱利用の冷房運転
時、負荷に応じて、上記蓄冷擬縮運転と上記液過冷却運
転とを切換え運転し、冷房負荷が小さいときは上記蓄冷
擬縮運転を行い、冷房負荷が大きいときは上記液過冷却
運転を行ない、蓄熱が無くなったとき上記一般冷房を行
なうようにしたものである。
[Means for Solving the Problems] A regenerative refrigeration cycle apparatus according to claim 1 of the present invention is configured by sequentially connecting a compressor, a heat source side heat exchanger, a first expansion device, and a use side heat exchanger. A refrigerating cycle formed, a heat storage bypass having a heat storage heat exchanger, connecting a suction side of the compressor and an outlet side of the heat source side heat exchanger and formed during a heat storage operation, and a heat storage side. A second expansion device provided between an outlet side of the heat exchanger and one end of the heat storage heat exchanger, and an inlet and an outlet side of the second expansion device connected to provide general cooling and liquid supply; A second bypass path for the expansion device formed during the supercooling operation, a heat storage tank containing a heat storage medium therein and provided so as to be capable of exchanging heat with the heat storage heat exchanger, and a heat storage heat exchanger. Connect the end side to the inlet side of the first expansion device, and perform the operation during the cool storage pseudo shrinkage operation and the liquid supercooling operation. And a heat-source-side heat exchanger bypass passage formed at the time of cold storage pseudo-shrinkage operation connecting the inlet side of the heat source-side heat exchanger and the outlet side of the second expansion device. Provided, at the time of general cooling, a cooling circuit from the compressor to the compressor via the heat source side heat exchanger, the first expansion device, the use side heat exchanger, etc. A heat storage circuit from the compressor to the compressor through the heat source side heat exchanger, the second expansion device, the heat storage heat exchanger, and the like. In the gas state, the heat storage heat exchanger, the heat storage utilization bypass,
During the liquid subcooling operation, the cool storage / shrinkage circuit leading to the compressor via the first expansion device and the use side heat exchanger,
From the compressor to the heat source side heat exchanger, the heat storage heat exchanger, the heat storage utilization bypass, the first throttle device,
And a liquid subcooling circuit to the compressor via the use side heat exchanger and the like, respectively, and during cooling operation using heat storage, the cool storage pseudo shrinkage operation and the liquid subcooling operation are performed according to load. The switching operation is performed. When the cooling load is small, the cool storage pseudo shrinkage operation is performed. When the cooling load is large, the liquid supercooling operation is performed. When the heat storage is lost, the general cooling is performed.

この発明の請求項2に係わる蓄熱式冷凍サイクル装置
は、上記の発明において、蓄熱槽と蓄熱用熱交換器間に
蓄熱媒体搬送装置を設け、上記蓄熱用熱交換器を強制対
流形の蓄熱用熱交換器としたものである。
According to a second aspect of the present invention, in the heat storage refrigeration cycle apparatus according to the above invention, a heat storage medium transfer device is provided between the heat storage tank and the heat storage heat exchanger, and the heat storage heat exchanger is a forced convection type heat storage. It was a heat exchanger.

[作用] この発明における冷凍サイクルの冷媒循環は、蓄熱運
転時、及び蓄冷擬縮運転時、液過冷却運転時、一般冷房
運転時のすべてにおいて、冷媒循環ポンプを使用せず
に、圧縮機だけで達成する。また蓄冷擬縮運転時は、圧
縮機が運転するとはいえ、低圧縮比の高C.O.P(Coeffic
ent Of Perfomance;成績係数)の運転を行う。
[Operation] In the refrigerant cycle of the refrigeration cycle according to the present invention, in all of the heat storage operation, the cold storage pseudo-shrinkage operation, the liquid supercooling operation, and the general cooling operation, only the compressor is used without using the refrigerant circulation pump. To achieve. In addition, during cold storage operation, although the compressor operates, a high COP (Coeffic
ent Of Performance (coefficient of performance).

[実施例] 以下、この発明の一実施例について説明する。なお、
図中、同一符号は同一、または相当部分を示す。
Example An example of the present invention will be described below. In addition,
In the drawings, the same reference numerals indicate the same or corresponding parts.

第1図は、この発明の蓄熱式冷凍装置のサイクルを示
す説明図であり、同図において(1)は圧縮機、(2)
は熱源側熱交換器、(3)は第1の絞り装置、(4)は
エアコンの室内機などの利用側熱交換器、(5)はアキ
ュムレータで、(1)〜(4)と順次接続され、冷凍サ
イクルを形成し、第1の絞り装置(3)は利用側熱交換
器(4)の近傍でこれに直接配管接続されている。
(6)は蓄熱槽で内部に蓄熱媒体(7)を、蓄熱槽
(6)と蓄熱用熱交換器(9)の間で循環させる、蓄熱
媒体搬送装置である循環ポンプ、(10)は蓄熱用バイパ
ス路で、蓄熱用熱交換器(9)を有し、圧縮機(1)の
吸入側と熱源側熱交換器(2)の出口側とを接続してい
る。(10a)(10b)(10c)は蓄熱用バイパス路用の開
閉装置、(11)は、熱源側熱交換器(2)の出口側と蓄
熱用熱交換器(9)の入口一端側との間に設けられた第
2の絞り装置、(12)は、第2の絞り装置(11)の入口
側と出口側とを接続する、第2の絞り装置用バイパス
路、(12a)は第2の絞り装置用バイパス路用の開閉装
置、(13)は、一端が蓄熱用熱交換器(9)の出口他端
側と開閉装置(10b)との間に、また他端が開閉装置(1
0c)と第1の絞り装置(3)の入口側との間に接続され
た、蓄熱利用用バイパス路、(13a)は蓄熱利用用バイ
パス路用の開閉装置、(14)は、熱源側熱交換器(2)
の入口側と出口側とを接続する、熱源側熱交換器用バイ
パス路、(14a)(14b)は熱源側熱交換器用発バイパス
路用の開閉装置である。
FIG. 1 is an explanatory view showing a cycle of a regenerative refrigeration system according to the present invention, wherein (1) is a compressor, and (2) is a diagram.
Is a heat source side heat exchanger, (3) is a first expansion device, (4) is a use side heat exchanger such as an indoor unit of an air conditioner, (5) is an accumulator, and is sequentially connected to (1) to (4). Thus, a refrigeration cycle is formed, and the first expansion device (3) is connected to the use-side heat exchanger (4) directly in the vicinity of the heat exchanger (4).
(6) is a heat storage tank, in which a heat storage medium (7) is circulated between the heat storage tank (6) and the heat exchanger (9) for heat storage. A heat storage heat exchanger (9), which connects the suction side of the compressor (1) and the outlet side of the heat source side heat exchanger (2). (10a), (10b), and (10c) are opening / closing devices for a heat storage bypass path, and (11) is an outlet between a heat source side heat exchanger (2) and one end of an inlet of a heat storage heat exchanger (9). A second throttle device provided between the second throttle device and the second throttle device connects the inlet side and the outlet side of the second throttle device, and the second throttle device has a second bypass device. (13) has one end between the other end of the outlet of the heat storage heat exchanger (9) and the opening / closing device (10b), and the other end has the opening / closing device (1).
0c) and a heat storage bypass path connected between the inlet side of the first expansion device (3), (13a) a switching device for the heat storage bypass path, and (14) a heat source side heat source. Exchanger (2)
(14a) and (14b) are opening / closing devices for the heat-source-side heat exchanger departure bypass, connecting the inlet side and the outlet side of the heat-source side heat exchanger.

次に作用について説明する。 Next, the operation will be described.

第2図は、主として夜間の運転となる蓄熱運転時の動
作を示す回路図であり、開閉装置(10c)(12a)(13
a)(14a)を閉じ、開閉装置(10a)(10b)(14b)を
開き、圧縮機(1)及び蓄熱媒体循環ポンプ(8)を運
転させると、圧縮機(1)よりの高温高圧ガス冷媒は、
熱源側熱交換器(2)で放熱、自身は擬縮液化し、第2
の絞り装置(11)で断熱膨張し低温の液ガス二相流体と
なって蓄熱用熱交換器(9)に入り、蓄熱媒体循環ポン
プ(8)により送り込まれた蓄熱媒体(7)から熱を奪
い、自身は蒸発ガス化して、アキュムレータ(5)を経
て圧縮機(1)に戻る。
FIG. 2 is a circuit diagram showing an operation during a heat storage operation, which is mainly an operation at night, and includes switching devices (10c), (12a), and (13).
a) Close (14a), open the switchgear (10a) (10b) (14b), and operate the compressor (1) and the heat storage medium circulating pump (8) to obtain the high-temperature and high-pressure gas from the compressor (1). The refrigerant is
Heat is radiated by the heat source side heat exchanger (2), which itself is pseudo-condensed,
Adiabatic expansion by the expansion device (11), a low-temperature liquid-gas two-phase fluid as a low-temperature liquid-gas two-phase fluid, enters the heat storage heat exchanger (9), and removes heat from the heat storage medium (7) sent by the heat storage medium circulation pump (8). They rob themselves and evaporate and return to the compressor (1) via the accumulator (5).

かかる動作により、蓄熱媒体(7)中の水を凍結させる
などにより低温の熱を蓄えるなおこの実施例では、強制
対流形の蓄熱用熱交換器を採用しているため蓄熱媒体循
環ポンプを使っているが、一般的に使用されている自然
対流形に比べ効率が高く、ポンプ動力の追加以上に圧縮
機動力の低下が期待できるので、この方式を採用してい
る。
By this operation, low-temperature heat is stored by freezing water in the heat storage medium (7). In this embodiment, since a forced convection type heat storage heat exchanger is employed, a heat storage medium circulation pump is used. However, this method is adopted because the efficiency is higher than the generally used natural convection type, and the compressor power can be expected to decrease more than by adding pump power.

第3図、第5図、第7図は冷房運転の動作図であり、
第3図は蓄冷擬縮冷房運転時の回路図を示す。この場合
は開閉装置(10b)(10c)(12a)(14b)を閉じ、開閉
装置(10a)(13a)(14a)を開き、圧縮機(1)と蓄
熱媒体循環ポンプ(8)を運転させると、圧縮機(1)
よりの高温高圧ガス冷媒は、熱源側熱交換器用バイパス
路(14)、第2の絞り装置用バイパス路(12)を経て蓄
熱用熱交換器(9)に入り、蓄熱媒体循環ポンプ(8)
により送り込まれた蓄熱媒体(7)により冷却され、自
身は擬縮液化し、第1の絞り装置(3)で断熱膨張し低
温の液ガス二相流体となって利用側熱交換器(4)に入
り、ここで周囲より熱を奪って冷房し、自身は蒸発して
ガス化し、アキュムレータ(5)を経て圧縮機(1)に
戻る。
FIGS. 3, 5, and 7 are operation diagrams of the cooling operation,
FIG. 3 shows a circuit diagram during the cold storage pseudo shrinkage cooling operation. In this case, the switchgears (10b), (10c), (12a), and (14b) are closed, the switchgears (10a), (13a), and (14a) are opened, and the compressor (1) and the heat storage medium circulation pump (8) are operated. And the compressor (1)
The higher-temperature and high-pressure gas refrigerant enters the heat-storage heat exchanger (9) through the heat-source-side heat exchanger bypass path (14) and the second expansion device bypass path (12), and flows into the heat storage medium circulation pump (8).
Is cooled by the heat storage medium (7) fed by the heat exchanger, and is quasi-condensed, adiabatically expanded by the first expansion device (3), becomes a low-temperature liquid-gas two-phase fluid, and becomes a use-side heat exchanger (4). , Where it cools by removing heat from the surroundings, evaporates and gasifies, and returns to the compressor (1) via the accumulator (5).

この時の動作をモリエル線図上に表すと、第4図に示す
ように、擬縮圧力が低く抑えられた低圧縮比の運転とな
り、圧縮機入力エンタルピ(Δid)が極めて小さく、冷
房のための蒸発エンタルピ(Δie)とほぼ同量の擬縮エ
ンタルピ(Δic)を、蓄熱媒体より消費するだけでよ
い。なお、図中の英記号は第3図中に示す位置の線図上
の状態を示す。
When the operation at this time is represented on a Mollier diagram, as shown in FIG. 4, the operation becomes a low compression ratio operation in which the pseudo-compression pressure is suppressed low, the compressor input enthalpy (Δid) is extremely small, and Quasi-shrinkage enthalpy (Δic) which is almost the same as the evaporation enthalpy (Δie) of the heat storage medium. It should be noted that the English symbols in the figure indicate the positions on the diagram at the positions shown in FIG.

第5図は液過冷却冷房運転時の回路図を示す。この場
合は開閉装置(10b)(10c)(14a)を閉じ、開閉装置
(10a)(12a)(13a)(14b)を開き、圧縮機(1)と
蓄熱媒体循環ポンプ(8)を運転させると、圧縮機
(1)よりの高温高圧ガス冷媒は、熱源側熱交換器
(2)で放熱、自身は擬縮液化し、第2の絞り装置用バ
イパス路(12)を経て蓄熱用熱交換器(9)に入る。こ
こで蓄熱媒体循環ポンプ(8)により送り込まれた蓄熱
媒体(7)により液冷媒は更に冷却され、過冷却された
液となって第1の絞り装置(3)に送られ、ここで断熱
膨張し低温の液ガス二相流体となって利用側熱交換器
(4)に入り、ここで周囲より熱を奪って冷房し、自身
は蒸発してガス化し、アキュムレータ(5)を経て圧縮
機(1)に戻る。この時の動作をモリエル線図上に表す
と、第6図に示すように、過冷却エンタルピ分だけで横
に広がった形の運転となり、圧縮機入力エンタルピ(Δ
id)はその儘で、冷房のための蒸気エンタルピ(Δi1)
から(Δi2)に増大する。
FIG. 5 shows a circuit diagram during the liquid subcooling cooling operation. In this case, the switching devices (10b), (10c), and (14a) are closed, and the switching devices (10a), (12a), (13a), and (14b) are opened, and the compressor (1) and the heat storage medium circulating pump (8) are operated. And the high-temperature and high-pressure gas refrigerant from the compressor (1) radiates heat in the heat source side heat exchanger (2), liquefies itself and passes through the second expansion device bypass passage (12) to exchange heat for heat storage. Enter the vessel (9). Here, the liquid refrigerant is further cooled by the heat storage medium (7) sent by the heat storage medium circulation pump (8) and is sent to the first expansion device (3) as a supercooled liquid, where the adiabatic expansion is performed. Then, it becomes a low-temperature liquid-gas two-phase fluid and enters the utilization side heat exchanger (4), where it cools by removing heat from the surroundings, evaporates and gasifies itself, and passes through the accumulator (5) to the compressor ( Return to 1). When the operation at this time is represented on a Mollier diagram, as shown in FIG. 6, the operation becomes a laterally spread operation only by the supercooling enthalpy, and the compressor input enthalpy (Δ
id) is as it is, steam enthalpy for cooling (Δi1)
To (Δi2).

第7図は一般冷房の冷凍サイクル運転時の回路図を示
す。この場合は開閉装置(10a)(13a)(14a)を閉
じ、開閉装置(10b)(10c)(12a)(14b)を開き、圧
縮機(1)を運転させると、圧縮機(1)よりの高温高
圧ガス冷媒は熱源側熱交換器(2)で放熱、自身は擬縮
液化し、第2の絞り装置用バイパス路(12)を経て第1
の絞り装置(3)に送られ、ここで断熱膨張し低温の液
ガス二相流体となって利用側熱交換器(4)に入り、こ
こで周囲より熱を奪って冷房し、自身は蒸発してガス化
し、アキュムレータ(5)を経て圧縮機(1)に戻る。
FIG. 7 shows a circuit diagram during a refrigeration cycle operation of general cooling. In this case, when the switchgears (10a), (13a), and (14a) are closed and the switchgears (10b), (10c), (12a), and (14b) are opened and the compressor (1) is operated, the compressor (1) The high-temperature and high-pressure gaseous refrigerant is radiated by the heat source side heat exchanger (2), is quasi-condensed, and passes through the second expansion device bypass passage (12) to the first
And then adiabatically expanded to become a low-temperature liquid-gas two-phase fluid and enter the use-side heat exchanger (4), where it takes heat from the surroundings to cool it and evaporates itself To gasify and return to the compressor (1) via the accumulator (5).

なお、このシステムの冷房能力は、従来の実施例ど同
様、一般冷房の冷凍サイクル運転時の能力よりも液化冷
却冷房運転時の能力が、過冷却された熱量分大きい。従
って、設備の容量は液過冷却冷房運転時の性能にて決定
し、システムの一般的な運転は、夜間に蓄熱運転を行
い、負荷が小さいときは蓄冷擬縮冷房運転にて冷房し、
負荷が大きいときは液過冷却冷房にて冷房し、蓄熱が無
くなったとき、或いは蓄熱利用運転時間帯に入る前の蓄
熱量の温存を要するときは一般冷房の冷凍サイクル運転
にて冷房する。
As in the conventional embodiments, the cooling capacity of the system during the liquefied cooling operation is larger than the capacity during the refrigeration cycle operation of the general cooling by the amount of the supercooled heat. Therefore, the capacity of the equipment is determined by the performance during the liquid supercooling cooling operation, the general operation of the system performs the heat storage operation at night, and when the load is small, the cooling is performed by the cold storage pseudo shrinkage cooling operation,
When the load is large, cooling is performed by liquid supercooling cooling, and when heat storage is lost, or when it is necessary to preserve the heat storage amount before entering the heat storage use operation time period, cooling is performed by a refrigeration cycle operation of general cooling.

なお上記実施例では空調用として利用した場合につい
て述べたが、その他の冷凍冷蔵などの用途へも活用出来
る。
In the above embodiment, the case where the air conditioner is used for air conditioning is described, but the present invention can be used for other uses such as freezing and refrigeration.

〔発明の効果〕〔The invention's effect〕

この発明は以上のように、圧縮機、熱源側熱交換器、
第1の絞り装置、及び利用側熱交換器を順次接続して形
成された冷凍サイクルと、蓄熱用熱交換器を有し上記圧
縮機の吸入側と上記熱源側熱交換器の出口側とを接続し
蓄熱運転時形成される蓄熱用バイパス路と、上記熱源側
熱交換器の出口側と上記蓄熱用熱交換器の一端側との間
に設けられた第2の絞り装置と、この第2の絞り装置の
入口側と出口側とを接続し一般冷房及び液過冷却運転時
形成される第2の絞り装置用バイパス路と、内部に蓄熱
媒体を収容し上記蓄熱用熱交換器と熱交換可能に設けら
れた蓄熱槽と、上記蓄熱用熱交換器の他端側と上記第1
の絞り装置の入口側とを接続し蓄冷擬縮運転時及び液過
冷却運転時形成される蓄熱利用用バイパス路と、上記熱
源側熱交換器の入口側と上記第2の絞り装置の出口側と
を接続し蓄冷擬縮運転時形成される熱源側熱交換器用バ
イパス路とを備え、一般冷房時は、上記圧縮機から上記
熱源側熱交換器、上記第1の絞り装置、及び上記利用側
熱交換器等を介して上記圧縮機へいたる冷却回路を、蓄
熱運転時は、上記圧縮機から上記熱源側熱交換器、上記
第2の絞り装置、及び上記蓄熱用熱交換器等を介して上
記圧縮機へいたる蓄熱回路を、蓄冷擬縮運転時は、上記
圧縮機から高圧ガス状態で上記蓄熱用熱交換器、上記蓄
熱利用用バイパス路、上記第1の絞り装置、及び上記利
用側熱交換器等を介して上記圧縮機へいたる蓄冷擬縮回
路を、液過冷却運転時は、上記圧縮機から上記熱源側熱
交換器、上記蓄熱用熱交換器、上記蓄熱利用用バイパス
路、上記第1の絞り装置、及び上記利用側熱交換器等を
介して上記圧縮機へいたる液過冷却回路をそれぞれ構成
し、蓄熱利用の冷房運転時、負荷に応じて、上記蓄冷擬
縮運転と上記液過冷却運転とを切換え運転するようにし
たので、蓄熱運転、蓄冷擬縮運転、液過冷却運転及び一
般冷却運転の全ての運転モードが、冷房負荷の大小に応
じて極めて有効に稼動でき、しかも、従来のように圧縮
機とは別に冷媒循環ポンプを設ける必要がなく、装置が
安価にでき、省エネルギー性が高く、かつ冷房を停止し
ければならないようなトラブルの発生しにくいシステム
が得られるとともに、冷房負荷が小さいときは蓄冷擬縮
運転を行ない、冷房負荷が大きいときは液過冷却運転を
行ない、蓄熱が無くなったとき一般冷房を行なうように
したので、冷房負荷が小さいときの蓄冷擬縮運転による
蓄熱量の消費が少なく、冷房負荷が大きくなったときに
蓄熱量が残り、蓄熱利用で冷房能力の大きな液過冷却運
転ができ、負荷のピーク時の電力消費量の抑制が可能と
なり、蓄熱が無くなったとき一般冷房に切換えることに
より、蓄熱残をなくし充分蓄熱が使いきることができ、
蓄熱の有効利用及び電力消費の平準化に役立つという効
果がある。
As described above, the present invention provides a compressor, a heat source side heat exchanger,
A refrigeration cycle formed by sequentially connecting the first expansion device and the use-side heat exchanger; and a heat-storage heat exchanger including a suction side of the compressor and an outlet side of the heat-source-side heat exchanger. A second storage device connected between the outlet side of the heat source side heat exchanger and one end of the heat storage heat exchanger, the second expansion device being connected to the bypass passage formed during the heat storage operation; A second bypass path for the expansion device, which is formed at the time of general cooling and subcooling operation by connecting the inlet side and the outlet side of the expansion device, and exchanges heat with the heat storage heat exchanger containing a heat storage medium therein. A heat storage tank provided so as to be capable of being provided, the other end of the heat storage heat exchanger and the first heat storage tank,
A heat storage utilization bypass path formed during the cold storage pseudo-shrinking operation and the liquid subcooling operation, and the inlet side of the heat source side heat exchanger and the outlet side of the second throttle unit. And a bypass for the heat source side heat exchanger formed at the time of the cold storage pseudo-shrinkage operation. In general cooling, the compressor is connected to the heat source side heat exchanger, the first expansion device, and the use side. The cooling circuit from the compressor through the heat exchanger and the like, during the heat storage operation, from the compressor through the heat source side heat exchanger, the second expansion device, the heat storage heat exchanger and the like When the heat storage circuit leading to the compressor is operated in the cold storage pseudo-shrinkage operation, the heat storage heat exchanger, the heat storage utilization bypass, the first throttle device, and the utilization side heat are supplied from the compressor in a high-pressure gas state. The cool storage pseudo compression circuit leading to the compressor via an exchanger etc. At the time, from the compressor to the compressor via the heat source side heat exchanger, the heat storage heat exchanger, the heat storage utilization bypass path, the first throttle device, the utilization side heat exchanger, etc. Each of the liquid subcooling circuits is configured to perform the operation of switching between the cold storage pseudo-shrinking operation and the liquid supercooling operation according to the load during the cooling operation using the heat storage, so that the heat storage operation and the cold storage pseudo-shrinking operation are performed. All the operation modes of the liquid supercooling operation and the general cooling operation can be operated extremely effectively according to the magnitude of the cooling load, and further, unlike the conventional case, there is no need to provide a refrigerant circulation pump separately from the compressor. It is possible to obtain a system that is inexpensive, has high energy savings, and is less likely to cause troubles such as the need to stop cooling.When the cooling load is small, the cool storage operation is performed, and when the cooling load is large, Performs a liquid supercooling operation and performs general cooling when heat storage is lost.Therefore, consumption of heat storage by the cool storage pseudo shrinkage operation when the cooling load is small is small, and when the cooling load is large, the heat storage amount is small. However, it is possible to perform liquid subcooling operation with large cooling capacity by using heat storage, suppress power consumption at the peak load, and switch to general cooling when heat storage is exhausted, eliminating residual heat storage and sufficient heat storage Can be used up,
There is an effect that it contributes to the effective use of heat storage and the leveling of power consumption.

また、蓄熱槽と蓄熱用熱交換器間に蓄熱媒体搬送装置
を設け、上記蓄熱用熱交換器を強制対流形の蓄熱用熱交
換器としたので、熱交換効率が高く、ポンプ動力の追加
以上に圧縮機動力の低下が期待できる効果がある。
Also, a heat storage medium transfer device is provided between the heat storage tank and the heat storage heat exchanger, and the heat storage heat exchanger is a forced convection type heat storage heat exchanger. This has the effect that a reduction in compressor power can be expected.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施例による蓄熱式冷凍サイクル
装置のサイクル図、第2図は蓄熱運転時の動作図、第3
図は蓄冷擬縮冷房運転時の動作図、第4図はそのモリエ
ル線図、第5図は液過冷却冷房運転時の動作図、第6図
はそのモリエル線図、第7図は一般冷房の冷凍サイクル
運転時の動作図、第8図は従来の蓄熱式冷凍サイクル装
置のサイクル図である。 (1)は圧縮機、(2)は熱源側熱交換器、(3)は第
1の絞り装置、(4)は利用側熱交換器、(6)は蓄熱
槽、(7)は蓄熱媒体、(9)は蓄熱用熱交換器、(1
0)は蓄熱用バイパス路、(11)は第2の絞り装置、(1
2)は第2の絞り装置用バイパス路、(13)は蓄熱利用
用バイパス路、(14)は熱源側熱交換器用バイパス路を
示す。 なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a cycle diagram of a regenerative refrigeration cycle apparatus according to one embodiment of the present invention, FIG. 2 is an operation diagram during a heat storage operation, and FIG.
Fig. 4 is an operation diagram during the cold storage pseudo shrinkage cooling operation, Fig. 4 is a Mollier diagram thereof, Fig. 5 is an operation diagram during the liquid supercooling cooling operation, Fig. 6 is a Mollier diagram thereof, and Fig. 7 is general cooling. FIG. 8 is a cycle diagram of a conventional regenerative refrigeration cycle apparatus during a refrigeration cycle operation. (1) is a compressor, (2) is a heat source side heat exchanger, (3) is a first expansion device, (4) is a use side heat exchanger, (6) is a heat storage tank, and (7) is a heat storage medium. , (9) are heat exchangers for heat storage, (1
0) is a bypass path for heat storage, (11) is a second expansion device, (1)
2) denotes a second bypass path for the expansion device, (13) denotes a bypass path for heat storage use, and (14) denotes a bypass path for the heat source side heat exchanger. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】圧縮機、熱源側熱交換器、第1の絞り装
置、及び利用側熱交換器を順次接続して形成された冷凍
サイクルと、蓄熱用熱交換器を有し上記圧縮機の吸入側
と上記熱源側熱交換器の出口側とを接続し蓄熱運転時形
成される蓄熱用バイパス路と、上記熱源側熱交換器の出
口側と上記蓄熱用熱交換器の一端側との間に設けられた
第2の絞り装置と、この第2の絞り装置の入口側と出口
側とを接続し一般冷房及び液過冷却運転時形成される第
2の絞り装置用バイパス路と、内部に蓄熱媒体を収容し
上記蓄熱用熱交換器と熱交換可能に設けられた蓄熱槽
と、上記蓄熱用熱交換器の他端側と上記第1の絞り装置
の入口側とを接続し蓄冷擬縮運転時及び液過冷却運転時
形成される蓄熱利用用バイパス路と、上記熱源側熱交換
器の入口側と上記第2の絞り装置の出口側とを接続し蓄
冷擬縮運転時形成される熱源側熱交換器用バイパス路と
を備え、一般冷房時は、上記圧縮機から上記熱源側熱交
換器、上記第1の絞り装置、及び上記利用側熱交換器等
を介して上記圧縮機へいたる冷却回路を、蓄熱運転時
は、上記圧縮機から上記熱源側熱交換器、上記第2の絞
り装置、及び上記蓄熱用熱交換器等を介して上記圧縮機
へいたる蓄熱回路を、蓄冷擬縮運転時は、上記圧縮機か
ら高圧ガス状態で上記蓄熱用熱交換器、上記蓄熱利用用
バイパス路、上記第1の絞り装置、及び上記利用側熱交
換器等を介して上記圧縮機へいたる蓄冷擬縮回路を、液
過冷却運転時は、上記圧縮機から上記熱源側熱交換器、
上記蓄熱用熱交換器、上記蓄熱利用用バイパス路、上記
第1の絞り装置、及び上記利用側熱交換器等を介して上
記圧縮機へいたる液過冷却回路をそれぞれ構成し、蓄熱
利用の冷房運転時、負荷に応じて、上記蓄冷擬縮運転と
上記液過冷却運転とを切換え運転し、冷房負荷が小さい
ときは上記蓄冷擬縮運転を行ない、冷房負荷が大きいと
きは上記液過冷却運転を行ない、蓄熱が無くなったとき
上記一般冷房を行なうことを特徴とする蓄熱式冷凍サイ
クル装置。
1. A compressor having a refrigeration cycle formed by sequentially connecting a compressor, a heat source side heat exchanger, a first expansion device, and a use side heat exchanger, and a heat storage heat exchanger. A heat storage bypass formed by connecting the suction side and the outlet side of the heat source side heat exchanger during the heat storage operation, and between the outlet side of the heat source side heat exchanger and one end side of the heat storage heat exchanger; A second expansion device provided in the second expansion device, a second expansion device bypass passage connecting the inlet side and the outlet side of the second expansion device and formed during general cooling and liquid supercooling operations, and A heat storage tank that houses a heat storage medium and is provided so as to be capable of exchanging heat with the heat storage heat exchanger; and connecting the other end of the heat storage heat exchanger and the inlet side of the first expansion device to form a cool storage pseudo shrinkage. A heat storage utilization bypass formed during operation and subcooling operation, an inlet side of the heat source side heat exchanger and the second A heat-source-side heat exchanger bypass path formed at the time of cold storage pseudo-shrinkage operation by connecting to an outlet side of the expansion device; and during general cooling, the compressor is connected to the heat source-side heat exchanger, the first expansion device. And a cooling circuit from the compressor to the heat source side heat exchanger, the second expansion device, and the heat storage heat exchange during the heat storage operation. The heat storage circuit leading to the compressor via a compressor or the like, during the cold storage pseudo-shrinkage operation, the heat storage heat exchanger, the heat storage utilization bypass, the first expansion device, And the cool storage pseudo compression circuit to the compressor via the use side heat exchanger, etc., during the liquid supercooling operation, from the compressor to the heat source side heat exchanger,
A liquid supercooling circuit is provided to the compressor via the heat storage heat exchanger, the heat storage use bypass path, the first expansion device, the use side heat exchanger, etc. During operation, the operation is switched between the cool storage pseudo-shrinking operation and the liquid supercooling operation according to the load.When the cooling load is small, the cool storage pseudo-shrinkage operation is performed, and when the cooling load is large, the liquid subcooling operation is performed. And performing the above-described general cooling when the heat storage is exhausted.
【請求項2】蓄熱槽と蓄熱用熱交換器間に蓄熱媒体搬送
装置を設け、上記蓄熱用熱交換器を強制対流形の蓄熱用
熱交換器としたことを特徴とする請求項1記載の蓄熱式
冷凍サイクル装置。
2. The heat storage heat exchanger according to claim 1, wherein a heat storage medium transport device is provided between the heat storage tank and the heat storage heat exchanger, and the heat storage heat exchanger is a forced convection type heat storage heat exchanger. Heat storage refrigeration cycle device.
JP2054012A 1990-03-05 1990-03-05 Thermal storage refrigeration cycle device Expired - Lifetime JP2705270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2054012A JP2705270B2 (en) 1990-03-05 1990-03-05 Thermal storage refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2054012A JP2705270B2 (en) 1990-03-05 1990-03-05 Thermal storage refrigeration cycle device

Publications (2)

Publication Number Publication Date
JPH03255852A JPH03255852A (en) 1991-11-14
JP2705270B2 true JP2705270B2 (en) 1998-01-28

Family

ID=12958678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2054012A Expired - Lifetime JP2705270B2 (en) 1990-03-05 1990-03-05 Thermal storage refrigeration cycle device

Country Status (1)

Country Link
JP (1) JP2705270B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5052840A (en) * 1973-09-07 1975-05-10
JPS61125553A (en) * 1984-11-20 1986-06-13 松下電器産業株式会社 Cold accumulating air conditioner

Also Published As

Publication number Publication date
JPH03255852A (en) 1991-11-14

Similar Documents

Publication Publication Date Title
EP3995758A1 (en) Heat exchange unit for a refrigeration apparatus with a thermal storage and using co2 as refrigerant
CN213955695U (en) Air conditioning system with auxiliary refrigeration and air conditioner
JP2705270B2 (en) Thermal storage refrigeration cycle device
WO2002066908A1 (en) System and method in which co2 is used for defrost and as refrigerant during stand-still
CN110595089A (en) Air conditioning system capable of recovering indoor residual cold and residual heat after shutdown
JP2646877B2 (en) Thermal storage refrigeration cycle device
JP2661313B2 (en) Thermal storage refrigeration cycle device
CN211822913U (en) Air conditioning system for machine room
JP2500979B2 (en) Thermal storage refrigeration cycle device
JP2536219B2 (en) Thermal storage refrigeration cycle device
JP2757660B2 (en) Thermal storage type air conditioner
JP2710883B2 (en) Operation control method in regenerative refrigerating cycle device
JPH04257660A (en) Two stage compression refrigerating cycle device
JP3783153B2 (en) Air conditioner
JP6926153B2 (en) Superconductor cooling device and superconductor cooling method
US20230392829A1 (en) Refrigerant circuit for a refrigeration apparatus with a thermal storage and method for controlling a refrigerant circuit
EP3995760B1 (en) Thermal storage unit for a refrigeration apparatus with a thermal storage and using co2 as refrigerant
JPH0539960A (en) Freezer
JP3015560B2 (en) Heat storage type cooling device
JP3674974B2 (en) Water cooler
EP3995761A1 (en) Refrigerant circuit for a refrigeration apparatus with a thermal storage and method forcontrolling a refrigerant circuit
JP2751695B2 (en) Heat storage type cooling device
JPH0413050A (en) Heat storage type freezing cycle device
JPH0413054A (en) Heat storage type freezing cycle device
JPH11173689A (en) Heat storage type cooling device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071009

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 13