JP3674974B2 - Water cooler - Google Patents

Water cooler Download PDF

Info

Publication number
JP3674974B2
JP3674974B2 JP02326595A JP2326595A JP3674974B2 JP 3674974 B2 JP3674974 B2 JP 3674974B2 JP 02326595 A JP02326595 A JP 02326595A JP 2326595 A JP2326595 A JP 2326595A JP 3674974 B2 JP3674974 B2 JP 3674974B2
Authority
JP
Japan
Prior art keywords
accumulator
cold water
compressor
water tank
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02326595A
Other languages
Japanese (ja)
Other versions
JPH08200861A (en
Inventor
款 久城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP02326595A priority Critical patent/JP3674974B2/en
Publication of JPH08200861A publication Critical patent/JPH08200861A/en
Application granted granted Critical
Publication of JP3674974B2 publication Critical patent/JP3674974B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、冷水装置に関し、特に詳述すれば、冷房機能を備える冷水装置に関する。
【0002】
【従来の技術】
図2を参照して冷水装置1の基本構成を示す。フロン代替媒体を封入した冷水用冷媒回路は、圧縮機2、凝縮器としての室外側熱交換器3、膨脹弁4、蒸発器としての冷水タンク5、アキュムレータ9を直列に接続した構成を有し、冷水タンク内で低温となった水は、そばや豆腐を冷やすのに或いはレストランの調理物の冷却に用いられる。
この冷水装置1のサイクルについて説明するに、圧縮機2からの高温高圧のガス(フロン代替媒体)は、凝縮器となる室外側熱交換器3に入り、ここで放熱しながら凝縮し高温高圧の液相となる。この液相は、次いで、膨脹弁4により膨脹し、低温低圧の気液2相となって、蒸発器としての冷水タンク5内に入る。冷水タンク5は、水道水を受ける貯水部と気液2相の媒体を通す管路部とからなり、管路部内の気液2相の媒体は貯水部の水の熱を奪い蒸発して低温低圧のガス(一部液相を含む)となってアキュムレータ9に入る。アキュムレータ9内では気液が分離され、ガス相のみが圧縮機2に吸入される。
【0003】
冷水タンク5内の水は、気液2相の媒体の蒸発のため吸熱され、その水温を下げ、冷水となって、たとえば、そばの水洗のために使用される。冷水タンク5内の水が外部へ供給されかつ新しい比較的水温の高い水が冷水タンク5内に送り込まれている間即ち水が循環する負荷時には、結氷がみられないが、負荷がきわめて小さくなると即ち水の循環がなくなると、結氷が生じる。この結氷を意図的に取り出し利用する場合は別として、結氷は管路部内の気液2相の媒体は水からの吸熱を困難にし、液バック状態を作り好ましくない。
【0004】
【発明が解決しようとする課題】
前述した如く、冷水タンク内での気液2相の媒体への熱吸収の困難さに基因する液バック状態を活用し、冷水装置を効率よく利用することを、本発明は解決すべき課題とする。
【0005】
【課題を解決するための手段】
本発明は、前述した課題を解決するために、冷媒回路に、圧縮機、凝縮器、蒸発器としての冷水タンクを少なくとも接続した冷水装置において、冷水タンクと圧縮機との間にアキュムレータ、冷媒ポンプ、および蒸発器としての室内側熱交換器とを接続し、アキュムレータが冷水タンクと冷媒ポンプとに接続された第1のアキュムレータと、室内側熱交換器に接続された第2のアキュムレータとを有し、第1のアキュムレータが切換弁を介しかつ第2のアキュムレータが逆止弁を介して圧縮機に接続される冷水装置を提供する。
【0006】
好ましくは、アキュムレータが冷水タンクと冷媒ポンプとに接続された第1のアキュムレータと、室内側熱交換器に接続された第2のアキュムレータとを有し、第1のアキュムレータが切換弁を介しかつ第2のアキュムレータが逆止弁を介して圧縮機に接続される。
【0007】
【作用】
冷水を使用しない時間帯には、アキュムレータ内の液相分を冷媒ポンプにより室内側熱交換器に送りこれを蒸発させて室内冷房を行なう。勿論、冷水タンク内の蓄氷の度合いに応じて、冷水供給と冷風供給とを同時可能とさせ得る。
【0008】
【実施例】
図1に示す本発明の一例は、図2に示す従来例の冷媒回路を含むので図2と同一構成部分には同一符号を記してその説明を省略する。
アキュムレータ6の液相分を、冷媒ポンプ7を介して、蒸発器としての室内側熱交換器8に接続し、この室内側熱交換器8を第2のアキュムレータ9を介して圧縮機2に接続する。第1のアキュムレータ6は切換弁10を介して圧縮機2に接続しかつ第2のアキュムレータ9が逆止弁11を介して圧縮機2に接続される。
【0009】
通常の冷水供給時には、切換弁10を開にしかつ冷媒ポンプ7をオフ状態とさせ、冷水タンク5からの気液2相の冷媒はアキュムレータ6に入り、気相分が圧縮機2に吸入される。冷水供給停止時には、切換弁10を閉じ、冷媒ポンプ7をオン状態とさせ、冷水タンク5からの気液2相の冷媒を、アキュムレータ6に入れ、液相分を冷媒ポンプ7で室内側熱交換器8に送り、液相の冷媒を蒸発させ、室内を冷房状態とさせる。蒸発した冷媒は第2のアキュムレータ9内に入り、気相分が圧縮機2に吸入され、再圧縮され、高温高圧のガスとなって圧縮機2から吐出する。
【0010】
冷水タンク5内の蓄氷又は結氷状態に応じては、冷水供給と冷風供給とが可能である。
【0011】
冷媒として、3成分からなる混合媒体、即ち、R−32 23〜30wt%、R−125 10〜25wt%、R−134a 52〜60wt%からなる冷媒を用いると、沸点の高いR−134aが液化しやすいので、第1のアキュムレータ6内にR−134aの成分比率の多い液相が多量に作られ、冷房時間を長く維持できる。
【0012】
【効果】
冷水装置を使用する店舗は、室内側熱交換器、冷媒ポンプ、アキュムレータを付設するのみで、室内冷房が、冷水不使用時、得られるので、冷水装置を効果的に利用できる。
【図面の簡単な説明】
【図1】本発明の一例の説明図である。
【図2】従来例の冷水装置の説明図である。
【符号の説明】
2 圧縮機
3 凝縮器
4 膨脹弁
5 冷水タンク(蒸発器)
6、9 アキュムレータ
7 冷媒ポンプ
8 室内側熱交換器
[0001]
[Industrial application fields]
The present invention relates to a chilled water device, and more particularly to a chilled water device having a cooling function.
[0002]
[Prior art]
With reference to FIG. 2, the basic structure of the cold water apparatus 1 is shown. A refrigerant circuit for cold water in which a CFC substitute medium is sealed has a configuration in which a compressor 2, an outdoor heat exchanger 3 as a condenser, an expansion valve 4, a cold water tank 5 as an evaporator, and an accumulator 9 are connected in series. The cold water in the cold water tank is used to cool buckwheat and tofu or to cool restaurant food.
The cycle of the chilled water device 1 will be described. A high-temperature and high-pressure gas (CFC substitute medium) from the compressor 2 enters an outdoor heat exchanger 3 serving as a condenser, where it condenses while dissipating heat at a high-temperature and high-pressure. It becomes a liquid phase. This liquid phase is then expanded by the expansion valve 4 to form a low-temperature and low-pressure gas-liquid two phase, and enters a cold water tank 5 as an evaporator. The cold water tank 5 is composed of a water storage part for receiving tap water and a pipe part for passing a gas-liquid two-phase medium, and the gas-liquid two-phase medium in the pipe part takes away the heat of the water in the water storage part and evaporates. It enters the accumulator 9 as a low-pressure gas (including a part of the liquid phase). The gas and liquid are separated in the accumulator 9 and only the gas phase is sucked into the compressor 2.
[0003]
The water in the cold water tank 5 absorbs heat for the vaporization of the gas-liquid two-phase medium, lowers the water temperature, becomes cold water, and is used, for example, for washing the buckwheat. While the water in the cold water tank 5 is supplied to the outside and new relatively high temperature water is being fed into the cold water tank 5, that is, during a load in which the water circulates, no icing is observed, but if the load becomes very small In other words, when there is no circulation of water, freezing occurs. Aside from the intentional extraction and use of this icing, icing is undesirable because the gas-liquid two-phase medium in the pipe section makes it difficult to absorb heat from water and creates a liquid back state.
[0004]
[Problems to be solved by the invention]
As described above, the present invention has a problem to be solved by utilizing the liquid back state due to the difficulty of heat absorption into the gas-liquid two-phase medium in the cold water tank and efficiently using the cold water device. To do.
[0005]
[Means for Solving the Problems]
In order to solve the above-described problems, an object of the present invention is to provide an accumulator and a refrigerant pump between a chilled water tank and a compressor in a chilled water apparatus in which a chilled water tank as a compressor, a condenser, and an evaporator is connected to a refrigerant circuit. A first accumulator connected to the cold water tank and the refrigerant pump, and a second accumulator connected to the indoor heat exchanger. Then, a cold water device is provided in which the first accumulator is connected to the compressor via the switching valve and the second accumulator is connected via the check valve .
[0006]
Preferably, the accumulator includes a first accumulator connected to the cold water tank and the refrigerant pump, and a second accumulator connected to the indoor heat exchanger, and the first accumulator is connected to the first accumulator via the switching valve and Two accumulators are connected to the compressor via a check valve.
[0007]
[Action]
In the time zone when cold water is not used, the liquid phase in the accumulator is sent to the indoor heat exchanger by the refrigerant pump and evaporated to cool the room. Of course, depending on the degree of ice storage in the cold water tank, cold water supply and cold air supply can be made possible simultaneously.
[0008]
【Example】
Since the example of the present invention shown in FIG. 1 includes the refrigerant circuit of the conventional example shown in FIG. 2, the same components as those in FIG.
The liquid phase component of the accumulator 6 is connected to an indoor heat exchanger 8 as an evaporator via a refrigerant pump 7, and this indoor heat exchanger 8 is connected to the compressor 2 via a second accumulator 9. To do. The first accumulator 6 is connected to the compressor 2 via a switching valve 10 and the second accumulator 9 is connected to the compressor 2 via a check valve 11.
[0009]
At the time of normal cold water supply, the switching valve 10 is opened and the refrigerant pump 7 is turned off, the gas-liquid two-phase refrigerant from the cold water tank 5 enters the accumulator 6, and the gas phase is sucked into the compressor 2. . When the cold water supply is stopped, the switching valve 10 is closed, the refrigerant pump 7 is turned on, the gas-liquid two-phase refrigerant from the cold water tank 5 is put into the accumulator 6, and the indoor heat exchange is performed on the liquid phase by the refrigerant pump 7. The liquid phase refrigerant is evaporated and the room is cooled. The evaporated refrigerant enters the second accumulator 9, and the gas phase is sucked into the compressor 2, recompressed, and discharged from the compressor 2 as high-temperature and high-pressure gas.
[0010]
Depending on the ice storage or icing state in the cold water tank 5, cold water supply and cold air supply are possible.
[0011]
When a mixed medium consisting of three components, that is, a refrigerant consisting of 23 to 30 wt% R-32, 10 to 25 wt% R-125, and 52 to 60 wt% R-134a is used as the refrigerant, R-134a having a high boiling point is liquefied. Therefore, a large amount of a liquid phase having a high component ratio of R-134a is formed in the first accumulator 6, and the cooling time can be maintained long.
[0012]
【effect】
A store that uses a chilled water device can be used effectively because the indoor cooling can be obtained when the chilled water is not used only by installing an indoor heat exchanger, a refrigerant pump, and an accumulator.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an example of the present invention.
FIG. 2 is an explanatory diagram of a conventional cold water apparatus.
[Explanation of symbols]
2 Compressor 3 Condenser 4 Expansion valve 5 Cold water tank (evaporator)
6, 9 Accumulator 7 Refrigerant pump 8 Indoor heat exchanger

Claims (1)

冷媒回路に、圧縮機、凝縮器、蒸発器としての冷水タンクを少なくとも接続した冷水装置において、冷水タンクと圧縮機との間にアキュムレータ、冷媒ポンプ、および蒸発器としての室内側熱交換器とを接続し、アキュムレータが冷水タンクと冷媒ポンプとに接続された第1のアキュムレータと、室内側熱交換器に接続された第2のアキュムレータとを有し、第1のアキュムレータが切換弁を介しかつ第2のアキュムレータが逆止弁を介して圧縮機に接続される冷水装置。In a chilled water device in which at least a chilled water tank as a compressor, a condenser, and an evaporator is connected to a refrigerant circuit, an accumulator, a refrigerant pump, and an indoor heat exchanger as an evaporator are provided between the chilled water tank and the compressor. A first accumulator connected to the cold water tank and the refrigerant pump, and a second accumulator connected to the indoor heat exchanger, wherein the first accumulator is connected to the first accumulator via the switching valve. A chilled water device in which the accumulator of 2 is connected to the compressor via a check valve .
JP02326595A 1995-01-19 1995-01-19 Water cooler Expired - Fee Related JP3674974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02326595A JP3674974B2 (en) 1995-01-19 1995-01-19 Water cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02326595A JP3674974B2 (en) 1995-01-19 1995-01-19 Water cooler

Publications (2)

Publication Number Publication Date
JPH08200861A JPH08200861A (en) 1996-08-06
JP3674974B2 true JP3674974B2 (en) 2005-07-27

Family

ID=12105778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02326595A Expired - Fee Related JP3674974B2 (en) 1995-01-19 1995-01-19 Water cooler

Country Status (1)

Country Link
JP (1) JP3674974B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2019456022B2 (en) * 2019-07-09 2023-10-19 Nec Corporation Cooling system

Also Published As

Publication number Publication date
JPH08200861A (en) 1996-08-06

Similar Documents

Publication Publication Date Title
JPH11248264A (en) Refrigerating machine
EP3995758A1 (en) Heat exchange unit for a refrigeration apparatus with a thermal storage and using co2 as refrigerant
JP3674974B2 (en) Water cooler
JPH10160269A (en) Refrigerating device
CN210861850U (en) Double-stage throttling non-azeotropic working medium mechanical supercooling CO2Transcritical refrigeration cycle system
KR20080086160A (en) Dual refrigerant refrigeration equipment by compulsive circulation of secondary refrigerant
CN113432324A (en) Cascade compression refrigeration system and refrigeration equipment with same
US9599371B2 (en) Installation and method for the production of cold and/or heat
JP2646877B2 (en) Thermal storage refrigeration cycle device
JPH08233386A (en) Heat exchanger
JPH08178445A (en) Heat pump type air conditioner
EP3995760B1 (en) Thermal storage unit for a refrigeration apparatus with a thermal storage and using co2 as refrigerant
JPH04257660A (en) Two stage compression refrigerating cycle device
WO2022097680A1 (en) Refrigerant circuit for a refrigeration apparatus with a thermal storage and method for controlling a refrigerant circuit
JP2000337785A (en) Air-conditioning refrigerating apparatus
CN212253306U (en) Refrigerator with a door
CN212253210U (en) Cascade compression refrigeration system and refrigeration equipment with same
EP3995761A1 (en) Refrigerant circuit for a refrigeration apparatus with a thermal storage and method forcontrolling a refrigerant circuit
JP2004069276A (en) Waste heat recovering cooling system
KR200259324Y1 (en) Refrigeration cycle
JPH11281207A (en) Vapor compression chiller
JPH10153352A (en) Refrigerating device
JP2661313B2 (en) Thermal storage refrigeration cycle device
JPH05180519A (en) Heat regenerating freezing cycle device
JP2751695B2 (en) Heat storage type cooling device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050128

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees