JPH08128764A - Oil temperature sensor mounting structure for compressor - Google Patents
Oil temperature sensor mounting structure for compressorInfo
- Publication number
- JPH08128764A JPH08128764A JP6267649A JP26764994A JPH08128764A JP H08128764 A JPH08128764 A JP H08128764A JP 6267649 A JP6267649 A JP 6267649A JP 26764994 A JP26764994 A JP 26764994A JP H08128764 A JPH08128764 A JP H08128764A
- Authority
- JP
- Japan
- Prior art keywords
- compressor
- oil
- temperature sensor
- oil temperature
- tho
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2115—Temperatures of a compressor or the drive means therefor
- F25B2700/21155—Temperatures of a compressor or the drive means therefor of the oil
Landscapes
- Compressor (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、冷凍装置等に備えられ
る圧縮機に対し、その内部に貯留されている潤滑油の温
度を検出する油温センサの取付け構造の改良に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a structure for mounting an oil temperature sensor for detecting the temperature of lubricating oil stored in a compressor provided in a refrigerating device or the like.
【0002】[0002]
【従来の技術】従来より、例えば特開平4−20376
2号公報に開示されているように、空気調和装置に備え
られている冷媒回路は圧縮機を具備している。この圧縮
機は、蒸発器において蒸発されたガス冷媒を吸入し、こ
れを高温高圧に圧縮した後、凝縮器に向って吐出してい
る。2. Description of the Related Art Conventionally, for example, JP-A-4-20376.
As disclosed in Japanese Unexamined Patent Publication No. 2 (1994), the refrigerant circuit included in the air conditioner includes a compressor. This compressor draws in the gas refrigerant evaporated in the evaporator, compresses it to a high temperature and high pressure, and then discharges it toward the condenser.
【0003】また、このような圧縮機の運転時におい
て、冷媒が十分に蒸発されないような運転状態(例えば
デフロスト運転時や低外気暖房運転時)にあっては、冷
媒の一部に液相が残ったまま圧縮機に吸入される所謂湿
り運転状態が発生し易く、この際、液冷媒が圧縮機内に
貯留されている潤滑油を希釈するなどして圧縮機の運転
に支障を招く虞れがある。In addition, during such operation of the compressor, in an operating state in which the refrigerant is not sufficiently evaporated (for example, during defrost operation or low outside air heating operation), the liquid phase is partially present in the refrigerant. A so-called wet operation state in which the remaining portion is sucked into the compressor is likely to occur, and at this time, there is a risk that the liquid refrigerant dilutes the lubricating oil stored in the compressor, which may hinder the operation of the compressor. is there.
【0004】このため、このような湿り運転状態が発生
し易い状況では、圧縮機を低回転で運転させて、圧縮機
内に液冷媒が吸入されることを抑制している。Therefore, in a situation where such a wet operation state is likely to occur, the compressor is operated at a low rotation speed to prevent the liquid refrigerant from being sucked into the compressor.
【0005】そして、この圧縮機の運転状態が湿り運転
状態であるか否かを判定する手段の1つとして、圧縮機
内に貯留されている潤滑油の温度を検出することが行わ
れている。つまり、この油温が所定値以下である場合に
は、湿り運転状態であると判断して、圧縮機を低回転で
運転させる。The temperature of the lubricating oil stored in the compressor is detected as one means for determining whether the operating condition of the compressor is a wet operating condition. That is, when the oil temperature is equal to or lower than the predetermined value, it is determined that the operation is wet, and the compressor is operated at low speed.
【0006】また、この油温を検出するための油温セン
サ(サーミスタ)の圧縮機に対する取付け構造の一例と
して、図7及び図8に示すように、金属製で帯状の係止
帯(a) により、圧縮機ケーシング(b) の外側面に油温セ
ンサ(c) を一体的に巻き付けることが行われている。Further, as an example of the mounting structure of the oil temperature sensor (thermistor) for detecting the oil temperature to the compressor, as shown in FIGS. 7 and 8, a metal belt-shaped locking band (a) is used. Thus, the oil temperature sensor (c) is integrally wound around the outer surface of the compressor casing (b).
【0007】また、その他の取付け構造として、油温セ
ンサ(c) を圧縮機内部の底部に収容させて、潤滑油の温
度を直接的に検出することも行われている。As another mounting structure, the oil temperature sensor (c) is housed in the bottom of the compressor to directly detect the temperature of the lubricating oil.
【0008】[0008]
【発明が解決しようとする課題】しかしながら、上述し
たような取付け構造では以下に述べるような問題があ
る。前者の構成では、油温センサ(c) を取付ける際の作
業として、該油温センサ(c) を圧縮機ケーシング(b) の
外側面に当接させた状態を保持したまま係止帯(a)を比
較的大径の圧縮機ケーシング(b) の外側面に巻き付けね
ばならず、その作業が煩雑であった。However, the above-mentioned mounting structure has the following problems. In the former configuration, as a work for mounting the oil temperature sensor (c), the retaining band (a) is maintained while the oil temperature sensor (c) is kept in contact with the outer surface of the compressor casing (b). ) Had to be wrapped around the outer surface of the compressor casing (b) having a relatively large diameter, and the work was complicated.
【0009】一方、後者の構成では、油温センサ(c) の
信号線を圧縮機内部から取出すための構成が必要になる
ので、圧縮機の加工工数の増加やコストの増大を招いて
しまう。On the other hand, in the latter configuration, a configuration for taking out the signal line of the oil temperature sensor (c) from the inside of the compressor is required, so that the number of processing steps of the compressor and the cost are increased.
【0010】本発明は、これらの点に鑑みてなされたも
のであって、圧縮機内部の油温を検出するための油温セ
ンサを、圧縮機の加工工数の増加やコストの増大を招く
ことなく、且つ簡単な作業で圧縮機に取付けることを目
的とする。The present invention has been made in view of these points, and an oil temperature sensor for detecting the oil temperature inside the compressor causes an increase in the number of processing steps of the compressor and an increase in cost. It is intended to be attached to the compressor without any and with a simple operation.
【0011】[0011]
【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、圧縮機ケーシングに突設されている座
を利用し、この座に対して油温センサを取付けるように
した。具体的に請求項1記載の発明は、内部に潤滑油が
貯留された圧縮機(1a)のケーシング(35)の底部周辺の外
側面に潤滑油を取出すための配管で成る座(35a),(35c)
を突設させ、該座(35a),(35c) の外周部にケーシング(3
5)内の潤滑油の温度を検出するための油温センサ(Tho)
を取付け金具(36)によって潤滑油からの伝熱が可能とな
るように取付けた構成としている。In order to achieve the above object, the present invention utilizes a seat protruding from the compressor casing, and an oil temperature sensor is attached to this seat. Specifically, the invention according to claim 1 is a seat (35a) formed of a pipe for taking out lubricating oil to the outer surface around the bottom of the casing (35) of the compressor (1a) in which lubricating oil is stored, (35c)
And project the casing (3a) around the outer periphery of the seats (35a), (35c).
5) Oil temperature sensor (Tho) to detect the temperature of the lubricating oil inside
Is mounted so that heat can be transferred from the lubricating oil by the mounting bracket (36).
【0012】請求項2記載の発明は、上記請求項1記載
の圧縮機の油温センサ取付け構造において、圧縮機(1a)
を、隣接する圧縮機(1b)に均油管(1f)により接続させ、
該均油管(1f)内に潤滑油を流通させることにより、各圧
縮機(1a),(1b) 内部の潤滑油量を略均等にさせる。そし
て、上記圧縮機(1a)のケーシング(35)に、均油管(1f)を
接続するための均油管座(35a) を突設させ、油温センサ
(Tho) を、圧縮機(1a)の均油管座(35a) に取付けた構成
としている。According to a second aspect of the invention, in the structure for mounting the oil temperature sensor of the compressor according to the first aspect, the compressor (1a) is provided.
Is connected to the adjacent compressor (1b) by an oil equalizing pipe (1f),
By circulating the lubricating oil in the oil equalizing pipe (1f), the amounts of lubricating oil inside the compressors (1a), (1b) are made substantially equal. Then, the casing (35) of the compressor (1a) is provided with an oil equalizing pipe seat (35a) for connecting the oil equalizing pipe (1f), and the oil temperature sensor
(Tho) is attached to the oil level pipe seat (35a) of the compressor (1a).
【0013】請求項3記載の発明は、上記請求項1記載
の圧縮機の油温センサ取付け構造において、圧縮機(1a)
のケーシング(35)に、該ケーシング(35)内の潤滑油を排
出する際に開放される排油座(35c) を突設させ、油温セ
ンサ(Tho) を、この排油座(35c) に取付けた構成として
いる。According to a third aspect of the invention, in the structure for mounting the oil temperature sensor of the compressor according to the first aspect, the compressor (1a)
In the casing (35) of the above, an oil drain seat (35c) that is opened when the lubricating oil in the casing (35) is discharged is made to project, and an oil temperature sensor (Tho) is attached to this oil drain seat (35c). It is configured to be attached to.
【0014】請求項4記載の発明は、上記請求項1、2
または3記載の圧縮機の油温センサ取付け構造におい
て、取付け金具(36)に、油温センサ(Tho) を保持するセ
ンサ保持部(36b) と、座(35a),(35c) に係止される係止
部(36a) とを備えさせる。そして、上記センサ保持部(3
6b) に油温センサ(Tho) が保持され、且つ係止部(36a)
が座(35a),(35c) に係止された状態では、油温センサ(T
ho) が座(35a),(35c) の外側面に当接するようにした。The invention according to claim 4 is the above-mentioned claim 1, 2
Alternatively, in the compressor oil temperature sensor mounting structure described in 3, the mounting bracket (36) is locked to the sensor holding portion (36b) that holds the oil temperature sensor (Tho) and the seats (35a) and (35c). And a locking portion (36a) for locking. Then, the sensor holder (3
6b) holds the oil temperature sensor (Tho) and locks (36a)
Is locked to the seats (35a) and (35c), the oil temperature sensor (T
The ho) is brought into contact with the outer surface of the seats (35a), (35c).
【0015】[0015]
【作用】上記の構成により、本発明では以下に述べるよ
うな作用が得られる。請求項1記載の発明では、圧縮機
(1a)の運転時において、その運転状態が湿り状態である
か否かを判定する際には、圧縮機ケーシング(35)から突
設された座(35a),(35c)に取付けられた油温センサ(Tho)
により、その内部の潤滑油温度を検出し、これに基い
て判定する。また、油温センサ(Tho) を取付け金具(36)
によって座(35a),(35c) に取付けるようにしているの
で、比較的径寸法が小さい部分に対して油温センサ(Th
o) を取付けることができ、その取付け作業性が容易で
ある。With the above construction, the present invention provides the following actions. In the invention according to claim 1, the compressor
During the operation of (1a), when determining whether the operating condition is wet, oil attached to the seats (35a), (35c) protruding from the compressor casing (35) is used. Temperature sensor (Tho)
The internal temperature of the lubricating oil is detected, and the determination is made based on this. Also, attach the oil temperature sensor (Tho) to the mounting bracket (36).
Since it is attached to the seats (35a) and (35c) by the oil temperature sensor (Th
o) can be attached, and its workability is easy.
【0016】請求項2記載の発明では、各圧縮機(1a),
(1b) の運転時には、この両者を接続する均油管(1f)内
を潤滑油が流通することにより、各圧縮機(1a),(1b) 内
部の潤滑油量が略均等にされる。そして、油温センサ(T
ho) は、この均油管(1f)を接続するための均油管座(35
a) に取付けられており、その内部を流通する潤滑油の
温度を検出している。In the invention according to claim 2, each compressor (1a),
During the operation of (1b), the lubricating oil flows through the oil equalizing pipe (1f) connecting the both, so that the amount of lubricating oil inside the compressors (1a), (1b) is made substantially equal. Then, the oil temperature sensor (T
ho) is an oil equalizing pipe seat (35) for connecting this oil equalizing pipe (1f).
It is attached to a) and detects the temperature of the lubricating oil flowing inside.
【0017】請求項3記載の発明では、油温センサ(Th
o) は、排油座(35c) に取付けられており、その内部の
潤滑油の温度を検出している。According to the third aspect of the invention, the oil temperature sensor (Th
o) is attached to the oil drain seat (35c) and detects the temperature of the lubricating oil inside it.
【0018】請求項4記載の発明では、油温センサ(Th
o) を座(35a),(35c) に取付ける際には、先ず、取付け
金具(36)のセンサ保持部(36b) に油温センサ(Tho) を保
持させておき、この状態で、係止部(36a) を座(35a),(3
5c) に係止させる。これにより、油温センサ(Tho) が取
付け金具(36)を介して座(35a),(35c) に取付けられるこ
とになり、しかも、この状態では、油温センサ(Tho) が
座(35a),(35c) の外周面に当接しているので、油温セン
サ(Tho) は、座(35a),(35c) の壁を介して潤滑油の温度
を検出する。According to the invention of claim 4, the oil temperature sensor (Th
When attaching (o) to the seats (35a), (35c), first hold the oil temperature sensor (Tho) in the sensor holding part (36b) of the mounting bracket (36), and then lock it in this state. Seat (35a), (3a)
5c). As a result, the oil temperature sensor (Tho) is attached to the seats (35a), (35c) via the mounting bracket (36), and in this state, the oil temperature sensor (Tho) is attached to the seat (35a). , (35c) is in contact with the outer peripheral surface, so that the oil temperature sensor (Tho) detects the temperature of the lubricating oil via the walls of the seats (35a), (35c).
【0019】[0019]
【実施例】以下、本発明の実施例を図面に基いて説明す
る。Embodiments of the present invention will be described below with reference to the drawings.
【0020】図3は本例に係るマルチ型空気調和装置の
室外ユニット(A) の冷媒配管系統を示し、図示しない
が、この室外ユニット(A) には複数の室内ユニット(B),
(B),…が互いに並列に接続されている。該各室内ユニッ
ト(B) は基本的には同一の構成であり、図4に一つの室
内ユニット(B) の冷媒配管系統を示す。FIG. 3 shows the refrigerant piping system of the outdoor unit (A) of the multi-type air conditioner according to the present embodiment. Although not shown, this outdoor unit (A) has a plurality of indoor units (B),
(B), ... Are connected in parallel with each other. The indoor units (B) have basically the same configuration, and FIG. 4 shows a refrigerant piping system of one indoor unit (B).
【0021】上記室外ユニット(A) の内部には、出力周
波数を30〜116Hzの範囲で4〜10Hz毎に可変に切
換えられるインバータ(2a)により容量が調整される第1
圧縮機(1a)と、パイロット圧の高低で作動停止が切換え
られる第2圧縮機(1b)とを逆止弁(1e)を介して並列に接
続して構成される容量可変な圧縮機(1) と、上記第1,
第2圧縮機(1a),(1b) から夫々吐出されるガス中の油を
分離する油分離器(4a),(4b) と、冷房運転時には図中実
線の如く切換わり暖房運転時には図中破線の如く切換わ
る四路切換弁(5) と、冷房運転時に凝縮器、暖房運転時
に蒸発器となる室外熱交換器(6) および該室外熱交換器
(6) に付設された2台の室外ファン(6a),(6b) と、冷房
運転時には冷媒流量を調節し、暖房運転時には冷媒の絞
り作用を行う室外電動膨張弁(8) と、液化した冷媒を貯
蔵するレシーバ(9) と、アキュムレータ(10)とが主要機
器として内蔵されていて、該各機器(1) 〜(10)は各々冷
媒配管(11)で冷媒の流通が可能に接続されている。Inside the outdoor unit (A), the capacity is adjusted by an inverter (2a) whose output frequency can be variably switched every 4 to 10 Hz within a range of 30 to 116 Hz.
A variable capacity compressor (1) configured by connecting a compressor (1a) and a second compressor (1b) whose operation is switched to stop depending on the pilot pressure to each other in parallel via a check valve (1e). ) And the above first,
Oil separators (4a) and (4b) for separating the oil in the gas discharged from the second compressors (1a) and (1b) respectively, and switching during cooling operation as shown by the solid line in the figure, and during heating operation in the figure A four-way switching valve (5) that switches as shown by the broken line, an outdoor heat exchanger (6) that serves as a condenser during cooling operation, and an evaporator during heating operation, and the outdoor heat exchanger.
Two outdoor fans (6a) and (6b) attached to (6), an outdoor electric expansion valve (8) that regulates the refrigerant flow rate during cooling operation and throttles the refrigerant during heating operation, and liquefied A receiver (9) for storing the refrigerant and an accumulator (10) are built in as main devices, and each of the devices (1) to (10) is connected by a refrigerant pipe (11) so that the refrigerant can flow. ing.
【0022】また、上記室内ユニット(B) は、冷房運転
時には蒸発器、暖房運転時には凝縮器となる室内熱交換
器(12)およびそのファン(12a) を備え、かつ該室内熱交
換器(12)の液管側には、暖房運転時に冷媒流量を調節
し、冷房運転時に冷媒の絞り作用を行う室内電動膨張弁
(13)が介設されている。そして、各室内ユニット(B),
(B),…の冷媒配管は、合流した後、手動閉鎖弁(17a),(1
7b) を介し連絡配管(11a),(11b) によって室外ユニット
(A) との間を接続されている。すなわち、以上の各機器
は冷媒配管(11)により、冷媒の流通が可能に接続されて
いて、室外空気との熱交換により得た熱を室内空気に放
出するようにした主冷媒回路(14)が構成されている。Further, the indoor unit (B) is provided with an indoor heat exchanger (12) and a fan (12a) thereof which serve as an evaporator during cooling operation and a condenser during heating operation, and the indoor heat exchanger (12) ) On the liquid pipe side, an indoor electric expansion valve that regulates the refrigerant flow rate during heating operation and throttles the refrigerant during cooling operation.
(13) is installed. And each indoor unit (B),
(B), ... Refrigerant pipes are joined, and then manually closed valves (17a), (1
Outdoor unit by connecting pipes (11a), (11b) via 7b)
It is connected to (A). That is, each of the above devices is connected by a refrigerant pipe (11) so that the refrigerant can flow, and the main refrigerant circuit (14) is configured to release the heat obtained by heat exchange with the outdoor air to the indoor air. Is configured.
【0023】また、(40)は冷暖房運転時に吸入ラインに
液冷媒を注入し吸入ガスの過熱度を調節するためのリキ
ッドインジェクションバイパス路であって、該リキッド
インジェクションバイパス路(40)は、途中から各圧縮機
(1a),(1b) の吸入部に接続される分岐管(40a),(40b) に
分岐している。そして、該各分岐管(40a),(40b) には、
キャピラリチューブ(41a),(41b) と、吐出管温度の過上
昇時に開かれるインジェクション用電磁弁(42a),(42b)
とが夫々介設されている。Further, (40) is a liquid injection bypass passage for injecting a liquid refrigerant into the suction line during heating / cooling operation to adjust the superheat of the suction gas, and the liquid injection bypass passage (40) is Each compressor
It branches into branch pipes (40a) and (40b) connected to the suction part of (1a) and (1b). And, in each of the branch pipes (40a), (40b),
Capillary tubes (41a) and (41b) and injection solenoid valves (42a) and (42b) that are opened when the discharge pipe temperature rises excessively.
And are installed respectively.
【0024】また、(31)は、吸入管(11)中の吸入冷媒と
液管(11)中の液冷媒との熱交換により吸入冷媒を冷却さ
せて、連絡配管(11b) における冷媒の過熱度の上昇を補
償するための吸入管熱交換器である。Further, (31) cools the suction refrigerant by heat exchange between the suction refrigerant in the suction pipe (11) and the liquid refrigerant in the liquid pipe (11), and the refrigerant overheats in the communication pipe (11b). It is a suction pipe heat exchanger for compensating the increase in temperature.
【0025】また、本装置には多くのセンサ類が配置さ
れていて、(Th1) は各室内温度を検出する室温サーモス
タット、(Th2) および(Th3) は各々室内熱交換器(12)の
液側およびガス側配管における冷媒の温度を検出する室
内液温センサ及び室内ガス温センサ、(Th4a),(Th4b) は
各圧縮機(1a),(1b) の吐出管温度を検出する吐出管セン
サ、(Th5) は暖房運転時に室外熱交換器(6) の出口温度
から着霜状態を検出するデフロストセンサ、(Th6) は上
記吸入管熱交換器(31)下流側の吸入管(11)に配置され、
吸入管温度を検出する吸入管センサ、(Th7) は室外熱交
換器(6) の空気吸込口に配置され、吸込空気温度を検出
する外気温センサ、(Tho) は第1圧縮機(1a)に取付けら
れ、その内部に貯留されている潤滑油の温度を検出する
油温センサ、(P1)は吐出管に配設され、主冷媒回路(14)
の高圧側圧力を検出する高圧センサ、(P2)は吸入ライン
に配設され、低圧側圧力を検出する低圧センサである。Further, many sensors are arranged in this apparatus, (Th1) is a room temperature thermostat for detecting the temperature of each room, and (Th2) and (Th3) are liquids of the indoor heat exchanger (12). Indoor liquid temperature sensor and indoor gas temperature sensor that detect the temperature of the refrigerant in the gas side and gas side piping, and (Th4a) and (Th4b) are discharge pipe sensors that detect the discharge pipe temperature of each compressor (1a) and (1b). , (Th5) is a defrost sensor that detects the frosting state from the outlet temperature of the outdoor heat exchanger (6) during heating operation, and (Th6) is the suction pipe (11) on the downstream side of the suction pipe heat exchanger (31). Placed,
Intake pipe sensor for detecting the intake pipe temperature, (Th7) is located at the air intake port of the outdoor heat exchanger (6), the outside air temperature sensor for detecting the intake air temperature, (Tho) is the first compressor (1a) Attached to the oil temperature sensor for detecting the temperature of the lubricating oil stored therein, (P1) is arranged in the discharge pipe, and the main refrigerant circuit (14)
Is a high pressure sensor for detecting the high pressure side pressure, and (P2) is a low pressure sensor disposed in the suction line for detecting the low pressure side pressure.
【0026】なお、この室外ユニット(A) には上記各主
要機器以外に補助用の諸機器が設けられている。(21)
は、第1圧縮機(1a)側の吐出管(1h)と圧縮機吸入側とを
接続する均圧ホットガスバイパス路(11d) に介設され
て、サーモオフ状態等による圧縮機(1) の停止時、再起
動前に一定時間開作動する均圧用電磁弁、(33a),(33b)
はキャピラリチューブ(32a),(32b) を介して上記油分離
器(4a),(4b) から第1,第2圧縮機(1a),(1b) に潤滑油
を夫々戻すための油戻し管である。The outdoor unit (A) is provided with various auxiliary equipment in addition to the above main equipment. (twenty one)
Is installed in a pressure equalizing hot gas bypass line (11d) that connects the discharge pipe (1h) on the first compressor (1a) side and the compressor suction side. Solenoid valve for pressure equalization that operates for a certain period of time before restarting when stopped, (33a), (33b)
Is an oil return pipe for returning the lubricating oil from the oil separators (4a), (4b) to the first and second compressors (1a), (1b) via the capillary tubes (32a), (32b), respectively. Is.
【0027】更に、上記レシーバ(9) と均圧ホットガス
バイパス路(11d) との間には均圧路(30)が設けられてい
る。この均圧路(30)は、一端がレシーバ(9) の上端面に
接続されている一方、他端が上記均圧ホットガスバイパ
ス路(11d) の均圧用電磁弁(21)の上流側に接続されてお
り、レシーバ(9) から均圧ホットガスバイパス路(11d)
へ向う方向への冷媒流通のみを許容するための逆止弁(3
0a) が介設されている。このような構成により、均圧用
電磁弁(21)が開放された状態ではレシーバ(9)内のガス
冷媒が均圧ホットガスバイパス路(11d) 、ひいては圧縮
機(1) の吸入側に導入可能となり、回路全体の均圧が行
われるようになっている。Further, a pressure equalizing passage (30) is provided between the receiver (9) and the pressure equalizing hot gas bypass passage (11d). One end of this pressure equalizing path (30) is connected to the upper end surface of the receiver (9), and the other end is on the upstream side of the pressure equalizing solenoid valve (21) of the pressure equalizing hot gas bypass path (11d). Connected, equalizing hot gas bypass (11d) from receiver (9)
Check valve (3 to allow only refrigerant flow in the direction
0a) is installed. With such a configuration, the gas refrigerant in the receiver (9) can be introduced into the pressure equalizing hot gas bypass passage (11d) and eventually to the suction side of the compressor (1) when the pressure equalizing solenoid valve (21) is opened. Therefore, the pressure of the entire circuit is equalized.
【0028】また、(22)は、第1圧縮機(1a)側の油戻し
管(33a) におけるキャピラリチューブ(32a) の上流側と
圧縮機吸入側とを接続する油回収路(11e) に介設された
電磁弁である。これにより、油分離器(4a)において回収
された潤滑油は、上述した均圧動作時にあっては、油戻
し管(33a) からこの油回収路(11e) を経て圧縮機(1)に
戻されるようになっている。Further, (22) is connected to an oil recovery passageway (11e) connecting the upstream side of the capillary tube (32a) of the oil return pipe (33a) on the first compressor (1a) side and the compressor suction side. It is an intervening solenoid valve. As a result, the lubricating oil recovered in the oil separator (4a) is returned from the oil return pipe (33a) to the compressor (1) via the oil recovery passageway (11e) during the pressure equalizing operation described above. It is supposed to be.
【0029】また、図中、(HPS) は圧縮機保護用の高圧
圧力開閉器、(GP)はゲージポートである。Further, in the figure, (HPS) is a high pressure switch for protecting the compressor, and (GP) is a gauge port.
【0030】そして、上記各電磁弁およびセンサ類は各
主要機器と共にコントロールユニット(15)に信号線で接
続され、該コントロールユニット(15)は各センサ類の信
号を受けて各電動弁及び電磁弁の開閉制御や圧縮機の容
量制御を行うようになっている。The above solenoid valves and sensors are connected to the control unit (15) together with each main device by a signal line, and the control unit (15) receives signals from the sensors and each motorized valve and solenoid valve. The opening / closing control of the compressor and the capacity control of the compressor are performed.
【0031】そして、各圧縮機(1) は所謂強制差圧方式
で構成されている。つまり、駆動及び停止が切換えられ
る第2圧縮機(1b)の吸入管(1d)を、インバータ(2a)によ
り容量が調整される第1圧縮機(1a)の吸入管(1c)の途中
に接続し、且つ、この第2圧縮機(1b)の吸入管(1d)の径
を第1圧縮機(1a)の吸入管(1c)の径よりも小径に設定し
て、第2圧縮機(1b)の吸入管(1d)の圧力損失を第1圧縮
機(1a)の吸入管(1c)の圧力損失よりも大きくするように
し、これにより第1圧縮機(1a)を高ドーム側に第2圧縮
機(1b)を低ドーム側に夫々構成している。また、この第
1圧縮機(1a)と第2圧縮機(1b)とをキャピラリ(1g)が介
設された均油管(1f)によって接続し、内部に貯留されて
いる潤滑油の流通を可能にしている。これにより、両圧
縮機(1a),(1b) の運転中には、上記圧力損失の差により
各圧縮機(1a),(1b) 内部に圧力差が生じて第1圧縮機(1
a)内部の潤滑油が均油管(1f)を経て第2圧縮機(1b)に供
給されることになり、これによって各圧縮機(1a),(1b)
の油量が略均一になるようになっている。Each compressor (1) is constructed by a so-called forced differential pressure system. In other words, connect the suction pipe (1d) of the second compressor (1b) whose drive and stop are switched to the middle of the suction pipe (1c) of the first compressor (1a) whose capacity is adjusted by the inverter (2a). In addition, the diameter of the suction pipe (1d) of the second compressor (1b) is set to be smaller than the diameter of the suction pipe (1c) of the first compressor (1a), and the second compressor (1b) ) Of the suction pipe (1d) of the first compressor (1a) is made larger than the pressure loss of the suction pipe (1c) of the first compressor (1a). The compressors (1b) are respectively configured on the low dome side. Further, the first compressor (1a) and the second compressor (1b) are connected by an oil equalizing pipe (1f) having a capillary (1g) interposed, so that the lubricating oil stored inside can be distributed. I have to. As a result, during operation of both compressors (1a), (1b), a pressure difference is generated inside each compressor (1a), (1b) due to the difference in pressure loss, and the first compressor (1
a) The internal lubricating oil will be supplied to the second compressor (1b) via the oil equalizing pipe (1f), whereby each compressor (1a), (1b)
The amount of oil is almost uniform.
【0032】次に、本例の特徴とする構成として、第1
圧縮機(1a)内に貯留されている潤滑油の温度を検出する
ための油温センサ(Tho) の取付け構造について説明す
る。図1及び図2に示すように、この第1圧縮機(1a)
は、略円筒状のケーシング(35)内に図示しない圧縮機構
及び電動モータを備えており、吸入管(1c)から吸入した
冷媒を圧縮機構によって圧縮した後、吐出管(1h)より吐
出するようになっている。そして、このケーシング(35)
の下端部には、上記均油管(1f)を接続するための均油管
座(35a) が水平方向に突設されている。この均油管座(3
5a) は、長さ寸法の短い配管で成っており、一端がケー
シング(35)の内部空間に開放し、他端が均油管(1f)に接
続されるようになっている。また、この均油管座(35a)
の先端部には、均油管(1f)を接続するための管継手(35
b) が装着されている。Next, as a characteristic configuration of this example, the first
The mounting structure of the oil temperature sensor (Tho) for detecting the temperature of the lubricating oil stored in the compressor (1a) will be described. As shown in FIGS. 1 and 2, this first compressor (1a)
Is equipped with a compression mechanism and an electric motor (not shown) in a substantially cylindrical casing (35) so that the refrigerant sucked from the suction pipe (1c) is compressed by the compression mechanism and then discharged from the discharge pipe (1h). It has become. And this casing (35)
An oil equalizing pipe seat (35a) for connecting the oil equalizing pipe (1f) is horizontally provided at the lower end portion of the above. This oil pipe seat (3
5a) is a pipe having a short length, one end of which is opened to the internal space of the casing (35) and the other end of which is connected to the oil equalizing pipe (1f). Also, this oil pipe seat (35a)
At the tip of the pipe fitting (35) for connecting the oil leveling pipe (1f)
b) is installed.
【0033】また、このケーシング(35)の下端部におけ
る上記均油管座(35a) の配設部分に近接した位置には、
潤滑油を排出する際に使用される排油座(35c) が水平方
向に突設されている。この排油座(35c) は、上記均油管
座(35a) と同様の長さ寸法の短い配管で成っており、一
端がケーシング(35)の内部空間に開放し、他端が排油栓
(35d) によって閉塞されている。そして、圧縮機(1a)の
メンテナンス時や潤滑油の交換時には、この排油栓(35
d) が取り外されて、この排油座(35c) から潤滑油が排
出されるようになっている。Further, at the position near the disposition part of the oil equalizing pipe seat (35a) at the lower end of the casing (35),
The oil drain seat (35c) used when draining the lubricating oil is projected horizontally. The oil drain seat (35c) is made of a short pipe similar in length to the oil equalizing pipe seat (35a) .One end of the oil drain seat (35c) opens into the internal space of the casing (35) and the other end opens.
Blocked by (35d). Then, during maintenance of the compressor (1a) or replacement of lubricating oil, this drain plug (35
The d) is removed, and the lubricating oil is discharged from the oil drain seat (35c).
【0034】そして、油温センサ(Tho) は、上記均油管
座(35a) の外周部に取付け金具(36)によって取付けられ
ている。この取付け金具は、図5及び図6に示すよう
に、金属製の薄板が湾曲されて形成されている。詳しく
は、夫々略半円弧状に形成された曲率半径の大きな大径
係止部(36a) と、これに連続する曲率半径の小さなセン
サ保持部としての小径係止部(36b) とが一体的に形成さ
れており、大径係止部(36a) の端縁部は、この大径係止
部(36a) とは逆方向に僅かに湾曲されている。また、各
係止部(36a),(36b) の径寸法としては、小径係止部(36
b) は油温センサ(Tho) の径寸法に、大径係止部(36a)
は均油管座(35a) の径寸法に略一致若しくは僅かに小径
に夫々形成されている。The oil temperature sensor (Tho) is attached to the outer peripheral portion of the oil equalizing pipe seat (35a) by a fitting (36). As shown in FIGS. 5 and 6, this mounting member is formed by bending a thin metal plate. In detail, each large-diameter locking part (36a) with a large radius of curvature and a small-diameter locking part (36b) as a sensor holding part with a small radius of curvature, which are formed in a substantially semi-circular shape, are integrally formed. The end portion of the large-diameter locking portion (36a) is slightly curved in the opposite direction to the large-diameter locking portion (36a). The diameter of each locking part (36a), (36b) is the same as the small diameter locking part (36a).
b) is the diameter of the oil temperature sensor (Tho), and the large-diameter locking part (36a)
Are formed to have a diameter substantially equal to or slightly smaller than the diameter of the oil equalizing pipe seat (35a).
【0035】このような構成であるために、油温センサ
(Tho) を均油管座(35a) に取付ける際には、先ず、小径
係止部(36b) に対して油温センサ(Tho) を嵌め込んでお
き、この状態で、大径係止部(36a) を均油管座(35a) に
係止させる。これにより、油温センサ(Tho) が取付け金
具(36)を介して均油管座(35a) に取付けられることにな
り、しかも、この状態では、図5に仮想線で示すよう
に、油温センサ(Tho) の外周面と均油管座(35a) の外周
面とが互いに当接された状態となっている。つまり、油
温センサ(Tho) は、均油管座(35a) の管壁を介して該均
油管座(35a) 内部の潤滑油の温度を検出するように配設
されている。Due to this structure, the oil temperature sensor
When attaching (Tho) to the oil equalizing pipe seat (35a), first fit the oil temperature sensor (Tho) to the small diameter locking part (36b), and in this state, set the large diameter locking part ( 36a) to the oil level pipe seat (35a). As a result, the oil temperature sensor (Tho) is attached to the oil equalizing pipe seat (35a) through the mounting metal fitting (36), and in this state, as shown by the phantom line in FIG. The outer peripheral surface of (Tho) and the outer peripheral surface of the oil equalizing pipe seat (35a) are in contact with each other. That is, the oil temperature sensor (Tho) is arranged so as to detect the temperature of the lubricating oil inside the oil equalizing pipe seat (35a) via the pipe wall of the oil equalizing pipe seat (35a).
【0036】次に、上述の如く構成された空気調和装置
の運転動作について説明する。図3及び図4において、
空気調和装置の冷房運転時、四路切換弁(5) が図中実線
側に切換わり、圧縮機(1) で圧縮された冷媒が室外熱交
換器(6) で凝縮され、連絡配管(11a) を経て各室内ユニ
ット(B),(B),…に分岐して送られる。各室内ユニット
(B),(B),…では、各室内電動膨張弁(13), …で減圧さ
れ、各室内熱交換器(12),…で蒸発した後合流して、室
外ユニット(A) にガス状態で戻り、圧縮機(1) に吸入さ
れるように循環する。つまり、液冷媒が室内熱交換器(1
2)において室内空気との間で熱交換を行って蒸発するこ
とにより室内空気を冷却することになる。Next, the operation of the air conditioner constructed as described above will be described. 3 and 4,
During cooling operation of the air conditioner, the four-way selector valve (5) switches to the solid line side in the figure, the refrigerant compressed by the compressor (1) is condensed by the outdoor heat exchanger (6), and the connecting pipe (11a ), And is branched and sent to each indoor unit (B), (B), .... Each indoor unit
In (B), (B), ..., decompressed by each indoor electric expansion valve (13), ..., evaporated by each indoor heat exchanger (12) ,. It returns in the state and circulates so as to be sucked into the compressor (1). In other words, the liquid refrigerant is the indoor heat exchanger (1
In 2), the indoor air is cooled by exchanging heat with the indoor air and evaporating.
【0037】また、暖房運転時には、四路切換弁(5) が
図中破線側に切換わり、冷媒の流れは上記冷房運転時と
逆となって、圧縮機(1) で圧縮された冷媒が各室内熱交
換器(12), …で凝縮され、合流して液状態で室外ユニッ
ト(A) に流れ、室外電動膨張弁(8) により減圧され、室
外熱交換器(6) で蒸発した後圧縮機(1) に戻るように循
環する。つまり、ガス冷媒が室内熱交換器(12)において
室内空気との間で熱交換を行って凝縮することにより室
内空気を加熱することになる。また、この暖房運転時に
室外熱交換器(6) が着霜すると、デフロスト運転に切換
えられ、四路切換弁(5) が図中実線側となると共に各電
動膨張弁(8),(13)が全開とされ、圧縮機(1) から吐出さ
れる高温の冷媒により除霜される。Further, during the heating operation, the four-way switching valve (5) is switched to the broken line side in the figure, the flow of the refrigerant is opposite to that during the cooling operation, and the refrigerant compressed by the compressor (1) is discharged. After being condensed in each indoor heat exchanger (12), merged, flow in the liquid state to the outdoor unit (A), decompressed by the outdoor electric expansion valve (8), and evaporated in the outdoor heat exchanger (6) Circulate back to the compressor (1). That is, the gas refrigerant heats the indoor air by exchanging heat with the indoor air in the indoor heat exchanger (12) and condensing. Also, when the outdoor heat exchanger (6) frosts during this heating operation, it is switched to defrost operation, the four-way switching valve (5) is on the solid line side in the figure, and each electric expansion valve (8), (13). Is fully opened and defrosted by the high temperature refrigerant discharged from the compressor (1).
【0038】また、このような運転動作において、両圧
縮機(1a),(1b) が駆動されている状況にあっては、第2
圧縮機(1b)の吸入管(1d)の圧力損失が第1圧縮機(1a)の
吸入管(1c)の圧力損失よりも大きくなっており、この圧
力損失の差により各圧縮機(1a),(1b) 内部に圧力差が生
じて第1圧縮機(1a)内部の潤滑油が均油管(1f)を経て第
2圧縮機(1b)に供給され、これにより、各圧縮機(1a),
(1b) 内部の潤滑油量が略均等にされている。Further, in such a driving operation, when both compressors (1a), (1b) are driven, the second
The pressure loss of the suction pipe (1d) of the compressor (1b) is larger than the pressure loss of the suction pipe (1c) of the first compressor (1a), and due to the difference in this pressure loss, each compressor (1a) , (1b) causes a pressure difference inside, and the lubricating oil inside the first compressor (1a) is supplied to the second compressor (1b) through the oil equalizing pipe (1f), whereby each compressor (1a) ,
(1b) The amount of lubricating oil inside is made approximately equal.
【0039】そして、このような各運転状態において、
本例の特徴とする動作として、デフロスト運転時や低外
気暖房運転時などのように、冷媒の一部に液相が残った
まま圧縮機(1) に吸入される所謂湿り運転状態が発生し
易い運転状態にあっては、圧縮機(1) 内の潤滑油温度を
検出し、この潤滑油温度によって湿り判定を行ってい
る。具体的には、第1圧縮機(1a)の均油管座(35a) に取
付けられている油温センサ(Tho) により、該均油管座(3
5a) の管壁を介してその内部の潤滑油の温度を検出して
おり、この検出温度が所定の湿り判定温度よりも低い場
合には、湿り運転状態であると判断して圧縮機(1) の運
転周波数を低減させて圧縮機(1) 内へ液冷媒が導入され
ることを回避している。これにより、液冷媒が潤滑油を
希釈するなどして圧縮機(1) の運転に支障を招くことが
回避され、安定した連続運転が行われる。Then, in each of these operating states,
As a characteristic operation of this example, a so-called wet operation state in which the liquid phase remains in a part of the refrigerant and is sucked into the compressor (1) occurs during defrost operation or low outside air heating operation. In the easy operating condition, the temperature of the lubricating oil in the compressor (1) is detected and the wetness is judged by this lubricating oil temperature. Specifically, the oil temperature sensor (Tho) attached to the oil leveling pipe seat (35a) of the first compressor (1a) is used to
The temperature of the lubricating oil inside it is detected through the pipe wall in 5a) .If the detected temperature is lower than the predetermined wetness judgment temperature, it is determined that the compressor is in the wet operation state and the compressor (1 The operating frequency of) is reduced to prevent the introduction of liquid refrigerant into the compressor (1). As a result, the liquid refrigerant is prevented from diluting the lubricating oil and the like, thereby preventing the operation of the compressor (1) from being hindered, and a stable continuous operation is performed.
【0040】以上説明したように、本例の構成によれ
ば、潤滑油の温度を検出するための油温センサ(Tho) を
取付け金具(36)によって均油管座(35c) に取付けるよう
にしたために、その取付け動作の際には、取付け金具(3
6)の各係止部(36a),(36b) への嵌め込み動作により行
え、また、径寸法の比較的小さい部分に取付けるので、
従来のように、係止帯により圧縮機ケーシングの外側面
に油温センサを一体的に巻き付けるもの(図7及び図8
参照)に比べて取付け作業の簡略化を図ることができ
る。また、油温センサを圧縮機内部の底部に収容させる
もののように油温センサの信号線を取出すための構成を
必要とすることがないので圧縮機の加工工数及びコスト
の低減を図ることもできる。As described above, according to the configuration of this example, the oil temperature sensor (Tho) for detecting the temperature of the lubricating oil is attached to the oil equalizing pipe seat (35c) by the attachment fitting (36). During the mounting operation, the mounting bracket (3
This can be done by fitting the locking part (36a) and (36b) in 6), and since it is attached to a part with a relatively small diameter,
As in the prior art, the oil temperature sensor is integrally wound around the outer surface of the compressor casing by the locking band (see FIGS. 7 and 8).
It is possible to simplify the installation work compared to (See). Further, unlike the case where the oil temperature sensor is housed in the bottom of the compressor, there is no need for a configuration for taking out the signal line of the oil temperature sensor, so that it is possible to reduce the processing man-hour and cost of the compressor. .
【0041】尚、本例では、均油管座(35a) に油温セン
サ(Tho) を取付けるようにしたが、本発明はこれに限ら
ず、排油座(35c) に対して取付けるようにしてもよい。
この際、均油管座(35a) と排油座(35c) との外径寸法が
略等しい場合には、上述した形状の取付け金具(36)を、
そのまま排油座(35c) への取付け用として利用できる。In this example, the oil temperature sensor (Tho) is attached to the oil equalizing pipe seat (35a), but the present invention is not limited to this, and the oil temperature sensor (Tho) is attached to the oil drain seat (35c). Good.
At this time, if the outer diameter dimensions of the oil equalizing pipe seat (35a) and the oil drain seat (35c) are approximately the same, attach the mounting bracket (36) of the above-mentioned shape to the
It can be used as it is for mounting on the oil drain seat (35c).
【0042】[0042]
【発明の効果】以上説明してきたように、本発明によれ
ば以下に述べるような効果が発揮される。請求項1記載
の発明によれば、圧縮機ケーシングの底部周辺の外側面
に突設された座の外周部に油温センサを取付け金具によ
って取付けたために、油温センサの取付け動作の際、比
較的径寸法が小さい部分に対して油温センサを取付ける
ことができるので、従来のように、係止帯により圧縮機
ケーシングの外側面に油温センサを一体的に巻き付ける
ものに比べて取付け作業の簡略化を図ることができる。
また、油温センサを圧縮機内部の底部に収容させるもの
のように油温センサの信号線を取出すための構成を必要
とすることがないので圧縮機の加工工数及びコストの低
減を図ることもできる。このため、圧縮機に対する油温
センサの取付け構造としての実用性の向上が図れる。As described above, according to the present invention, the following effects are exhibited. According to the invention of claim 1, since the oil temperature sensor is attached to the outer peripheral portion of the seat projecting on the outer surface around the bottom portion of the compressor casing by the attachment fitting, the comparison is made during the attaching operation of the oil temperature sensor. Since the oil temperature sensor can be attached to the part where the target diameter size is small, compared to the conventional method in which the oil temperature sensor is integrally wound around the outer surface of the compressor casing by the locking band, the installation work is easier. It is possible to simplify.
Further, unlike the case where the oil temperature sensor is housed in the bottom of the compressor, there is no need for a configuration for taking out the signal line of the oil temperature sensor, so that it is possible to reduce the processing man-hour and cost of the compressor. . Therefore, it is possible to improve the practicality of the structure for mounting the oil temperature sensor on the compressor.
【0043】請求項2及び3記載の発明によれば、圧縮
機に対する油温センサの取付け位置を具体的に得ること
ができ、更なる実用性の向上が図れる。According to the second and third aspects of the present invention, the mounting position of the oil temperature sensor on the compressor can be specifically obtained, and the practicality can be further improved.
【0044】請求項4記載の発明によれば、取付け金具
に、油温センサを保持するセンサ保持部と、座に係止さ
れる係止部とを備えさせたために、センサ保持部に対し
て油温センサを嵌め込んだ後、係止部を座に係止させる
といった簡単な動作で油温センサを圧縮機に取付けるこ
とができる。According to the fourth aspect of the present invention, since the mounting metal piece is provided with the sensor holding portion for holding the oil temperature sensor and the locking portion for locking with the seat, the mounting metal member is attached to the sensor holding portion. After fitting the oil temperature sensor, the oil temperature sensor can be attached to the compressor by a simple operation such as locking the locking portion to the seat.
【図1】実施例に係る圧縮機の平面図である。FIG. 1 is a plan view of a compressor according to an embodiment.
【図2】圧縮機の正面図である。FIG. 2 is a front view of a compressor.
【図3】室外ユニットの冷媒配管系統を示す図である。FIG. 3 is a diagram showing a refrigerant piping system of an outdoor unit.
【図4】室内ユニットの冷媒配管系統を示す図である。FIG. 4 is a diagram showing a refrigerant piping system of an indoor unit.
【図5】係止金具を示す側面図である。FIG. 5 is a side view showing a locking fitting.
【図6】係止金具を示す正面図である。FIG. 6 is a front view showing a locking fitting.
【図7】従来の油温センサ取付け構造を示す圧縮機の斜
視図である。FIG. 7 is a perspective view of a compressor showing a conventional oil temperature sensor mounting structure.
【図8】従来の油温センサ取付け構造を示す圧縮機の平
面図である。FIG. 8 is a plan view of a compressor showing a conventional oil temperature sensor mounting structure.
(1a) 第1圧縮機 (1b) 第2圧縮機 (1f) 均油管 (35) ケーシング (35a) 均油管座 (35c) 排油座 (36) 取付け金具 (36a) 大径係止部 (36b) 小径係止部(センサ保持部) (Tho) 油温センサ (1a) 1st compressor (1b) 2nd compressor (1f) Oil level pipe (35) Casing (35a) Oil level seat (35c) Oil drain seat (36) Mounting bracket (36a) Large diameter locking part (36b) ) Small diameter locking part (sensor holding part) (Tho) Oil temperature sensor
Claims (4)
ケーシング(35)の底部周辺の外側面には潤滑油を取出す
ための配管で成る座(35a),(35c) が突設されており、該
座(35a),(35c) の外周部にはケーシング(35)内の上記潤
滑油の温度を検出するための油温センサ(Tho) が取付け
金具(36)によって潤滑油からの伝熱が可能に取付けられ
ていることを特徴とする圧縮機の油温センサ取付け構
造。1. Seats (35a), (35c) made up of pipes for taking out lubricating oil project from the outer surface around the bottom of the casing (35) of the compressor (1a) in which lubricating oil is stored. An oil temperature sensor (Tho) for detecting the temperature of the lubricating oil in the casing (35) is installed on the outer periphery of the seats (35a), (35c) by means of the mounting metal fitting (36). An oil temperature sensor mounting structure for a compressor, which is mounted so that heat can be transferred from the compressor.
油管(1f)により接続されており、該均油管(1f)内を潤滑
油が流通することにより、各圧縮機(1a),(1b) 内部の潤
滑油量が略均等にされるように成っており、 上記圧縮機(1a)のケーシング(35)には、均油管(1f)を接
続するための均油管座(35a) が突設されていて、油温セ
ンサ(Tho) は、圧縮機(1a)の均油管座(35a) に取付けら
れていることを特徴とする請求項1記載の圧縮機の油温
センサ取付け構造。2. The compressor (1a) is connected to an adjacent compressor (1b) by an oil equalizing pipe (1f), and the lubricating oil flows through the oil equalizing pipe (1f), whereby each compressor (1a), (1b) The amount of lubricating oil inside is made approximately equal, and the casing (35) of the compressor (1a) has an oil equalizing pipe for connecting the oil equalizing pipe (1f). The compressor oil according to claim 1, characterized in that the seat (35a) is provided so as to project, and the oil temperature sensor (Tho) is attached to the oil level pipe seat (35a) of the compressor (1a). Temperature sensor mounting structure.
ーシング(35)内の潤滑油を排出する際に開放される排油
座(35c) が突設されており、油温センサ(Tho) は、この
排油座(35c) に取付けられていることを特徴とする請求
項1記載の圧縮機の油温センサ取付け構造。3. A casing (35) of the compressor (1a) is provided with an oil drain seat (35c) which is opened when the lubricating oil in the casing (35) is discharged, so that the oil temperature The oil temperature sensor mounting structure for a compressor according to claim 1, wherein the sensor (Tho) is mounted on the oil drain seat (35c).
保持するセンサ保持部(36b) と、座(35a),(35c) に係止
される係止部(36a) とを備えており、上記センサ保持部
(36b) に油温センサ(Tho) が保持され、且つ係止部(36
a) が座(35a),(35c) に係止された状態では、油温セン
サ(Tho) が座(35a),(35c) の外側面に当接されるように
なっていることを特徴とする請求項1、2または3記載
の圧縮機の油温センサ取付け構造。4. The mounting bracket (36) includes a sensor holding portion (36b) for holding an oil temperature sensor (Tho) and a locking portion (36a) locked to the seats (35a), (35c). It is equipped with the above sensor holder
The oil temperature sensor (Tho) is held on (36b) and the locking part (36
When (a) is locked to the seats (35a), (35c), the oil temperature sensor (Tho) is brought into contact with the outer surface of the seats (35a), (35c). The oil temperature sensor mounting structure for a compressor according to claim 1, 2, or 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26764994A JP3293367B2 (en) | 1994-10-31 | 1994-10-31 | Oil temperature sensor mounting structure for compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26764994A JP3293367B2 (en) | 1994-10-31 | 1994-10-31 | Oil temperature sensor mounting structure for compressor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08128764A true JPH08128764A (en) | 1996-05-21 |
JP3293367B2 JP3293367B2 (en) | 2002-06-17 |
Family
ID=17447619
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26764994A Expired - Fee Related JP3293367B2 (en) | 1994-10-31 | 1994-10-31 | Oil temperature sensor mounting structure for compressor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3293367B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1666813A1 (en) * | 2004-11-17 | 2006-06-07 | LG Electronics Inc. | Multi-type air conditioner and method to distribute oil uniformly |
KR100596573B1 (en) * | 2004-12-28 | 2006-07-04 | 삼성전자주식회사 | Air conditioner |
WO2014134336A1 (en) * | 2013-02-28 | 2014-09-04 | Bitzer Kühlmaschinenbau Gmbh | Apparatus and method for oil equalization in multiple-compressor systems |
US9689386B2 (en) | 2012-07-31 | 2017-06-27 | Bitzer Kuehlmaschinenbau Gmbh | Method of active oil management for multiple scroll compressors |
US9939179B2 (en) | 2015-12-08 | 2018-04-10 | Bitzer Kuehlmaschinenbau Gmbh | Cascading oil distribution system |
US10495089B2 (en) | 2012-07-31 | 2019-12-03 | Bitzer Kuehlmashinenbau GmbH | Oil equalization configuration for multiple compressor systems containing three or more compressors |
US10634137B2 (en) | 2012-07-31 | 2020-04-28 | Bitzer Kuehlmaschinenbau Gmbh | Suction header arrangement for oil management in multiple-compressor systems |
US10760831B2 (en) | 2016-01-22 | 2020-09-01 | Bitzer Kuehlmaschinenbau Gmbh | Oil distribution in multiple-compressor systems utilizing variable speed |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4932401B2 (en) * | 2006-09-19 | 2012-05-16 | 株式会社富士通ゼネラル | Hermetic compressor |
-
1994
- 1994-10-31 JP JP26764994A patent/JP3293367B2/en not_active Expired - Fee Related
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1666813A1 (en) * | 2004-11-17 | 2006-06-07 | LG Electronics Inc. | Multi-type air conditioner and method to distribute oil uniformly |
CN100451498C (en) * | 2004-11-17 | 2009-01-14 | Lg电子株式会社 | Multi-type air conditioner and method to for controlling same |
US7721559B2 (en) | 2004-11-17 | 2010-05-25 | Lg Electronics Inc. | Multi-type air conditioner and method for controlling the same |
KR100596573B1 (en) * | 2004-12-28 | 2006-07-04 | 삼성전자주식회사 | Air conditioner |
US9689386B2 (en) | 2012-07-31 | 2017-06-27 | Bitzer Kuehlmaschinenbau Gmbh | Method of active oil management for multiple scroll compressors |
US10495089B2 (en) | 2012-07-31 | 2019-12-03 | Bitzer Kuehlmashinenbau GmbH | Oil equalization configuration for multiple compressor systems containing three or more compressors |
US10612549B2 (en) | 2012-07-31 | 2020-04-07 | Bitzer Kuehlmaschinenbau Gmbh | Oil equalization configuration for multiple compressor systems containing three or more compressors |
US10634137B2 (en) | 2012-07-31 | 2020-04-28 | Bitzer Kuehlmaschinenbau Gmbh | Suction header arrangement for oil management in multiple-compressor systems |
WO2014134336A1 (en) * | 2013-02-28 | 2014-09-04 | Bitzer Kühlmaschinenbau Gmbh | Apparatus and method for oil equalization in multiple-compressor systems |
US9051934B2 (en) | 2013-02-28 | 2015-06-09 | Bitzer Kuehlmaschinenbau Gmbh | Apparatus and method for oil equalization in multiple-compressor systems |
US9939179B2 (en) | 2015-12-08 | 2018-04-10 | Bitzer Kuehlmaschinenbau Gmbh | Cascading oil distribution system |
US10760831B2 (en) | 2016-01-22 | 2020-09-01 | Bitzer Kuehlmaschinenbau Gmbh | Oil distribution in multiple-compressor systems utilizing variable speed |
Also Published As
Publication number | Publication date |
---|---|
JP3293367B2 (en) | 2002-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3925545B2 (en) | Refrigeration equipment | |
US6883346B2 (en) | Freezer | |
KR20090064417A (en) | Air conditioner | |
JP3293367B2 (en) | Oil temperature sensor mounting structure for compressor | |
JP2007232265A (en) | Refrigeration unit | |
JP2002228297A (en) | Refrigerating device | |
JPH06337174A (en) | Operation controller for air-conditioner | |
JP2002174463A (en) | Refrigerating apparatus | |
JP3143142B2 (en) | Refrigeration equipment | |
JP3993540B2 (en) | Refrigeration equipment | |
JP2526716B2 (en) | Air conditioner | |
JP2966641B2 (en) | Air conditioner | |
JP3584514B2 (en) | Refrigeration equipment | |
JP3097468B2 (en) | Control device for air conditioner | |
JP7258129B2 (en) | air conditioner | |
JPH03122460A (en) | Operating controller for refrigerating machine | |
JP2002277066A (en) | Air conditioning equipment for vehicle | |
JP3143140B2 (en) | Refrigeration equipment | |
JP4304840B2 (en) | Air conditioner | |
JP3680261B2 (en) | Air conditioner refrigerant circuit | |
JPH06341695A (en) | Operation control device for air conditioner | |
JPH10281576A (en) | Multizone heat pump type air conditioner | |
JPH06341721A (en) | Refrigerator | |
JP3265713B2 (en) | Refrigeration equipment | |
JP2976905B2 (en) | Air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020305 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080405 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090405 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100405 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |