JP2012225630A - Heat source-side unit and refrigerating cycle device - Google Patents

Heat source-side unit and refrigerating cycle device Download PDF

Info

Publication number
JP2012225630A
JP2012225630A JP2011096376A JP2011096376A JP2012225630A JP 2012225630 A JP2012225630 A JP 2012225630A JP 2011096376 A JP2011096376 A JP 2011096376A JP 2011096376 A JP2011096376 A JP 2011096376A JP 2012225630 A JP2012225630 A JP 2012225630A
Authority
JP
Japan
Prior art keywords
compressor
refrigerant
pressure
oil
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011096376A
Other languages
Japanese (ja)
Other versions
JP5783783B2 (en
Inventor
Yuji Sata
裕士 佐多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011096376A priority Critical patent/JP5783783B2/en
Publication of JP2012225630A publication Critical patent/JP2012225630A/en
Application granted granted Critical
Publication of JP5783783B2 publication Critical patent/JP5783783B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerating machine and the like for reducing load at the start of a compressor, preventing start failure, and protecting devices.SOLUTION: This heat source-side unit includes the compressor 1, a condenser 3, an oil separator 2 having a float 41 inside, disposed between the compressor 1 and the condenser 3, storing a refrigerating machine oil separated from a refrigerant and returning the accumulated refrigerating machine oil to a suction side of the compressor 1 based on a position of the float 41 displacing based on an oil level, a check valve 14 disposed between the oil separator 2 and the condenser 3 and preventing back flow of the refrigerant, a bypass pipe 6 connecting a pipe between a discharge side and the check valve, and a pipe at a suction side, and a bypass solenoid valve 7 for controlling whether to allow the refrigerant to pass through the bypass pipe 6 or not. The bypass solenoid valve 7 is opened when a pressure at a discharge side before starting the compressor 1 is higher than a predetermined pressure, and the bypass solenoid valve 7 is closed when it reaches the predetermined value or less to start the compressor 1.

Description

この発明は、圧縮機、凝縮器、絞り装置、および蒸発器を配管接続して冷媒回路を構成する冷凍サイクル装置が有する冷凍機等の熱源側ユニット等に係るものである。特に圧縮機を起動する際の負荷低減等に関するものである。   The present invention relates to a heat source side unit, such as a refrigerator, included in a refrigeration cycle apparatus that configures a refrigerant circuit by connecting a compressor, a condenser, a throttle device, and an evaporator. In particular, it relates to a reduction in load when starting the compressor.

例えば、従来、冷凍機を有し、冷媒回路を構成する冷凍システムにおいて、冷媒回路の高圧側の圧力が、ある圧力値以上のときに圧縮機を起動させようとした場合、圧縮機起動時の負荷が大きくなり、過電流が流れ、圧縮機が起動できず、起動不良となる場合がある。そこで、圧縮機を起動させる際の負荷低減を目的として、圧縮機の吐出側に設けた吐出逆止弁の上流部分の配管(高圧側)と圧縮機の吸入側に設けたアキュムレータ下流配管部分の配管(低圧側)との間を配管で圧縮機と並列に接続し、バイパス管路を形成するものがあった(例えば、特許文献1参照)。そして、バイパス管路には電磁弁を配置し、圧縮機を起動させる前の所定時間のみ、この電磁弁を開として高圧側と低圧側とを連通させた後に圧縮機を起動することで圧縮機起動時の負荷を低減させ、圧縮機の起動不良を防ぐようにしていた。   For example, in a conventional refrigeration system having a refrigerator and constituting a refrigerant circuit, when the compressor is started when the pressure on the high pressure side of the refrigerant circuit is equal to or higher than a certain pressure value, In some cases, the load becomes large, an overcurrent flows, and the compressor cannot be started, resulting in a start-up failure. Therefore, for the purpose of reducing the load when starting the compressor, the upstream pipe (high pressure side) of the discharge check valve provided on the discharge side of the compressor and the downstream pipe part of the accumulator provided on the suction side of the compressor Some pipes (low pressure side) are connected in parallel with the compressor by pipes to form a bypass pipe (for example, see Patent Document 1). An electromagnetic valve is arranged in the bypass line, and the compressor is started only after a predetermined time before starting the compressor by opening the solenoid valve and communicating the high pressure side and the low pressure side. The load at the time of starting was reduced, and the starting failure of the compressor was prevented.

特開平8−313067号公報JP-A-8-313067

圧縮機起動前にバイパス電磁弁を開いてから起動させる場合、圧縮機の吐出側と吐出逆止弁との間の圧力は大きく低下する。吐出逆止弁を設置した場合、低圧側に流れるのは、圧縮機の吐出側から吐出逆止弁までの範囲の容積(以下、吐出側容積という)内にある冷媒である。吐出側容積は蒸発器などを含む低圧側容積と比較するとかなり小さな容積であるため、吐出側容積における圧力の低下は低圧側(吸入側)の圧力の上昇よりも大きく、低圧側の圧力に近づき、圧力差がなくなるからである。   When the bypass solenoid valve is opened before the compressor is started, the pressure between the discharge side of the compressor and the discharge check valve is greatly reduced. When the discharge check valve is installed, the refrigerant flowing in the low pressure side is a refrigerant within a volume (hereinafter referred to as a discharge side volume) in a range from the discharge side of the compressor to the discharge check valve. Since the discharge side volume is considerably smaller than the low pressure side volume including the evaporator, etc., the pressure drop in the discharge side volume is larger than the pressure increase on the low pressure side (suction side) and approaches the pressure on the low pressure side. This is because the pressure difference disappears.

ここで、圧力差は冷媒回路を循環する冷媒によって異なり、例えばR410A冷媒の場合、例えば吐出側圧力3.733MPa(飽和温度60℃)と吸入側圧力0.037MPa(飽和温度−45℃)との差は約3.7MPaとなる。従来、冷媒として採用していたR404A冷媒の吐出側圧力2.770MPa(飽和温度60℃)と吸入側圧力0.004MPa(飽和温度−45℃)との差が約2.7MPaであることと比較すると、R410A冷媒の場合の変化幅が大きくなっている。したがって、R410A冷媒においては、起動前にバイパス電磁弁を開いた場合に圧力が低下した状態と起動後に圧縮機の運転を開始して圧力が上昇した状態との圧力変化は、R22冷媒やR404A冷媒よりも大きくなる。   Here, the pressure difference varies depending on the refrigerant circulating in the refrigerant circuit. For example, in the case of R410A refrigerant, for example, the discharge side pressure is 3.733 MPa (saturation temperature 60 ° C.) and the suction side pressure is 0.037 MPa (saturation temperature −45 ° C.). The difference is about 3.7 MPa. Compared to the difference between the discharge side pressure 2.770 MPa (saturation temperature 60 ° C.) and the suction side pressure 0.004 MPa (saturation temperature −45 ° C.) of the R404A refrigerant, which has been conventionally used as a refrigerant, of about 2.7 MPa. Then, the change width in the case of R410A refrigerant | coolant is large. Therefore, in the R410A refrigerant, the pressure change between the state in which the pressure is lowered when the bypass solenoid valve is opened before the start and the state in which the pressure is increased after the start of operation of the compressor after the start is the R22 refrigerant or the R404A refrigerant. Bigger than.

また、通常、圧縮機の吐出側から吐出逆止弁までの間には、冷媒と共に圧縮機を出た冷凍機油(潤滑油)を分離して圧縮機に戻すオイルセパレータ(油分離器)を設置している。例えば、フロート式オイルセパレータの場合はオイルセパレータ内にフロート弁等が設置されている。例えばフロート弁の場合には、オイルセパレータ内に冷凍機油がたまっていくと、フロートが浮力により浮いていき、弁が開くことにより、油分離器内の冷凍機油が圧力差により圧縮機吸入側流路へ移動する。このとき、フロート周囲の圧力変動幅が大きく、繰り返し回数が大きいほどフロートが破損しやすくなる。   Normally, an oil separator (oil separator) is installed between the discharge side of the compressor and the discharge check valve to separate the refrigeration oil (lubricating oil) from the compressor together with the refrigerant and return it to the compressor. is doing. For example, in the case of a float type oil separator, a float valve or the like is installed in the oil separator. For example, in the case of a float valve, when the refrigeration oil accumulates in the oil separator, the float floats due to buoyancy, and the valve opens, causing the refrigeration oil in the oil separator to flow into the compressor suction side flow due to the pressure difference. Move to the road. At this time, the pressure fluctuation range around the float is large, and the larger the number of repetitions, the easier the float breaks.

上述したように、従来採用していたR22冷媒やR404A冷媒では圧縮機運転中、停止中での圧縮機の吐出側圧力と吸入側圧力の圧力変化幅は2.0MPa以上となることはほとんどなかった。しかし、R410A冷媒を採用すると、圧縮機の起動前にバイパス電磁弁を開いた後に起動させる場合の圧縮機の吐出側圧力と吸入側圧力との圧力変化幅が2.0MPa以上となる場合が多くなるのでフロートが破損する可能性が高くなる。   As described above, with the conventionally employed R22 refrigerant and R404A refrigerant, the pressure change width between the discharge side pressure and the suction side pressure of the compressor during operation and when the compressor is stopped is hardly 2.0 MPa or more. It was. However, when the R410A refrigerant is employed, the pressure change width between the discharge side pressure and the suction side pressure of the compressor when the bypass electromagnetic valve is started after opening the compressor before starting the compressor is often 2.0 MPa or more. Therefore, the possibility of breakage of the float increases.

フロートが破損するとオイルセパレータ内に冷凍機油がたまってもフロートの浮力が発生しなくなる。よってフロート弁を開くことができず、冷凍機油が返油されなくなる可能性がある。最悪の場合、圧縮機内の冷凍機油が枯渇して圧縮機の破損が発生する。以上のように、フロートの周囲の圧力変動の変動幅が大きいほど、また、繰り返し回数が多いほどフロートの破損、圧縮機の油枯渇が発生する可能性が高くなる。   If the float breaks, the buoyancy of the float does not occur even if refrigeration oil accumulates in the oil separator. Therefore, the float valve cannot be opened, and the refrigerating machine oil may not be returned. In the worst case, the compressor oil in the compressor is depleted and the compressor is damaged. As described above, the greater the fluctuation range of the pressure fluctuation around the float and the greater the number of repetitions, the higher the possibility of breakage of the float and the oil exhaustion of the compressor.

また、起動前にバイパス電磁弁を開いて吐出側から冷媒が流入すると、圧縮機の吸入側圧力は運転中の圧力よりも上昇する。このため、圧縮機を運転開始した後に、停止前の圧力まで圧縮機の吸入側圧力を下げる必要がある。起動前の吸入側圧力が高いほど、停止前までに運転していた圧力まで圧力を下げる動力(消費電力)がかかる。   Further, when the bypass solenoid valve is opened before starting and refrigerant flows in from the discharge side, the suction side pressure of the compressor rises higher than the operating pressure. For this reason, after starting the operation of the compressor, it is necessary to reduce the suction side pressure of the compressor to the pressure before the stop. The higher the suction side pressure before startup, the more power (power consumption) is used to reduce the pressure to the pressure that was operating before the stop.

また、起動前にバイパス電磁弁を開いて吐出側の圧力を下げる動作を常に一定時間実施する。そして、最も厳しい条件でも、必要な圧力まで低下させるための十分な時間が必要となる。この間、冷凍機を運転していないため庫内温度(冷却対象空間内の温度)が上昇し、空間内の冷却物を傷める可能性が高くなる。また庫内温度が上昇すると、再度、庫内を冷却するための余分な電力を消費する。   In addition, the operation of opening the bypass solenoid valve and reducing the pressure on the discharge side is always performed for a certain time before starting. And even under the most severe conditions, sufficient time is required to reduce the pressure to the required level. During this time, since the refrigerator is not operated, the internal temperature (temperature in the space to be cooled) rises, and the possibility of damaging the coolant in the space increases. Further, when the internal temperature rises, extra power for cooling the internal space is consumed again.

この発明は、上記の課題を解決するためになされたもので、圧縮機の起動時における負荷低減、起動不良の防止をはかり、また、オイルセパレータが有するフロート弁等の破損を防ぎ、返油不良の防止する等により冷媒回路の信頼性をはかることができる熱源側ユニット等を得ることを目的とする。   The present invention was made to solve the above-mentioned problems, and is intended to reduce the load at the time of starting the compressor, to prevent the starting failure, to prevent breakage of the float valve etc. of the oil separator, An object of the present invention is to obtain a heat source side unit or the like that can improve the reliability of the refrigerant circuit by preventing the above.

この発明に係る熱源側ユニットは、吸入した冷媒を圧縮して吐出する圧縮機と、熱交換により冷媒を凝縮させる凝縮器と、内部にフロートを有し、圧縮機と凝縮器との間に設けられ、圧縮機が吐出した冷媒から冷凍機油を分離して溜めておき、油面に基づいて変位するフロートの位置に基づいて溜まった冷凍機油を圧縮機の吸入側に戻すオイルセパレータと、オイルセパレータと凝縮器との間に設けられ、冷媒の逆流を防止する逆止弁と、圧縮機の吐出側と逆止弁との間の配管と、圧縮機の吸入側の配管とを接続するバイパス配管と、バイパス配管に冷媒を通過させるか否かを制御する開閉装置とを備え、検知手段の検知に係る圧縮機を起動する前の吐出側における圧力が所定の圧力より高い場合に開閉装置を開き、所定の圧力以下となると電磁弁を閉じて圧縮機を起動させるものである。   The heat source side unit according to the present invention includes a compressor that compresses and discharges the sucked refrigerant, a condenser that condenses the refrigerant by heat exchange, a float inside, and is provided between the compressor and the condenser. An oil separator that separates and stores the refrigerating machine oil from the refrigerant discharged from the compressor and returns the accumulated refrigerating machine oil to the suction side of the compressor based on the position of the float that is displaced based on the oil level; And a bypass pipe that connects a check valve that prevents the backflow of refrigerant, a pipe between the discharge side of the compressor and the check valve, and a pipe on the suction side of the compressor And an opening / closing device that controls whether or not the refrigerant passes through the bypass pipe, and opens the opening / closing device when the pressure on the discharge side before starting the compressor related to detection by the detection means is higher than a predetermined pressure. When the pressure falls below the specified pressure It is intended to start the compressor by closing the solenoid valve.

この発明によれば、上記のような構成を有することで、圧縮機の起動時における負荷低減、起動不良等を防ぐことができる。そして、圧縮機の吐出側に設置されたオイルセパレータが有するフロートの破損を防ぎ、返油不良を防ぐことができる。また、起動前の圧縮機吸入側回路の不要な圧力上昇を防ぎ、圧縮機の吸入側における圧力を必要な圧力まで下げるための運転、消費電力を少なくすることができる。そして、起動前にバイパス電磁弁を開く時間を短くすることができ、例えば不要な庫内温度の上昇を防ぎ、庫内温度を安定させることができ不要な冷やしこみを少なくすることができる。   According to the present invention, by having the above-described configuration, it is possible to prevent a load reduction, a starting failure, and the like when starting the compressor. And the breakage | float of the float which the oil separator installed in the discharge side of a compressor has can be prevented, and a bad oil return can be prevented. Further, it is possible to prevent an unnecessary pressure increase in the compressor suction side circuit before starting, and to reduce the operation and power consumption for reducing the pressure on the suction side of the compressor to a necessary pressure. And the time which opens a bypass solenoid valve before starting can be shortened, for example, an unnecessary rise in the internal temperature can be prevented, the internal temperature can be stabilized, and unnecessary cooling can be reduced.

この発明の実施の形態1における冷凍システムの構成を示す図である。It is a figure which shows the structure of the refrigerating system in Embodiment 1 of this invention. オイルセパレータ2のフロート弁の概略を示す図である。It is a figure which shows the outline of the float valve of the oil separator. フロートが破損する圧力変動幅と繰り返し回数の関係を示す図である。It is a figure which shows the relationship between the pressure fluctuation range which a float breaks, and the repetition frequency. 実施の形態1に係る吐出側圧力と吸入側圧力の変化の状況を示す図である。It is a figure which shows the condition of the change of the discharge side pressure and suction | inhalation side pressure which concern on Embodiment 1. FIG. 運転中、停止中での圧縮機吐出側圧力と吸入側圧力の変化を示す図である。It is a figure which shows the change of the compressor discharge side pressure in operation | movement, and a stop, and the suction side pressure. この発明の実施の形態2における冷凍システムの構成を示す図である。It is a figure which shows the structure of the refrigeration system in Embodiment 2 of this invention. 実施の形態2に係る吐出側圧力と吸入側圧力の変化の状況を示す図である。It is a figure which shows the condition of the change of the discharge side pressure and suction | inhalation side pressure which concern on Embodiment 2. FIG. この発明の実施の形態3における冷凍システムの構成を示す図である。It is a figure which shows the structure of the refrigerating system in Embodiment 3 of this invention. 実施の形態3に係るオイルセパレータ2の構成を表す図である。6 is a diagram illustrating a configuration of an oil separator 2 according to Embodiment 3. FIG.

実施の形態1.
図1はこの発明の実施の形態1における冷凍サイクル装置となる冷凍システムの構成を表す図である。図1に示すように、本実施の形態における冷凍システムは、熱源側ユニットとなる冷凍機16と利用側ユニットとなるユニットクーラ17とを配管接続して構成している。ここで、以下で説明する温度、圧力の高低については、特に絶対的な値との関係で高低等が定まっているものではなく、装置等における状態、動作等において相対的に定まる関係に基づいて表記しているものとする。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration of a refrigeration system serving as a refrigeration cycle apparatus according to Embodiment 1 of the present invention. As shown in FIG. 1, the refrigeration system in the present embodiment is configured by connecting a refrigerator 16 serving as a heat source side unit and a unit cooler 17 serving as a use side unit by piping. Here, the levels of temperature and pressure described below are not particularly determined in relation to absolute values, but are based on relationships that are relatively determined in the state, operation, etc. of the device. It shall be written.

本実施の形態の冷凍機16は、圧縮機1、オイルセパレータ2、凝縮器3、バイパス配管6、バイパス電磁弁7、凝縮器用ファン9、冷凍機用コントローラ10、低圧センサ11、高圧センサ12、逆止弁14及び受液器15を有している。圧縮機1は、吸入した冷媒を圧縮して吐出する。特に限定するものではないが、例えば、圧縮機1としては、インバータ装置等を備え、運転周波数を任意に変化させることにより、圧縮機1の容量(単位時間あたりの冷媒を送り出す量)を細かく変化させることができるものであることが望ましい。ここでは、圧縮機1はインバータ装置を備えるものとする。   The refrigerator 16 of the present embodiment includes a compressor 1, an oil separator 2, a condenser 3, a bypass pipe 6, a bypass solenoid valve 7, a condenser fan 9, a refrigerator controller 10, a low pressure sensor 11, a high pressure sensor 12, A check valve 14 and a liquid receiver 15 are provided. The compressor 1 compresses and discharges the sucked refrigerant. Although not particularly limited, for example, the compressor 1 includes an inverter device and the like, and the capacity of the compressor 1 (the amount of refrigerant sent out per unit time) is finely changed by arbitrarily changing the operation frequency. It is desirable that it can be made. Here, the compressor 1 shall be provided with an inverter apparatus.

図2はオイルセパレータ2のフロート弁の構成の概略を表す図である。オイルセパレータ(油分離器)2は、圧縮機1が吐出した冷媒に混入した冷凍機油(潤滑油)を冷媒と分離し、冷凍機油が所定量溜まると、油戻し配管を介して圧縮機1の吸入側の配管に送る。特に本実施の形態では、オイルセパレータ2はフロート弁を有するフロート式オイルセパレータであるものとして説明する。図2において、フロート41は、オイルセパレータ2内に溜まった冷凍機油の油面の位置に基づいて浮力により変位する。弁42はフロート41の位置によって開閉する。例えばオイルセパレータ2内の冷凍機油が多くなり、油面が上がると開いて、オイルセパレータ2内と油戻し配管とが連通するようにし、冷凍機油が油戻し配管に流れるようにする。そして、オイルセパレータ2内の冷凍機油が流れて少なくなり、油面が下がると閉じてオイルセパレータ2内と油戻し配管との間を遮断する。   FIG. 2 is a diagram schematically illustrating the configuration of the float valve of the oil separator 2. The oil separator (oil separator) 2 separates the refrigerating machine oil (lubricating oil) mixed in the refrigerant discharged from the compressor 1 from the refrigerant. When a predetermined amount of refrigerating machine oil is accumulated, the oil separator (oil separator) 2 Send to suction side piping. In particular, in the present embodiment, the oil separator 2 will be described as a float type oil separator having a float valve. In FIG. 2, the float 41 is displaced by buoyancy based on the position of the oil level of the refrigerating machine oil accumulated in the oil separator 2. The valve 42 opens and closes depending on the position of the float 41. For example, when the refrigeration oil in the oil separator 2 increases and the oil level rises, the oil separator 2 opens so that the oil separator 2 communicates with the oil return pipe, and the refrigeration oil flows through the oil return pipe. Then, the refrigerating machine oil in the oil separator 2 flows and decreases, and when the oil level is lowered, the oil separator 2 is closed to shut off the oil separator 2 and the oil return pipe.

図3にフロート41の変位繰り返し回数とフロート41が破損する圧力変動幅との関係の一例を示す。図3に示すように、圧力変動幅が約2MPa以下の場合は、繰り返し回数が多くなってもフロートの破損は生じないが、約2MPaより圧力変動幅が大きくなると、繰り返しが続くことによりフロートが破損する場合がある(圧力変動によるフロート破損を防ぐためフロート41を厚くするとフロートが重くなるので、浮力によって弁42を開くことができなくなる)。例えばR410冷媒の場合に、運転中起こりうる最高圧力が4.15MPa(設計圧力)であると考えると、4.15MPa−2MPa=2.15MPa以上で起動させれば、必ず圧力変動幅は2MPa以下となる。   FIG. 3 shows an example of the relationship between the number of repetitions of displacement of the float 41 and the pressure fluctuation range at which the float 41 breaks. As shown in FIG. 3, when the pressure fluctuation range is about 2 MPa or less, the float does not break even if the number of repetitions increases. However, when the pressure fluctuation range becomes larger than about 2 MPa, the float continues due to the repetition. There is a case of breakage (if the float 41 is thickened to prevent float breakage due to pressure fluctuations, the float becomes heavy, and the valve 42 cannot be opened by buoyancy). For example, in the case of R410 refrigerant, if the maximum pressure that can occur during operation is considered to be 4.15 MPa (design pressure), if it is started at 4.15 MPa−2 MPa = 2.15 MPa or more, the pressure fluctuation range is always 2 MPa or less. It becomes.

低圧側に冷媒が漏れると圧縮機1の発停が多くなり、圧縮機1の信頼性を損ねることとなる。逆止弁14は、圧縮機1の停止時に冷媒が逆流し、圧縮機1の吐出弁漏れにより低圧側に漏れる冷媒を最小限とするために設けている。ここで、オイルセパレータ2はマフラーも兼ねており、圧縮機1の吐出脈動を低減している。このため、オイルセパレータ2の下流側に逆止弁14を配置することで、吐出脈動による逆止弁14から発せられる騒音(チャタリング音)を低減できる。凝縮器3は、圧縮機1において圧縮された冷媒と例えば屋外の空気(外気)との熱交換を行い、冷媒を凝縮して液化させる。また、凝縮器用ファン9は、凝縮器3に外気を送り込み、凝縮器3を流れる冷媒との熱交換を促す。受液器15は余剰冷媒を溜めておくものである。   If the refrigerant leaks to the low pressure side, the compressor 1 starts and stops, and the reliability of the compressor 1 is impaired. The check valve 14 is provided to minimize the refrigerant that flows back when the compressor 1 stops and leaks to the low pressure side due to the discharge valve leakage of the compressor 1. Here, the oil separator 2 also serves as a muffler and reduces the discharge pulsation of the compressor 1. For this reason, the noise (chattering sound) emitted from the check valve 14 due to the discharge pulsation can be reduced by arranging the check valve 14 on the downstream side of the oil separator 2. The condenser 3 performs heat exchange between the refrigerant compressed in the compressor 1 and, for example, outdoor air (outside air), and condenses and liquefies the refrigerant. Further, the condenser fan 9 sends outside air into the condenser 3 to promote heat exchange with the refrigerant flowing through the condenser 3. The liquid receiver 15 stores excess refrigerant.

バイパス配管6は、圧縮機1の吐出側と接続する配管(吐出側配管)と吸入側と接続する配管(吸入側配管)とを配管接続し、バイパス管路を形成する。開閉装置となるバイパス電磁弁7は、バイパス配管6による冷媒流路上に設けられ、開閉によりバイパス配管6の冷媒通過を制御する。   The bypass pipe 6 connects a pipe (discharge side pipe) connected to the discharge side of the compressor 1 and a pipe (suction side pipe) connected to the suction side to form a bypass pipe. The bypass solenoid valve 7 serving as an opening / closing device is provided on the refrigerant flow path by the bypass pipe 6 and controls passage of the refrigerant through the bypass pipe 6 by opening and closing.

高圧センサ12は、圧縮機1の吐出側圧力(高圧側圧力)を検知し、検知に係る信号を送信する検知手段である。また、低圧センサ11は、圧縮機1の吸入側圧力(低圧側圧力)を検知し、検知に係る信号を送信する検知手段である。冷凍機用コントローラ10は、冷凍機16内の各機器、手段等を制御するための制御手段(制御装置)である。特に本実施の形態においては、低圧センサ11及び高圧センサ12の検知に係る信号に基づいて吐出側圧力及び低圧側圧力の値を判断し、バイパス電磁弁7を開閉させる制御を行う。そして、圧縮機1の起動制御を行う。   The high pressure sensor 12 is a detection unit that detects a discharge side pressure (high pressure side pressure) of the compressor 1 and transmits a signal related to the detection. The low-pressure sensor 11 is a detection unit that detects the suction-side pressure (low-pressure side pressure) of the compressor 1 and transmits a signal related to the detection. The refrigerator controller 10 is a control means (control device) for controlling each device, means, etc. in the refrigerator 16. In particular, in the present embodiment, the values of the discharge side pressure and the low pressure side pressure are determined based on the signals relating to the detection of the low pressure sensor 11 and the high pressure sensor 12, and control for opening and closing the bypass solenoid valve 7 is performed. And the starting control of the compressor 1 is performed.

また、本実施の形態のユニットクーラ17は、絞り弁4、蒸発器5、蒸発器用ファン8及び蒸発器用電磁弁13を有している。絞り装置となる絞り弁(膨張弁)4は、開度を変化させて通過する冷媒の流量等を調整し、蒸発器5における冷媒の圧力を調整する。また、蒸発器(冷却器)5は、絞り弁4によって低圧状態になった冷媒と空気との熱交換を行う。蒸発器5内の冷媒は空気の熱を奪い、蒸発して気化し、空気を冷却する。さらに、蒸発器用ファン8は、例えば蒸発器5を通過させて空調対象空間に送り出す空気の流れを形成する。そして、蒸発器用電磁弁13は、システムが運転を停止したときに、蒸発器5に冷媒を流入させず、冷媒が冷媒回路を循環しないように流路を閉止するための弁である。場合によっては、蒸発器用電磁弁13を有していない場合もある。   The unit cooler 17 of the present embodiment includes the throttle valve 4, the evaporator 5, the evaporator fan 8, and the evaporator electromagnetic valve 13. A throttle valve (expansion valve) 4 serving as a throttle device adjusts the refrigerant flow rate in the evaporator 5 by adjusting the flow rate of the refrigerant passing therethrough by changing the opening degree. Further, the evaporator (cooler) 5 performs heat exchange between the refrigerant and the air that have been brought into a low pressure state by the throttle valve 4. The refrigerant in the evaporator 5 takes the heat of the air, evaporates and vaporizes, and cools the air. Further, the evaporator fan 8 forms an air flow that passes through the evaporator 5 and is sent out to the air-conditioning target space, for example. The evaporator solenoid valve 13 is a valve for closing the flow path so that the refrigerant does not flow into the evaporator 5 and the refrigerant does not circulate through the refrigerant circuit when the system stops operating. In some cases, the evaporator electromagnetic valve 13 may not be provided.

次に冷凍システムの動作について説明する。圧縮機1で圧縮された高温高圧のガス冷媒は、逆止弁14、オイルセパレータ2を介して凝縮器3に流入する。凝縮器3において凝縮器用ファン9によって送られた外気との熱交換により放熱して凝縮する。凝縮した高圧液冷媒は、例えば一部が受液器15に貯留され、冷凍機16から流出し、配管を介してユニットクーラ17に流入する。   Next, the operation of the refrigeration system will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 flows into the condenser 3 through the check valve 14 and the oil separator 2. In the condenser 3, heat is dissipated and condensed by heat exchange with the outside air sent by the condenser fan 9. For example, a part of the condensed high-pressure liquid refrigerant is stored in the liquid receiver 15, flows out of the refrigerator 16, and flows into the unit cooler 17 through a pipe.

そして、ユニットクーラ17に流入した液冷媒は、蒸発器用電磁弁13を通過し、絞り弁4により減圧されて低圧二相冷媒となる。この低圧二相冷媒は、蒸発器5において冷却対象となる空気等の負荷から吸熱して低圧ガス冷媒となってユニットクーラ17から流出する。ユニットクーラ17から流出した低圧ガス冷媒は配管を通って冷凍機16に流入し、再び圧縮機1に吸入される。このような一連の動作により、負荷から吸熱し、外気に放熱する冷凍サイクルが形成されることになる。   Then, the liquid refrigerant that has flowed into the unit cooler 17 passes through the evaporator electromagnetic valve 13 and is decompressed by the throttle valve 4 to become a low-pressure two-phase refrigerant. The low-pressure two-phase refrigerant absorbs heat from a load such as air to be cooled in the evaporator 5 to become a low-pressure gas refrigerant and flows out from the unit cooler 17. The low-pressure gas refrigerant that has flowed out of the unit cooler 17 flows into the refrigerator 16 through the pipe, and is sucked into the compressor 1 again. By such a series of operations, a refrigeration cycle that absorbs heat from the load and radiates heat to the outside air is formed.

図4は圧縮機1の吐出側圧力と吸入側圧力の圧力変化の状況の一例を示す図である。次に停止している圧縮機1を起動させる際の動作について説明する。通常、冷凍機は運転中にユニットクーラ17の蒸発器用電磁弁13を閉じることで冷媒を受液器15に回収し、低圧がある値以下に低下したことを低圧センサ11で検知した時点で停止させる。冷凍機16が停止している間は、停止したときの圧力状態がほぼ維持される。例えばR410Aを冷媒とするシステムの場合、停止時における冷媒回路内の圧力は、一般的に最高で3.70MPa程度となる。また、低圧側の圧力は−45℃で運転した場合、0.037MPa程度となる。   FIG. 4 is a diagram illustrating an example of a change in pressure between the discharge side pressure and the suction side pressure of the compressor 1. Next, the operation when starting the stopped compressor 1 will be described. Normally, the refrigerator collects the refrigerant in the receiver 15 by closing the evaporator solenoid valve 13 of the unit cooler 17 during operation, and stops when the low pressure sensor 11 detects that the low pressure has dropped below a certain value. Let While the refrigerator 16 is stopped, the pressure state when stopped is substantially maintained. For example, in the case of a system using R410A as a refrigerant, the pressure in the refrigerant circuit at the time of stop is generally about 3.70 MPa at the maximum. Further, the pressure on the low pressure side is about 0.037 MPa when operated at −45 ° C.

そして、低圧センサ11の検知に係る値から0.05MPa程度吸入側が上昇し、また、一定時間(数十秒から数分)経過したものと判断すると、圧縮機1を起動可能とする。ただし、圧縮機1の吐出側圧力が高い場合には、圧縮機1の起動時における負荷が大きくなるため、圧縮機1を正常に起動できない(起動不良となる)場合がある。このため、圧縮機1を起動可能とするには、吐出側圧力が所定の圧力(例えば2.4MPa。圧力は圧縮機によって異なる)未満にする必要がある。そこで、冷凍機用コントローラ10は、圧縮機1の起動不良を防ぐため、起動前において、吐出側圧力が2.4MPa以上と判断すると、バイパス電磁弁7を開く制御を行う。   When it is determined that the suction side has increased by about 0.05 MPa from the value related to detection by the low-pressure sensor 11 and a certain time (several tens of seconds to several minutes) has elapsed, the compressor 1 can be started. However, when the discharge side pressure of the compressor 1 is high, the load at the time of starting of the compressor 1 becomes large, so that the compressor 1 may not be started normally (starting failure). For this reason, in order to make the compressor 1 startable, the discharge side pressure needs to be less than a predetermined pressure (for example, 2.4 MPa, the pressure varies depending on the compressor). Therefore, the refrigerator controller 10 performs control to open the bypass solenoid valve 7 when the discharge-side pressure is determined to be 2.4 MPa or more before starting in order to prevent the starting failure of the compressor 1.

図5は実施の形態1に係る圧縮機1の運転中、停止中での圧縮機吐出側圧力と吸入側圧力の圧力変化の状況の一例を示す図である。この例では飽和温度を同じ値とし、図5(a)に示すR410A冷媒の場合と図5(b)に示すR404A冷媒の場合とで比較している。圧力変化幅は1.55MPa(R404A冷媒)から2.20MPa(R410A冷媒)に増加している。図5のように、バイパス電磁弁7を開くと、吐出側容積における冷媒が圧縮機1吸入側に流れ、圧縮機1の吐出側圧力が低下し、圧縮機1の吸入側圧力が上昇する。   FIG. 5 is a diagram illustrating an example of a change in pressure between the compressor discharge side pressure and the suction side pressure during operation and stop of the compressor 1 according to the first embodiment. In this example, the saturation temperature is set to the same value, and the comparison is made between the case of the R410A refrigerant shown in FIG. 5A and the case of the R404A refrigerant shown in FIG. The pressure change width increases from 1.55 MPa (R404A refrigerant) to 2.20 MPa (R410A refrigerant). As shown in FIG. 5, when the bypass solenoid valve 7 is opened, the refrigerant in the discharge side volume flows to the compressor 1 suction side, the discharge side pressure of the compressor 1 decreases, and the suction side pressure of the compressor 1 increases.

そして、高圧センサ12の検知に基づいて、冷凍機用コントローラ10は、吐出側圧力が起動不良の発生しない圧力である2.4MPa未満であり、オイルセパレータ2の破損を防ぐための圧力変動幅となる2.15MPa以上の圧力となったかどうかを判断する。吐出側圧力が2.4MPa未満、2.15MPa以上であると判断すると、バイパス電磁弁7を閉じる制御を行う(図4)。これにより、圧縮機1の吐出側圧力の必要以上の圧力低下を防ぎ、また吸入側圧力の必要以上の圧力上昇を防ぐことができる。   And based on the detection of the high pressure sensor 12, the controller 10 for refrigerators has the pressure fluctuation range for preventing the oil separator 2 from being damaged, and the discharge side pressure is less than 2.4 MPa, which is a pressure at which the starting failure does not occur. It is judged whether or not the pressure is 2.15 MPa or more. When it is determined that the discharge side pressure is less than 2.4 MPa and 2.15 MPa or more, the bypass solenoid valve 7 is controlled to be closed (FIG. 4). Thereby, the pressure drop more than the necessity of the discharge side pressure of the compressor 1 can be prevented, and the pressure rise more than the need of the suction side pressure can be prevented.

次に、冷凍システムにおける油回収運転について説明する。圧縮機1から冷媒と共に吐出し、オイルセパレータ2で採取しきれなかった冷凍機油は、冷媒と同様に、冷凍機16から流出し、ユニットクーラ17を通過して、再度冷凍機16に戻る。冷凍機16に戻った冷凍機油は圧縮機1に吸入される。   Next, oil recovery operation in the refrigeration system will be described. The refrigerating machine oil discharged from the compressor 1 together with the refrigerant and not collected by the oil separator 2 flows out of the refrigerating machine 16 through the unit cooler 17 and returns to the refrigerating machine 16 again like the refrigerant. The refrigerating machine oil returned to the refrigerating machine 16 is sucked into the compressor 1.

例えば本実施の形態のように、インバータ装置を有する圧縮機1の場合、冬場など負荷が小さい場合は、運転周波数が低い状態で運転を継続して行う場合がある。例えば運転周波数がある値以下の場合、冷媒流速が小さいため、冷凍機油が圧縮機1に戻らず、蒸発器5や配管内に滞留する場合がある。そこで、一定時間運転周波数が小さい運転を継続した場合、一旦圧縮機1を停止させた後、運転周波数を増速させて冷媒の流速を上げ、冷凍機16外に流出した冷凍機油を回収する油回収運転を行う場合がある。   For example, in the case of the compressor 1 having an inverter device as in the present embodiment, when the load is small such as in winter, the operation may be continuously performed with a low operating frequency. For example, when the operating frequency is a certain value or less, the refrigerant flow rate is small, so that the refrigeration oil does not return to the compressor 1 and may stay in the evaporator 5 or the piping. Therefore, when the operation with a low operating frequency is continued for a certain time, after the compressor 1 is stopped once, the operating frequency is increased to increase the flow rate of the refrigerant, and the oil for recovering the refrigerating machine oil that has flowed out of the refrigerating machine 16 is recovered. A recovery operation may be performed.

この油回収運転を行う場合には、起動前における圧縮機1の吐出側圧力が2.4MPa以下であっても、冷凍機用コントローラ10は、例えば所定の時間、バイパス電磁弁7を開くように制御し、圧縮機1の吸入側圧力が高くなるようにする。ここで、所定の時間については、オイルセパレータ2の破損を防ぐための圧力変動幅が2.00Mpaより低くならないようにする。また、ここでは、時間に基づく制御を行っているが、高圧センサ12、低圧センサ11の検知に係る圧力に基づくようにしてもよい。これにより、油回収運転時の圧縮機1の吸入側圧力が高くなり、吸入側圧力を必要な圧力まで下げるために、バイパス電磁弁7を開かない場合よりも吸入側圧力を目標まで下げるための能力が必要となり、運転周波数が上がるため、冷媒流量を多くすることができ、蒸発器5、配管内に滞留した冷凍機油をより確実に圧縮機1に戻すことができる。   When performing this oil recovery operation, the refrigerator controller 10 opens the bypass solenoid valve 7 for a predetermined time, for example, even if the discharge side pressure of the compressor 1 before startup is 2.4 MPa or less. And the suction side pressure of the compressor 1 is increased. Here, for a predetermined time, the pressure fluctuation range for preventing the oil separator 2 from being damaged is prevented from becoming lower than 2.00 Mpa. In addition, although control based on time is performed here, the control may be based on the pressures detected by the high pressure sensor 12 and the low pressure sensor 11. As a result, the suction side pressure of the compressor 1 during the oil recovery operation increases, and in order to reduce the suction side pressure to the required pressure, the suction side pressure is reduced to the target rather than when the bypass solenoid valve 7 is not opened. Since the capacity is required and the operation frequency is increased, the refrigerant flow rate can be increased, and the refrigerating machine oil staying in the evaporator 5 and the pipe can be more reliably returned to the compressor 1.

以上のように、実施の形態1における冷凍システムでは、冷凍機16において、停止している圧縮機1を起動する際、吐出側圧力が起動不良を起こす可能性がある所定の圧力以上である場合に、バイパス電磁弁7を開いて、バイパス配管6を介して吐出側容積における冷媒を圧縮機1の吸入側に流して、吐出側圧力を下げるようにしたので、圧縮機1の起動時の負荷低減、起動不良を防ぐことができる。このとき、オイルセパレータ2が有するフロート41が壊れないように起動前後の吐出側圧力の変化幅を極力小さくし、必要以上に吐出側圧力を下げないようにしたので、圧縮機1の吐出側に設置されたオイルセパレータ2の破損を防ぐこと、返油不良を防ぐことができる。   As described above, in the refrigeration system in the first embodiment, when starting the compressor 1 that is stopped in the refrigerator 16, the discharge-side pressure is equal to or higher than a predetermined pressure that may cause a startup failure. In addition, since the bypass solenoid valve 7 is opened and the refrigerant in the discharge side volume flows through the bypass pipe 6 to the suction side of the compressor 1 to reduce the discharge side pressure, the load at the time of starting the compressor 1 is reduced. Reduction and start-up failure can be prevented. At this time, the change range of the discharge side pressure before and after the start-up is made as small as possible so that the float 41 of the oil separator 2 is not broken, and the discharge side pressure is not lowered more than necessary. It is possible to prevent the installed oil separator 2 from being damaged and to prevent poor oil return.

また、起動前において、吸入側圧力を不要に圧力上昇させないようにしたので、圧縮機1の吸入側圧力を必要な圧力まで下げるための運転動力(消費電力)を少なくすることができる。   Further, since the suction side pressure is not increased unnecessarily before starting, the driving power (power consumption) for reducing the suction side pressure of the compressor 1 to a necessary pressure can be reduced.

さらに、起動前にバイパス電磁弁7を開く時間を短くできるため、例えば圧縮機1を起動させるまでの時間を短くすることで、冷却対象の不要な温度上昇を防ぎ、温度を安定させることができる。不要な冷やしこみを少なくすることができる冷凍機を得るものである。   Furthermore, since the time for opening the bypass solenoid valve 7 before activation can be shortened, for example, by shortening the time until the compressor 1 is activated, unnecessary temperature rise of the cooling target can be prevented and the temperature can be stabilized. . A refrigerator that can reduce unnecessary cooling is obtained.

また、油回収運転を行う際には、吐出側圧力にかかわらずバイパス電磁弁7を開くようにしたので、圧縮機1の起動時における運転周波数を多くすることで、冷媒回路を循環する冷媒の流速を速くし、蒸発器5や配管等に滞留した冷凍機油を冷媒によって押し流すことで、より確実に圧縮機1に戻すことができる。   Further, when the oil recovery operation is performed, the bypass solenoid valve 7 is opened regardless of the discharge side pressure. Therefore, by increasing the operation frequency when the compressor 1 is started, the refrigerant circulating in the refrigerant circuit is increased. It is possible to return the compressor 1 to the compressor 1 more reliably by increasing the flow speed and pushing away the refrigerating machine oil staying in the evaporator 5 and the piping by the refrigerant.

実施の形態2.
図6はこの発明の実施の形態2における冷凍システムの構成を表す図である。次に、実施の形態2の冷凍システムについて説明する。実施の形態2のシステムでは、実施の形態1の構成に対して、冷凍機16とユニットクーラ17との間とを連携して動作させることができるように、ユニットクーラ用コントローラ18をユニットクーラ17に設置し、冷凍機用コントローラ10と通信可能に接続する。
Embodiment 2. FIG.
FIG. 6 is a diagram showing the configuration of the refrigeration system according to Embodiment 2 of the present invention. Next, the refrigeration system of Embodiment 2 will be described. In the system of the second embodiment, the unit cooler controller 18 is connected to the unit cooler 17 so that the refrigerator 16 and the unit cooler 17 can be operated in cooperation with the configuration of the first embodiment. It connects to the controller 10 for refrigerators so that communication is possible.

ユニットクーラ用コントローラ18は、ユニットクーラ17内の各機器、手段等を制御するための制御手段である。本実施の形態においては、冷凍機用コントローラ10からの指示に基づいて、圧縮機1の起動前に蒸発器用電磁弁13の開閉、絞り弁4の開度を制御する。これにより、圧縮機1の吐出側の圧力を低減させて負荷を低減し、起動不良を防ぐ。また、本実施の形態では、蒸発器用電磁弁13を開き、絞り弁4の開度を拡げることで、圧縮機1吐出側の冷媒を吸入側に流すようにして吐出側圧力を下げるようにすることで、実施の形態1において冷凍機16が有していたバイパス配管6、バイパス電磁弁7は設置不要である。ここで、本実施の形態ではユニットクーラ用コントローラ18を設けて蒸発器用電磁弁13の開閉、絞り弁4の開度を制御するようにしたが、例えば冷凍機用コントローラ10が行うようにしてもよい。   The unit cooler controller 18 is a control means for controlling each device, means, etc. in the unit cooler 17. In the present embodiment, on the basis of an instruction from the refrigerator controller 10, the opening / closing of the evaporator electromagnetic valve 13 and the opening of the throttle valve 4 are controlled before the compressor 1 is started. Thereby, the pressure on the discharge side of the compressor 1 is reduced, the load is reduced, and the starting failure is prevented. Further, in the present embodiment, the evaporator solenoid valve 13 is opened and the opening of the throttle valve 4 is increased so that the refrigerant on the discharge side of the compressor 1 flows to the suction side and the discharge side pressure is lowered. Thus, the bypass pipe 6 and the bypass solenoid valve 7 that the refrigerator 16 has in the first embodiment need not be installed. Here, in the present embodiment, the unit cooler controller 18 is provided to control the opening / closing of the evaporator solenoid valve 13 and the opening degree of the throttle valve 4. Good.

図7は実施の形態2に係る圧縮機1の運転中、停止中での圧縮機吐出側圧力と吸入側圧力の圧力変化の状況の一例を示す図である。次に動作について説明する。実施の形態2の冷凍システムにおいては、冷凍機用コントローラ10が、例えば冷凍機16が運転可能な状態となったかどうかを判断する。運転可能な状態であると判断すると、さらに高圧センサ12の検知に係る圧縮機1の吐出側圧力が、例えば圧縮機1を起動させると起動不良が発生する可能性がある2.4MPaより高いかどうかを判断する。2.4MPaより高いと判断すると、冷凍機用コントローラ10はユニットクーラ用コントローラ18に信号を送る。   FIG. 7 is a diagram illustrating an example of a state of pressure change between the compressor discharge side pressure and the suction side pressure during operation and stop of the compressor 1 according to the second embodiment. Next, the operation will be described. In the refrigeration system of the second embodiment, the refrigerator controller 10 determines whether the refrigerator 16 is ready for operation, for example. If it is determined that the operation is possible, the discharge-side pressure of the compressor 1 detected by the high-pressure sensor 12 is higher than 2.4 MPa, which may cause a start-up failure when the compressor 1 is started, for example. Judge whether. If it is determined that the pressure is higher than 2.4 MPa, the refrigerator controller 10 sends a signal to the unit cooler controller 18.

この信号を受けたユニットクーラ用コントローラ18は、蒸発器用電磁弁13及び膨張弁4を開く。これにより、冷媒回路において、冷媒が高圧側から低圧側に流れ、圧力差が縮まり、圧縮機1の吐出側圧力が低下し、吸入側圧力が上昇する。   Upon receiving this signal, the unit cooler controller 18 opens the evaporator solenoid valve 13 and the expansion valve 4. Thereby, in the refrigerant circuit, the refrigerant flows from the high pressure side to the low pressure side, the pressure difference is reduced, the discharge side pressure of the compressor 1 is reduced, and the suction side pressure is increased.

そして、冷凍機用コントローラ10は、高圧センサ12の検知に係る圧縮機1の吐出側圧力が、例えば圧縮機1を起動させても起動不良が発生しない圧力である2.4MPa以下、フロート41の破損が生じない2.15MPa以上となったものと判断すると、圧縮機1を起動させる。これにより、圧縮機1の吐出側圧力が必要以上に低下するのを防ぎ、また圧縮機1の吸入側圧力が必要以上に上昇するのを防ぐ。   And the controller 10 for refrigerators is 2.4 MPa or less whose discharge side pressure of the compressor 1 which the detection of the high pressure sensor 12 detects is the pressure which does not generate | occur | produce a starting failure, for example even if the compressor 1 is started. When it is determined that the pressure is 2.15 MPa or more at which no breakage occurs, the compressor 1 is started. Thereby, the discharge side pressure of the compressor 1 is prevented from being lowered more than necessary, and the suction side pressure of the compressor 1 is prevented from rising more than necessary.

以上のように、実施の形態2における冷凍システムでは、冷凍機16において、停止している圧縮機1を起動する際、吐出側圧力が起動不良を起こす可能性がある所定の圧力以上である場合に、蒸発器用電磁弁13を開き、絞り弁4の開度を拡げることで、圧縮機1吐出側の冷媒を吸入側に流すようにして吐出側圧力を下げるようにすることで圧縮機1の起動時の負荷低減、起動不良を防ぐことができる。このとき、実施の形態1のように、バイパス配管6及びバイパス電磁弁7を設ける必要がないので、安価に構成することができる。   As described above, in the refrigeration system according to the second embodiment, when starting the compressor 1 that is stopped in the refrigerator 16, the discharge side pressure is equal to or higher than a predetermined pressure that may cause a start failure. In addition, by opening the electromagnetic valve 13 for the evaporator and increasing the opening of the throttle valve 4, the refrigerant on the discharge side of the compressor 1 is caused to flow to the suction side so as to reduce the discharge side pressure. Load reduction at start-up and start-up failure can be prevented. At this time, it is not necessary to provide the bypass pipe 6 and the bypass solenoid valve 7 as in the first embodiment, so that the configuration can be made at low cost.

実施の形態3.
図8はこの発明の実施の形態3における冷凍システムの構成を表す図である。次に実施の形態3の冷凍システムについて説明する。図8において、図1等と同じ符号を付している手段等については、基本的に同様の動作を行う。ここで、本実施の形態のバイパス配管6は、オイルセパレータ2(例えば、底面)と圧縮機1の吸入側配管とを配管接続しており、冷凍機油を圧縮機1に戻す(返油する)ための戻り配管としての役割も果たしている。
Embodiment 3 FIG.
FIG. 8 is a diagram showing the configuration of the refrigeration system according to Embodiment 3 of the present invention. Next, the refrigeration system of Embodiment 3 will be described. In FIG. 8, the same reference numerals as those in FIG. Here, the bypass piping 6 of the present embodiment connects the oil separator 2 (for example, the bottom surface) and the suction side piping of the compressor 1 and returns the refrigeration oil to the compressor 1 (returns oil). It also serves as a return pipe.

図9は、実施の形態3に係るオイルセパレータ2の構成を表す図である。図9に示すように、本実施の形態のオイルセパレータ2は、フロート52の位置に基づいて油面が上限位置であるか否かを検知するための上側検知器51、下限位置であるか否かを検知するための下側検知器53を有している。このため、フロート52は、オイルセパレータ2に溜まった冷凍機油の量に基づいて上側検知器51と下側検知器53との間を変位する。そして、上側検知器51、下側検知器53は、フロート52と接触すると、冷凍機用コントローラ10にそれぞれ信号を送る。   FIG. 9 is a diagram illustrating the configuration of the oil separator 2 according to the third embodiment. As shown in FIG. 9, the oil separator 2 according to the present embodiment is an upper detector 51 for detecting whether or not the oil level is the upper limit position based on the position of the float 52, whether or not the oil separator 2 is the lower limit position. It has a lower detector 53 for detecting this. For this reason, the float 52 is displaced between the upper detector 51 and the lower detector 53 based on the amount of refrigeration oil accumulated in the oil separator 2. And the upper side detector 51 and the lower side detector 53 will each send a signal to the controller 10 for refrigerators, if the float 52 contacts.

次に動作等について説明する。通常の動作においては、フロート52が上側検知器51に接触して送られた信号に基づいて、冷凍機用コントローラ10はバイパス電磁弁7を開く。これにより、冷凍機油はバイパス配管6を通過して圧縮機1の吸入側に流れ、圧縮機1に吸入されて戻る。オイルセパレータ2内の冷凍機油が少なくなっていって油面が低くなり、フロート52が下側検知器53と接触する。フロート52が下側検知器53に接触して送られた信号に基づいて、冷凍機用コントローラ10はバイパス電磁弁7を閉じる。   Next, the operation and the like will be described. In a normal operation, the refrigerator controller 10 opens the bypass solenoid valve 7 based on a signal sent by the float 52 contacting the upper detector 51. As a result, the refrigeration oil passes through the bypass pipe 6 and flows to the suction side of the compressor 1, and is sucked back into the compressor 1. Refrigerating machine oil in the oil separator 2 is low, the oil level is lowered, and the float 52 comes into contact with the lower detector 53. Based on the signal sent when the float 52 contacts the lower detector 53, the refrigerator controller 10 closes the bypass solenoid valve 7.

また、実施の形態2と同様に、圧縮機1の起動前において、冷凍機用コントローラ10は高圧センサ12の検知に係る圧縮機1の吐出側圧力が2.4MPaより高いかどうかを判断する。2.4MPaより高いと判断すると、バイパス電磁弁7を開く。   Similarly to the second embodiment, before the compressor 1 is started, the refrigerator controller 10 determines whether or not the discharge-side pressure of the compressor 1 related to the detection by the high-pressure sensor 12 is higher than 2.4 MPa. If it is determined that the pressure is higher than 2.4 MPa, the bypass solenoid valve 7 is opened.

例えばオイルセパレータ2内に冷凍機油が溜まっていれば、オイルセパレータ2内から冷凍機油が無くなった後、圧縮機1吐出側の冷媒がバイパス配管6を流れて圧縮機1吸入側に移動して圧縮機1の吐出側と吸入側との圧力差が縮まる。そして、冷凍機用コントローラ10は、高圧センサ12の検知に係る圧縮機1の吐出側圧力が、例えば圧縮機1を起動させても起動不良が発生しない圧力である2.4MPa以下、フロート41の破損が生じない2.15MPa以上となったものと判断すると、バイパス電磁弁7を閉じて圧縮機1を起動させる。これにより、圧縮機1の吐出側圧力が必要以上に低下するのを防ぐ。   For example, if refrigeration oil is accumulated in the oil separator 2, the refrigerant on the discharge side of the compressor 1 flows through the bypass pipe 6 and moves to the suction side of the compressor 1 after the refrigeration oil disappears from the oil separator 2. The pressure difference between the discharge side and the suction side of the machine 1 is reduced. And the controller 10 for refrigerators is 2.4 MPa or less whose discharge side pressure of the compressor 1 which the detection of the high pressure sensor 12 detects is the pressure which does not generate | occur | produce a starting failure, for example even if the compressor 1 is started. When it is determined that the pressure is 2.15 MPa or more at which no breakage occurs, the bypass solenoid valve 7 is closed and the compressor 1 is started. Thereby, it is prevented that the discharge side pressure of the compressor 1 falls more than necessary.

以上のように、実施の形態3の冷凍システムによれば、バイパス配管6を、オイルセパレータ2と圧縮機1の吸入側配管とを配管接続するようにし、冷凍機油を戻す際、吐出側圧力を下げる際にバイパス電磁弁7を開くようにしたので、冷凍機油を圧縮機1に戻す戻り配管としての役割とを兼用することができ、安価に構成することができる。   As described above, according to the refrigeration system of the third embodiment, the bypass pipe 6 is connected to the oil separator 2 and the suction side pipe of the compressor 1, and when the refrigeration oil is returned, the discharge side pressure is reduced. Since the bypass solenoid valve 7 is opened at the time of lowering, it can also serve as a return pipe for returning the refrigeration oil to the compressor 1 and can be configured at low cost.

上述した実施の形態では、冷凍システムへの適用について説明した。本発明は、これらの装置に限定することなく、例えば空気調和装置、給湯機等のヒートポンプ装置等、冷媒回路を構成する他の冷凍サイクル装置にも適用することができる。   In the embodiment described above, application to a refrigeration system has been described. The present invention is not limited to these devices, and can also be applied to other refrigeration cycle devices constituting a refrigerant circuit, such as an air conditioner, a heat pump device such as a water heater, and the like.

1 圧縮機、2 オイルセパレータ、3 凝縮器、4 絞り弁、5 蒸発器、6 バイパス配管、7 バイパス電磁弁、8 蒸発器用ファン、9 凝縮器用ファン、10 冷凍機用コントローラ、11 低圧センサ、12 高圧センサ、13 蒸発器用電磁弁、14 逆止弁、15 受液器、16 冷凍機、17 ユニットクーラ、18 ユニットクーラ用コントローラ、41 フロート、42 弁、51 上側検知器、52 フロート、53 下側検知器。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 Oil separator, 3 Condenser, 4 Throttle valve, 5 Evaporator, 6 Bypass piping, 7 Bypass solenoid valve, 8 Evaporator fan, 9 Condenser fan, 10 Refrigerator controller, 11 Low pressure sensor, 12 High pressure sensor, 13 Evaporator solenoid valve, 14 Check valve, 15 Receiver, 16 Refrigerator, 17 Unit cooler, 18 Unit cooler controller, 41 Float, 42 Valve, 51 Upper detector, 52 Float, 53 Lower Detector.

Claims (5)

吸入した冷媒を圧縮して吐出する圧縮機と、
熱交換により前記冷媒を凝縮させる凝縮器と、
内部にフロートを有し、前記圧縮機と凝縮器との間に設けられ、前記圧縮機が吐出した冷媒から冷凍機油を分離して溜めておき、油面に基づいて変位するフロートの位置に基づいて溜まった冷凍機油を前記圧縮機の吸入側に戻すオイルセパレータと、
該オイルセパレータと前記凝縮器との間に設けられ、前記冷媒の逆流を防止する逆止弁と、
前記圧縮機の吐出側と前記逆止弁との間の配管と、前記圧縮機の吸入側の配管とを接続するバイパス配管と、
前記バイパス配管に前記冷媒を通過させるか否かを制御する開閉装置と
を備え、
検知手段の検知に係る前記圧縮機を起動する前の吐出側における圧力が所定の圧力より高い場合に前記開閉装置を開き、前記所定の圧力以下となると前記開閉装置を閉じて前記圧縮機を起動させることを特徴とする熱源側ユニット。
A compressor for compressing and discharging the sucked refrigerant;
A condenser for condensing the refrigerant by heat exchange;
Based on the position of the float that has a float inside, is provided between the compressor and the condenser, separates and accumulates refrigeration oil from the refrigerant discharged from the compressor, and is displaced based on the oil level An oil separator that returns the accumulated refrigeration oil to the suction side of the compressor;
A check valve provided between the oil separator and the condenser to prevent backflow of the refrigerant;
A bypass pipe connecting a pipe between the discharge side of the compressor and the check valve, and a pipe on the suction side of the compressor;
An opening and closing device that controls whether or not the refrigerant passes through the bypass pipe;
When the pressure on the discharge side before starting the compressor related to detection by the detection means is higher than a predetermined pressure, the opening / closing device is opened, and when the pressure falls below the predetermined pressure, the opening / closing device is closed and the compressor is started A heat source unit characterized in that
前記バイパス配管と前記オイルセパレータから冷凍機油を戻すための配管とを兼用することを特徴とする請求項1記載の熱源側ユニット。   2. The heat source side unit according to claim 1, wherein the bypass pipe is also used as a pipe for returning the refrigeration oil from the oil separator. 請求項1又は2に係る熱源側ユニットの圧縮機、凝縮器及びオイルセパレータと、
前記凝縮器の凝縮に係る冷媒を減圧させるための絞り装置と、
熱交換により減圧に係る冷媒を蒸発させる蒸発器とを配管接続して冷媒回路を構成することを特徴とする冷凍サイクル装置。
A compressor, a condenser and an oil separator of the heat source side unit according to claim 1 or 2,
A throttling device for depressurizing the refrigerant related to the condensation of the condenser;
A refrigeration cycle apparatus comprising a refrigerant circuit connected by piping to an evaporator for evaporating a refrigerant related to decompression by heat exchange.
前記冷媒回路内の前記冷凍機油を回収するための油回収運転を行う場合に、前記開閉装置を開いて前記圧縮機を起動させることを特徴とする請求項3記載の冷凍サイクル装置。   4. The refrigeration cycle apparatus according to claim 3, wherein when the oil recovery operation for recovering the refrigeration machine oil in the refrigerant circuit is performed, the compressor is started by opening the opening / closing device. 5. 吸入した冷媒を圧縮して吐出する圧縮機と、
熱交換により前記冷媒を凝縮させる凝縮器と、
凝縮に係る冷媒を減圧させるための絞り装置と、
熱交換により減圧に係る冷媒を蒸発させる蒸発器とを配管接続して冷媒回路を構成し、
内部にフロートを有し、前記圧縮機と凝縮器との間に設けられ、前記圧縮機が吐出した冷媒から冷凍機油を分離して溜めておき、油面に基づいて変位するフロートの位置に基づいて溜まった冷凍機油を前記圧縮機の吸入側に戻すオイルセパレータを備え、
前記冷媒回路において、検知手段の検知に係る前記圧縮機を起動する前の吐出側における圧力が所定の圧力より高い場合に前記絞り装置の開度を広げ、前記所定の圧力以下となると前記圧縮機を起動させることを特徴とする冷凍サイクル装置。
A compressor for compressing and discharging the sucked refrigerant;
A condenser for condensing the refrigerant by heat exchange;
A throttling device for depressurizing the refrigerant for condensation;
A refrigerant circuit is configured by connecting a pipe to an evaporator that evaporates the refrigerant related to decompression by heat exchange,
Based on the position of the float that has a float inside, is provided between the compressor and the condenser, separates and accumulates refrigeration oil from the refrigerant discharged from the compressor, and is displaced based on the oil level An oil separator for returning the accumulated refrigeration oil to the suction side of the compressor;
In the refrigerant circuit, when the pressure on the discharge side before starting the compressor related to detection by the detection means is higher than a predetermined pressure, the opening of the expansion device is widened, and when the pressure becomes equal to or lower than the predetermined pressure, the compressor The refrigeration cycle apparatus characterized by starting up.
JP2011096376A 2011-04-22 2011-04-22 Heat source side unit and refrigeration cycle apparatus Active JP5783783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011096376A JP5783783B2 (en) 2011-04-22 2011-04-22 Heat source side unit and refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011096376A JP5783783B2 (en) 2011-04-22 2011-04-22 Heat source side unit and refrigeration cycle apparatus

Publications (2)

Publication Number Publication Date
JP2012225630A true JP2012225630A (en) 2012-11-15
JP5783783B2 JP5783783B2 (en) 2015-09-24

Family

ID=47275985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011096376A Active JP5783783B2 (en) 2011-04-22 2011-04-22 Heat source side unit and refrigeration cycle apparatus

Country Status (1)

Country Link
JP (1) JP5783783B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016125239A1 (en) * 2015-02-02 2016-08-11 三菱電機株式会社 Refrigeration/air-conditioning device
JP2017083155A (en) * 2015-10-27 2017-05-18 富士電機株式会社 Heat pump device
KR20170086389A (en) * 2016-01-18 2017-07-26 (주)에코알앤에스 Cooling apparatus and method for maintaing cooling apparatus
JP2018084375A (en) * 2016-11-24 2018-05-31 ダイキン工業株式会社 Freezing device
CN110455002A (en) * 2019-09-09 2019-11-15 合肥天鹅制冷科技有限公司 A kind of magnetic suspension centrifugal refrigerating machines electromotor cooling system
CN116206795A (en) * 2023-01-04 2023-06-02 中国原子能科学研究院 Method for starting radioactive waste liquid treatment system
WO2023233452A1 (en) * 2022-05-30 2023-12-07 三菱電機株式会社 Outdoor unit and refrigeration cycle device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122460A (en) * 1989-10-04 1991-05-24 Daikin Ind Ltd Operating controller for refrigerating machine
JPH06323647A (en) * 1993-05-10 1994-11-25 Hitachi Ltd Refrigerator
JPH06347110A (en) * 1993-06-07 1994-12-20 Sanyo Electric Co Ltd Air conditioner
JPH085168A (en) * 1994-06-23 1996-01-12 Mitsubishi Heavy Ind Ltd Air conditioner for vehicle
JPH08313067A (en) * 1995-05-16 1996-11-29 Hitachi Ltd Refrigerating apparatus
JPH11337197A (en) * 1998-05-28 1999-12-10 Samsung Electronics Co Ltd Refrigeration cycle
JP2003114062A (en) * 2001-08-01 2003-04-18 Daikin Ind Ltd Freezer device
JP2008249232A (en) * 2007-03-30 2008-10-16 Yanmar Co Ltd Air conditioner
JP2008275291A (en) * 2007-05-07 2008-11-13 Denso Corp Hot water supply device
JP2009139041A (en) * 2007-12-07 2009-06-25 Samsung Electronics Co Ltd Air conditioner
JP2010139156A (en) * 2008-12-11 2010-06-24 Fujitsu General Ltd Refrigeration apparatus and method for controlling the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122460A (en) * 1989-10-04 1991-05-24 Daikin Ind Ltd Operating controller for refrigerating machine
JPH06323647A (en) * 1993-05-10 1994-11-25 Hitachi Ltd Refrigerator
JPH06347110A (en) * 1993-06-07 1994-12-20 Sanyo Electric Co Ltd Air conditioner
JPH085168A (en) * 1994-06-23 1996-01-12 Mitsubishi Heavy Ind Ltd Air conditioner for vehicle
JPH08313067A (en) * 1995-05-16 1996-11-29 Hitachi Ltd Refrigerating apparatus
JPH11337197A (en) * 1998-05-28 1999-12-10 Samsung Electronics Co Ltd Refrigeration cycle
JP2003114062A (en) * 2001-08-01 2003-04-18 Daikin Ind Ltd Freezer device
JP2008249232A (en) * 2007-03-30 2008-10-16 Yanmar Co Ltd Air conditioner
JP2008275291A (en) * 2007-05-07 2008-11-13 Denso Corp Hot water supply device
JP2009139041A (en) * 2007-12-07 2009-06-25 Samsung Electronics Co Ltd Air conditioner
JP2010139156A (en) * 2008-12-11 2010-06-24 Fujitsu General Ltd Refrigeration apparatus and method for controlling the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016125239A1 (en) * 2015-02-02 2016-08-11 三菱電機株式会社 Refrigeration/air-conditioning device
JPWO2016125239A1 (en) * 2015-02-02 2017-06-29 三菱電機株式会社 Refrigeration air conditioner
CN107110565A (en) * 2015-02-02 2017-08-29 三菱电机株式会社 refrigerating air conditioning device
JP2017083155A (en) * 2015-10-27 2017-05-18 富士電機株式会社 Heat pump device
KR20170086389A (en) * 2016-01-18 2017-07-26 (주)에코알앤에스 Cooling apparatus and method for maintaing cooling apparatus
WO2018097154A1 (en) * 2016-11-24 2018-05-31 ダイキン工業株式会社 Refrigeration device
JP2018084375A (en) * 2016-11-24 2018-05-31 ダイキン工業株式会社 Freezing device
CN110023692A (en) * 2016-11-24 2019-07-16 大金工业株式会社 Refrigerating plant
CN110023692B (en) * 2016-11-24 2021-08-06 大金工业株式会社 Refrigerating device
CN110455002A (en) * 2019-09-09 2019-11-15 合肥天鹅制冷科技有限公司 A kind of magnetic suspension centrifugal refrigerating machines electromotor cooling system
WO2023233452A1 (en) * 2022-05-30 2023-12-07 三菱電機株式会社 Outdoor unit and refrigeration cycle device
CN116206795A (en) * 2023-01-04 2023-06-02 中国原子能科学研究院 Method for starting radioactive waste liquid treatment system
CN116206795B (en) * 2023-01-04 2024-03-22 中国原子能科学研究院 Method for starting radioactive waste liquid treatment system

Also Published As

Publication number Publication date
JP5783783B2 (en) 2015-09-24

Similar Documents

Publication Publication Date Title
JP5783783B2 (en) Heat source side unit and refrigeration cycle apparatus
JP5169295B2 (en) Refrigeration equipment
WO2013073064A1 (en) Refrigeration unit
JP2011117626A (en) Air conditioner
KR101220707B1 (en) Freezing device
KR101220583B1 (en) Freezing device
JP2008267787A5 (en)
KR101220741B1 (en) Freezing device
KR101220663B1 (en) Freezing device
KR101332478B1 (en) Freezing device
JP2013024538A (en) Refrigeration unit
KR101190317B1 (en) Freezing device
JP2004116794A (en) Refrigeration cycle
JP5914806B2 (en) Refrigeration equipment
JP2008121926A (en) Refrigeration air conditioner
KR101268207B1 (en) Freezing device
JP2011137557A (en) Refrigerating apparatus
JP4274250B2 (en) Refrigeration equipment
JP2014105962A (en) Refrigeration unit
JP2014105963A (en) Refrigeration unit
JP5934931B2 (en) Tank for refrigeration cycle apparatus and refrigeration cycle apparatus including the same
JP6267483B2 (en) Refrigerator unit and refrigeration equipment
JP2014119222A (en) Refrigeration device
JP2014222131A (en) Freezer
JP5483129B2 (en) Start-up control method for dual refrigeration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150721

R150 Certificate of patent or registration of utility model

Ref document number: 5783783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250