WO2013073064A1 - Refrigeration unit - Google Patents
Refrigeration unit Download PDFInfo
- Publication number
- WO2013073064A1 WO2013073064A1 PCT/JP2011/078403 JP2011078403W WO2013073064A1 WO 2013073064 A1 WO2013073064 A1 WO 2013073064A1 JP 2011078403 W JP2011078403 W JP 2011078403W WO 2013073064 A1 WO2013073064 A1 WO 2013073064A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oil
- compressor
- case
- refrigerant
- valve
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/10—Compression machines, plants or systems with non-reversible cycle with multi-stage compression
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B31/00—Compressor arrangements
- F25B31/002—Lubrication
- F25B31/004—Lubrication oil recirculating arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B5/00—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
- F25B5/02—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/06—Several compression cycles arranged in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/07—Details of compressors or related parts
- F25B2400/072—Intercoolers therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/03—Oil level
Definitions
- the present invention relates to a refrigeration apparatus including an oil return pipe that returns oil captured by an oil separator into a compressor.
- a multi-stage (for example, two-stage) compressor that compresses and discharges the sucked refrigerant in multiple stages, an oil separator provided in a high-pressure discharge pipe of the compressor, and oil captured by the oil separator
- a refrigeration apparatus including an oil return pipe that returns the gas to the compressor (see, for example, Patent Document 1).
- the compressor case is configured to have an intermediate or low pressure
- an electromagnetic return valve is provided in the oil return pipe so that when the amount of oil in the case decreases to the lower limit, this electromagnetic
- oil is returned into the case using a differential pressure between the discharged refrigerant (high pressure) and the inside of the case (intermediate pressure or low pressure) by opening and closing the on-off valve.
- the operating pressure is higher than that of a refrigeration system that uses chlorofluorocarbons (including alternative chlorofluorocarbons, also referred to as a fluorocarbon refrigerant). Therefore, it is difficult to increase the inner diameter of the oil separator, and it is difficult to ensure a large volume of the oil separator. If the oil separator volume cannot be secured sufficiently, the oil separation efficiency in the oil separator (the efficiency of separating the refrigerant and oil by reducing the flow rate of the refrigerant in the oil separator) will decrease, and the oil that could not be separated will become the low pressure of the refrigeration cycle. It flows to the evaporator on the side and stays in the evaporator, causing deterioration in heat transfer performance and poor lubrication of the compressor.
- CO2 carbon dioxide
- the volume of the oil separator is small, it is difficult to secure a sufficient amount of oil storage, and refrigerant enters the oil that returns to the compressor through the oil return pipe, significantly reducing the efficiency of the refrigeration system or compressing it.
- the amount of oil returning to the machine may be insufficient, leading to poor lubrication.
- the pressure difference between the high pressure side and the low pressure side (or intermediate pressure) of the refrigerant circuit is larger than that in a refrigeration system that uses a fluorocarbon refrigerant.
- the differential pressure between the refrigerant and the compressor case intermediate pressure or low pressure
- an electromagnetic on-off valve which also causes poor compressor lubrication.
- the present invention has been made in view of the above-described circumstances, and is a refrigeration apparatus that can ensure oil separation efficiency and oil storage amount without increasing the volume of the oil separator and prevent poor lubrication of the compressor.
- the purpose is to provide.
- the present invention includes a refrigerant circuit that performs a refrigeration cycle operation using carbon dioxide as a refrigerant.
- the refrigerant circuit stores oil in a case and discharges the refrigerant together with the oil to a high-pressure discharge pipe.
- the refrigeration apparatus having a compressor that performs, an oil separator provided in the high-pressure discharge pipe, and an oil return pipe that returns the oil separated by the oil separator into the case, the oil separated by the oil separator
- An oil tank having a predetermined volume to be stored is provided, and oil stored in the oil tank is returned into the case through the oil return pipe, and an electric valve is provided in the oil return pipe,
- a valve opening adjusting means for adjusting the operating frequency of the compressor is provided.
- the oil tank having a predetermined volume for storing the oil separated by the oil separator is provided, and the oil stored in the oil tank is returned into the case through the oil return pipe, and the oil return pipe
- An electric valve for adjusting the opening degree of the motor is provided, and the opening degree of the electric valve is adjusted according to the operating frequency of the compressor, so that the oil separation efficiency and the oil storage amount can be increased without increasing the volume of the oil separator. It is possible to ensure and prevent poor lubrication of the compressor.
- the compressor has a plurality of compressors connected in parallel, and the oil separator is provided in a single high-pressure discharge pipe that joins the high-pressure discharge pipes of the plurality of compressors,
- the oil tank may be formed of a heat resistant container having a lower height than the oil oil separator. According to this configuration, the oil separator can be shared by a plurality of compressors, the number of parts can be reduced, and sufficient oil pressure strength can be easily secured for the oil tank, and the layout in the refrigeration apparatus is facilitated. .
- the oil return pipe may be provided with an oil cooler downstream of the oil tank. According to this configuration, the oil can be efficiently cooled.
- the valve opening adjustment means increases the valve opening of the motor-operated valve when the operating frequency of the compressor increases, and increases the operating frequency of the compressor when the operating frequency of the compressor decreases. You may make it make the valve opening degree of a motor operated valve small. According to this configuration, the amount of oil returned into the case can be controlled in accordance with the amount of oil discharged, so that stable oil return control is possible.
- the oil separation efficiency and the oil storage amount can be secured without increasing the volume of the oil separator, and the lubrication failure of the compressor can be prevented.
- FIG. 1 is a circuit configuration diagram of a refrigeration apparatus according to an embodiment of the present invention.
- the refrigeration apparatus 1 includes a refrigeration unit 3 and a plurality of (for example, two) showcase units 5A and 5B.
- the refrigeration unit 3 and the showcase units 5A and 5B include a liquid refrigerant pipe 7 and a gas.
- a refrigerant circuit 10 that is connected by a refrigerant pipe 9 and performs a refrigeration cycle operation is configured.
- the refrigerant circuit 10 uses a carbon dioxide (CO2) refrigerant whose high pressure side has a supercritical pressure.
- CO2 carbon dioxide
- the carbon dioxide refrigerant Since the carbon dioxide refrigerant has an ozone depletion coefficient of 0 and a global warming coefficient of 1, the load on the environment is small, and it is safe and inexpensive without toxicity and flammability.
- oil for lubricating the compressor 11 in the refrigerant circuit 10 is also placed in the refrigerant pipe.
- the flow of the refrigerant is indicated by solid arrows, and the flow of oil is indicated by broken arrows.
- the refrigerator unit 3 includes two compressors 11 and 11 connected by piping in parallel.
- the compressors 11 and 11 are internal intermediate pressure type rotary two-stage compressors in which the insides of the cases 12 and 12 have an intermediate pressure.
- Each compressor 11 has an electric motor section (not shown) inside the case 12 and a low-stage compression element 11A and a high-stage compression element 11B driven by the electric motor section.
- the low-stage compression element 11A boosts and discharges low-pressure refrigerant sucked into the compressor 11 through the gas refrigerant pipe 9 to an intermediate pressure
- the high-stage compression element 11B is an intermediate pressure compressed by the low-stage compression element 11A.
- the refrigerant is further pressurized to a high pressure and discharged.
- the compressor 11 is a variable frequency compressor, and the rotation speed of the low-stage compression element 11A and the high-stage compression element 11B can be adjusted by changing the operating frequency of the electric motor unit.
- the case 12 of the compressor 11 includes a low-stage suction port 12A and a low-stage discharge port 12B communicating with the low-stage compression element 11A, and a high-stage suction port 12C and a high-stage side communicating with the high-stage compression element 11B.
- a discharge port 12D is formed.
- Low-pressure suction pipes 13 and 13 are connected to the low-stage suction ports 12A and 12A of the compressors 11 and 11, respectively, and these low-pressure suction pipes 13 and 13 merge on the upstream side of the low-stage compression elements 11A and 11A.
- the low pressure suction pipe 13 is provided with a suction pressure sensor 15 and a suction temperature sensor 16 for detecting the suction pressure and the suction temperature of the refrigerant flowing through the low pressure suction pipe 13, respectively.
- Intermediate pressure discharge pipes 17 and 17 are connected to the low-stage discharge ports 12B and 12B, respectively, and the intermediate-pressure discharge pipes 17 and 17 merge at the downstream side of the low-stage compression elements 11A and 11A.
- 18 is connected to one end.
- This intermediate cooler 18 cools the intermediate-pressure refrigerant discharged from the low-stage compression element 11A, and an intermediate-pressure suction pipe 19 is connected to the other end of the intermediate cooler 18.
- the suction pipe 19 is branched into two and then connected to the high-stage suction ports 12C and 12C.
- the intermediate pressure suction pipe 19 is provided with an intermediate pressure sensor 20 that detects the intermediate pressure of the refrigerant flowing through the intermediate pressure suction pipe 19.
- the high stage side suction port 12 ⁇ / b> C communicates with the high stage compression element 11 ⁇ / b> B through the space in the case 12, and the inside of the case 12 is maintained at an intermediate pressure during the operation of the compressor 11.
- High-pressure discharge pipes 21 and 21 are connected to the high-stage discharge ports 12D and 12D, respectively, and the high-pressure discharge pipes 21 and 21 merge on the downstream side of the high-stage compression elements 11B and 11B to form a single high-pressure discharge. It becomes the tube 21A.
- the high-pressure discharge pipe 21 ⁇ / b> A is connected to the liquid refrigerant pipe 7 via a single oil separator 22, a gas cooler (heat radiator) 23, and a supercooling heat exchanger 24.
- the high-stage discharge ports 12D and 12D are respectively provided with a discharge pressure sensor 25 and a discharge temperature sensor 26 for detecting the discharge pressure and the discharge temperature of the refrigerant discharged from the high-stage compression elements 11B and 11B, respectively. ing.
- the oil separator 22 separates and captures the oil contained in the high-pressure discharged refrigerant discharged from the compressor 11 from the refrigerant.
- the oil separator 22 is an oil that returns the captured oil to the compressor 11.
- a return pipe 28 is connected.
- the oil return pipe 28 is provided with an oil cooler 27 that cools the captured oil.
- the oil return pipe 28 includes two oil return pipes (an oil return pipe for each compressor 11). ) Branched to 28A and connected to the case 12 of the compressor 11 through the strainer 29 and the motor-operated valve 30 such as a flow rate adjusting valve, respectively.
- the trapped oil is intermediate between the high pressure in the oil separator 22 (equivalent to the pressure in the high-pressure discharge pipe 21A) and the inside of the case 12. The pressure is returned into the case 12 by the pressure difference.
- this refrigeration apparatus 1 uses a carbon dioxide refrigerant, the operating pressure is higher than when a fluorocarbon refrigerant is used, and the volume of the oil separator 22 is restricted due to the need to ensure pressure resistance. This means that the oil separation efficiency of the oil separator 22 decreases, and the oil that could not be separated flows to the evaporator (case heat exchangers 43A and 43B) on the low pressure side of the refrigeration cycle and stays in the evaporator. It may cause deterioration of heat transfer performance and poor lubrication of the compressor.
- a single oil tank 61 having a predetermined volume for storing the oil separated by the oil separator 22 is provided, and the oil stored in the oil tank 61 is supplied to the compressor through the oil return pipes 28A and 28A. 11 and 11 are returned to the case 12.
- the oil tank 61 is formed of a small (small volume) heat-resistant container having a height lower than that of the oil separator 22, has sufficient pressure resistance to withstand the high operating pressure of the refrigeration apparatus 1, and the oil separator 22 It is arranged adjacent to.
- One end of the oil pipe 28B connecting the oil separator 22 and the oil tank 61 opens near the bottom in the oil separator 22, and the oil near the bottom is drawn into the oil pipe 28B by the above differential pressure. Pull in.
- One end of a single oil return pipe 28 connected to the compressors 11, 11 is connected to the oil tank 61, and the oil in the oil tank 61 is sucked into the oil return pipe 28 by the differential pressure, and the compressor 11, 11 in the case 12.
- the oil separated by the oil separator 22 flows and accumulates in the oil tank 61 due to the negative pressure in the case 12 of the compressors 11, 11, and accordingly, the oil oil level in the oil separator 22 is lowered. can do.
- an oil separation space (a space for separating the oil from the mixed flow of the gas-phase refrigerant and the oil mist) can be secured widely to increase the oil separation efficiency, and a sufficient amount of oil can be secured in the oil tank 61.
- the case 12 of the compressor 11 is provided with an oil level sensor (oil level detecting means) 31 for detecting the level of oil stored in the case 12 (oil amount).
- the oil level sensor 31 is a two-contact type level sensor that can detect an upper limit level and a lower limit level.
- the oil level sensor 31 includes a sensor case that communicates with the case 12, and the oil level in the sensor case is the compressor level. 11 according to the oil level in the case 12.
- a float switch is arranged in the sensor case, which includes a float that floats up and down in response to changes in the oil level, and upper and lower contacts that are opened and closed as the height of the float changes. Yes.
- a magnet is disposed in the float, and upper and lower contacts disposed at different heights are opened and closed by the magnetic force of the magnet. Specifically, the upper contact is turned on when the oil level in the case 12 exceeds the upper limit level, and the upper contact is turned off when the oil level falls below the upper limit level. Further, when the oil level in the case 12 exceeds the lower limit level, the lower contact is turned off, and when the oil level falls below the lower limit level, the lower contact is turned on.
- the gas cooler 23 cools the high-pressure discharged refrigerant discharged from the compressor 11.
- the gas cooler 23 is arranged in parallel with the intermediate cooler 18 and the oil cooler 27 described above.
- the gas cooler 23, the intermediate cooler 18, and the oil cooler 27 are provided adjacent to a cooling fan 32 that blows air toward the gas cooler 23, the intermediate cooler 18, and the oil cooler 27.
- the supercooling heat exchanger 24 is cooled by the gas cooler 23, and passes through the high pressure discharge pipe 21A and the liquid refrigerant pipe 7 from the gas cooler 23, and the first expansion valves (first throttle means) 42A included in the showcase units 5A and 5B.
- the refrigerant heading for 42B is supercooled using the branched refrigerant branched on the outlet side of the gas cooler 23.
- a branch pipe 33 branched from the high-pressure discharge pipe 21 on the outlet side of the gas cooler 23 is connected to the branch refrigerant flow path inlet of the supercooling heat exchanger 24 via a second expansion valve 34, and the branch refrigerant flow
- the passage outlet is connected to an intermediate pressure suction pipe 19 on the outlet side of the intermediate cooler 18.
- the high-pressure discharge pipe 21 is provided with an inlet temperature sensor 35 and an outlet temperature sensor 36 that detect the temperature of the refrigerant flowing through the high-pressure discharge pipe 21 on the inlet side and the outlet side of the supercooling heat exchanger 24, respectively.
- the refrigerator unit 3 includes a main controller 50 that controls the operation of the entire refrigeration apparatus 1.
- the main controller 50 adjusts the operating frequency of the compressors 11 and 11 according to the refrigeration loads of the showcase units 5A and 5B, and adjusts the refrigerant discharge temperature of the high-stage compression element 11B detected by the discharge temperature sensor 26. Based on this, the opening degree of the second expansion valve 34 is adjusted.
- the opening degree of the second expansion valve 34 may be adjusted based on the outlet temperature of the branch refrigerant, which is an intermediate pressure of the supercooling heat exchanger 24, the refrigerant inlet / outlet temperature difference of the supercooling heat exchanger 24, and the like. good.
- the main control device 50 executes oil return control from the oil separator 22 to each of the compressors 11, 11, and at the time of oil return control, each motor-operated valve 30 is based on the operating frequency of each compressor 11, 11. , 30 valve opening is adjusted. Further, when performing oil return control, the valve opening is corrected based on the oil level detected by each oil level sensor 31.
- the main controller 50 functions as a valve opening adjusting means for adjusting the valve opening of the motor operated valves 30 and 30 according to the operating frequency of the compressors 11 and 11, and according to the oil level. It functions as a valve opening correction means for correcting the valve opening.
- each showcase unit 5A, 5B is each installed in a store or the like, and are connected in parallel to the liquid refrigerant pipe 7 and the gas refrigerant pipe 9, respectively.
- Each showcase unit 5A, 5B includes case refrigerant pipes 40A, 40B that connect the liquid refrigerant pipe 7 and the gas refrigerant pipe 9, and the case refrigerant pipes 40A, 40B include strainers 41A, 41B, respectively, Expansion valves (first throttle means) 42A and 42B and case heat exchangers 43A and 43B are provided.
- the case heat exchangers 43A and 43B are provided with case fans 44A and 44B adjacent to the case heat exchangers 43A and 43B.
- the showcase units 5A and 5B include case control devices 45A and 45B that control the operation of each part of the showcase units 5A and 5B.
- the case control devices 45A and 45B can communicate with the main control device 50. Composed.
- Case controller 45A, 45B adjusts the opening degree of 1st expansion valve 42A, 42B based on the inlet-outlet temperature difference (superheat degree) of case heat exchanger 43A, 43B, respectively.
- FIG. 2 is a flowchart showing the operation of oil return control. Since this oil return control is the same for both compressors 11, 11, only one compressor 11 and the corresponding motor-operated valve 30 will be described below.
- main controller 50 acquires the initial opening degree of motor-operated valve 30 (step S1).
- This initial opening is a valve opening that is set when the refrigeration apparatus 1 (that is, the compressors 11 and 11) is started.
- the valve opening for example, the valve opening that closes the motor-operated valve 30 (for example, 30 pulses).
- main controller 50 adjusts the valve opening degree of motor-operated valve 30 according to the operating frequency of compressor 11 (step S2).
- the valve opening is calculated from the operating frequency of the compressor 11 and the correction coefficient A that is appropriately changed according to the oil level. Specifically, the valve opening is obtained by multiplying the value obtained by the correlation equation f (x) with the operating frequency as the variable x and the correction coefficient A, and when the operating frequency is high, the valve opening is performed. When the degree is large and low, the valve opening is reduced.
- the valve opening degree of the motor-operated valve 30 is adjusted according to the operating frequency of the compressor 11.
- the valve opening degree of each motor-operated valve 30 can be set to a valve opening degree corresponding to the operating frequency of each compressor 11, and the oil return amount as compared with the configuration in which the oil return amount is adjusted by a conventional electric on-off valve. Can be finely adjusted according to the compressor 11.
- the initial value of the correction coefficient A is set to a value that provides a valve opening for obtaining an oil return amount corresponding to the oil amount discharged from the compressor 11, for example, based on the specifications of the compressor 11. Is set.
- the balance between the amount of oil discharged from each compressor 11 and the amount of oil returned into the cases 12 and 12 of each compressor 11 can be improved, and the amount of oil returned to each compressor 11 can be reduced. Can be appropriate.
- main controller 50 determines whether or not the lower contacts of the float switches of both compressors 11 and 11 are off (step S5). In this determination, when the lower contact of the float switch is not off (step S5; No), that is, when the oil level is below the lower limit level, a predetermined first waiting time (30 seconds in the present embodiment). Is determined (step S6). If this waiting time has not elapsed (step S6; No), the process returns to step S5. By performing the process of determining whether or not this waiting time has elapsed, it is possible to avoid erroneous detection of the oil level due to oil level fluctuations that occur during compressor operation.
- step S6 Yes
- the main control device 50 Shifts the processing to step S12 to correct the valve opening of the motor-operated valve 30.
- step S5 When the lower contact of the float switch is off (step S5; Yes), that is, when the oil level exceeds the lower limit level, the main controller 50 resets the built-in timer (step S7). It is determined whether or not the upper contact of the switch is off (step S8). In step S8, if the upper contact of the float switch is not off (step S8; No), that is, if the oil level exceeds the upper limit level, a predetermined second waiting time (30 in this embodiment) is set. It is determined whether or not (second) has elapsed (step S9). If this waiting time has not elapsed (step S9; No), the process returns to step S8.
- main controller 50 shifts the process to step S15 and corrects the valve opening degree of electric valve 30.
- step S8 when the upper contact of the float switch is off (step S8; Yes), that is, when the oil level is below the upper limit level, the main controller 50 determines whether the compressors 11 and 11 are stopped. Is determined (step S10). In this determination, if the compressor 11 is not stopped (step S10; No), the process proceeds to step S4, and the oil level determination process shown in steps S4 to S10 is repeatedly executed. Moreover, when the compressor 11 has stopped (step S10; Yes), the valve opening degree of the motor operated valve 30 is set to an initial opening degree, and a process is complete
- step S6 when the state where the lower contact of the float switch is not turned off continues (step S6; No), the amount of oil in the case 12 is determined to be too small, so the oil return pipe 28A to the case 12 is provided. It correct
- the main controller 50 sets the correction coefficient A related to the valve opening degree of the motor-operated valve 30 of the compressor 11 by increasing a predetermined amount (10% in this embodiment) (step S12). Thereby, the valve opening degree of the motor-operated valve 30 adjusted according to the operating frequency of the compressor 11 is corrected based on the oil amount in the case 12.
- main controller 50 determines whether or not correction coefficient A is larger than a predetermined upper limit value (6.0 in the present embodiment) (step S13).
- This upper limit value is an upper limit value when the correction coefficient A is increased.
- step S13; No the process returns to step S4.
- step S13; Yes the correction coefficient A is set to the upper limit value (step S14), and the process returns to step S4.
- step S9 When the state in which the upper contact of the float switch is not off continues (step S9; No), it is determined that the amount of oil in the case 12 is excessive, so that the valve opening of the motor-operated valve 30 is decreased (reduced diameter).
- the main controller 50 sets the correction coefficient A related to the valve opening degree of the motor-operated valve 30 of the compressor 11 by decreasing a predetermined amount (about 5% in the present embodiment) (step S15).
- the valve opening degree of the motor-operated valve 30 adjusted according to the operating frequency of the compressor 11 is corrected based on the oil amount in the case 12. For this reason, the amount of oil returned into the case 12 can be reduced, and the state where the amount of oil in the case 12 is excessive can be eliminated at an early stage.
- main controller 50 determines whether or not correction coefficient A is smaller than a predetermined lower limit (0.3 in the present embodiment) (step S16).
- This lower limit value is a lower limit value when the correction coefficient A is decreased.
- the process returns to step S4.
- the correction coefficient A is set to the lower limit value (step S17), and the process returns to step S4.
- the two-stage compressor 11 in which the inside of the case 12 has an intermediate pressure, the oil separator 22 provided in the high-pressure discharge pipe 21 of the compressor 11, and the oil separator 22 are captured.
- An oil return pipe 28 for returning oil into the case 12 a motor operated valve 30 provided in the oil return pipe 28 ⁇ / b> A, and a valve opening adjustment for adjusting the valve opening of the motor operated valve 30 according to the operating frequency of the compressor 11.
- the main controller 50 In order to provide the main controller 50 as a means, even in a configuration using carbon dioxide refrigerant, a balance between the amount of oil discharged from the compressor 11 and the amount of oil returned into the case 12 of the compressor 11 is achieved.
- the amount of oil in the case 12 can be easily controlled.
- the main controller 50 increases the valve opening degree of the motor-operated valve 30 when the operating frequency of the compressor 11 is increased, and the motor-operated valve when the operating frequency of the compressor 11 is decreased. Since the valve opening of 30 is reduced, the amount of oil returned into the case 12 can be controlled in accordance with the amount of oil discharged from the compressor 11, so that stable oil return control is possible.
- the oil level sensor 31 that detects the oil level in the case 12 is provided, and the main controller 50 detects that the compressor level when the oil level detected by the oil level sensor 31 exceeds the upper limit level.
- the valve opening degree of the motor-operated valve 30 adjusted according to the operation frequency of 11 is made small, and when the oil level falls below the lower limit level, the valve opening degree is made to increase. The state in which the amount of oil in the case 12 is too small or excessive can be quickly eliminated, and control can be performed so that the amount of oil in the case 12 does not become insufficient.
- the refrigeration apparatus 1 performs oil return control for adjusting the valve opening degree of the electric valve 30 provided in the oil return pipe 28A according to the operating frequency of the compressor 11 and the oil level in the case 12. Therefore, it is possible to avoid the situation where the oil amount in the compressor 11 is reduced by optimizing the oil return amount as much as possible.
- this refrigeration apparatus 1 it may take time for the oil to circulate properly in the pipe during a trial run performed immediately after installation, particularly during a trial run when the pipe distance is long. In other words, even if the motor-operated valves 30 and 30 are opened widely, the oil does not return to the cases 12 and 12 of the compressors 11 and 11, and the amount of oil in the cases 12 and 12 decreases.
- FIG. 3 is a flowchart showing the operation of the operation stop control.
- main controller 50 resets another built-in timer (step S21), and then determines whether or not the lower contact of the float switch of compressor 11 is off (step S22). In this determination, when the lower contact of the float switch is not off (step S22; No), that is, when the oil level is below the lower limit level, the oil return control does not increase the oil amount, that is, the oil is insufficient.
- This waiting time is set to be longer than the first and second waiting times (30 seconds in the present embodiment) for oil return control and within a time that does not have a significant adverse effect on the compressor 11, In this embodiment, it is set to 10 minutes.
- step S23; No If the waiting time has not elapsed (step S23; No), the main control device 50 returns to the process of step S22. If the waiting time has elapsed (step S23; Yes), the oil level is below the lower limit level. Is stopped (step S24), and the process returns to step S22. Thereby, the driving
- step S22; Yes when the lower contact of the float switch is off (step S22; Yes), that is, when the oil level is higher than the lower limit level, the main controller 50 is a compressor provided with the float switch. It is determined whether or not 11 is stopped (step S25). If not stopped (step S25; No), the process returns to step S21.
- step S25; Yes the main controller 50 determines whether or not there is an operation signal for instructing operation, that is, whether or not the operation instruction is continuing or a new operation instruction has been issued. Is determined (step S26). If there is an operation instruction (step S26; Yes), main controller 50 causes compressor 11 to operate again (step S27). That is, after the operation of the compressor 11 is stopped, the operation of the compressor 11 is resumed when the oil level exceeds the lower limit level. On the other hand, if there is no operation instruction (step S26; No), the main controller 50 ends the processing and keeps the compressor 11 stopped. Thereby, the driving
- the main controller 50 increases the operation capacity of the other compressors 11 to compensate for the decrease in the operation capacity due to the operation stop of the compressor 11. Take control. Specifically, if the other compressor 11 is stopped, the operation of the other compressor 11 is started, and control is performed so that the compressor 11 is operated at the capacity before the stop. Is operating, the operating capacity of the other compressors 11 is increased by the operating capacity of the stopped compressor 11 before stopping. Thereby, the fall of driving capability is suppressed and the freezing operation according to external load (refrigeration load) is continued.
- the main controller 50 stops the operation of the compressor 11 when the oil level continues below the lower limit level during the operation of the compressor 11, and the oil level Functions as an operation control means for restarting the operation of the compressor 11 when the value exceeds the lower limit level, so that the operation of the compressor 11 in a state where the amount of oil in the compressor 11 is small is avoided and the lubrication of the compressor 11 is performed. Defects can be prevented.
- the valve opening degree of the motor-operated valve 30 provided in the oil return pipe 28A is controlled according to the operating frequency of the compressor 11, a special operation such as a trial operation or a small total oil amount is performed.
- the compressor 11 can be continuously operated by optimizing the oil return amount, and the compressor 11 is caused due to the special state described above. It becomes possible to prevent the lubrication failure of the compressor 11 when the oil in the inside decreases.
- an oil tank 61 having a predetermined volume for storing the oil separated by the oil separator 22 is provided, and the oil stored in the oil tank 61 is passed through the oil return pipe 28 in the case 12 of the compressor 11.
- the motor-operated valve 30 for adjusting the opening degree of the oil return pipe 28A is provided, and the opening degree of the motor-operated valve 30 is adjusted according to the operating frequency of the compressor 11, so that oil is accumulated in the oil tank 61. Therefore, the oil oil level in the oil separator 22 can be lowered. As a result, a large oil separation space can be secured to increase the oil separation efficiency, and a sufficient oil storage amount can be secured by the oil tank 61.
- the oil separation efficiency and the oil storage amount can be ensured, and this also enables stable oil return control in the configuration using the carbon dioxide refrigerant. It is possible to prevent the refrigerant from entering the oil that returns to the compressor 11, and it is possible to more reliably prevent poor lubrication of the compressor 11.
- the temperature of the oil can be lowered by the oil tank 61, the temperature of the oil returning to the compressor 11 can be efficiently lowered, and the oil level in the oil tank 61 is changed to the oil separator 22.
- the oil separator 22 is provided in a single high-pressure discharge pipe 21A that joins the high-pressure discharge pipes 21 and 21 of the plurality of compressors 11 and 11, the oil separator 22 can be shared by the plurality of compressors 11 and 11. The number of parts can be reduced.
- the oil tank 61 is formed of a heat-resistant container having a height lower than that of the oil separator 22, it is easy to ensure sufficient pressure resistance and layout in the refrigeration apparatus 1 is easy. Further, since the oil cooler 27 is provided in the oil return pipe 21A downstream of the oil tank 61, the oil can be efficiently cooled.
- this invention is not limited to this, A various change implementation is possible.
- the case where the two compressors 11 and 11 were provided was demonstrated, you may make it 1 unit
- this embodiment demonstrated the case where this invention was applied to the refrigeration apparatus 1 which consists of the refrigerator unit 3 used as a heat source side apparatus, and showcase unit 5A, 5B used as a use side apparatus, well-known freezing You may apply the structure of an apparatus.
- the oil level sensor 31 is configured by a two-contact type level sensor that can detect the upper limit level and the lower limit level.
- the present invention is not limited to this, for example, between the upper limit level and the lower limit level. It may be constituted by a level sensor that can detect the intermediate level.
- the oil level when the operation of the compressor 11 is stopped and the oil level when the operation is restarted is set to the same level (lower limit level) is described, but the present invention is not limited to this. That is, the oil level when the operation of the compressor 11 is stopped may be different from that when the operation is restarted. For example, when the oil level exceeds the intermediate level, the operation of the compressor 11 may be restarted. . In this case, the operation of the compressor 11 can be resumed while more oil is accumulated in the compressor 11, the lubrication failure can be reliably avoided and the operation time of the compressor 11 can be ensured for a long time. It becomes easy to secure time until it circulates appropriately.
- Refrigeration equipment 3 Refrigerator unit (heat source side equipment) 5A, 5B showcase unit (use side equipment) DESCRIPTION OF SYMBOLS 10 Refrigerant circuit 11 Compressor 12 Case 21 High pressure discharge pipe 22 Oil separator 23 Gas cooler 27 Oil cooler 28, 28A, 28B Oil return pipe 30 Electric valve 31 Oil level sensor (oil level detection means) 38 Capillary tube (fixed throttle) 50 Main controller (valve opening adjusting means, valve opening correcting means, operation control means) 61 Oil tank A Correction factor
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Compressor (AREA)
- Control Of Positive-Displacement Pumps (AREA)
Abstract
Provided is a refrigeration unit that is capable of ensuring oil separation efficiency and a quantity of stored oil, and of preventing poor lubrication in compressors, without increasing the volume of an oil separator. The refrigeration unit is configured in such a manner that: an oil tank (61) having a prescribed volume, which stores oil that has been separated by the oil separator (22), is provided, and the oil stored in the oil tank (61) passes through oil return tubes (28, 28A) and returns to the inside of cases (12) of the compressors (11); and motor-operated valves (30) that adjust the openings of the oil return tubes (28A) are provided, and the degree to which the motor-operated valves (30) open is adjusted in response to the operating frequency of the compressors (11).
Description
本発明は、オイルセパレータで捕捉されたオイルを圧縮機内に戻すオイル戻し管を備えた冷凍装置に関する。
The present invention relates to a refrigeration apparatus including an oil return pipe that returns oil captured by an oil separator into a compressor.
一般に、吸入した冷媒を多段階に圧縮して吐出する多段式(例えば2段式)の圧縮機と、この圧縮機の高圧吐出管に設けられたオイルセパレータと、このオイルセパレータで捕捉されたオイルを圧縮機に戻すオイル戻し管とを備える冷凍装置が知られている(例えば、特許文献1参照)。この種の冷凍装置では、圧縮機のケース内が中間圧もしくは低圧となるように構成するとともに、オイル戻し管に電磁開閉弁を備え、ケース内のオイル量が下限まで減少した際に、この電磁開閉弁を開閉することにより、吐出冷媒(高圧)とケース内(中間圧もしくは低圧)との差圧を利用してオイルをケース内に戻す構成とするものがある。
In general, a multi-stage (for example, two-stage) compressor that compresses and discharges the sucked refrigerant in multiple stages, an oil separator provided in a high-pressure discharge pipe of the compressor, and oil captured by the oil separator There is known a refrigeration apparatus including an oil return pipe that returns the gas to the compressor (see, for example, Patent Document 1). In this type of refrigeration system, the compressor case is configured to have an intermediate or low pressure, and an electromagnetic return valve is provided in the oil return pipe so that when the amount of oil in the case decreases to the lower limit, this electromagnetic There is a configuration in which oil is returned into the case using a differential pressure between the discharged refrigerant (high pressure) and the inside of the case (intermediate pressure or low pressure) by opening and closing the on-off valve.
ところで、二酸化炭素(CO2)を冷媒として使用する冷凍装置では、フロン(代替フロンを含み、フルオロカーボン系冷媒とも言う)を使用する冷凍装置に比べて、作動圧力が高いので、十分な耐圧強度を確保する必要性から、オイルセパレータの内径を大きくすることが困難であり、オイルセパレータの容積を大きく確保することが難しかった。
オイルセパレータの容積を十分に確保できないと、オイルセパレータにおけるオイル分離効率(オイルセパレータ内で冷媒の流速を落として冷媒とオイルを分離する効率)が低下し、分離できなかったオイルが冷凍サイクルの低圧側にある蒸発器へと流れ、蒸発器内に滞留し、伝熱性能の低下や圧縮機の潤滑不良の原因となる。 By the way, in a refrigeration system that uses carbon dioxide (CO2) as a refrigerant, the operating pressure is higher than that of a refrigeration system that uses chlorofluorocarbons (including alternative chlorofluorocarbons, also referred to as a fluorocarbon refrigerant). Therefore, it is difficult to increase the inner diameter of the oil separator, and it is difficult to ensure a large volume of the oil separator.
If the oil separator volume cannot be secured sufficiently, the oil separation efficiency in the oil separator (the efficiency of separating the refrigerant and oil by reducing the flow rate of the refrigerant in the oil separator) will decrease, and the oil that could not be separated will become the low pressure of the refrigeration cycle. It flows to the evaporator on the side and stays in the evaporator, causing deterioration in heat transfer performance and poor lubrication of the compressor.
オイルセパレータの容積を十分に確保できないと、オイルセパレータにおけるオイル分離効率(オイルセパレータ内で冷媒の流速を落として冷媒とオイルを分離する効率)が低下し、分離できなかったオイルが冷凍サイクルの低圧側にある蒸発器へと流れ、蒸発器内に滞留し、伝熱性能の低下や圧縮機の潤滑不良の原因となる。 By the way, in a refrigeration system that uses carbon dioxide (CO2) as a refrigerant, the operating pressure is higher than that of a refrigeration system that uses chlorofluorocarbons (including alternative chlorofluorocarbons, also referred to as a fluorocarbon refrigerant). Therefore, it is difficult to increase the inner diameter of the oil separator, and it is difficult to ensure a large volume of the oil separator.
If the oil separator volume cannot be secured sufficiently, the oil separation efficiency in the oil separator (the efficiency of separating the refrigerant and oil by reducing the flow rate of the refrigerant in the oil separator) will decrease, and the oil that could not be separated will become the low pressure of the refrigeration cycle. It flows to the evaporator on the side and stays in the evaporator, causing deterioration in heat transfer performance and poor lubrication of the compressor.
また、オイルセパレータの容積が小さいと、十分なオイル貯留量を確保することも困難になり、オイル戻し管を通じて圧縮機へ戻るオイルに冷媒が混入し、冷凍装置の効率が著しく低下したり、圧縮機へ戻るオイル量が不足して潤滑不良を招いたりする原因となる。
また、二酸化炭素を冷媒として使用する冷凍装置では、フルオロカーボン系冷媒を使用する冷凍装置に比べて、冷媒回路の高圧側と低圧側(または中間圧)の圧力差が大きくなるので、圧縮機の吐出冷媒と圧縮機のケース内(中間圧もしくは低圧)との差圧が大きくなり、電磁開閉弁でオイル戻し量を適切に調整することが困難であり、これも圧縮機の潤滑不良を招く原因となる。 In addition, if the volume of the oil separator is small, it is difficult to secure a sufficient amount of oil storage, and refrigerant enters the oil that returns to the compressor through the oil return pipe, significantly reducing the efficiency of the refrigeration system or compressing it. The amount of oil returning to the machine may be insufficient, leading to poor lubrication.
Also, in a refrigeration system that uses carbon dioxide as a refrigerant, the pressure difference between the high pressure side and the low pressure side (or intermediate pressure) of the refrigerant circuit is larger than that in a refrigeration system that uses a fluorocarbon refrigerant. The differential pressure between the refrigerant and the compressor case (intermediate pressure or low pressure) increases, making it difficult to properly adjust the oil return with an electromagnetic on-off valve, which also causes poor compressor lubrication. Become.
また、二酸化炭素を冷媒として使用する冷凍装置では、フルオロカーボン系冷媒を使用する冷凍装置に比べて、冷媒回路の高圧側と低圧側(または中間圧)の圧力差が大きくなるので、圧縮機の吐出冷媒と圧縮機のケース内(中間圧もしくは低圧)との差圧が大きくなり、電磁開閉弁でオイル戻し量を適切に調整することが困難であり、これも圧縮機の潤滑不良を招く原因となる。 In addition, if the volume of the oil separator is small, it is difficult to secure a sufficient amount of oil storage, and refrigerant enters the oil that returns to the compressor through the oil return pipe, significantly reducing the efficiency of the refrigeration system or compressing it. The amount of oil returning to the machine may be insufficient, leading to poor lubrication.
Also, in a refrigeration system that uses carbon dioxide as a refrigerant, the pressure difference between the high pressure side and the low pressure side (or intermediate pressure) of the refrigerant circuit is larger than that in a refrigeration system that uses a fluorocarbon refrigerant. The differential pressure between the refrigerant and the compressor case (intermediate pressure or low pressure) increases, making it difficult to properly adjust the oil return with an electromagnetic on-off valve, which also causes poor compressor lubrication. Become.
本発明は、上述した事情に鑑みてなされたものであり、オイルセパレータの容積を大きくせずに、オイル分離効率及びオイル貯留量を確保し、圧縮機の潤滑不良を防止することができる冷凍装置を提供することを目的とする。
The present invention has been made in view of the above-described circumstances, and is a refrigeration apparatus that can ensure oil separation efficiency and oil storage amount without increasing the volume of the oil separator and prevent poor lubrication of the compressor. The purpose is to provide.
上述した課題を解決するため、本発明は、二酸化炭素を冷媒として冷凍サイクル運転を行う冷媒回路を備え、この冷媒回路は、ケース内にオイルを貯留し、このオイルと共に冷媒を高圧吐出管に吐出する圧縮機と、前記高圧吐出管に設けられたオイルセパレータと、前記オイルセパレータで分離されたオイルを前記ケース内に戻すオイル戻し管とを有する冷凍装置において、前記オイルセパレータで分離されたオイルを貯留する所定容積を有するオイルタンクを設け、このオイルタンクに貯留されたオイルを前記オイル戻し管を通して前記ケース内に戻すとともに、前記オイル戻し管に電動弁を設け、前記電動弁の開度を、前記圧縮機の運転周波数に応じて調整する弁開度調整手段を設けたことを特徴とする。
この構成によれば、オイルセパレータで分離されたオイルを貯留する所定容積を有するオイルタンクを設け、このオイルタンクに貯留されたオイルを前記オイル戻し管を通して前記ケース内に戻すとともに、前記オイル戻し管の開度を調整する電動弁を設け、前記電動弁の開度を、前記圧縮機の運転周波数に応じて調整するので、オイルセパレータの容積を大きくせずに、オイル分離効率及びオイル貯留量を確保し、圧縮機の潤滑不良を防止することができる。 In order to solve the above-described problems, the present invention includes a refrigerant circuit that performs a refrigeration cycle operation using carbon dioxide as a refrigerant. The refrigerant circuit stores oil in a case and discharges the refrigerant together with the oil to a high-pressure discharge pipe. In the refrigeration apparatus having a compressor that performs, an oil separator provided in the high-pressure discharge pipe, and an oil return pipe that returns the oil separated by the oil separator into the case, the oil separated by the oil separator An oil tank having a predetermined volume to be stored is provided, and oil stored in the oil tank is returned into the case through the oil return pipe, and an electric valve is provided in the oil return pipe, A valve opening adjusting means for adjusting the operating frequency of the compressor is provided.
According to this configuration, the oil tank having a predetermined volume for storing the oil separated by the oil separator is provided, and the oil stored in the oil tank is returned into the case through the oil return pipe, and the oil return pipe An electric valve for adjusting the opening degree of the motor is provided, and the opening degree of the electric valve is adjusted according to the operating frequency of the compressor, so that the oil separation efficiency and the oil storage amount can be increased without increasing the volume of the oil separator. It is possible to ensure and prevent poor lubrication of the compressor.
この構成によれば、オイルセパレータで分離されたオイルを貯留する所定容積を有するオイルタンクを設け、このオイルタンクに貯留されたオイルを前記オイル戻し管を通して前記ケース内に戻すとともに、前記オイル戻し管の開度を調整する電動弁を設け、前記電動弁の開度を、前記圧縮機の運転周波数に応じて調整するので、オイルセパレータの容積を大きくせずに、オイル分離効率及びオイル貯留量を確保し、圧縮機の潤滑不良を防止することができる。 In order to solve the above-described problems, the present invention includes a refrigerant circuit that performs a refrigeration cycle operation using carbon dioxide as a refrigerant. The refrigerant circuit stores oil in a case and discharges the refrigerant together with the oil to a high-pressure discharge pipe. In the refrigeration apparatus having a compressor that performs, an oil separator provided in the high-pressure discharge pipe, and an oil return pipe that returns the oil separated by the oil separator into the case, the oil separated by the oil separator An oil tank having a predetermined volume to be stored is provided, and oil stored in the oil tank is returned into the case through the oil return pipe, and an electric valve is provided in the oil return pipe, A valve opening adjusting means for adjusting the operating frequency of the compressor is provided.
According to this configuration, the oil tank having a predetermined volume for storing the oil separated by the oil separator is provided, and the oil stored in the oil tank is returned into the case through the oil return pipe, and the oil return pipe An electric valve for adjusting the opening degree of the motor is provided, and the opening degree of the electric valve is adjusted according to the operating frequency of the compressor, so that the oil separation efficiency and the oil storage amount can be increased without increasing the volume of the oil separator. It is possible to ensure and prevent poor lubrication of the compressor.
上記構成において、前記圧縮機は、並列に接続される複数の圧縮機を有し、前記オイルセパレータは、前記複数の圧縮機の高圧吐出管を合流した単一の高圧吐出管に設けられ、前記オイルタンクは、前記オイルオイルセパレータよりも高さが低い耐熱容器で形成されるようにしても良い。この構成によれば、複数の圧縮機でオイルセパレータを共用でき、部品点数の削減ができるとともに、オイルタンクについて、十分な耐圧強度を確保し易く、また、冷凍装置内へのレイアウトが容易になる。
In the above configuration, the compressor has a plurality of compressors connected in parallel, and the oil separator is provided in a single high-pressure discharge pipe that joins the high-pressure discharge pipes of the plurality of compressors, The oil tank may be formed of a heat resistant container having a lower height than the oil oil separator. According to this configuration, the oil separator can be shared by a plurality of compressors, the number of parts can be reduced, and sufficient oil pressure strength can be easily secured for the oil tank, and the layout in the refrigeration apparatus is facilitated. .
また、上記構成において、前記オイル戻し管には、前記オイルタンクの下流にオイルクーラーが設けられるようにしても良い。この構成によれば、オイルを効率よく冷却することができる。
In the above configuration, the oil return pipe may be provided with an oil cooler downstream of the oil tank. According to this configuration, the oil can be efficiently cooled.
また、上記構成において、前記弁開度調整手段は、前記圧縮機の運転周波数が大きくなった際に前記電動弁の弁開度を大きくし、前記圧縮機の運転周波数が小さくなった際に前記電動弁の弁開度を小さくするようにしても良い。この構成によれば、オイルの吐出量に応じて、ケース内に戻されるオイル量を制御できるため、安定したオイル戻し制御が可能となる。
In the above configuration, the valve opening adjustment means increases the valve opening of the motor-operated valve when the operating frequency of the compressor increases, and increases the operating frequency of the compressor when the operating frequency of the compressor decreases. You may make it make the valve opening degree of a motor operated valve small. According to this configuration, the amount of oil returned into the case can be controlled in accordance with the amount of oil discharged, so that stable oil return control is possible.
本発明によれば、オイルセパレータの容積を大きくせずに、オイル分離効率及びオイル貯留量を確保し、圧縮機の潤滑不良を防止することができる。
According to the present invention, the oil separation efficiency and the oil storage amount can be secured without increasing the volume of the oil separator, and the lubrication failure of the compressor can be prevented.
以下、図面を参照して本発明の一実施の形態について説明する。
図1は、本発明の実施形態に係る冷凍装置の回路構成図である。
冷凍装置1は、冷凍機ユニット3と複数台(例えば2台)のショーケースユニット5A,5Bとを備え、これら冷凍機ユニット3と各ショーケースユニット5A,5Bとが、液冷媒配管7及びガス冷媒配管9により連結されて冷凍サイクル運転を行う冷媒回路10を構成している。
この冷媒回路10には、高圧側が超臨界圧力となる二酸化炭素(CO2)冷媒が使用されている。二酸化炭素冷媒は、オゾン破壊係数が0で、地球温暖化係数が1であるため、環境への負荷が小さく、毒性、可燃性がなく安全で安価である。また、二酸化炭素冷媒に加えて、冷媒回路10内の圧縮機11を潤滑するためのオイルも冷媒配管に入れられている。図1には、実線矢印で冷媒の流れを示し、破線矢印でオイルの流れを示している。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a circuit configuration diagram of a refrigeration apparatus according to an embodiment of the present invention.
The refrigeration apparatus 1 includes a refrigeration unit 3 and a plurality of (for example, two) showcase units 5A and 5B. The refrigeration unit 3 and the showcase units 5A and 5B include a liquid refrigerant pipe 7 and a gas. A refrigerant circuit 10 that is connected by a refrigerant pipe 9 and performs a refrigeration cycle operation is configured.
Therefrigerant circuit 10 uses a carbon dioxide (CO2) refrigerant whose high pressure side has a supercritical pressure. Since the carbon dioxide refrigerant has an ozone depletion coefficient of 0 and a global warming coefficient of 1, the load on the environment is small, and it is safe and inexpensive without toxicity and flammability. In addition to the carbon dioxide refrigerant, oil for lubricating the compressor 11 in the refrigerant circuit 10 is also placed in the refrigerant pipe. In FIG. 1, the flow of the refrigerant is indicated by solid arrows, and the flow of oil is indicated by broken arrows.
図1は、本発明の実施形態に係る冷凍装置の回路構成図である。
冷凍装置1は、冷凍機ユニット3と複数台(例えば2台)のショーケースユニット5A,5Bとを備え、これら冷凍機ユニット3と各ショーケースユニット5A,5Bとが、液冷媒配管7及びガス冷媒配管9により連結されて冷凍サイクル運転を行う冷媒回路10を構成している。
この冷媒回路10には、高圧側が超臨界圧力となる二酸化炭素(CO2)冷媒が使用されている。二酸化炭素冷媒は、オゾン破壊係数が0で、地球温暖化係数が1であるため、環境への負荷が小さく、毒性、可燃性がなく安全で安価である。また、二酸化炭素冷媒に加えて、冷媒回路10内の圧縮機11を潤滑するためのオイルも冷媒配管に入れられている。図1には、実線矢印で冷媒の流れを示し、破線矢印でオイルの流れを示している。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a circuit configuration diagram of a refrigeration apparatus according to an embodiment of the present invention.
The refrigeration apparatus 1 includes a refrigeration unit 3 and a plurality of (for example, two)
The
冷凍機ユニット3は、並列に配管接続された2台の圧縮機11,11を備える。これら圧縮機11,11は、ケース12,12内が中間圧となる内部中間圧型のロータリ式二段圧縮機である。各圧縮機11は、ケース12内部に電動機部(図示略)と、この電動機部により駆動される低段圧縮要素11A及び高段圧縮要素11Bとが配置されている。低段圧縮要素11Aは、ガス冷媒配管9を通じて圧縮機11に吸い込まれる低圧の冷媒を中間圧まで昇圧して吐出し、高段圧縮要素11Bは、上記低段圧縮要素11Aで圧縮された中間圧の冷媒を更に高圧まで昇圧して吐出する。また、圧縮機11は、周波数可変型の圧縮機であり、電動機部の運転周波数を変更することにより、低段圧縮要素11A及び高段圧縮要素11Bの回転数が調整可能となっている。
The refrigerator unit 3 includes two compressors 11 and 11 connected by piping in parallel. The compressors 11 and 11 are internal intermediate pressure type rotary two-stage compressors in which the insides of the cases 12 and 12 have an intermediate pressure. Each compressor 11 has an electric motor section (not shown) inside the case 12 and a low-stage compression element 11A and a high-stage compression element 11B driven by the electric motor section. The low-stage compression element 11A boosts and discharges low-pressure refrigerant sucked into the compressor 11 through the gas refrigerant pipe 9 to an intermediate pressure, and the high-stage compression element 11B is an intermediate pressure compressed by the low-stage compression element 11A. The refrigerant is further pressurized to a high pressure and discharged. The compressor 11 is a variable frequency compressor, and the rotation speed of the low-stage compression element 11A and the high-stage compression element 11B can be adjusted by changing the operating frequency of the electric motor unit.
圧縮機11のケース12には、低段圧縮要素11Aに連通する低段側吸込口12A及び低段側吐出口12Bと、高段圧縮要素11Bに連通する高段側吸込口12C及び高段側吐出口12Dとが形成されている。各圧縮機11,11の低段側吸込口12A,12Aには、それぞれ低圧吸入管13,13が接続され、これら低圧吸入管13,13は低段圧縮要素11A,11Aの上流側で合流し、単一のアキュームレータ14を介して、単一のガス冷媒配管9に接続される。また、低圧吸入管13には、この低圧吸入管13を流れる冷媒の吸込圧力と吸込温度とをそれぞれ検出する吸込圧力センサー15と吸込温度センサー16とが設けられている。
The case 12 of the compressor 11 includes a low-stage suction port 12A and a low-stage discharge port 12B communicating with the low-stage compression element 11A, and a high-stage suction port 12C and a high-stage side communicating with the high-stage compression element 11B. A discharge port 12D is formed. Low- pressure suction pipes 13 and 13 are connected to the low- stage suction ports 12A and 12A of the compressors 11 and 11, respectively, and these low- pressure suction pipes 13 and 13 merge on the upstream side of the low- stage compression elements 11A and 11A. Are connected to a single gas refrigerant pipe 9 via a single accumulator 14. Further, the low pressure suction pipe 13 is provided with a suction pressure sensor 15 and a suction temperature sensor 16 for detecting the suction pressure and the suction temperature of the refrigerant flowing through the low pressure suction pipe 13, respectively.
各低段側吐出口12B,12Bには、それぞれ中間圧吐出管17,17が接続され、この中間圧吐出管17,17は低段圧縮要素11A,11Aの下流側で合流して中間冷却器18の一端に接続される。この中間冷却器18は、低段圧縮要素11Aから吐出された中間圧の冷媒を冷却するものであり、当該中間冷却器18の他端には、中間圧吸入管19が接続され、この中間圧吸入管19は2つに分岐した後に高段側吸込口12C,12Cに接続される。また、中間圧吸入管19には、この中間圧吸入管19を流れる冷媒の中間圧力を検出する中間圧力センサー20が設けられている。本構成では、高段側吸込口12Cは、ケース12内空間を介して高段圧縮要素11Bに連通しており、圧縮機11の運転中、当該ケース12内は中間圧に保たれる。
Intermediate pressure discharge pipes 17 and 17 are connected to the low- stage discharge ports 12B and 12B, respectively, and the intermediate- pressure discharge pipes 17 and 17 merge at the downstream side of the low-stage compression elements 11A and 11A. 18 is connected to one end. This intermediate cooler 18 cools the intermediate-pressure refrigerant discharged from the low-stage compression element 11A, and an intermediate-pressure suction pipe 19 is connected to the other end of the intermediate cooler 18. The suction pipe 19 is branched into two and then connected to the high- stage suction ports 12C and 12C. Further, the intermediate pressure suction pipe 19 is provided with an intermediate pressure sensor 20 that detects the intermediate pressure of the refrigerant flowing through the intermediate pressure suction pipe 19. In this configuration, the high stage side suction port 12 </ b> C communicates with the high stage compression element 11 </ b> B through the space in the case 12, and the inside of the case 12 is maintained at an intermediate pressure during the operation of the compressor 11.
各高段側吐出口12D,12Dには、それぞれ高圧吐出管21,21が接続され、この高圧吐出管21,21は高段圧縮要素11B,11Bの下流側で合流し、単一の高圧吐出管21Aとなる。この高圧吐出管21Aは、単一のオイルセパレータ22、ガスクーラー(放熱器)23及び過冷却熱交換器24を介して、液冷媒配管7に接続される。また、高段側吐出口12D,12Dには、高段圧縮要素11B,11Bから吐出された冷媒の吐出圧力と吐出温度とをそれぞれ検出する吐出圧力センサー25と吐出温度センサー26とが各々設けられている。
High- pressure discharge pipes 21 and 21 are connected to the high- stage discharge ports 12D and 12D, respectively, and the high- pressure discharge pipes 21 and 21 merge on the downstream side of the high- stage compression elements 11B and 11B to form a single high-pressure discharge. It becomes the tube 21A. The high-pressure discharge pipe 21 </ b> A is connected to the liquid refrigerant pipe 7 via a single oil separator 22, a gas cooler (heat radiator) 23, and a supercooling heat exchanger 24. The high- stage discharge ports 12D and 12D are respectively provided with a discharge pressure sensor 25 and a discharge temperature sensor 26 for detecting the discharge pressure and the discharge temperature of the refrigerant discharged from the high- stage compression elements 11B and 11B, respectively. ing.
オイルセパレータ22は、圧縮機11から吐出された高圧の吐出冷媒中に含まれるオイルを冷媒と分離して捕捉するものであり、このオイルセパレータ22には、捕捉したオイルを圧縮機11に戻すオイル戻し管28が接続されている。このオイル戻し管28には、捕捉したオイルを冷却するオイルクーラー27が設けられ、このオイルクーラー27の下流側で、オイル戻し管28は2系統のオイル戻し管(圧縮機11毎のオイル戻し管)28Aに分岐され、それぞれストレーナ29及び流量調整弁等の電動弁30を介して圧縮機11のケース12に接続される。圧縮機11のケース12内は、上述のように中間圧に保たれるため、捕捉されたオイルは、オイルセパレータ22内の高圧(高圧吐出管21A内の圧力と同等)とケース12内の中間圧との差圧によって当該ケース12内に戻される。
The oil separator 22 separates and captures the oil contained in the high-pressure discharged refrigerant discharged from the compressor 11 from the refrigerant. The oil separator 22 is an oil that returns the captured oil to the compressor 11. A return pipe 28 is connected. The oil return pipe 28 is provided with an oil cooler 27 that cools the captured oil. On the downstream side of the oil cooler 27, the oil return pipe 28 includes two oil return pipes (an oil return pipe for each compressor 11). ) Branched to 28A and connected to the case 12 of the compressor 11 through the strainer 29 and the motor-operated valve 30 such as a flow rate adjusting valve, respectively. Since the inside of the case 12 of the compressor 11 is maintained at the intermediate pressure as described above, the trapped oil is intermediate between the high pressure in the oil separator 22 (equivalent to the pressure in the high-pressure discharge pipe 21A) and the inside of the case 12. The pressure is returned into the case 12 by the pressure difference.
ところで、本冷凍装置1は、二酸化炭素冷媒を使用するため、フルオロカーボン系冷媒を使用する場合に比べて作動圧力が高く、耐圧強度を確保する必要性からオイルセパレータ22の容積が制約される。このことは、オイルセパレータ22のオイル分離効率が低下し、分離できなかったオイルが冷凍サイクルの低圧側にある蒸発器(ケース熱交換器43A,43B)へと流れ、蒸発器内に滞留し、伝熱性能の低下や圧縮機の潤滑不良の原因となる。また、分離されたオイルをオイルセパレータ22内に十分に貯留できず、圧縮機11へ戻るオイルに冷媒が混入し、冷凍装置1の効率が著しく低下したり、圧縮機11へ戻るオイル量が不足して潤滑不良を招いたりする原因にもなる。
そこで、本実施形態では、オイルセパレータ22で分離されたオイルを貯留する所定容積を有する単一のオイルタンク61を設け、このオイルタンク61に貯留されたオイルをオイル戻し管28A,28Aを通して圧縮機11,11のケース12内に戻すようにしている。 By the way, since this refrigeration apparatus 1 uses a carbon dioxide refrigerant, the operating pressure is higher than when a fluorocarbon refrigerant is used, and the volume of theoil separator 22 is restricted due to the need to ensure pressure resistance. This means that the oil separation efficiency of the oil separator 22 decreases, and the oil that could not be separated flows to the evaporator ( case heat exchangers 43A and 43B) on the low pressure side of the refrigeration cycle and stays in the evaporator. It may cause deterioration of heat transfer performance and poor lubrication of the compressor. Further, the separated oil cannot be sufficiently stored in the oil separator 22, and refrigerant is mixed into the oil that returns to the compressor 11, so that the efficiency of the refrigeration apparatus 1 is significantly reduced or the amount of oil that returns to the compressor 11 is insufficient. This may cause poor lubrication.
Accordingly, in the present embodiment, asingle oil tank 61 having a predetermined volume for storing the oil separated by the oil separator 22 is provided, and the oil stored in the oil tank 61 is supplied to the compressor through the oil return pipes 28A and 28A. 11 and 11 are returned to the case 12.
そこで、本実施形態では、オイルセパレータ22で分離されたオイルを貯留する所定容積を有する単一のオイルタンク61を設け、このオイルタンク61に貯留されたオイルをオイル戻し管28A,28Aを通して圧縮機11,11のケース12内に戻すようにしている。 By the way, since this refrigeration apparatus 1 uses a carbon dioxide refrigerant, the operating pressure is higher than when a fluorocarbon refrigerant is used, and the volume of the
Accordingly, in the present embodiment, a
このオイルタンク61は、オイルセパレータ22よりも高さが低い小型(小容積)の耐熱容器で形成され、本冷凍装置1の高い作動圧力に耐えるのに十分な耐圧強度を有し、オイルセパレータ22に隣接して配置されている。
オイルセパレータ22とオイルタンク61とを接続するオイル配管28Bは、一端がオイルセパレータ22内の底部近傍で開口し、底部近傍のオイルを上記差圧によってオイル配管28B内に引き込み、オイルタンク61内に引き込む。このオイルタンク61には、圧縮機11,11につながる単一のオイル戻し管28の一端が接続され、上記差圧によりオイルタンク61内のオイルがオイル戻し管28に吸い込まれ、圧縮機11,11のケース12内に戻される。
この構成によれば、オイルセパレータ22で分離されたオイルは圧縮機11,11のケース12内の負圧によりオイルタンク61内に流れて溜まり、その分、オイルセパレータ22内のオイル油面を低くすることができる。これにより、オイル分離空間(気相冷媒とオイルミストの混合流からオイルを分離させるための空間)を広く確保してオイル分離効率を高めるとともに、オイルタンク61内に十分なオイル量を確保できる。 Theoil tank 61 is formed of a small (small volume) heat-resistant container having a height lower than that of the oil separator 22, has sufficient pressure resistance to withstand the high operating pressure of the refrigeration apparatus 1, and the oil separator 22 It is arranged adjacent to.
One end of theoil pipe 28B connecting the oil separator 22 and the oil tank 61 opens near the bottom in the oil separator 22, and the oil near the bottom is drawn into the oil pipe 28B by the above differential pressure. Pull in. One end of a single oil return pipe 28 connected to the compressors 11, 11 is connected to the oil tank 61, and the oil in the oil tank 61 is sucked into the oil return pipe 28 by the differential pressure, and the compressor 11, 11 in the case 12.
According to this configuration, the oil separated by theoil separator 22 flows and accumulates in the oil tank 61 due to the negative pressure in the case 12 of the compressors 11, 11, and accordingly, the oil oil level in the oil separator 22 is lowered. can do. As a result, an oil separation space (a space for separating the oil from the mixed flow of the gas-phase refrigerant and the oil mist) can be secured widely to increase the oil separation efficiency, and a sufficient amount of oil can be secured in the oil tank 61.
オイルセパレータ22とオイルタンク61とを接続するオイル配管28Bは、一端がオイルセパレータ22内の底部近傍で開口し、底部近傍のオイルを上記差圧によってオイル配管28B内に引き込み、オイルタンク61内に引き込む。このオイルタンク61には、圧縮機11,11につながる単一のオイル戻し管28の一端が接続され、上記差圧によりオイルタンク61内のオイルがオイル戻し管28に吸い込まれ、圧縮機11,11のケース12内に戻される。
この構成によれば、オイルセパレータ22で分離されたオイルは圧縮機11,11のケース12内の負圧によりオイルタンク61内に流れて溜まり、その分、オイルセパレータ22内のオイル油面を低くすることができる。これにより、オイル分離空間(気相冷媒とオイルミストの混合流からオイルを分離させるための空間)を広く確保してオイル分離効率を高めるとともに、オイルタンク61内に十分なオイル量を確保できる。 The
One end of the
According to this configuration, the oil separated by the
圧縮機11のケース12には、このケース12内に貯留されているオイルのレベル(オイル量)を検出するオイルレベルセンサー(オイルレベル検出手段)31が設けられている。
オイルレベルセンサー31は、上限レベル及び下限レベルを検出できる2接点式のレベルセンサであり、図示は省略するが、ケース12に連通するセンサケースを備え、このセンサケース内のオイルレベルは、圧縮機11のケース12内のオイルレベルに応じて変動する。また、センサケース内には、オイルレベルの変動に応じて上下に浮遊するフロートと、このフロートの高さ位置が変動することによって開閉される上接点及び下接点とを備えるフロートスイッチが配置されている。このフロートスイッチでは、フロートに磁石が配置され、この磁石の磁力によって、異なる高さに配置された上接点及び下接点が開閉される。
具体的には、ケース12内のオイルレベルが上限レベルを上回ると上接点がオンし、この上限レベルを下回ると上接点がオフする。また、ケース12内のオイルレベルが下限レベルを上回ると下接点がオフし、この下限レベルを下回ると下接点がオンする。 Thecase 12 of the compressor 11 is provided with an oil level sensor (oil level detecting means) 31 for detecting the level of oil stored in the case 12 (oil amount).
Theoil level sensor 31 is a two-contact type level sensor that can detect an upper limit level and a lower limit level. Although not shown, the oil level sensor 31 includes a sensor case that communicates with the case 12, and the oil level in the sensor case is the compressor level. 11 according to the oil level in the case 12. Also, a float switch is arranged in the sensor case, which includes a float that floats up and down in response to changes in the oil level, and upper and lower contacts that are opened and closed as the height of the float changes. Yes. In this float switch, a magnet is disposed in the float, and upper and lower contacts disposed at different heights are opened and closed by the magnetic force of the magnet.
Specifically, the upper contact is turned on when the oil level in thecase 12 exceeds the upper limit level, and the upper contact is turned off when the oil level falls below the upper limit level. Further, when the oil level in the case 12 exceeds the lower limit level, the lower contact is turned off, and when the oil level falls below the lower limit level, the lower contact is turned on.
オイルレベルセンサー31は、上限レベル及び下限レベルを検出できる2接点式のレベルセンサであり、図示は省略するが、ケース12に連通するセンサケースを備え、このセンサケース内のオイルレベルは、圧縮機11のケース12内のオイルレベルに応じて変動する。また、センサケース内には、オイルレベルの変動に応じて上下に浮遊するフロートと、このフロートの高さ位置が変動することによって開閉される上接点及び下接点とを備えるフロートスイッチが配置されている。このフロートスイッチでは、フロートに磁石が配置され、この磁石の磁力によって、異なる高さに配置された上接点及び下接点が開閉される。
具体的には、ケース12内のオイルレベルが上限レベルを上回ると上接点がオンし、この上限レベルを下回ると上接点がオフする。また、ケース12内のオイルレベルが下限レベルを上回ると下接点がオフし、この下限レベルを下回ると下接点がオンする。 The
The
Specifically, the upper contact is turned on when the oil level in the
ガスクーラー23は、圧縮機11から吐出された高圧の吐出冷媒を冷却するものであり、本構成では、ガスクーラー23は、上記した中間冷却器18及びオイルクーラー27に並設されている。これらガスクーラー23、中間冷却器18及びオイルクーラー27には、当該ガスクーラー23、中間冷却器18及びオイルクーラー27に向けて送風する冷却ファン32が隣接して設けられている。
過冷却熱交換器24は、ガスクーラー23で冷却され、ガスクーラー23から高圧吐出管21A及び液冷媒配管7を通じて、ショーケースユニット5A,5Bが備える第一膨張弁(第一絞り手段)42A,42Bへ向かう冷媒を、このガスクーラー23の出口側で分岐された分岐冷媒を用いて過冷却するものである。この過冷却熱交換器24の分岐冷媒流路入口には、ガスクーラー23の出口側で高圧吐出管21から分岐された分岐配管33が、第二膨張弁34を介して接続され、分岐冷媒流路出口は、中間冷却器18の出口側の中間圧吸入管19に接続されている。また、高圧吐出管21には、過冷却熱交換器24の入口側及び出口側に、それぞれ高圧吐出管21を流れる冷媒温度を検出する入口温度センサー35及び出口温度センサー36が設けられている。 Thegas cooler 23 cools the high-pressure discharged refrigerant discharged from the compressor 11. In this configuration, the gas cooler 23 is arranged in parallel with the intermediate cooler 18 and the oil cooler 27 described above. The gas cooler 23, the intermediate cooler 18, and the oil cooler 27 are provided adjacent to a cooling fan 32 that blows air toward the gas cooler 23, the intermediate cooler 18, and the oil cooler 27.
The supercoolingheat exchanger 24 is cooled by the gas cooler 23, and passes through the high pressure discharge pipe 21A and the liquid refrigerant pipe 7 from the gas cooler 23, and the first expansion valves (first throttle means) 42A included in the showcase units 5A and 5B. The refrigerant heading for 42B is supercooled using the branched refrigerant branched on the outlet side of the gas cooler 23. A branch pipe 33 branched from the high-pressure discharge pipe 21 on the outlet side of the gas cooler 23 is connected to the branch refrigerant flow path inlet of the supercooling heat exchanger 24 via a second expansion valve 34, and the branch refrigerant flow The passage outlet is connected to an intermediate pressure suction pipe 19 on the outlet side of the intermediate cooler 18. The high-pressure discharge pipe 21 is provided with an inlet temperature sensor 35 and an outlet temperature sensor 36 that detect the temperature of the refrigerant flowing through the high-pressure discharge pipe 21 on the inlet side and the outlet side of the supercooling heat exchanger 24, respectively.
過冷却熱交換器24は、ガスクーラー23で冷却され、ガスクーラー23から高圧吐出管21A及び液冷媒配管7を通じて、ショーケースユニット5A,5Bが備える第一膨張弁(第一絞り手段)42A,42Bへ向かう冷媒を、このガスクーラー23の出口側で分岐された分岐冷媒を用いて過冷却するものである。この過冷却熱交換器24の分岐冷媒流路入口には、ガスクーラー23の出口側で高圧吐出管21から分岐された分岐配管33が、第二膨張弁34を介して接続され、分岐冷媒流路出口は、中間冷却器18の出口側の中間圧吸入管19に接続されている。また、高圧吐出管21には、過冷却熱交換器24の入口側及び出口側に、それぞれ高圧吐出管21を流れる冷媒温度を検出する入口温度センサー35及び出口温度センサー36が設けられている。 The
The supercooling
また、冷凍機ユニット3は、冷凍装置1全体の動作を制御する主制御装置50を備える。この主制御装置50は、ショーケースユニット5A,5Bの冷凍負荷に応じて、圧縮機11,11の運転周波数を調整するとともに、吐出温度センサー26が検出する高段圧縮要素11Bの冷媒吐出温度に基づいて第二膨張弁34の開度を調整する。なお、この第二膨張弁34の開度は、過冷却熱交換器24の中間圧となる分岐冷媒の出口温度、過冷却熱交換器24の冷媒の出入口温度差等に基づいて調整しても良い。
また、主制御装置50は、オイルセパレータ22から各圧縮機11,11へのオイル戻し制御を実行し、このオイル戻し制御時に、各圧縮機11,11の運転周波数に基づいて、各電動弁30,30の弁開度を調整する。さらに、オイル戻し制御をする際に、各オイルレベルセンサー31で検出したオイルレベルに基づいて、弁開度を補正する。この実施形態では、主制御装置50は、圧縮機11,11の運転周波数に応じて、電動弁30,30の弁開度を調整する弁開度調整手段として機能するとともに、オイルレベルに応じて弁開度を補正する弁開度補正手段として機能する。 The refrigerator unit 3 includes amain controller 50 that controls the operation of the entire refrigeration apparatus 1. The main controller 50 adjusts the operating frequency of the compressors 11 and 11 according to the refrigeration loads of the showcase units 5A and 5B, and adjusts the refrigerant discharge temperature of the high-stage compression element 11B detected by the discharge temperature sensor 26. Based on this, the opening degree of the second expansion valve 34 is adjusted. The opening degree of the second expansion valve 34 may be adjusted based on the outlet temperature of the branch refrigerant, which is an intermediate pressure of the supercooling heat exchanger 24, the refrigerant inlet / outlet temperature difference of the supercooling heat exchanger 24, and the like. good.
Further, themain control device 50 executes oil return control from the oil separator 22 to each of the compressors 11, 11, and at the time of oil return control, each motor-operated valve 30 is based on the operating frequency of each compressor 11, 11. , 30 valve opening is adjusted. Further, when performing oil return control, the valve opening is corrected based on the oil level detected by each oil level sensor 31. In this embodiment, the main controller 50 functions as a valve opening adjusting means for adjusting the valve opening of the motor operated valves 30 and 30 according to the operating frequency of the compressors 11 and 11, and according to the oil level. It functions as a valve opening correction means for correcting the valve opening.
また、主制御装置50は、オイルセパレータ22から各圧縮機11,11へのオイル戻し制御を実行し、このオイル戻し制御時に、各圧縮機11,11の運転周波数に基づいて、各電動弁30,30の弁開度を調整する。さらに、オイル戻し制御をする際に、各オイルレベルセンサー31で検出したオイルレベルに基づいて、弁開度を補正する。この実施形態では、主制御装置50は、圧縮機11,11の運転周波数に応じて、電動弁30,30の弁開度を調整する弁開度調整手段として機能するとともに、オイルレベルに応じて弁開度を補正する弁開度補正手段として機能する。 The refrigerator unit 3 includes a
Further, the
一方、ショーケースユニット5A,5Bは、それぞれ店舗内等に設置され、液冷媒配管7及びガス冷媒配管9にそれぞれ並列に接続されている。各ショーケースユニット5A,5Bは、液冷媒配管7とガス冷媒配管9とを連結するケース冷媒配管40A,40Bを備え、これらケース冷媒配管40A,40Bには、それぞれストレーナ41A,41Bと、第一膨張弁(第一絞り手段)42A,42Bとケース熱交換器43A,43Bとが設けられている。このケース熱交換器43A,43Bには、当該ケース熱交換器43A,43Bに送風するケースファン44A,44Bが隣接して設けられている。
また、ショーケースユニット5A,5Bは、これらショーケースユニット5A,5Bの各部の動作を制御するケース制御装置45A,45Bを備え、このケース制御装置45A,45Bは、主制御装置50と通信可能に構成される。ケース制御装置45A,45Bは、ケース熱交換器43A,43Bの出入口温度差(過熱度)に基づいて、第一膨張弁42A,42Bの開度をそれぞれ調整する。 On the other hand, the showcase units 5A and 5B are each installed in a store or the like, and are connected in parallel to the liquid refrigerant pipe 7 and the gas refrigerant pipe 9, respectively. Each showcase unit 5A, 5B includes case refrigerant pipes 40A, 40B that connect the liquid refrigerant pipe 7 and the gas refrigerant pipe 9, and the case refrigerant pipes 40A, 40B include strainers 41A, 41B, respectively, Expansion valves (first throttle means) 42A and 42B and case heat exchangers 43A and 43B are provided. The case heat exchangers 43A and 43B are provided with case fans 44A and 44B adjacent to the case heat exchangers 43A and 43B.
The showcase units 5A and 5B include case control devices 45A and 45B that control the operation of each part of the showcase units 5A and 5B. The case control devices 45A and 45B can communicate with the main control device 50. Composed. Case controller 45A, 45B adjusts the opening degree of 1st expansion valve 42A, 42B based on the inlet-outlet temperature difference (superheat degree) of case heat exchanger 43A, 43B, respectively.
また、ショーケースユニット5A,5Bは、これらショーケースユニット5A,5Bの各部の動作を制御するケース制御装置45A,45Bを備え、このケース制御装置45A,45Bは、主制御装置50と通信可能に構成される。ケース制御装置45A,45Bは、ケース熱交換器43A,43Bの出入口温度差(過熱度)に基づいて、第一膨張弁42A,42Bの開度をそれぞれ調整する。 On the other hand, the
The
次に、上記したオイル戻し制御の動作について説明する。図2は、オイル戻し制御の動作を示すフローチャートである。なお、このオイル戻し制御は両圧縮機11,11で同様であるため、以下、一方の圧縮機11及び対応する電動弁30について説明する。
主制御装置50は、冷凍装置1の運転が開始されると、電動弁30の初期開度を取得する(ステップS1)。この初期開度は、冷凍装置1(すなわち圧縮機11,11)の運転起動時に設定される弁開度であり、本実施形態では、電動弁30を略閉じた状態とする弁開度(例えば30パルス)に設定されている。
続いて、主制御装置50は、電動弁30の弁開度を、それぞれ圧縮機11の運転周波数に応じて調整する(ステップS2)。この弁開度は、圧縮機11の運転周波数と、オイルレベルによって適宜変更される補正係数Aとから算出される。具体的には、運転周波数を変数xとする相関式f(x)により求められた値と、補正係数Aとを乗算することにより弁開度を求めており、運転周波数が高いときは弁開度を大きく、低いときは弁開度を小さくする。 Next, the operation of the oil return control described above will be described. FIG. 2 is a flowchart showing the operation of oil return control. Since this oil return control is the same for both compressors 11, 11, only one compressor 11 and the corresponding motor-operated valve 30 will be described below.
When the operation of the refrigeration apparatus 1 is started,main controller 50 acquires the initial opening degree of motor-operated valve 30 (step S1). This initial opening is a valve opening that is set when the refrigeration apparatus 1 (that is, the compressors 11 and 11) is started. In this embodiment, the valve opening (for example, the valve opening that closes the motor-operated valve 30 (for example, 30 pulses).
Subsequently,main controller 50 adjusts the valve opening degree of motor-operated valve 30 according to the operating frequency of compressor 11 (step S2). The valve opening is calculated from the operating frequency of the compressor 11 and the correction coefficient A that is appropriately changed according to the oil level. Specifically, the valve opening is obtained by multiplying the value obtained by the correlation equation f (x) with the operating frequency as the variable x and the correction coefficient A, and when the operating frequency is high, the valve opening is performed. When the degree is large and low, the valve opening is reduced.
主制御装置50は、冷凍装置1の運転が開始されると、電動弁30の初期開度を取得する(ステップS1)。この初期開度は、冷凍装置1(すなわち圧縮機11,11)の運転起動時に設定される弁開度であり、本実施形態では、電動弁30を略閉じた状態とする弁開度(例えば30パルス)に設定されている。
続いて、主制御装置50は、電動弁30の弁開度を、それぞれ圧縮機11の運転周波数に応じて調整する(ステップS2)。この弁開度は、圧縮機11の運転周波数と、オイルレベルによって適宜変更される補正係数Aとから算出される。具体的には、運転周波数を変数xとする相関式f(x)により求められた値と、補正係数Aとを乗算することにより弁開度を求めており、運転周波数が高いときは弁開度を大きく、低いときは弁開度を小さくする。 Next, the operation of the oil return control described above will be described. FIG. 2 is a flowchart showing the operation of oil return control. Since this oil return control is the same for both
When the operation of the refrigeration apparatus 1 is started,
Subsequently,
冷凍装置1が始動して圧縮機11の運転が開始されると、主制御装置50は、補正係数Aを初期値(A=2.0)に設定し(ステップS3)、この値を用いて弁開度を調整する。これにより、冷凍装置1が始動した後には、電動弁30の弁開度が圧縮機11の運転周波数に応じて調整される。このため、各電動弁30の弁開度を、各圧縮機11の運転周波数に応じた弁開度にでき、従来の電動開閉弁でオイル戻し量を調整する構成に比して、オイル戻し量を圧縮機11に合わせて細かく調整できる。
ここで、補正係数Aの初期値は、圧縮機11から吐出されるオイル量に相当するオイル戻し量を得るための弁開度にする値に設定され、例えば、圧縮機11の仕様に基づいて設定される。これにより、各圧縮機11から吐出されるオイル量と、各圧縮機11のケース12,12内に戻されるオイル量とのバランスを向上させることができ、各圧縮機11へのオイル戻し量を適正にすることができる。 When the refrigeration apparatus 1 is started and the operation of thecompressor 11 is started, the main controller 50 sets the correction coefficient A to an initial value (A = 2.0) (step S3), and uses this value. Adjust the valve opening. Thereby, after the refrigerating apparatus 1 is started, the valve opening degree of the motor-operated valve 30 is adjusted according to the operating frequency of the compressor 11. For this reason, the valve opening degree of each motor-operated valve 30 can be set to a valve opening degree corresponding to the operating frequency of each compressor 11, and the oil return amount as compared with the configuration in which the oil return amount is adjusted by a conventional electric on-off valve. Can be finely adjusted according to the compressor 11.
Here, the initial value of the correction coefficient A is set to a value that provides a valve opening for obtaining an oil return amount corresponding to the oil amount discharged from thecompressor 11, for example, based on the specifications of the compressor 11. Is set. As a result, the balance between the amount of oil discharged from each compressor 11 and the amount of oil returned into the cases 12 and 12 of each compressor 11 can be improved, and the amount of oil returned to each compressor 11 can be reduced. Can be appropriate.
ここで、補正係数Aの初期値は、圧縮機11から吐出されるオイル量に相当するオイル戻し量を得るための弁開度にする値に設定され、例えば、圧縮機11の仕様に基づいて設定される。これにより、各圧縮機11から吐出されるオイル量と、各圧縮機11のケース12,12内に戻されるオイル量とのバランスを向上させることができ、各圧縮機11へのオイル戻し量を適正にすることができる。 When the refrigeration apparatus 1 is started and the operation of the
Here, the initial value of the correction coefficient A is set to a value that provides a valve opening for obtaining an oil return amount corresponding to the oil amount discharged from the
続いて、主制御装置50は、内蔵するタイマーをリセットした後(ステップS4)、両圧縮機11,11のフロートスイッチの下接点がオフであるか否かを判別する(ステップS5)。
この判別において、フロートスイッチの下接点がオフでない場合(ステップS5;No)、すなわちオイルレベルが下限レベルを下回っている場合には、予め定めた第1の待ち時間(本実施形態では30秒)が経過したか否かを判別し(ステップS6)、この待ち時間が経過していなければ(ステップS6;No)、ステップS5の処理へ戻る。
この待ち時間が経過したか否かを判断する処理を行うことにより、圧縮機運転時に生じるオイル面の変動によるオイルレベルの誤検知を回避することができる。そして、待ち時間が経過した場合(ステップS6;Yes)、つまり、オイルレベルが下限レベルを継続して下回っている場合に、ケース12内のオイル量が過少と判断されるため、主制御装置50は、処理をステップS12に移行して電動弁30の弁開度を補正する。 Subsequently, after resetting the built-in timer (step S4),main controller 50 determines whether or not the lower contacts of the float switches of both compressors 11 and 11 are off (step S5).
In this determination, when the lower contact of the float switch is not off (step S5; No), that is, when the oil level is below the lower limit level, a predetermined first waiting time (30 seconds in the present embodiment). Is determined (step S6). If this waiting time has not elapsed (step S6; No), the process returns to step S5.
By performing the process of determining whether or not this waiting time has elapsed, it is possible to avoid erroneous detection of the oil level due to oil level fluctuations that occur during compressor operation. Then, when the waiting time has elapsed (step S6; Yes), that is, when the oil level continues below the lower limit level, the amount of oil in thecase 12 is determined to be too small, so the main control device 50 Shifts the processing to step S12 to correct the valve opening of the motor-operated valve 30.
この判別において、フロートスイッチの下接点がオフでない場合(ステップS5;No)、すなわちオイルレベルが下限レベルを下回っている場合には、予め定めた第1の待ち時間(本実施形態では30秒)が経過したか否かを判別し(ステップS6)、この待ち時間が経過していなければ(ステップS6;No)、ステップS5の処理へ戻る。
この待ち時間が経過したか否かを判断する処理を行うことにより、圧縮機運転時に生じるオイル面の変動によるオイルレベルの誤検知を回避することができる。そして、待ち時間が経過した場合(ステップS6;Yes)、つまり、オイルレベルが下限レベルを継続して下回っている場合に、ケース12内のオイル量が過少と判断されるため、主制御装置50は、処理をステップS12に移行して電動弁30の弁開度を補正する。 Subsequently, after resetting the built-in timer (step S4),
In this determination, when the lower contact of the float switch is not off (step S5; No), that is, when the oil level is below the lower limit level, a predetermined first waiting time (30 seconds in the present embodiment). Is determined (step S6). If this waiting time has not elapsed (step S6; No), the process returns to step S5.
By performing the process of determining whether or not this waiting time has elapsed, it is possible to avoid erroneous detection of the oil level due to oil level fluctuations that occur during compressor operation. Then, when the waiting time has elapsed (step S6; Yes), that is, when the oil level continues below the lower limit level, the amount of oil in the
フロートスイッチの下接点がオフである場合(ステップS5;Yes)、すなわち、オイルレベルが下限レベルを上回っている場合には、主制御装置50は、内蔵するタイマーをリセットした後(ステップS7)フロートスイッチの上接点がオフであるか否かを判別する(ステップS8)。
ステップS8の判別において、フロートスイッチの上接点がオフでない場合(ステップS8;No)、すなわちオイルレベルが上限レベルを上回っている場合には、予め定めた第2の待ち時間(本実施形態では30秒)が経過したか否かを判別し(ステップS9)、この待ち時間が経過していなければ(ステップS9;No)、ステップS8の処理へ戻る。これにより、上記と同様に、オイルレベルの誤検知を回避することができ、待ち時間が経過した場合、つまり、オイルレベルが上限レベルを継続して上回っている場合に、ケース12内のオイル量が過多と判断されるため、主制御装置50は、処理をステップS15に移行して電動弁30の弁開度を補正する。 When the lower contact of the float switch is off (step S5; Yes), that is, when the oil level exceeds the lower limit level, themain controller 50 resets the built-in timer (step S7). It is determined whether or not the upper contact of the switch is off (step S8).
In step S8, if the upper contact of the float switch is not off (step S8; No), that is, if the oil level exceeds the upper limit level, a predetermined second waiting time (30 in this embodiment) is set. It is determined whether or not (second) has elapsed (step S9). If this waiting time has not elapsed (step S9; No), the process returns to step S8. Thus, similarly to the above, erroneous detection of the oil level can be avoided, and when the waiting time has elapsed, that is, when the oil level continues to exceed the upper limit level, the amount of oil in thecase 12 Therefore, main controller 50 shifts the process to step S15 and corrects the valve opening degree of electric valve 30.
ステップS8の判別において、フロートスイッチの上接点がオフでない場合(ステップS8;No)、すなわちオイルレベルが上限レベルを上回っている場合には、予め定めた第2の待ち時間(本実施形態では30秒)が経過したか否かを判別し(ステップS9)、この待ち時間が経過していなければ(ステップS9;No)、ステップS8の処理へ戻る。これにより、上記と同様に、オイルレベルの誤検知を回避することができ、待ち時間が経過した場合、つまり、オイルレベルが上限レベルを継続して上回っている場合に、ケース12内のオイル量が過多と判断されるため、主制御装置50は、処理をステップS15に移行して電動弁30の弁開度を補正する。 When the lower contact of the float switch is off (step S5; Yes), that is, when the oil level exceeds the lower limit level, the
In step S8, if the upper contact of the float switch is not off (step S8; No), that is, if the oil level exceeds the upper limit level, a predetermined second waiting time (30 in this embodiment) is set. It is determined whether or not (second) has elapsed (step S9). If this waiting time has not elapsed (step S9; No), the process returns to step S8. Thus, similarly to the above, erroneous detection of the oil level can be avoided, and when the waiting time has elapsed, that is, when the oil level continues to exceed the upper limit level, the amount of oil in the
一方、フロートスイッチの上接点がオフである場合(ステップS8;Yes)すなわち、オイルレベルが上限レベルを下回っている場合には、主制御装置50は、圧縮機11,11が停止しているか否かを判別する(ステップS10)。この判別において、圧縮機11が停止していない場合(ステップS10;No)、処理をステップS4に移行し、上記ステップS4~S10で示されるオイルレベル判定処理を繰り返し実行する。
また、圧縮機11が停止している場合には(ステップS10;Yes)、電動弁30の弁開度を初期開度に設定して処理を終了する(ステップS11)。 On the other hand, when the upper contact of the float switch is off (step S8; Yes), that is, when the oil level is below the upper limit level, themain controller 50 determines whether the compressors 11 and 11 are stopped. Is determined (step S10). In this determination, if the compressor 11 is not stopped (step S10; No), the process proceeds to step S4, and the oil level determination process shown in steps S4 to S10 is repeatedly executed.
Moreover, when thecompressor 11 has stopped (step S10; Yes), the valve opening degree of the motor operated valve 30 is set to an initial opening degree, and a process is complete | finished (step S11).
また、圧縮機11が停止している場合には(ステップS10;Yes)、電動弁30の弁開度を初期開度に設定して処理を終了する(ステップS11)。 On the other hand, when the upper contact of the float switch is off (step S8; Yes), that is, when the oil level is below the upper limit level, the
Moreover, when the
上述したように、フロートスイッチの下接点がオフでない状態が継続した場合(ステップS6;No)、ケース12内のオイル量が過少と判断されるため、そのケース12へのオイル戻し管28Aに設けられた電動弁30の弁開度を大きく(拡径)するように補正する。具体的には、主制御装置50は、圧縮機11の電動弁30の弁開度に関する補正係数Aを、所定量(本実施形態では10%)増加して設定する(ステップS12)。これにより、圧縮機11の運転周波数に応じて調整された電動弁30の弁開度が、ケース12内のオイル量に基づいて大きくなるように補正される。このため、ケース12内に戻されるオイル量を増大させることができ、当該ケース12内のオイル量が過少である状態を早期に解消できる。
また、主制御装置50は、補正係数Aが所定の上限値(本実施形態では6.0)よりも大きいか否かを判別する(ステップS13)。この上限値は、補正係数Aを増加する際の上限値であり、補正係数Aが上限値より小さい場合(ステップS13;No)には、処理をステップS4に戻す。
一方、補正係数Aが上限値を超える場合(ステップS13;Yes)には、補正係数Aを上限値に設定し(ステップS14)、処理をステップS4に戻す。 As described above, when the state where the lower contact of the float switch is not turned off continues (step S6; No), the amount of oil in thecase 12 is determined to be too small, so the oil return pipe 28A to the case 12 is provided. It correct | amends so that the valve opening degree of the obtained motor operated valve 30 may be enlarged (diameter expansion). Specifically, the main controller 50 sets the correction coefficient A related to the valve opening degree of the motor-operated valve 30 of the compressor 11 by increasing a predetermined amount (10% in this embodiment) (step S12). Thereby, the valve opening degree of the motor-operated valve 30 adjusted according to the operating frequency of the compressor 11 is corrected based on the oil amount in the case 12. For this reason, the amount of oil returned into the case 12 can be increased, and the state where the amount of oil in the case 12 is too small can be eliminated early.
Further,main controller 50 determines whether or not correction coefficient A is larger than a predetermined upper limit value (6.0 in the present embodiment) (step S13). This upper limit value is an upper limit value when the correction coefficient A is increased. When the correction coefficient A is smaller than the upper limit value (step S13; No), the process returns to step S4.
On the other hand, when the correction coefficient A exceeds the upper limit value (step S13; Yes), the correction coefficient A is set to the upper limit value (step S14), and the process returns to step S4.
また、主制御装置50は、補正係数Aが所定の上限値(本実施形態では6.0)よりも大きいか否かを判別する(ステップS13)。この上限値は、補正係数Aを増加する際の上限値であり、補正係数Aが上限値より小さい場合(ステップS13;No)には、処理をステップS4に戻す。
一方、補正係数Aが上限値を超える場合(ステップS13;Yes)には、補正係数Aを上限値に設定し(ステップS14)、処理をステップS4に戻す。 As described above, when the state where the lower contact of the float switch is not turned off continues (step S6; No), the amount of oil in the
Further,
On the other hand, when the correction coefficient A exceeds the upper limit value (step S13; Yes), the correction coefficient A is set to the upper limit value (step S14), and the process returns to step S4.
フロートスイッチの上接点がオフでない状態が継続した場合(ステップS9;No)、ケース12内のオイル量が過多と判断されるため、電動弁30の弁開度を小さく(縮径)するように補正する。具体的には、主制御装置50は、圧縮機11の電動弁30の弁開度に関する補正係数Aを、所定量(本実施形態では約5%)減少して設定する(ステップS15)。これにより、圧縮機11の運転周波数に応じて調整された電動弁30の弁開度が、ケース12内のオイル量に基づいて小さくなるように補正される。このため、ケース12内に戻されるオイル量を減少させることができ、当該ケース12内のオイル量が過多である状態を早期に解消できる。
続いて、主制御装置50は、補正係数Aが所定の下限値(本実施形態では0.3)よりも小さいか否かを判別する(ステップS16)。この下限値は、補正係数Aを減少する際の下限値であり、補正係数Aが下限値以上の場合(ステップS16;No)には、処理をステップS4に戻す。
一方、補正係数Aが下限値を下回る場合(ステップS16;Yes)には、補正係数Aを下限値に設定し(ステップS17)、処理をステップS4に戻す。 When the state in which the upper contact of the float switch is not off continues (step S9; No), it is determined that the amount of oil in thecase 12 is excessive, so that the valve opening of the motor-operated valve 30 is decreased (reduced diameter). to correct. Specifically, the main controller 50 sets the correction coefficient A related to the valve opening degree of the motor-operated valve 30 of the compressor 11 by decreasing a predetermined amount (about 5% in the present embodiment) (step S15). Thereby, the valve opening degree of the motor-operated valve 30 adjusted according to the operating frequency of the compressor 11 is corrected based on the oil amount in the case 12. For this reason, the amount of oil returned into the case 12 can be reduced, and the state where the amount of oil in the case 12 is excessive can be eliminated at an early stage.
Subsequently,main controller 50 determines whether or not correction coefficient A is smaller than a predetermined lower limit (0.3 in the present embodiment) (step S16). This lower limit value is a lower limit value when the correction coefficient A is decreased. When the correction coefficient A is equal to or higher than the lower limit value (step S16; No), the process returns to step S4.
On the other hand, if the correction coefficient A is below the lower limit value (step S16; Yes), the correction coefficient A is set to the lower limit value (step S17), and the process returns to step S4.
続いて、主制御装置50は、補正係数Aが所定の下限値(本実施形態では0.3)よりも小さいか否かを判別する(ステップS16)。この下限値は、補正係数Aを減少する際の下限値であり、補正係数Aが下限値以上の場合(ステップS16;No)には、処理をステップS4に戻す。
一方、補正係数Aが下限値を下回る場合(ステップS16;Yes)には、補正係数Aを下限値に設定し(ステップS17)、処理をステップS4に戻す。 When the state in which the upper contact of the float switch is not off continues (step S9; No), it is determined that the amount of oil in the
Subsequently,
On the other hand, if the correction coefficient A is below the lower limit value (step S16; Yes), the correction coefficient A is set to the lower limit value (step S17), and the process returns to step S4.
このように本実施形態では、ケース12内が中間圧となる2段式の圧縮機11と、この圧縮機11の高圧吐出管21に設けられたオイルセパレータ22と、このオイルセパレータ22で捕捉したオイルをケース12内に戻すオイル戻し管28と、オイル戻し管28Aに設けられた電動弁30と、この電動弁30の弁開度を圧縮機11の運転周波数に応じて調整する弁開度調整手段としての主制御装置50とを備えるため、二酸化炭素冷媒を使用する構成でも、圧縮機11から吐出されるオイル量と当該圧縮機11のケース12内に戻されるオイル量とのバランスを図ることができ、当該ケース12内のオイル量を容易に制御することができる。
As described above, in the present embodiment, the two-stage compressor 11 in which the inside of the case 12 has an intermediate pressure, the oil separator 22 provided in the high-pressure discharge pipe 21 of the compressor 11, and the oil separator 22 are captured. An oil return pipe 28 for returning oil into the case 12, a motor operated valve 30 provided in the oil return pipe 28 </ b> A, and a valve opening adjustment for adjusting the valve opening of the motor operated valve 30 according to the operating frequency of the compressor 11. In order to provide the main controller 50 as a means, even in a configuration using carbon dioxide refrigerant, a balance between the amount of oil discharged from the compressor 11 and the amount of oil returned into the case 12 of the compressor 11 is achieved. The amount of oil in the case 12 can be easily controlled.
また、本実施形態では、主制御装置50は、圧縮機11の運転周波数が大きくなった際に電動弁30の弁開度を大きくし、圧縮機11の運転周波数が小さくなった際に電動弁30の弁開度を小さくするため、当該圧縮機11から吐出されるオイルの吐出量に応じて、ケース12内に戻されるオイル量を制御できるため、安定したオイル戻し制御が可能となる。
In the present embodiment, the main controller 50 increases the valve opening degree of the motor-operated valve 30 when the operating frequency of the compressor 11 is increased, and the motor-operated valve when the operating frequency of the compressor 11 is decreased. Since the valve opening of 30 is reduced, the amount of oil returned into the case 12 can be controlled in accordance with the amount of oil discharged from the compressor 11, so that stable oil return control is possible.
また、本実施形態では、ケース12内のオイルレベルを検出するオイルレベルセンサー31を備え、主制御装置50は、オイルレベルセンサー31で検出したオイルレベルが上限レベルを上回った場合には、圧縮機11の運転周波数に応じて調整された電動弁30の弁開度を小さくするように補正し、当該オイルレベルが下限レベルを下回った場合には、当該弁開度を大きくするように補正するため、ケース12内のオイル量が過少または過多となった状態をすみやかに解消することができ、当該ケース12内のオイル量が不足しないように制御できる。
Further, in the present embodiment, the oil level sensor 31 that detects the oil level in the case 12 is provided, and the main controller 50 detects that the compressor level when the oil level detected by the oil level sensor 31 exceeds the upper limit level. In order to correct so that the valve opening degree of the motor-operated valve 30 adjusted according to the operation frequency of 11 is made small, and when the oil level falls below the lower limit level, the valve opening degree is made to increase. The state in which the amount of oil in the case 12 is too small or excessive can be quickly eliminated, and control can be performed so that the amount of oil in the case 12 does not become insufficient.
本冷凍装置1は、上述したように、圧縮機11の運転周波数やケース12内のオイルレベルに応じて、オイル戻し管28Aに設けられた電動弁30の弁開度を調整するオイル戻し制御を行うため、オイル戻し量の適正化を図り圧縮機11内のオイル量が少なくなる事態を可及的に避けることができる。
しかしながら、この冷凍装置1であっても、設置した直後に行われる試運転時、特に配管距離が長い場合の試運転時には、配管内にオイルが適正に循環するまでに時間がかかる場合があり、かかる場合には、電動弁30、30を大きく開けても、圧縮機11,11のケース12,12内にオイルが戻らず、ケース12,12内のオイル量が少なくなる事態が生じる。更に、冷凍装置1内のオイル総量が少ない場合にも、電動弁30、30の開度によらず、圧縮機11,11のケース12,12内のオイル量が少なくなる事態が生じる。
上記オイル戻し制御では、オイル量が少ない場合でも圧縮機11の運転が継続するため、試運転時やオイル総量が少ない場合等に圧縮機11の運転を継続してしまい、潤滑不良を招くおそれが生じる。そこで、本実施形態では、上記のオイル戻し制御に加えて、圧縮機11内のオイル量が少ない状態での圧縮機11の運転を回避する運転停止制御を行うようにしている。 As described above, the refrigeration apparatus 1 performs oil return control for adjusting the valve opening degree of theelectric valve 30 provided in the oil return pipe 28A according to the operating frequency of the compressor 11 and the oil level in the case 12. Therefore, it is possible to avoid the situation where the oil amount in the compressor 11 is reduced by optimizing the oil return amount as much as possible.
However, even in the case of this refrigeration apparatus 1, it may take time for the oil to circulate properly in the pipe during a trial run performed immediately after installation, particularly during a trial run when the pipe distance is long. In other words, even if the motor-operated valves 30 and 30 are opened widely, the oil does not return to the cases 12 and 12 of the compressors 11 and 11, and the amount of oil in the cases 12 and 12 decreases. Furthermore, even when the total amount of oil in the refrigeration apparatus 1 is small, a situation occurs in which the amount of oil in the cases 12 and 12 of the compressors 11 and 11 is small regardless of the opening degree of the motor operated valves 30 and 30.
In the oil return control, since the operation of thecompressor 11 is continued even when the amount of oil is small, the operation of the compressor 11 is continued during a trial operation or when the total amount of oil is small, which may lead to poor lubrication. . Therefore, in the present embodiment, in addition to the oil return control described above, operation stop control is performed to avoid the operation of the compressor 11 when the amount of oil in the compressor 11 is small.
しかしながら、この冷凍装置1であっても、設置した直後に行われる試運転時、特に配管距離が長い場合の試運転時には、配管内にオイルが適正に循環するまでに時間がかかる場合があり、かかる場合には、電動弁30、30を大きく開けても、圧縮機11,11のケース12,12内にオイルが戻らず、ケース12,12内のオイル量が少なくなる事態が生じる。更に、冷凍装置1内のオイル総量が少ない場合にも、電動弁30、30の開度によらず、圧縮機11,11のケース12,12内のオイル量が少なくなる事態が生じる。
上記オイル戻し制御では、オイル量が少ない場合でも圧縮機11の運転が継続するため、試運転時やオイル総量が少ない場合等に圧縮機11の運転を継続してしまい、潤滑不良を招くおそれが生じる。そこで、本実施形態では、上記のオイル戻し制御に加えて、圧縮機11内のオイル量が少ない状態での圧縮機11の運転を回避する運転停止制御を行うようにしている。 As described above, the refrigeration apparatus 1 performs oil return control for adjusting the valve opening degree of the
However, even in the case of this refrigeration apparatus 1, it may take time for the oil to circulate properly in the pipe during a trial run performed immediately after installation, particularly during a trial run when the pipe distance is long. In other words, even if the motor-operated
In the oil return control, since the operation of the
図3は、運転停止制御の動作を示すフローチャートである。このフローは、冷凍装置1の冷却運転が開始されると、所定の割り込み周期で繰り返し実行され、図2に示すオイル戻し制御と並行して実施される。なお、この運転停止制御についても両圧縮機11,11で同様に実施される。
まず、主制御装置50は、内蔵する別のタイマーをリセットした後(ステップS21)、圧縮機11のフロートスイッチの下接点がオフであるか否かを判別する(ステップS22)。
この判別において、フロートスイッチの下接点がオフでない場合(ステップS22;No)、すなわちオイルレベルが下限レベルを下回っている場合には、上記オイル戻し制御ではオイル量が増えない状態、つまり、オイル不足を回避不能な状態と判断できる待ち時間(運転停止判断用の待ち時間)が経過したか否かを判別する(ステップS23)。この待ち時間は、オイル戻し制御用の上記第1及び第2の待ち時間(本実施形態では30秒)よりも長い時間であって、圧縮機11に大きな悪影響を与えない時間内に設定され、本実施形態では10分に設定される。
FIG. 3 is a flowchart showing the operation of the operation stop control. When the cooling operation of the refrigeration apparatus 1 is started, this flow is repeatedly executed at a predetermined interruption cycle, and is performed in parallel with the oil return control shown in FIG. This operation stop control is similarly performed in both compressors 11 and 11.
First,main controller 50 resets another built-in timer (step S21), and then determines whether or not the lower contact of the float switch of compressor 11 is off (step S22).
In this determination, when the lower contact of the float switch is not off (step S22; No), that is, when the oil level is below the lower limit level, the oil return control does not increase the oil amount, that is, the oil is insufficient. It is determined whether or not a waiting time (waiting time for operation stop determination) that can be determined as an unavoidable state has elapsed (step S23). This waiting time is set to be longer than the first and second waiting times (30 seconds in the present embodiment) for oil return control and within a time that does not have a significant adverse effect on thecompressor 11, In this embodiment, it is set to 10 minutes.
まず、主制御装置50は、内蔵する別のタイマーをリセットした後(ステップS21)、圧縮機11のフロートスイッチの下接点がオフであるか否かを判別する(ステップS22)。
この判別において、フロートスイッチの下接点がオフでない場合(ステップS22;No)、すなわちオイルレベルが下限レベルを下回っている場合には、上記オイル戻し制御ではオイル量が増えない状態、つまり、オイル不足を回避不能な状態と判断できる待ち時間(運転停止判断用の待ち時間)が経過したか否かを判別する(ステップS23)。この待ち時間は、オイル戻し制御用の上記第1及び第2の待ち時間(本実施形態では30秒)よりも長い時間であって、圧縮機11に大きな悪影響を与えない時間内に設定され、本実施形態では10分に設定される。
FIG. 3 is a flowchart showing the operation of the operation stop control. When the cooling operation of the refrigeration apparatus 1 is started, this flow is repeatedly executed at a predetermined interruption cycle, and is performed in parallel with the oil return control shown in FIG. This operation stop control is similarly performed in both
First,
In this determination, when the lower contact of the float switch is not off (step S22; No), that is, when the oil level is below the lower limit level, the oil return control does not increase the oil amount, that is, the oil is insufficient. It is determined whether or not a waiting time (waiting time for operation stop determination) that can be determined as an unavoidable state has elapsed (step S23). This waiting time is set to be longer than the first and second waiting times (30 seconds in the present embodiment) for oil return control and within a time that does not have a significant adverse effect on the
主制御装置50は、待ち時間が経過していなければ(ステップS23;No)、ステップS22の処理へ戻り、待ち時間が経過した場合(ステップS23;Yes)、オイルレベルが下限レベルを下回った状態が継続している圧縮機11の運転を停止し(ステップS24)、ステップS22の処理へ戻る。これにより、オイル量が少ない状態での圧縮機11の運転を回避することができる。
一方、フロートスイッチの下接点がオフである場合(ステップS22;Yes)、すなわち、オイルレベルが下限レベルを上回っている場合には、主制御装置50は、そのフロートスイッチが設けられている圧縮機11が停止中か否かを判別し(ステップS25)、停止中でなければ(ステップS25;No)、ステップS21の処理へ戻る。 If the waiting time has not elapsed (step S23; No), themain control device 50 returns to the process of step S22. If the waiting time has elapsed (step S23; Yes), the oil level is below the lower limit level. Is stopped (step S24), and the process returns to step S22. Thereby, the driving | operation of the compressor 11 in the state with few oil quantities can be avoided.
On the other hand, when the lower contact of the float switch is off (step S22; Yes), that is, when the oil level is higher than the lower limit level, themain controller 50 is a compressor provided with the float switch. It is determined whether or not 11 is stopped (step S25). If not stopped (step S25; No), the process returns to step S21.
一方、フロートスイッチの下接点がオフである場合(ステップS22;Yes)、すなわち、オイルレベルが下限レベルを上回っている場合には、主制御装置50は、そのフロートスイッチが設けられている圧縮機11が停止中か否かを判別し(ステップS25)、停止中でなければ(ステップS25;No)、ステップS21の処理へ戻る。 If the waiting time has not elapsed (step S23; No), the
On the other hand, when the lower contact of the float switch is off (step S22; Yes), that is, when the oil level is higher than the lower limit level, the
圧縮機11が停止中の場合(ステップS25;Yes)、主制御装置50は、運転を指示する運転信号ありか否か、つまり、運転指示が継続中か、又は、新たな運転指示があったか否かを判別する(ステップS26)。運転指示があれば(ステップS26;Yes)、主制御装置50は、圧縮機11を再び運転させる(ステップS27)。すなわち、圧縮機11の運転停止後、オイルレベルが下限レベルを上回っている場合に圧縮機11の運転を再開する。
一方、運転指示がなければ(ステップS26;No)、主制御装置50は、当該処理を終了し、圧縮機11を停止させたままにする。これにより、オイル量が少ない状態での圧縮機11の運転を継続して回避する。 When thecompressor 11 is stopped (step S25; Yes), the main controller 50 determines whether or not there is an operation signal for instructing operation, that is, whether or not the operation instruction is continuing or a new operation instruction has been issued. Is determined (step S26). If there is an operation instruction (step S26; Yes), main controller 50 causes compressor 11 to operate again (step S27). That is, after the operation of the compressor 11 is stopped, the operation of the compressor 11 is resumed when the oil level exceeds the lower limit level.
On the other hand, if there is no operation instruction (step S26; No), themain controller 50 ends the processing and keeps the compressor 11 stopped. Thereby, the driving | running of the compressor 11 in a state with few oil quantities is continued and avoided.
一方、運転指示がなければ(ステップS26;No)、主制御装置50は、当該処理を終了し、圧縮機11を停止させたままにする。これにより、オイル量が少ない状態での圧縮機11の運転を継続して回避する。 When the
On the other hand, if there is no operation instruction (step S26; No), the
ここで、主制御装置50は、ステップS24の処理によって圧縮機11の運転を停止した場合、この圧縮機11の運転停止による運転能力低下を補うように他の圧縮機11の運転能力を増大させる制御を行う。具体的には、他の圧縮機11が停止中であれば、他の圧縮機11の運転を開始し、停止した圧縮機11の停止前の能力で運転させる制御を行い、他の圧縮機11が運転中であれば、停止した圧縮機11の停止前の運転能力分だけ、他の圧縮機11の運転能力を上げる。これにより、運転能力の低下が抑えられ、外部負荷(冷凍負荷)に応じた冷凍運転が継続される。
Here, when the operation of the compressor 11 is stopped by the process of step S24, the main controller 50 increases the operation capacity of the other compressors 11 to compensate for the decrease in the operation capacity due to the operation stop of the compressor 11. Take control. Specifically, if the other compressor 11 is stopped, the operation of the other compressor 11 is started, and control is performed so that the compressor 11 is operated at the capacity before the stop. Is operating, the operating capacity of the other compressors 11 is increased by the operating capacity of the stopped compressor 11 before stopping. Thereby, the fall of driving capability is suppressed and the freezing operation according to external load (refrigeration load) is continued.
以上説明したように、本実施の形態では、主制御装置50が、圧縮機11の運転中にオイルレベルが下限レベルを下回った状態が継続した場合に圧縮機11の運転を停止させ、オイルレベルが下限レベルを上回った場合に圧縮機11の運転を再開する運転制御手段として機能するので、圧縮機11内のオイル量が少ない状態での圧縮機11の運転を回避し、圧縮機11の潤滑不良を防止できる。
しかも、本実施形態では、オイル戻し管28Aに設けられた電動弁30の弁開度を圧縮機11の運転周波数に応じて調整する制御を行うので、試運転時やオイル総量が少ない等の特別な状態でない限りは、オイル戻し量を適正化でき、圧縮機11内のオイルが少ない状態が継続する事態を避けることができる。
このようにして、本実施形態では、二酸化炭素冷媒を使用する構成で、オイル戻し量の適正化を図って圧縮機11の運転を継続可能にしつつ、上記の特別な状態を原因として圧縮機11内のオイルが少なくなった際の圧縮機11の潤滑不良を防止することが可能になる。 As described above, in the present embodiment, themain controller 50 stops the operation of the compressor 11 when the oil level continues below the lower limit level during the operation of the compressor 11, and the oil level Functions as an operation control means for restarting the operation of the compressor 11 when the value exceeds the lower limit level, so that the operation of the compressor 11 in a state where the amount of oil in the compressor 11 is small is avoided and the lubrication of the compressor 11 is performed. Defects can be prevented.
In addition, in the present embodiment, since the valve opening degree of the motor-operatedvalve 30 provided in the oil return pipe 28A is controlled according to the operating frequency of the compressor 11, a special operation such as a trial operation or a small total oil amount is performed. As long as it is not in a state, the amount of oil return can be optimized, and a situation in which the state of low oil in the compressor 11 continues can be avoided.
In this way, in the present embodiment, with the configuration using carbon dioxide refrigerant, thecompressor 11 can be continuously operated by optimizing the oil return amount, and the compressor 11 is caused due to the special state described above. It becomes possible to prevent the lubrication failure of the compressor 11 when the oil in the inside decreases.
しかも、本実施形態では、オイル戻し管28Aに設けられた電動弁30の弁開度を圧縮機11の運転周波数に応じて調整する制御を行うので、試運転時やオイル総量が少ない等の特別な状態でない限りは、オイル戻し量を適正化でき、圧縮機11内のオイルが少ない状態が継続する事態を避けることができる。
このようにして、本実施形態では、二酸化炭素冷媒を使用する構成で、オイル戻し量の適正化を図って圧縮機11の運転を継続可能にしつつ、上記の特別な状態を原因として圧縮機11内のオイルが少なくなった際の圧縮機11の潤滑不良を防止することが可能になる。 As described above, in the present embodiment, the
In addition, in the present embodiment, since the valve opening degree of the motor-operated
In this way, in the present embodiment, with the configuration using carbon dioxide refrigerant, the
また、本実施形態では、並列に接続される複数の圧縮機11,11を有し、オイルレベルが下限レベルを下回った状態が継続したことによっていずれかの圧縮機11を運転停止させた場合に、運転停止による運転能力低下を補うように他の圧縮機11の運転能力を増大させるので、運転能力の低下を抑えることができる。従って、いずれかの圧縮機11を運転停止させても、冷凍負荷に応じた運転を継続することができる。また、他の圧縮機11を運転するので、運転停止した圧縮機11へオイルを戻しやすくすることができる。
Moreover, in this embodiment, when it has the some compressors 11 and 11 connected in parallel, and the state where the oil level fell below the minimum level continued, when one of the compressors 11 was stopped, Since the operation capacity of the other compressor 11 is increased so as to compensate for the decrease in the operation capacity due to the operation stop, the decrease in the operation capacity can be suppressed. Therefore, even if one of the compressors 11 is stopped, the operation corresponding to the refrigeration load can be continued. Moreover, since the other compressor 11 is drive | operated, it can make it easy to return oil to the compressor 11 which stopped the operation.
さらに、本実施形態では、オイルセパレータ22で分離されたオイルを貯留する所定容積を有するオイルタンク61を設け、このオイルタンク61に貯留されたオイルをオイル戻し管28を通して圧縮機11のケース12内に戻すとともに、オイル戻し管28Aの開度を調整する電動弁30を設け、電動弁30の開度を圧縮機11の運転周波数に応じて調整するようにしたので、オイルタンク61にオイルが溜まる分、オイルセパレータ22内のオイル油面を低くすることができる。これによって、オイル分離空間を広く確保してオイル分離効率を高めるとともに、オイルタンク61によって十分なオイル貯留量を確保できる。
従って、オイルセパレータ22の容積を大きくせずに、オイル分離効率及びオイル貯留量を確保することができ、これによっても、二酸化炭素冷媒を使用する構成で、安定したオイル戻し制御が可能になり、圧縮機11へ戻るオイルに冷媒が混入することも防止することができ、圧縮機11の潤滑不良をより確実に防止することが可能になる。 Further, in the present embodiment, anoil tank 61 having a predetermined volume for storing the oil separated by the oil separator 22 is provided, and the oil stored in the oil tank 61 is passed through the oil return pipe 28 in the case 12 of the compressor 11. In addition, the motor-operated valve 30 for adjusting the opening degree of the oil return pipe 28A is provided, and the opening degree of the motor-operated valve 30 is adjusted according to the operating frequency of the compressor 11, so that oil is accumulated in the oil tank 61. Therefore, the oil oil level in the oil separator 22 can be lowered. As a result, a large oil separation space can be secured to increase the oil separation efficiency, and a sufficient oil storage amount can be secured by the oil tank 61.
Therefore, without increasing the volume of theoil separator 22, the oil separation efficiency and the oil storage amount can be ensured, and this also enables stable oil return control in the configuration using the carbon dioxide refrigerant. It is possible to prevent the refrigerant from entering the oil that returns to the compressor 11, and it is possible to more reliably prevent poor lubrication of the compressor 11.
従って、オイルセパレータ22の容積を大きくせずに、オイル分離効率及びオイル貯留量を確保することができ、これによっても、二酸化炭素冷媒を使用する構成で、安定したオイル戻し制御が可能になり、圧縮機11へ戻るオイルに冷媒が混入することも防止することができ、圧縮機11の潤滑不良をより確実に防止することが可能になる。 Further, in the present embodiment, an
Therefore, without increasing the volume of the
また、上記オイルタンク61を設けることによって、オイルタンク61でオイルの温度を下げることができ、圧縮機11に戻るオイルの温度を効率よく低下できるとともに、オイルタンク61内の油面がオイルセパレータ22内の気相冷媒によって乱されず、油面が安定する、といった効果も得られる。
さらに、オイルセパレータ22は、複数の圧縮機11,11の高圧吐出管21,21を合流した単一の高圧吐出管21Aに設けられるので、複数の圧縮機11,11でオイルセパレータ22を共用でき、部品点数の削減ができる。また、オイルタンク61は、オイルセパレータ22よりも高さが低い耐熱容器で形成されるので、十分な耐圧強度を確保し易く、また、冷凍装置1内へのレイアウトも容易である。
また、オイル戻し管21Aには、オイルタンク61の下流にオイルクーラー27が設けられるので、オイルを効率よく冷却することができる。 Further, by providing theoil tank 61, the temperature of the oil can be lowered by the oil tank 61, the temperature of the oil returning to the compressor 11 can be efficiently lowered, and the oil level in the oil tank 61 is changed to the oil separator 22. There is also an effect that the oil level is stabilized without being disturbed by the gas-phase refrigerant.
Furthermore, since theoil separator 22 is provided in a single high-pressure discharge pipe 21A that joins the high- pressure discharge pipes 21 and 21 of the plurality of compressors 11 and 11, the oil separator 22 can be shared by the plurality of compressors 11 and 11. The number of parts can be reduced. In addition, since the oil tank 61 is formed of a heat-resistant container having a height lower than that of the oil separator 22, it is easy to ensure sufficient pressure resistance and layout in the refrigeration apparatus 1 is easy.
Further, since theoil cooler 27 is provided in the oil return pipe 21A downstream of the oil tank 61, the oil can be efficiently cooled.
さらに、オイルセパレータ22は、複数の圧縮機11,11の高圧吐出管21,21を合流した単一の高圧吐出管21Aに設けられるので、複数の圧縮機11,11でオイルセパレータ22を共用でき、部品点数の削減ができる。また、オイルタンク61は、オイルセパレータ22よりも高さが低い耐熱容器で形成されるので、十分な耐圧強度を確保し易く、また、冷凍装置1内へのレイアウトも容易である。
また、オイル戻し管21Aには、オイルタンク61の下流にオイルクーラー27が設けられるので、オイルを効率よく冷却することができる。 Further, by providing the
Furthermore, since the
Further, since the
以上、本発明の一実施形態について説明したが、本発明はこれに限定されるものではなく、種々の変更実施が可能である。例えば、本実施形態では、2台の圧縮機11,11を備える場合を説明したが、これに限らず、1台又は3台以上にしても良い。また、ケース12内が中間圧となる2段式の圧縮機11に限らず、内部にオイルを貯留する公知の圧縮機を適用しても良い。
また、本実施形態では、熱源側機器となる冷凍機ユニット3と、利用側機器となるショーケースユニット5A,5Bとからなる冷凍装置1に本発明を適用する場合を説明したが、公知の冷凍装置の構成を適用しても良い。
また、本実施形態では、オイルレベルセンサー31を上限レベル及び下限レベルを検出できる2接点式のレベルセンサで構成する場合を説明したが、これに限らず、例えば、上限レベルと下限レベルとの間の中間レベルも検出できるレベルセンサで構成しても良い。 As mentioned above, although one Embodiment of this invention was described, this invention is not limited to this, A various change implementation is possible. For example, in this embodiment, although the case where the two compressors 11 and 11 were provided was demonstrated, you may make it 1 unit | set or 3 units | sets or more without limiting to this. Moreover, you may apply the well-known compressor which stores oil not only in the two-stage type compressor 11 in which the inside of case 12 becomes intermediate pressure.
Moreover, although this embodiment demonstrated the case where this invention was applied to the refrigeration apparatus 1 which consists of the refrigerator unit 3 used as a heat source side apparatus, and showcase unit 5A, 5B used as a use side apparatus, well-known freezing You may apply the structure of an apparatus.
In the present embodiment, the case where theoil level sensor 31 is configured by a two-contact type level sensor that can detect the upper limit level and the lower limit level has been described. However, the present invention is not limited to this, for example, between the upper limit level and the lower limit level. It may be constituted by a level sensor that can detect the intermediate level.
また、本実施形態では、熱源側機器となる冷凍機ユニット3と、利用側機器となるショーケースユニット5A,5Bとからなる冷凍装置1に本発明を適用する場合を説明したが、公知の冷凍装置の構成を適用しても良い。
また、本実施形態では、オイルレベルセンサー31を上限レベル及び下限レベルを検出できる2接点式のレベルセンサで構成する場合を説明したが、これに限らず、例えば、上限レベルと下限レベルとの間の中間レベルも検出できるレベルセンサで構成しても良い。 As mentioned above, although one Embodiment of this invention was described, this invention is not limited to this, A various change implementation is possible. For example, in this embodiment, although the case where the two
Moreover, although this embodiment demonstrated the case where this invention was applied to the refrigeration apparatus 1 which consists of the refrigerator unit 3 used as a heat source side apparatus, and
In the present embodiment, the case where the
また、本実施形態では、運転停止制御において、圧縮機11の運転を停止する場合と運転を再開する場合のオイルレベルを同じレベル(下限レベル)とする場合を説明したが、これに限らない。つまり、圧縮機11の運転を停止する場合と運転を再開する場合のオイルレベルを異ならせても良く、例えば、オイルレベルが中間レベルを上回った場合に圧縮機11の運転を再開させても良い。この場合、圧縮機11内にオイルがより溜まった状態で圧縮機11の運転を再開でき、潤滑不良を確実に回避すると共にその圧縮機11の運転時間を長く確保でき、試運転時に配管内のオイルが適正に循環するまでの時間を確保し易くなる。
Further, in this embodiment, in the operation stop control, the case where the oil level when the operation of the compressor 11 is stopped and the oil level when the operation is restarted is set to the same level (lower limit level) is described, but the present invention is not limited to this. That is, the oil level when the operation of the compressor 11 is stopped may be different from that when the operation is restarted. For example, when the oil level exceeds the intermediate level, the operation of the compressor 11 may be restarted. . In this case, the operation of the compressor 11 can be resumed while more oil is accumulated in the compressor 11, the lubrication failure can be reliably avoided and the operation time of the compressor 11 can be ensured for a long time. It becomes easy to secure time until it circulates appropriately.
1 冷凍装置
3 冷凍機ユニット(熱源側機器)
5A,5B ショーケースユニット(利用側機器)
10 冷媒回路
11 圧縮機
12 ケース
21 高圧吐出管
22 オイルセパレータ
23 ガスクーラー
27 オイルクーラー
28,28A,28B オイル戻し管
30 電動弁
31 オイルレベルセンサー(オイルレベル検出手段)
38 キャピラリチューブ(固定絞り)
50 主制御装置(弁開度調整手段、弁開度補正手段、運転制御手段)
61 オイルタンク
A 補正係数 1 Refrigeration equipment 3 Refrigerator unit (heat source side equipment)
5A, 5B showcase unit (use side equipment)
DESCRIPTION OFSYMBOLS 10 Refrigerant circuit 11 Compressor 12 Case 21 High pressure discharge pipe 22 Oil separator 23 Gas cooler 27 Oil cooler 28, 28A, 28B Oil return pipe 30 Electric valve 31 Oil level sensor (oil level detection means)
38 Capillary tube (fixed throttle)
50 Main controller (valve opening adjusting means, valve opening correcting means, operation control means)
61 Oil tank A Correction factor
3 冷凍機ユニット(熱源側機器)
5A,5B ショーケースユニット(利用側機器)
10 冷媒回路
11 圧縮機
12 ケース
21 高圧吐出管
22 オイルセパレータ
23 ガスクーラー
27 オイルクーラー
28,28A,28B オイル戻し管
30 電動弁
31 オイルレベルセンサー(オイルレベル検出手段)
38 キャピラリチューブ(固定絞り)
50 主制御装置(弁開度調整手段、弁開度補正手段、運転制御手段)
61 オイルタンク
A 補正係数 1 Refrigeration equipment 3 Refrigerator unit (heat source side equipment)
5A, 5B showcase unit (use side equipment)
DESCRIPTION OF
38 Capillary tube (fixed throttle)
50 Main controller (valve opening adjusting means, valve opening correcting means, operation control means)
61 Oil tank A Correction factor
Claims (4)
- 二酸化炭素を冷媒として冷凍サイクル運転を行う冷媒回路を備え、この冷媒回路は、ケース内にオイルを貯留し、このオイルと共に冷媒を高圧吐出管に吐出する圧縮機と、前記高圧吐出管に設けられたオイルセパレータと、前記オイルセパレータで分離されたオイルを前記ケース内に戻すオイル戻し管とを有する冷凍装置において、
前記オイルセパレータで分離されたオイルを貯留する所定容積を有するオイルタンクを設け、このオイルタンクに貯留されたオイルを前記オイル戻し管を通して前記ケース内に戻すとともに、前記オイル戻し管に電動弁を設け、前記電動弁の開度を、前記圧縮機の運転周波数に応じて調整する弁開度調整手段を設けたことを特徴とする冷凍装置。 A refrigerant circuit that performs a refrigeration cycle operation using carbon dioxide as a refrigerant is provided in the high pressure discharge pipe, and a compressor that stores oil in the case and discharges the refrigerant together with the oil to the high pressure discharge pipe. In the refrigeration apparatus having an oil separator and an oil return pipe for returning the oil separated by the oil separator into the case,
An oil tank having a predetermined volume for storing oil separated by the oil separator is provided, and the oil stored in the oil tank is returned into the case through the oil return pipe, and an electric valve is provided in the oil return pipe. A refrigeration apparatus comprising valve opening adjusting means for adjusting the opening of the motor-operated valve according to the operating frequency of the compressor. - 前記圧縮機は、並列に接続される複数の圧縮機を有し、
前記オイルセパレータは、前記複数の圧縮機の高圧吐出管を合流した単一の高圧吐出管に設けられ、前記オイルタンクは、前記オイルオイルセパレータよりも高さが低い耐熱容器で形成されることを特徴とする請求項1に記載の冷凍装置。 The compressor has a plurality of compressors connected in parallel,
The oil separator is provided in a single high-pressure discharge pipe that joins the high-pressure discharge pipes of the plurality of compressors, and the oil tank is formed of a heat-resistant container having a lower height than the oil-oil separator. The refrigeration apparatus according to claim 1, wherein - 前記オイル戻し管には、前記オイルタンクの下流にオイルクーラーが設けられることを特徴とする請求項1又は2に記載の冷凍装置。 The refrigeration apparatus according to claim 1 or 2, wherein the oil return pipe is provided with an oil cooler downstream of the oil tank.
- 前記弁開度調整手段は、前記圧縮機の運転周波数が大きくなった際に前記電動弁の弁開度を大きくし、前記圧縮機の運転周波数が小さくなった際に前記電動弁の弁開度を小さくすることを特徴とする請求項1乃至3のいずれかに記載の冷凍装置。 The valve opening adjustment means increases the valve opening of the motor-operated valve when the operating frequency of the compressor increases, and opens the valve of the motor-operated valve when the operating frequency of the compressor decreases. The refrigeration apparatus according to claim 1, wherein the refrigeration apparatus is reduced.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180074881.6A CN103946647B (en) | 2011-11-18 | 2011-12-08 | Refrigerating plant |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-252919 | 2011-11-18 | ||
JP2011253058A JP2013108654A (en) | 2011-11-18 | 2011-11-18 | Refrigerating apparatus |
JP2011-253058 | 2011-11-18 | ||
JP2011252919A JP5914806B2 (en) | 2011-11-18 | 2011-11-18 | Refrigeration equipment |
JP2011252918A JP2013108396A (en) | 2011-11-18 | 2011-11-18 | Refrigeration unit |
JP2011-252918 | 2011-11-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013073064A1 true WO2013073064A1 (en) | 2013-05-23 |
Family
ID=48429170
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/078404 WO2013073065A1 (en) | 2011-11-18 | 2011-12-08 | Refrigeration unit |
PCT/JP2011/078402 WO2013073063A1 (en) | 2011-11-18 | 2011-12-08 | Refrigerating apparatus |
PCT/JP2011/078403 WO2013073064A1 (en) | 2011-11-18 | 2011-12-08 | Refrigeration unit |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/078404 WO2013073065A1 (en) | 2011-11-18 | 2011-12-08 | Refrigeration unit |
PCT/JP2011/078402 WO2013073063A1 (en) | 2011-11-18 | 2011-12-08 | Refrigerating apparatus |
Country Status (2)
Country | Link |
---|---|
CN (3) | CN103946647B (en) |
WO (3) | WO2013073065A1 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103528272B (en) * | 2013-10-30 | 2016-08-24 | 广东志高暖通设备股份有限公司 | A kind of multi-union compressor system |
CN104864633B (en) * | 2015-06-05 | 2017-11-14 | 珠海格力电器股份有限公司 | Oil balancing control method of air conditioning system |
JP6594707B2 (en) * | 2015-08-27 | 2019-10-23 | 三菱重工サーマルシステムズ株式会社 | Two-stage compression refrigeration system |
CN105180533B (en) * | 2015-09-11 | 2018-02-16 | 珠海格力电器股份有限公司 | Screw unit oil return control method and system and screw unit |
CN106225274A (en) * | 2016-08-25 | 2016-12-14 | 浙江青风环境股份有限公司 | A kind of vortex parallel full-liquid type handpiece Water Chilling Units |
JP6801714B2 (en) * | 2016-08-29 | 2020-12-16 | Agc株式会社 | Thermal cycle system |
JP6540666B2 (en) * | 2016-11-24 | 2019-07-10 | ダイキン工業株式会社 | Refrigeration system |
JP6932773B2 (en) * | 2017-05-10 | 2021-09-08 | 三菱電機株式会社 | Oil separator and refrigeration cycle equipment |
CN107683891B (en) * | 2017-08-29 | 2021-07-20 | 华南理工大学 | Method and equipment for freezing fresh food by liquid carbon dioxide under high pressure |
CN113217390B (en) * | 2021-05-10 | 2023-02-07 | 广东葆德科技有限公司 | Adjusting system and adjusting method for oil injection quantity of compressor |
CN113339963B (en) * | 2021-05-12 | 2022-09-02 | 广东Tcl智能暖通设备有限公司 | Compressor oil return control method and system and air conditioner |
CN114484715B (en) * | 2022-01-10 | 2024-02-20 | 青岛海尔空调电子有限公司 | Multi-compressor refrigerant circulation system and control method thereof |
CN115143657B (en) * | 2022-06-14 | 2023-12-26 | 特灵空调系统(中国)有限公司 | Control method and control device for variable frequency compressor system |
CN115164300B (en) * | 2022-06-20 | 2024-07-09 | 青岛海尔空调电子有限公司 | Method and device for oil return control of air conditioner, air conditioner and storage medium |
CN116294328A (en) * | 2023-02-23 | 2023-06-23 | 青岛海尔空调电子有限公司 | Control method and device for water chilling unit and water chilling unit |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0439574A (en) * | 1990-06-05 | 1992-02-10 | Mitsubishi Heavy Ind Ltd | Refrigerating device |
WO2007039951A1 (en) * | 2005-10-06 | 2007-04-12 | Mitsubishi Denki Kabushiki Kaisha | Refrigerating/air-conditioning device |
JP2011007351A (en) * | 2009-06-23 | 2011-01-13 | Sanyo Electric Co Ltd | Refrigerating device |
JP2011117626A (en) * | 2009-12-01 | 2011-06-16 | Hitachi Appliances Inc | Air conditioner |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0418261U (en) * | 1990-06-05 | 1992-02-14 | ||
JPH0942788A (en) * | 1995-07-31 | 1997-02-14 | Sanyo Electric Co Ltd | Oil level control device of freezer apparatus |
JP3000543B2 (en) * | 1996-05-14 | 2000-01-17 | ヤマト株式会社 | Solid glue container |
JPH09303888A (en) * | 1996-05-17 | 1997-11-28 | Mitsubishi Heavy Ind Ltd | Controller for operation of compressor in refrigerating unit |
JP2003097443A (en) * | 2001-09-25 | 2003-04-03 | Mitsubishi Heavy Ind Ltd | Compressor and refrigeration unit |
JP4270836B2 (en) * | 2002-09-30 | 2009-06-03 | 株式会社長府製作所 | Air conditioner operation setting device |
US6886354B2 (en) * | 2003-04-04 | 2005-05-03 | Carrier Corporation | Compressor protection from liquid hazards |
CN2700843Y (en) * | 2003-08-27 | 2005-05-18 | 北京博瑞特智能仪器有限公司 | On-site liquid level display digital polling device |
CN2916524Y (en) * | 2006-05-19 | 2007-06-27 | 广东美的电器股份有限公司 | Large-sized air-cooled heat pump |
JP2009156524A (en) * | 2007-12-27 | 2009-07-16 | Sanyo Electric Co Ltd | Refrigerating cycle device |
JP5402027B2 (en) * | 2009-01-30 | 2014-01-29 | ダイキン工業株式会社 | Air conditioner |
CN201474978U (en) * | 2009-08-21 | 2010-05-19 | 上海斯可络压缩机有限公司 | Oil level lens |
JP5523817B2 (en) * | 2009-12-25 | 2014-06-18 | 三洋電機株式会社 | Refrigeration equipment |
KR101452767B1 (en) * | 2010-04-01 | 2014-10-21 | 엘지전자 주식회사 | Oil level detecting means for compressor |
-
2011
- 2011-12-08 CN CN201180074881.6A patent/CN103946647B/en active Active
- 2011-12-08 CN CN201180074876.5A patent/CN103946646B/en active Active
- 2011-12-08 WO PCT/JP2011/078404 patent/WO2013073065A1/en active Application Filing
- 2011-12-08 WO PCT/JP2011/078402 patent/WO2013073063A1/en active Application Filing
- 2011-12-08 WO PCT/JP2011/078403 patent/WO2013073064A1/en active Application Filing
- 2011-12-08 CN CN201180074883.5A patent/CN103946652B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0439574A (en) * | 1990-06-05 | 1992-02-10 | Mitsubishi Heavy Ind Ltd | Refrigerating device |
WO2007039951A1 (en) * | 2005-10-06 | 2007-04-12 | Mitsubishi Denki Kabushiki Kaisha | Refrigerating/air-conditioning device |
JP2011007351A (en) * | 2009-06-23 | 2011-01-13 | Sanyo Electric Co Ltd | Refrigerating device |
JP2011117626A (en) * | 2009-12-01 | 2011-06-16 | Hitachi Appliances Inc | Air conditioner |
Also Published As
Publication number | Publication date |
---|---|
CN103946647B (en) | 2016-04-06 |
CN103946646B (en) | 2016-04-06 |
CN103946652B (en) | 2016-08-24 |
CN103946647A (en) | 2014-07-23 |
CN103946652A (en) | 2014-07-23 |
WO2013073065A1 (en) | 2013-05-23 |
CN103946646A (en) | 2014-07-23 |
WO2013073063A1 (en) | 2013-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013073064A1 (en) | Refrigeration unit | |
JP5502459B2 (en) | Refrigeration equipment | |
WO2014068967A1 (en) | Refrigeration device | |
KR101220583B1 (en) | Freezing device | |
JP5586880B2 (en) | Refrigeration equipment | |
KR101220741B1 (en) | Freezing device | |
JP5783783B2 (en) | Heat source side unit and refrigeration cycle apparatus | |
KR101220663B1 (en) | Freezing device | |
US8276400B2 (en) | Refrigeration apparatus | |
JP5914806B2 (en) | Refrigeration equipment | |
KR101332478B1 (en) | Freezing device | |
JP2013155972A (en) | Refrigeration device | |
JP5502460B2 (en) | Refrigeration equipment | |
JP2014089021A (en) | Freezing apparatus | |
KR101268207B1 (en) | Freezing device | |
JP2018204805A (en) | Refrigeration unit, refrigeration system and control method for refrigerant circuit | |
JP2014159950A (en) | Freezer | |
JP2013108654A (en) | Refrigerating apparatus | |
JP2016128734A (en) | Refrigeration device | |
JP2013108396A (en) | Refrigeration unit | |
JP5449881B2 (en) | Refrigeration equipment | |
JP2009162407A (en) | Refrigerating device | |
JP2015083907A (en) | Refrigerator unit and freezer | |
JP4123303B2 (en) | Refrigeration equipment | |
JP2011137556A (en) | Refrigerating apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180074881.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11875736 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11875736 Country of ref document: EP Kind code of ref document: A1 |