JP3284588B2 - Operation control device for refrigeration equipment - Google Patents

Operation control device for refrigeration equipment

Info

Publication number
JP3284588B2
JP3284588B2 JP12378492A JP12378492A JP3284588B2 JP 3284588 B2 JP3284588 B2 JP 3284588B2 JP 12378492 A JP12378492 A JP 12378492A JP 12378492 A JP12378492 A JP 12378492A JP 3284588 B2 JP3284588 B2 JP 3284588B2
Authority
JP
Japan
Prior art keywords
pressure
compressor
oil
oil recovery
lubricating oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12378492A
Other languages
Japanese (ja)
Other versions
JPH05322325A (en
Inventor
直樹 上野
博 岡田
洋 朝妻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP12378492A priority Critical patent/JP3284588B2/en
Publication of JPH05322325A publication Critical patent/JPH05322325A/en
Application granted granted Critical
Publication of JP3284588B2 publication Critical patent/JP3284588B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、冷凍装置の油回収運転
制御装置に係り、特に油回収運転の信頼性の向上対策に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oil recovery operation control device for a refrigeration system, and more particularly to a measure for improving the reliability of an oil recovery operation.

【0002】[0002]

【従来の技術】従来より、冷凍装置の油回収運転制御装
置として、例えば特開昭63−73052号公報に開示
されるごとく、冷凍装置の運転時間を積算し、その積算
時間が一定値に達すると、冷房運転中にはそのままのサ
イクルで、暖房運転中には冷房サイクルに切り換えて、
圧縮機を大容量で、かつ各電動膨張弁の開度を大開度に
して、冷媒流量を増大させ、冷媒状態を湿り気味の運転
条件とすることにより、蒸発器や冷媒配管の特に管壁付
近に滞溜する油を冷媒と共に圧縮機に戻すよう制御する
ことにより、圧縮機の潤滑油の不足に起因する圧縮機の
焼付き等を生じない油圧を保持し、円滑な運転の継続を
図ろうとするものは公知の技術である。
2. Description of the Related Art Conventionally, as an oil recovery operation control device for a refrigeration system, for example, as disclosed in Japanese Patent Application Laid-Open No. 63-73052, the operation time of a refrigeration system is integrated and the integrated time reaches a certain value. Then, during the cooling operation, the cycle is the same, and during the heating operation, the mode is switched to the cooling cycle,
The compressor has a large capacity, and the degree of opening of each electric expansion valve is set to a large degree to increase the flow rate of the refrigerant. By controlling the oil that has accumulated in the compressor to return to the compressor together with the refrigerant, the oil pressure that does not cause seizure of the compressor due to the lack of lubricating oil of the compressor is maintained, and the smooth operation is continued. What is performed is a known technique.

【0003】また、特公平3−10865号公報に開示
されるごとく、圧縮機の潤滑油の圧力が下限値以下にな
るときを検出する油圧保護圧力開閉器を備え、油圧保護
圧力開閉器が作動すると冷凍装置の油回収運転を行う一
方、油回収運転終了後にも油圧保護圧力開閉器が作動す
ると、はじめて冷凍装置を異常停止させることにより、
特に低外気温時における油圧保護圧力開閉器の誤作動に
よる冷凍装置の異常停止を回避しようとするものも公知
の技術である。
Further, as disclosed in Japanese Patent Publication No. Hei 3-10865, a hydraulic protection pressure switch for detecting when the pressure of the lubricating oil of the compressor becomes equal to or lower than a lower limit value is provided. Then, while the oil recovery operation of the refrigeration apparatus is performed, if the oil pressure protection pressure switch operates even after the oil recovery operation is completed, the refrigeration apparatus is abnormally stopped for the first time,
In particular, a technique for avoiding an abnormal stop of the refrigeration system due to a malfunction of the hydraulic protection pressure switch at a low outside air temperature is also a known technique.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記各
公報のものでは、以下のような問題があった。
However, the above publications have the following problems.

【0005】すなわち、前者の場合には、最悪の状態を
想定して油回収運転に突入する所定時間を設定しなけれ
ばならないので、ほとんどの場合、潤滑油がそれほど不
足してなかったり、十分油が圧縮機に戻りやすい条件下
においても油回収運転を行うことが多く、その結果、運
転効率の低下や空調の快適性の悪化を招いていた。
That is, in the former case, it is necessary to set a predetermined time for entering the oil recovery operation assuming the worst condition. Therefore, in most cases, the lubricating oil is not so short or insufficient. In many cases, the oil recovery operation is performed even under conditions in which the air conditioner easily returns to the compressor. As a result, the operation efficiency is reduced and the comfort of the air conditioning is deteriorated.

【0006】後者の場合には、油圧保護圧力開閉器の作
動に応じて油回収運転を行うので、前者のような問題は
ないが、反面、油圧圧力保護開閉器が作動する下限値に
なったときには圧縮機内の潤滑油量が非常に少ないの
で、かかる状態で油回収運転を行うと、圧縮機の負担が
大きく、寿命を低下させる虞れがあった。
In the latter case, the oil recovery operation is performed in accordance with the operation of the hydraulic protection pressure switch, so there is no problem as in the former case, but on the other hand, the lower limit value at which the hydraulic pressure protection switch operates is used. Since the amount of lubricating oil in the compressor is sometimes very small, if the oil recovery operation is performed in such a state, the load on the compressor may be large and the life may be shortened.

【0007】本発明は斯かる点に鑑みてなされたもので
あり、その目的は、潤滑油の圧力が異常停止させなけれ
ばならない下限値よりも高い比較的余裕のある状態で油
回収運転への突入を判断することにより、不必要な油回
収運転を回避して運転効率と空調の快適性とを良好に維
持しながら、信頼性の向上を図ることにある。
[0007] The present invention has been made in view of such a point, and an object of the present invention is to perform an oil recovery operation in a state where the pressure of the lubricating oil has a relatively large margin higher than a lower limit value at which abnormal stop is required. It is an object of the present invention to improve reliability by avoiding unnecessary oil recovery operation and maintaining good operating efficiency and air conditioning comfort by judging the entry.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明の講じた手段は、図1に示すよう
に、圧縮機(1)の潤滑油の圧力が下限値以下に達する
と作動して、冷凍装置を異常停止させる油圧保護装置
(63QL)を備えた冷凍装置を前提とする。
In order to achieve the above-mentioned object, according to the first aspect of the present invention, as shown in FIG. 1, the pressure of the lubricating oil of the compressor (1) falls below the lower limit. Then, it is assumed that the refrigerating apparatus is provided with a hydraulic protection device (63QL) that operates and abnormally stops the refrigerating apparatus.

【0009】そして、冷凍装置の運転制御装置として、
上記圧縮機(1)の潤滑油の圧力を検出する油圧検出手
段(OP)と、該油圧検出手段(OP)で検出される潤
滑油圧力が上記油圧保護装置(63QL)が作動する下限
値よりも高く設定された設定値以下になり、かつ圧縮機
(1)の前回の油回収運転後の積算運転時間が所定時間
に達すると、油回収運転を行うよう制御する油回収運転
制御手段(51)とを設ける構成としたものである。
[0009] As an operation control device of the refrigeration system,
The hydraulic pressure detecting means (OP) for detecting the pressure of the lubricating oil of the compressor (1) and the lubricating oil pressure detected by the hydraulic pressure detecting means (OP) are lower than the lower limit value at which the hydraulic pressure protection device (63QL) operates. Oil recovery operation control means (51) for controlling to perform the oil recovery operation when the pressure of the compressor (1) also becomes equal to or less than the set value set high and the integrated operation time after the previous oil recovery operation of the compressor (1) reaches a predetermined time. ) Is provided.

【0010】請求項2の発明の講じた手段は、上記請求
項1の発明において、図1の破線部分に示すように、圧
縮機(1)の前回の油回収運転後の積算運転時間が所定
時間に達する前に潤滑油圧力が上記設定値以下になった
とき、潤滑油圧力が設定値以下になった後における潤滑
油圧力の低下速度が一定値よりも低いか否かを判別する
低下速度判別手段(52)と、該低下速度判別手段(5
2)の判別を受けて、潤滑油圧力の低下速度が一定値以
上のときには、冷凍装置を異常停止させる一方、潤滑油
圧力の低下速度が一定値よりも小さいときには、油回収
運転を行うよう制御するリトライ制御手段(53)とを
設けたものである。
According to a second aspect of the present invention, in the first aspect of the present invention, as shown by the broken line in FIG. 1, the integrated operating time after the previous oil recovery operation of the compressor (1) is predetermined. When the lubricating oil pressure falls below the set value before the time is reached, the rate of decrease to determine whether the rate of decrease of the lubricating oil pressure after the lubricating oil pressure falls below the set value is lower than a certain value. Determining means (52);
In response to the determination of 2), when the rate of decrease of the lubricating oil pressure is equal to or higher than a certain value, the refrigeration system is abnormally stopped. On the other hand, when the rate of decrease of the lubricating oil pressure is smaller than the certain value, the oil recovery operation is performed. And retry control means (53).

【0011】[0011]

【作用】以上の構成により、請求項1の発明では、冷凍
装置の運転中、油圧が下限値以下になると、油圧保護装
置(63QL)が作動し、冷凍装置が異常停止されるが、
その下限値よりも高い設定値以下になり、かつ圧縮機
(1)の積算運転時間が所定時間に達しているときに
は、油回収運転制御手段(51)により油回収運転が行
われるので、油圧に余裕がある状態で油回収運転が行わ
れ、油圧保護装置(63QL)が作動したときはじめて油
回収運転を行う場合のように圧縮機(1)に負担を掛け
ることがない。また、単に圧縮機(1)の積算運転時間
が所定時間に達すると一律に油回収運転を行うのではな
く、油圧が設定値以下になってから油回収運転が行われ
るので、無駄な油回収運転が回避され、運転効率や空調
の快適性が良好に維持されることになる。
According to the above construction, in the first aspect of the present invention, when the oil pressure falls below the lower limit value during operation of the refrigeration system, the hydraulic pressure protection device (63QL) is activated, and the refrigeration system is stopped abnormally.
When the accumulated operation time of the compressor (1) has reached the predetermined time when the oil pressure is equal to or less than the set value higher than the lower limit value, the oil recovery operation is performed by the oil recovery operation control means (51). The oil recovery operation is performed in a state where there is a margin, and the load on the compressor (1) is not imposed unlike the case where the oil recovery operation is performed only when the hydraulic pressure protection device (63QL) is activated. Further, when the accumulated operation time of the compressor (1) reaches a predetermined time, the oil recovery operation is not performed uniformly, but the oil recovery operation is performed after the oil pressure becomes equal to or less than a set value. Driving is avoided, and driving efficiency and air conditioning comfort are maintained favorably.

【0012】請求項2の発明では、圧縮機(1)の積算
運転時間が所定時間に達する前に油圧が設定値になった
ときには、低下速度判別手段(52)により、そのとき
以後の油圧の低下速度が一定値以上か否かが判別され、
低下速度が一定値よりも小さければ、リトライ制御手段
(53)により、油回収運転が行われるので、油圧系統
の故障でない単に冷媒状態や外気温度等の外部的要因に
よる油圧の低下で異常停止させる場合のごとき空気調和
装置の無駄な異常停止が回避される。
According to the second aspect of the present invention, when the hydraulic pressure reaches the set value before the integrated operation time of the compressor (1) reaches the predetermined time, the decrease speed determining means (52) determines the hydraulic pressure thereafter. It is determined whether the decrease speed is equal to or greater than a certain value,
If the rate of decrease is smaller than the predetermined value, the oil retrieving operation is performed by the retry control means (53), so that abnormal stop is caused by a decrease in oil pressure due to an external factor such as a refrigerant state or an outside air temperature which is not a failure of the hydraulic system. In such a case, unnecessary abnormal stop of the air conditioner is avoided.

【0013】[0013]

【実施例】以下、本発明の実施例について、図2以下の
図面に基づき説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to FIGS.

【0014】図2は本発明の実施例に係るマルチ型空気
調和装置の冷媒配管系統を示し、(X)は室外ユニッ
ト、(Y1),(Y2),…は該室外ユニット(X)に
並列に接続された室内ユニットである。上記室外ユニッ
ト(X)の内部には、2つの三方切換弁(SV1),(S
V2)の切換えにより、運転容量が100%,67%,3
3%の3段階に調節される圧縮機(1)と、上記圧縮機
(1)から吐出されるガス冷媒中の油を分離する第1,
第2油分離器(4a),(4b)と、冷房運転時には図
中実線の如く切換わり暖房運転時には図中破線の如く切
換わる四路切換弁(5)と、冷房運転時に凝縮器、暖房
運転時に蒸発器となる一対の室外熱交換器(6a),
(6b)及び該室外熱交換器(6a),(6b)に付設
された2台の室外ファン(F1),(F2)とが配設さ
れている。上記各室外熱交換器(6a),(6b)は、
回路中で並列に配置されており、各室外熱交換器(6
a),(6b)に対して、冷房運転時には冷媒流量を調
節し、暖房運転時には冷媒の絞り作用を行う一対の室外
電動膨張弁(8a1),(8a2)及び(8b1),(8b2)
が配設されている。さらに室外ユニット(X)には、液
化した冷媒を貯蔵するためのレシ―バ(9)と、一対の
第1,第2アキュムレータ(10a),(10b)とが
配設されていて、該各機器(1)〜(10b)は、順次
冷媒配管(11)により冷媒の流通可能に接続されてい
る。また上記室内ユニット(Y1),(Y2),…は同
一構成であり、各々、冷房運転時には蒸発器、暖房運転
時には凝縮器となる室内熱交換器(12)およびそのフ
ァン(12a)と、暖房運転時に冷媒流量を調節し、冷
房運転時に冷媒の絞り作用を行う室内電動膨張弁(1
3)とがそれぞれ配設され、合流後液側手動閉鎖弁(1
7)及びガス側手動閉鎖弁(18)を介し液側連絡配管
(11a)及びガス側連絡配管(11b)によって室外
ユニット(X)との間を接続されている。すなわち、以
上の各機器は冷媒配管(11)により、冷媒の流通可能
に接続されていて、室外空気との熱交換により得た熱を
室内空気に放出するようにした主冷媒回路(14)が構
成されている。
FIG. 2 shows a refrigerant piping system of the multi-type air conditioner according to the embodiment of the present invention, wherein (X) is an outdoor unit, and (Y1), (Y2),... Are parallel to the outdoor unit (X). This is an indoor unit connected to. Inside the outdoor unit (X), two three-way switching valves (SV1), (SV1)
By switching V2), the operating capacity becomes 100%, 67%, 3%.
A compressor (1) adjusted to three stages of 3%, and a first (1) for separating oil in a gas refrigerant discharged from the compressor (1).
A second oil separator (4a), (4b), a four-way switching valve (5) that switches during cooling operation as shown by a solid line in the drawing and switches during heating operation as shown by a broken line in the drawing, a condenser and a heating device during cooling operation A pair of outdoor heat exchangers (6a) serving as evaporators during operation,
(6b) and two outdoor fans (F1) and (F2) attached to the outdoor heat exchangers (6a) and (6b). Each of the above outdoor heat exchangers (6a) and (6b)
It is arranged in parallel in the circuit, and each outdoor heat exchanger (6
Contrary to (a) and (6b), a pair of outdoor electric expansion valves (8a1), (8a2) and (8b1), (8b2) that adjusts the refrigerant flow rate during the cooling operation and performs the throttling operation of the refrigerant during the heating operation.
Are arranged. Further, the outdoor unit (X) is provided with a receiver (9) for storing the liquefied refrigerant and a pair of first and second accumulators (10a) and (10b). The devices (1) to (10b) are sequentially connected by a refrigerant pipe (11) so that the refrigerant can flow. The indoor units (Y1), (Y2),... Have the same configuration, and include an indoor heat exchanger (12) and a fan (12a), which serve as an evaporator during a cooling operation and a condenser during a heating operation, respectively, and a heating unit. An indoor electric expansion valve (1) that adjusts the flow rate of the refrigerant during operation and performs a throttling operation of the refrigerant during cooling operation.
3) are arranged respectively, and after merging, the liquid side manual shutoff valve (1)
7) and a liquid side communication pipe (11a) and a gas side communication pipe (11b) are connected to the outdoor unit (X) via the gas side manual shutoff valve (18). That is, each of the above devices is connected by a refrigerant pipe (11) so that refrigerant can flow therethrough, and a main refrigerant circuit (14) configured to release heat obtained by heat exchange with outdoor air to indoor air is provided. It is configured.

【0015】次に、上記各主要機器以外に補助用の諸機
器が設けられている。吐出管と吸入管との間には、圧縮
機(1)の停止時等に高圧側圧力と低圧側圧力とを均圧
化するための均圧ホットガスバイパス路(11d)が設
けられ、該均圧ホットガスバイパス路(11d)には、
サ―モオフ状態等による圧縮機(1)の停止時、再起動
前に一定時間開作動する均圧用開閉弁(21)が介設さ
れている。また、上記第1,第2油分離器(4a),
(4b)から第2アキュムレータ(10b)出口の立上
がり配管まで、キャピラリチュ―ブ(32)を介して油
を戻すための油戻し管(33)が設けられている。さら
に、上記油分離器(4a),(4b)−四路切換弁
(5)間の吐出管とレシーバ(9)上部とを接続する暖
房過負荷制御回路(11e)が設けられており、該暖房
過負荷制御回路(11e)には、吐出管側から順に、補
助熱交換器(6c)、キャピラリチュ―ブ(23)、過
負荷制御開閉弁(SVS)が介設されている。また、各室
外電動膨張弁(8a1)〜(8b2)−レシーバ(9)間の
液管とアキュムレータ(10)上流側の吸入管とをバイ
パス接続するリキッドインジェクションバイパス路(1
1f)が設けられており、該バイパス路(11f)に
は、吸入冷媒の過熱を調節すべく開閉するインジェクシ
ョン開閉弁(SVL)が介設されている。なお、(GP)
はゲ―ジポ―トである。
Next, auxiliary devices are provided in addition to the above main devices. An equalizing hot gas bypass passage (11d) is provided between the discharge pipe and the suction pipe to equalize the high pressure side and the low pressure side pressure when the compressor (1) is stopped. In the equalizing hot gas bypass passage (11d),
When the compressor (1) is stopped due to a thermo-off state or the like, a pressure equalizing opening / closing valve (21) that opens for a predetermined time before restarting is provided. Further, the first and second oil separators (4a),
An oil return pipe (33) for returning oil through a capillary tube (32) is provided from (4b) to the rising pipe at the outlet of the second accumulator (10b). Further, a heating overload control circuit (11e) for connecting a discharge pipe between the oil separators (4a), (4b) and the four-way switching valve (5) and an upper portion of the receiver (9) is provided. In the heating overload control circuit (11e), an auxiliary heat exchanger (6c), a capillary tube (23), and an overload control on-off valve (SVS) are provided in this order from the discharge pipe side. A liquid injection bypass passage (1) for bypass-connecting a liquid pipe between each of the outdoor electric expansion valves (8a1) to (8b2) and the receiver (9) and a suction pipe upstream of the accumulator (10).
1f) is provided, and an injection opening / closing valve (SVL) is provided in the bypass passage (11f) to open and close to regulate overheating of the suction refrigerant. (GP)
Is a gageport.

【0016】また、装置には多くのセンサ類が配置され
ていて、(Th1a),(Th1b)は各室外熱交換器(6a),
(6b)のガス管温度を検出するガス管センサ、(Th2
a),(Th2b)は各室外熱交換器(6a),(6b)の液管
温度を検出する液管センサ、(Thd)は圧縮機(1)の
吐出管温度を検出する吐出管センサ、(Thr)は各室内
ユニット(Y1)の空気吸込口に配設され、吸込空気温
度(室温)を検出する室内吸込センサ、(LP)は吸入
圧力(低圧側圧力)を検出する低圧センサ、(OP)は
潤滑油の圧力と吸入圧力との圧力差から油圧Po を検出
する油圧検出手段としての油圧センサ、(63QL)は潤
滑油の圧力と吸入圧力との圧力差である油圧Po が下限
値1.5(kg/cm2 )以下になると作動して空気調和装
置を異常停止させる油圧保護装置としての差圧スイッ
チ、(HP)は吐出圧力(高圧側圧力)を検出する高圧
センサ、(63H)は圧縮機保護用の高圧圧力開閉器で
あって、これらのセンサ類の信号は、空気調和装置のコ
ントローラ(図示せず)に入力可能になされている。
Further, the apparatus is provided with many sensors, and (Th1a) and (Th1b) are the outdoor heat exchangers (6a) and (Th1b).
(6b) a gas pipe sensor for detecting the gas pipe temperature, (Th2
a) and (Th2b) are liquid tube sensors for detecting liquid tube temperatures of the outdoor heat exchangers (6a) and (6b), (Thd) is a discharge tube sensor for detecting the discharge tube temperature of the compressor (1), (Thr) is disposed at the air inlet of each indoor unit (Y1) and detects an intake air temperature (room temperature). An indoor suction sensor (LP) detects a suction pressure (low pressure side pressure). OP) is a hydraulic pressure sensor as a hydraulic pressure detecting means for detecting the hydraulic pressure Po from a pressure difference between the lubricating oil pressure and the suction pressure, and (63QL) is a hydraulic pressure Po which is a pressure difference between the lubricating oil pressure and the suction pressure. A differential pressure switch as a hydraulic protection device that operates when the pressure becomes 1.5 (kg / cm 2 ) or less to abnormally stop the air conditioner, (HP) is a high pressure sensor that detects discharge pressure (high pressure side pressure), (63H ) Is a high-pressure switch for protecting the compressor. The signal can be input to a controller (not shown) of the air conditioner.

【0017】図2において、空気調和装置の冷房運転
時、四路切換弁(5)が図中実線側に切換わり、圧縮機
(1)で圧縮された冷媒が各室外熱交換器(6a),
(6b)で凝縮され、レシーバ(9)に貯溜された後、
液側連絡配管(11a)を経て各室内ユニット(Y
1),(Y2),…に分岐して送られる。各室内ユニッ
ト(Y1),(Y2),…では、冷媒が各室内電動膨張
弁(13)で減圧され、各室内熱交換器(12)で蒸発
した後合流して、ガス側連絡配管(11b)を経て室外
ユニット(X)に戻り、アキュムレータ(10a),
(10b)で混入している液冷媒が除去されてから、圧
縮機(1)に吸入されるように循環する。
In FIG. 2, during the cooling operation of the air conditioner, the four-way switching valve (5) switches to the solid line side in the figure, and the refrigerant compressed by the compressor (1) is supplied to each outdoor heat exchanger (6a). ,
After being condensed in (6b) and stored in the receiver (9),
Through the liquid side connection pipe (11a), each indoor unit (Y
1), (Y2),... In each of the indoor units (Y1), (Y2),..., The refrigerant is decompressed by each of the indoor electric expansion valves (13), evaporated in each of the indoor heat exchangers (12), and then joined to form a gas-side communication pipe (11b). ), Return to the outdoor unit (X), and accumulators (10a),
After the mixed liquid refrigerant is removed in (10b), the refrigerant is circulated so as to be sucked into the compressor (1).

【0018】また、暖房運転時には、四路切換弁(5)
が図中破線側に切換わり、冷媒の流れは上記冷房運転時
と逆となって、圧縮機(1)で圧縮された冷媒が各室内
熱交換器(12),(12),…で凝縮され、合流して
液状態で室外ユニット(X)に流れ、レシーバ(9)に
貯溜される。そして、各室外電動膨張弁(8a1)〜(8
b2)により減圧され、各室外熱交換器(6a),(6
b)で蒸発した後圧縮機(1)に戻るように循環する。
During the heating operation, the four-way switching valve (5)
Is switched to the broken line side in the figure, and the flow of the refrigerant is opposite to that in the cooling operation, and the refrigerant compressed in the compressor (1) is condensed in the indoor heat exchangers (12), (12),. Then, they merge and flow in a liquid state to the outdoor unit (X), and are stored in the receiver (9). Then, each of the outdoor electric expansion valves (8a1) to (8
The pressure is reduced by b2) and each outdoor heat exchanger (6a), (6
After evaporating in b), it circulates back to the compressor (1).

【0019】次に、空気調和装置の電気回路について、
図3に基づき説明する。図3において、三相交流電源
(TeS)には、外部機器回路(100)が接続されてい
るとともに、三相交流電源中の二相配線に、メイン機器
駆動用基板(110)と、弁駆動用基板(120)とが
接続されている。さらに、上記メイン機器駆動用基板
(110)に対し、第1変圧器(Tr1)を介して制御用
基板(130)が接続されている。
Next, regarding the electric circuit of the air conditioner,
This will be described with reference to FIG. In FIG. 3, an external device circuit (100) is connected to a three-phase AC power supply (TeS), and a main device drive board (110) and a valve drive And a connection substrate (120). Further, a control substrate (130) is connected to the main device driving substrate (110) via a first transformer (Tr1).

【0020】上記外部機器回路(100)において、
(MC)は圧縮機(1)を駆動するための圧縮機モー
タ、(MF1),(MF2)はそれぞれ二台の室外ファン
(F1),(F2)を駆動するためのファンモータであ
って、上記圧縮機モータ(MC)には、後述の起動,停
止用の電磁リレー(52C)の常開接点(52C-1)と、後
述の過電流保護スイッチ(51C)を開作動させるための
ヒューズ(51C-f)とが直列に接続され、さらに、起動
時制御用の電磁リレー(42C),(6C)の常開接点
(42C-1),(6C-1)が付設されている。また、各フ
ァンモータ(MF1),(MF2)には、後述の起動,停止
用の電磁リレー(52F1),(52F2)の常開接点(52F1-
1),(52F2-1)と、過電流保護スイッチ(51F1),(51
F2)を開作動させるためのヒューズ(51F1-f),(51F2
-f)とが直列に接続されている。
In the external device circuit (100),
(MC) is a compressor motor for driving the compressor (1), (MF1) and (MF2) are fan motors for driving two outdoor fans (F1) and (F2), respectively. The compressor motor (MC) has a normally open contact (52C-1) of an electromagnetic relay (52C) for starting and stopping described later and a fuse (52C) for opening an overcurrent protection switch (51C) described later. 51C-f) are connected in series, and the normally open contacts (42C-1) and (6C-1) of the electromagnetic relays (42C) and (6C) for startup control are additionally provided. Each fan motor (MF1) and (MF2) has a normally open contact (52F1--F) for starting and stopping electromagnetic relays (52F1) and (52F2) described later.
1), (52F2-1) and overcurrent protection switch (51F1), (51F1)
Fuse (51F1-f) for opening operation of F2), (51F2
-f) are connected in series.

【0021】また、メイン機器駆動用基板(110)に
は、高圧保護用スイッチ(63H),圧縮機(1)の過電
流保護スイッチ(51C),圧縮機(1)の温度上昇保護
スイッチ(49C)及びファン過電流保護スイッチ(51F
1),(51F2)とを配置してなる保護回路(111)
と、各々常開のリレー接点(RY2),(RY4),(RY
6),(RY7)及び(RY8)に直列に接続されたファン
駆動用電磁リレー(52F1),(52F2),圧縮機駆動用電
磁リレー(52C)及び圧縮機起動制御用電磁リレー(42
C),(6C)を配設してなる第1アクチュエータ駆動
回路(112)と、各々常開のリレー接点(RY9)〜
(RY15 )に直列に接続された異常表示用電磁リレー
(WL),上記四路切換弁(2)を切換えるための電磁
リレー(20S),上記アンローダ用三方切換弁(SV
1),(SV2)を切換えるための電磁リレー(20RS1),
(20RS2),上記均圧用開閉弁(SVP)を開閉するための
電磁リレー(20R1),上記過負荷制御開閉弁(SVS)を
開閉するための電磁リレー(20R2)及び上記インジェ
クション開閉弁(SVL)を開閉するための電磁リレー
(20R3)を配設してなる第2アクチュエータ駆動回路
(113)とが主要回路として設けられている。
The main device driving board (110) includes a high voltage protection switch (63H), an overcurrent protection switch (51C) for the compressor (1), and a temperature rise protection switch (49C) for the compressor (1). ) And fan overcurrent protection switch (51F
Protection circuit (111) including (1) and (51F2)
And normally open relay contacts (RY2), (RY4), (RY
6), (RY7) and (RY8), the fan drive electromagnetic relays (52F1) and (52F2), the compressor drive electromagnetic relay (52C) and the compressor start control electromagnetic relay (42
C) and (6C), a first actuator drive circuit (112), and normally open relay contacts (RY9) to
(RY15), an electromagnetic relay (WL) for abnormality indication, an electromagnetic relay (20S) for switching the four-way switching valve (2), and a three-way switching valve (SV) for the unloader.
1), electromagnetic relay (20RS1) for switching (SV2),
(20RS2), an electromagnetic relay (20R1) for opening and closing the equalizing on-off valve (SVP), an electromagnetic relay (20R2) for opening and closing the overload control on-off valve (SVS), and the injection on-off valve (SVL) And a second actuator drive circuit (113) provided with an electromagnetic relay (20R3) for opening and closing the actuator.

【0022】なお、(CH)はクランクケースヒータ、
(52C-2)は上記圧縮機駆動用電磁リレー(52C)の常
開接点であって、上記クランクケースヒータ(CH)を
オン.オフするもの、(Q1)は電源生成用パワートラ
ンジスタである。
(CH) is a crankcase heater,
(52C-2) is a normally open contact of the compressor driving electromagnetic relay (52C), which turns on the crankcase heater (CH). The transistor which is turned off, (Q1) is a power transistor for generating power.

【0023】一方、上記弁駆動用基板(120)には、
第2変圧器(Tr2)を介して、4個の室外電動膨張弁
(8a1)〜(8b2)のパルスモータ(20E1) 〜(20E4)が
配設されている。
On the other hand, the valve driving substrate (120) includes:
Pulse motors (20E1) to (20E4) of four outdoor electric expansion valves (8a1) to (8b2) are arranged via the second transformer (Tr2).

【0024】さらに、上記制御用基板(130)には、
サービスモード切換スイッチ(DS1),圧縮機強制運転
又は油圧保護リセット設定スイッチ(SS1)、低騒音入
力切換スイッチ(SS2)、冷暖切換スイッチ(SS3)、
配管長設定スイッチ(SS4)、高圧調節スイッチ(SS
5)、デフロスト切換スイッチ(SS6)及び圧縮機強制
運転ボタンスイッチ又は油圧保護リセットボタンスイッ
チ(BS1)が設けられているとともに、上記油圧センサ
(OP)、油圧の差圧スイッチ(63QL)、各ガス管セ
ンサ(Th1a),(Th1b)、吐出管センサ(Thd)、各液管
センサ(Th2b),(Th2b)、高圧センサ(HP)及び低圧
センサ(LP)が信号線を介して接続されている。
Further, the control board (130) includes:
Service mode changeover switch (DS1), compressor forced operation or oil pressure protection reset setting switch (SS1), low noise input changeover switch (SS2), cooling / heating changeover switch (SS3),
Pipe length setting switch (SS4), high pressure adjustment switch (SS
5), a defrost switch (SS6) and a compressor forced operation button switch or a hydraulic pressure protection reset button switch (BS1) are provided, and the above-mentioned oil pressure sensor (OP), oil pressure differential pressure switch (63QL), each gas Tube sensors (Th1a), (Th1b), discharge tube sensor (Thd), each liquid tube sensor (Th2b), (Th2b), high pressure sensor (HP), and low pressure sensor (LP) are connected via signal lines. .

【0025】次に、上記油圧の油圧センサ(OP)の信
号に応じた油圧保護及び油回収運転の制御内容につい
て、図4のフロ―チャ―ト図及び図5の時間変化図に基
づき説明する。
Next, the control contents of the oil pressure protection and the oil recovery operation according to the signal of the oil pressure sensor (OP) of the oil pressure will be described with reference to a flowchart of FIG. 4 and a time change diagram of FIG. .

【0026】まず、ステップST1で、通常運転を行っ
ている間、ステップST2で、上記油圧センサ(OP)
で検出される油圧Po が、上記差圧スイッチ(63QL)
が作動する下限値1.5(kg/cm2 )よりも高い値に設
定された設定値1.75(kg/cm2 )以下になったか否
かを判別し、Po ≦1.75になるまでは、通常運転を
行い、Po ≦1.75(kg/cm2 )になると(図5の時
刻to )、圧縮機(1)の潤滑油が不足してきていると
判断し、ステップST3に進み、前回の油回収運転(暖
房運転中には油回収運転又はデフロスト運転)からの圧
縮機(1)の積算運転時間が所定時間、つまり100%
又は76%ロードで8時間以上、或いは33%ロードで
4時間以上に達したか否かを判別する。そして、判別が
YESであれば、ステップST4で油回収運転を行った
後、ステップST1の通常運転に戻る。なお、この油回
収運転中には、室外電動膨張弁(8a1)〜(8b2)及び
各室内電動膨張弁(13),…を全開に、室外ファン
(F1),(F2)を標準風量「H」に、圧縮機(1)
の容量を100%に制御する。
First, while the normal operation is performed in step ST1, the hydraulic pressure sensor (OP) is determined in step ST2.
Is detected by the differential pressure switch (63QL)
It is determined whether or not the set value 1.75 (kg / cm 2 ), which is a value higher than the lower limit value 1.5 (kg / cm 2 ) at which the operation is performed, becomes Po ≦ 1.75. Until the normal operation is performed, when Po ≦ 1.75 (kg / cm 2 ) (time to in FIG. 5), it is determined that the lubricating oil of the compressor (1) is running short, and the process proceeds to step ST3. The accumulated operation time of the compressor (1) from the previous oil recovery operation (oil recovery operation or defrost operation during the heating operation) is a predetermined time, that is, 100%.
Alternatively, it is determined whether the time has reached 8 hours or more at 76% load or 4 hours or more at 33% load. Then, if the determination is YES, after performing the oil recovery operation in step ST4, the process returns to the normal operation in step ST1. During the oil recovery operation, the outdoor electric expansion valves (8a1) to (8b2) and the indoor electric expansion valves (13),... Are fully opened, and the outdoor fans (F1) and (F2) are set to the standard air volume “H”. ], The compressor (1)
Is controlled to 100%.

【0027】一方、上記ステップST3の判別結果がN
Oのとき、つまり圧縮機(1)の積算運転時間が所定時
間に達していないときには、下記のリトライ制御を行
う。すなわち、ステップST5で、油圧Po が設定値
1.75(kg/cm2 )に達してからの油圧Po の低下速
度ΔPo が30min 間で0.1(kg/cm2 )以上か否
か、(つまり30min 後の油圧Po が1.65(kg/cm
2 )以下か否か)を判別し、判別結果がNOであれば、
それほどの油不足ではないと判断して、ステップST4
に移行して、油回収運転を行ったあとステップST1の
制御に戻る。また、ステップST5における判別の結果
がYESであれば、ステップST6に進んで、さらに、
油圧Po が設定値1.75(kg/cm2 )に達してからの
油圧Po の低下速度ΔPo が1Hr間で0.25(kg/cm
2 )以上か否か(つまり、1Hr後の油圧Po が1.5
(kg/cm2 )以下か否か)を判別し、判別結果がYES
であれば、油圧Po の低下速度が速いことから潤滑油系
統の故障であると判断して、ステップST7で、空気調
和装置を異常停止させる(図5の時刻t2 )。
On the other hand, if the result of the determination in step ST3 is N
At the time of O, that is, when the integrated operation time of the compressor (1) has not reached the predetermined time, the following retry control is performed. That is, in step ST5, it is determined whether or not the decrease rate ΔPo of the hydraulic pressure Po after the hydraulic pressure Po reaches the set value 1.75 (kg / cm 2 ) is 0.1 (kg / cm 2 ) or more for 30 minutes. That is, the hydraulic pressure Po after 30 minutes is 1.65 (kg / cm
2 ) It is determined whether or not the following is true. If the determination result is NO,
It is determined that there is not enough oil shortage, and step ST4
After performing the oil recovery operation, the process returns to step ST1. If the result of the determination in step ST5 is YES, the process proceeds to step ST6, and further,
After the hydraulic pressure Po reaches the set value 1.75 (kg / cm 2 ), the decreasing speed ΔPo of the hydraulic pressure Po is 0.25 (kg / cm 2 ) between 1Hr.
2 ) The hydraulic pressure Po after 1.5 hours is 1.5 or more.
(Kg / cm 2 ) or less) and the determination result is YES
If so, it is determined that the lubricating oil system has failed because the decrease speed of the oil pressure Po is high, and the air conditioner is abnormally stopped in step ST7 (time t2 in FIG. 5).

【0028】一方、上記ステップST5,ST6のいず
れかにおいて、判別結果がNOのときには(図5の時刻
t1 )、油圧の低下速度ΔTがそれほど速くないことか
ら油回収運転で復帰可能と判断して、上記ステップST
4に移行し、油回収運転を行う。
On the other hand, when the result of the determination is NO in either of the steps ST5 and ST6 (time t1 in FIG. 5), it is determined that the oil recovery operation can be resumed because the oil pressure decreasing speed ΔT is not so fast. , Step ST
The operation proceeds to step 4 to perform an oil recovery operation.

【0029】つまり、圧縮機(1)の積算運転時間が所
定時間に達していれば、油圧Po が設定値1.75(kg
/cm2 )以下になったことで、すぐに油回収運転を行う
(図5の油回収領域A)一方、圧縮機(1)の積算運転
時間が所定時間以上に達していなければ、油圧Po が設
定値1.75(kg/cm2 )以下になっても、すぐに油回
収を行うことなくしばらく油圧Po の低下を見ながら、
通常運転を行ってできる限り油回収や異常停止への突入
を回避しながら油圧Po の低下の原因を判断する(図5
のリトライ制御領域B)。すなわち、通常圧縮機(1)
の積算運転時間の所定時間は、最悪の条件を想定して設
定されているので、この所定時間内に油圧Po が設定値
1.5(kg/cm2 )以下に低下することは、油圧系統に
何等かの異常が生じている可能性が大きいが、外気温度
が非常に低いような外部的要因でも生じうるからであ
る。そして、油圧の低下速度がそれほどでもなければ、
30分経過後或いは1時間経過後に油回収運転に突入し
て、油不足の解消を図る。なお、その間に油圧Po の低
下速度が著しければ油回収では解消されない油圧系統の
故障である可能性が大きいので、空気調和装置を異常停
止させる。なお、その間に、油圧Po が下限値1.5
(kg/cm2 )以下になると、差圧スイッチ(63QL)が
作動して、空気調和装置が異常停止される(図5の油圧
保護領域C)ので、圧縮機(1)の故障をきたすことは
ない。
That is, if the accumulated operation time of the compressor (1) has reached the predetermined time, the hydraulic pressure Po becomes the set value 1.75 (kg).
/ Cm 2 ) or less, the oil recovery operation is immediately performed (the oil recovery area A in FIG. 5). On the other hand, if the integrated operation time of the compressor (1) has not reached the predetermined time or more, the oil pressure Po Even if the pressure falls below the set value of 1.75 (kg / cm 2 ), the oil pressure Po will be observed for a while without oil recovery,
In normal operation, the cause of the decrease in the hydraulic pressure Po is determined while avoiding oil recovery and entry into an abnormal stop as much as possible (see FIG. 5).
Retry control area B). That is, the normal compressor (1)
Is set assuming the worst conditions, the decrease of the hydraulic pressure Po to a set value of 1.5 (kg / cm 2 ) or less within this predetermined time is considered as a matter of the hydraulic system. Is highly likely to have some abnormality, but it can also be caused by external factors such as extremely low outside air temperature. And if the rate of decrease in oil pressure is not so great,
After 30 minutes or 1 hour, the operation enters the oil recovery operation to eliminate the oil shortage. If the rate of decrease in the oil pressure Po during this period is remarkable, it is highly likely that the hydraulic system has failed due to oil recovery, and the air conditioner is abnormally stopped. Meanwhile, during this time, the hydraulic pressure Po becomes lower limit value 1.5.
(Kg / cm 2 ) or less, the differential pressure switch (63QL) is activated and the air conditioner is stopped abnormally (the hydraulic pressure protection area C in FIG. 5), which may cause the compressor (1) to fail. There is no.

【0030】以上のフローにおいて、ステップST3及
びST4の制御により、油回収運転制御手段(51)が
構成されている。
In the above flow, the control of steps ST3 and ST4 constitutes the oil recovery operation control means (51).

【0031】また、ステップST5及びST6の制御に
より、請求項2の発明にいう低下速度判別手段(52)
が構成され、ステップST6からST7に移行する制御
及びステップST5,ST6からST4に移行する制御
により、リトライ制御手段(53)が構成されている。
Further, by controlling the steps ST5 and ST6, the decrease speed determining means (52) according to the second aspect of the present invention.
The retry control means (53) is constituted by the control of shifting from step ST6 to ST7 and the control of shifting from step ST5, ST6 to ST4.

【0032】したがって、上記実施例では、空気調和装
置の運転中、油圧Po が下限値1.5(kg/cm2 )に達
すると、油圧の差圧スイッチ(63QL)の作動により冷
凍装置が異常停止されるが、その下限値1.5(kg/cm
2 )よりも高い設定値1.75(kg/cm2 )達し、かつ
圧縮機(1)の積算運転時間が所定時間(上記実施例で
は、100%,67%ロードで8Hr、33%ロードで4
Hr)に達しているときには、油回収運転制御手段(5
1)により、油回収運転が行われるので、油圧に余裕が
ある状態で油回収運転が行われ、差圧スイッチ(63Q
L)が作動したときつまり下限値1.5(kg/cm2 )に
なったときにはじめて油回収運転を行う場合のように圧
縮機(1)に負担を掛けることがなく、寿命の低下を有
効に防止できる。
Therefore, in the above embodiment, when the oil pressure Po reaches the lower limit value of 1.5 (kg / cm 2 ) during the operation of the air conditioner, the refrigeration system malfunctions due to the operation of the oil pressure differential pressure switch (63QL). It is stopped, but its lower limit of 1.5 (kg / cm
2 ) A set value higher than 1.75 (kg / cm 2 ) is reached, and the integrated operation time of the compressor (1) is a predetermined time (in the above embodiment, 8 hours at 100%, 67% load and 8 hours at 33% load). 4
Hr), the oil recovery operation control means (5
According to 1), the oil recovery operation is performed. Therefore, the oil recovery operation is performed in a state where there is enough oil pressure, and the differential pressure switch (63Q
When L) is activated, that is, when the lower limit value is 1.5 (kg / cm 2 ), the compressor (1) is not burdened as in the case of performing the oil recovery operation for the first time, and the life is shortened. Can be effectively prevented.

【0033】また、単に圧縮機(1)の積算運転時間が
所定時間に達すると一律に油回収運転を行うのではな
く、油圧Po が設定値1.75(kg/cm2 )以下になっ
てから油回収運転が行われるので、無駄な油回収運転が
回避され、運転効率を良好に維持することができ、空調
の快適性も維持しうる。
When the accumulated operation time of the compressor (1) reaches a predetermined time, the oil recovery operation is not performed uniformly, but the oil pressure Po becomes a set value of 1.75 (kg / cm 2 ) or less. Since the oil recovery operation is performed from the beginning, wasteful oil recovery operation is avoided, the operation efficiency can be maintained favorably, and the comfort of air conditioning can be maintained.

【0034】よって、運転効率と空調の快適性とを良好
に維持しながら、信頼性の向上を図ることができるので
ある。
Therefore, reliability can be improved while maintaining good operating efficiency and comfort of air conditioning.

【0035】特に、圧縮機(1)の積算運転時間が所定
時間に達する前に油圧Po が設定値1.75(kg/c
m2 )になったときには、低下速度判別手段(52)に
より、そのとき以後の油圧Po の低下速度ΔPo が一定
値(上記実施例では、30min/に0.1(kg/cm2 )又
は1Hrに0.25(kg/cm2 )の低下速度)以上か否か
が判別され、低下速度ΔPo が一定値よりも小さけれ
ば、リトライ制御手段(53)により、油回収運転が行
われるので、油圧系統の故障でない単に外気温度等の要
因による油圧Po の低下で異常停止させる場合のごとき
空気調和装置の無駄な異常停止を回避でき、よって、円
滑な連続運転を確保することができる。
In particular, before the accumulated operation time of the compressor (1) reaches a predetermined time, the hydraulic pressure Po is set to a set value of 1.75 (kg / c).
m 2 ), the decreasing speed discriminating means (52) determines that the decreasing speed ΔPo of the hydraulic pressure Po after that time is a constant value (0.1 (kg / cm 2 ) or 30 hr / 30 min / in the above embodiment). Is determined to be 0.25 (kg / cm 2 ) or less. If the decreasing speed ΔPo is smaller than a predetermined value, the oil retrieving operation is performed by the retry control means (53). Unnecessary abnormal stoppage of the air conditioner, such as when abnormal stoppage is caused by a decrease in the hydraulic pressure Po due to factors such as the outside air temperature, which is not a system failure, can be avoided, and thus smooth continuous operation can be ensured.

【0036】また、油圧Po が下限値1.5(kg/c
m2 )になったときに空気調和装置を異常停止させる手
段として、差圧スイッチ(63QL)だけでなく、油圧セ
ンサ(OP)の信号による判断(上記実施例の図4にお
けるステップSTST6)によっても行うようにしてい
るので、差圧スイッチ(6QL)が故障したときにも、油
圧センサ(OP)の信号を利用して油圧系統の異常を発
見し、圧縮機(1)の保護を行うことができ、信頼性が
向上する。
When the hydraulic pressure Po is lower than the lower limit of 1.5 (kg / c
As a means for abnormally stopping the air conditioner when m 2 ) is reached, not only the differential pressure switch (63QL) but also the judgment by the signal of the oil pressure sensor (OP) (step STST6 in FIG. 4 of the above embodiment). Because it is performed, even if the differential pressure switch (6QL) fails, it is possible to use the signal of the oil pressure sensor (OP) to detect an abnormality in the hydraulic system and protect the compressor (1). And reliability is improved.

【0037】なお、上記実施例では、本発明を空気調和
装置に適用した例について説明したが、本発明はかかる
実施例に限定されるものではなく、給湯装置,チラー,
コンテナ冷凍機等に使用される冷凍装置にも適用するこ
とができる。
In the above embodiment, an example in which the present invention is applied to an air conditioner has been described. However, the present invention is not limited to such an embodiment, and a water heater, a chiller,
The present invention can also be applied to a refrigerating device used for a container refrigerator or the like.

【0038】[0038]

【発明の効果】以上説明したように、請求項1の発明に
よれば、冷凍装置の運転中、油圧が下限値に達すると油
圧保護装置により冷凍装置を異常停止させるとともに、
油圧がその下限値よりも高い設定値に達し、かつ圧縮機
の積算運転時間が所定時間に達しているときには、油回
収運転を行うようにしたので、油圧に余裕がある状態
で、かつ油圧が設定値以下になって油回収が必要な時点
で油回収運転を行うことにより、運転効率や空調の快適
性を良好に維持しながら、信頼性の向上を図ることがで
きる。特に、油圧が下限値になったときに冷凍装置を異
常停止させる手段として、通常の圧力スイッチ等だけで
なく、油圧検出手段の信号によっても判断することによ
り、圧力スイッチ等の油圧保護装置の故障時にも、油圧
系統の異常を発見して圧縮機の保護を行うことができ、
信頼性がさらに向上する。
As described above, according to the first aspect of the present invention, during operation of the refrigeration system, when the oil pressure reaches the lower limit, the refrigeration system is abnormally stopped by the hydraulic pressure protection device.
When the oil pressure has reached a set value higher than the lower limit and the accumulated operation time of the compressor has reached a predetermined time, the oil recovery operation is performed. By performing the oil recovery operation at a time point when the oil recovery becomes necessary when the value becomes equal to or less than the set value, it is possible to improve reliability while maintaining good operation efficiency and air conditioning comfort. In particular, as means for abnormally stopping the refrigeration system when the oil pressure reaches the lower limit value, not only a normal pressure switch or the like but also a signal from the oil pressure detecting means is used to determine a failure of the oil pressure protection device such as the pressure switch. Sometimes, we can detect the abnormality of the hydraulic system and protect the compressor,
Reliability is further improved.

【0039】請求項2の発明によれば、上記請求項1の
発明において、圧縮機の積算運転時間が所定時間に達す
る前に油圧が設定値になったときには、そのとき以後の
油圧の低下速度が一定値以上か否かを判別し、低下速度
が一定値よりも小さければ油回収運転を行うリトライ制
御を行うようにしたので、油圧系統の故障でない要因に
よる無駄な異常停止を回避することができる。
According to a second aspect of the present invention, in the first aspect of the present invention, when the oil pressure reaches a set value before the integrated operation time of the compressor reaches a predetermined time, the decreasing speed of the oil pressure after that time. Is determined to be greater than or equal to a certain value, and if the rate of decrease is smaller than the certain value, retry control for performing oil recovery operation is performed, so that unnecessary abnormal stop due to a factor other than a failure of the hydraulic system can be avoided. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of the present invention.

【図2】実施例に係る空気調和装置の冷媒配管系統図で
ある
FIG. 2 is a refrigerant piping system diagram of the air-conditioning apparatus according to the embodiment.

【図3】空気調和装置の電気配線図である。FIG. 3 is an electrical wiring diagram of the air conditioner.

【図4】油圧保護制御の内容を示すフロ―チャ―ト図で
ある。
FIG. 4 is a flowchart showing the contents of hydraulic pressure protection control.

【図5】圧縮機の積算運転時間と油圧の変化及び油圧保
護制御との関係を示す図である。
FIG. 5 is a diagram showing a relationship between an accumulated operation time of the compressor, a change in oil pressure, and oil pressure protection control.

【符号の説明】[Explanation of symbols]

1 圧縮機 51 油回収運転制御手段 52 低下速度判別手段 53 リトライ制御手段 63QL 差圧スイッチ(油圧保護装置) OP 油圧センサ(油圧検出手段) DESCRIPTION OF SYMBOLS 1 Compressor 51 Oil recovery operation control means 52 Reduction speed discrimination means 53 Retry control means 63QL Differential pressure switch (hydraulic protection device) OP Oil pressure sensor (oil pressure detection means)

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−73052(JP,A) 特公 平3−10865(JP,B2) (58)調査した分野(Int.Cl.7,DB名) F25B 1/00 F25B 49/02 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-63-73052 (JP, A) Japanese Patent Publication No. 3-10865 (JP, B2) (58) Fields surveyed (Int. Cl. 7 , DB name) F25B 1/00 F25B 49/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機(1)の潤滑油の圧力が下限値以
下に達すると作動して、冷凍装置を異常停止させる油圧
保護装置(63QL)を備えた冷凍装置において、 上記圧縮機(1)の潤滑油の圧力を検出する油圧検出手
段(OP)と、 該油圧検出手段(OP)で検出される潤滑油圧力が上記
油圧保護装置(63QL)が作動する下限値よりも高く設
定された設定値以下になり、かつ圧縮機(1)の前回の
油回収運転後の積算運転時間が所定時間に達すると、油
回収運転を行うよう制御する油回収運転制御手段(5
1)とを備えたことを特徴とする冷凍装置の運転制御装
置。
1. A refrigeration system having a hydraulic protection device (63QL) that operates when the pressure of the lubricating oil of the compressor (1) reaches a lower limit or less and abnormally stops the refrigeration system. A) a hydraulic pressure detecting means (OP) for detecting the pressure of the lubricating oil, and a lubricating oil pressure detected by the hydraulic pressure detecting means (OP) is set higher than a lower limit value at which the hydraulic pressure protection device (63QL) operates. The oil recovery operation control means (5) controls the oil recovery operation to be performed when the accumulated operation time after the previous oil recovery operation of the compressor (1) has reached a predetermined time when the value becomes equal to or less than the set value.
1) An operation control device for a refrigeration system, comprising:
【請求項2】 請求項1記載の冷凍装置の運転制御装置
において、 圧縮機(1)の前回の油回収運転後の積算運転時間が所
定時間に達する前に潤滑油圧力が上記設定値以下になっ
たとき、潤滑油圧力が設定値以下になった後における潤
滑油圧力の低下速度が一定値よりも低いか否かを判別す
る低下速度判別手段(52)と、 該低下速度判別手段(52)の判別を受けて、潤滑油圧
力の低下速度が一定値以上のときには、冷凍装置を異常
停止させる一方、潤滑油圧力の低下速度が一定値よりも
小さいときには、油回収運転を行うよう制御するリトラ
イ制御手段(53)を備えたことを特徴とする冷凍装置
の運転制御装置。
2. The operation control device for a refrigeration system according to claim 1, wherein the lubricating oil pressure falls below the set value before the integrated operation time after the previous oil recovery operation of the compressor (1) reaches a predetermined time. When this happens, a lowering speed determining means (52) for determining whether or not the lowering speed of the lubricating oil pressure after the lubricating oil pressure falls below the set value is lower than a certain value; In response to the determination of), when the rate of decrease of the lubricating oil pressure is equal to or higher than a certain value, the refrigerating apparatus is abnormally stopped. An operation control device for a refrigeration system, comprising retry control means (53).
JP12378492A 1992-05-15 1992-05-15 Operation control device for refrigeration equipment Expired - Fee Related JP3284588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12378492A JP3284588B2 (en) 1992-05-15 1992-05-15 Operation control device for refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12378492A JP3284588B2 (en) 1992-05-15 1992-05-15 Operation control device for refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH05322325A JPH05322325A (en) 1993-12-07
JP3284588B2 true JP3284588B2 (en) 2002-05-20

Family

ID=14869216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12378492A Expired - Fee Related JP3284588B2 (en) 1992-05-15 1992-05-15 Operation control device for refrigeration equipment

Country Status (1)

Country Link
JP (1) JP3284588B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4425488B2 (en) * 2001-03-15 2010-03-03 三菱電機株式会社 Refrigeration / air-conditioner construction method and information processing system
JP4876675B2 (en) * 2006-03-30 2012-02-15 三菱電機株式会社 Refrigerated showcase
JP5736537B2 (en) * 2010-08-31 2015-06-17 パナソニックIpマネジメント株式会社 Refrigeration equipment
JP2011027415A (en) * 2010-11-09 2011-02-10 Mitsubishi Electric Corp Operation control device of refrigerant circuit
JP6171468B2 (en) * 2013-03-28 2017-08-02 株式会社富士通ゼネラル Refrigeration cycle equipment

Also Published As

Publication number Publication date
JPH05322325A (en) 1993-12-07

Similar Documents

Publication Publication Date Title
JP2909187B2 (en) Air conditioner
JP3235262B2 (en) Operation control device for air conditioner
JP2922002B2 (en) Air conditioner
JP3284588B2 (en) Operation control device for refrigeration equipment
JPH0571822A (en) Air-conditioner
JP3271296B2 (en) Defrosting operation control device for refrigeration system
JP3191719B2 (en) Oil return operation control device for refrigeration equipment
JP3290251B2 (en) Air conditioner
JP3438551B2 (en) Air conditioner
JP3208837B2 (en) Start-up control device for refrigeration equipment
JPH05264113A (en) Operation control device of air conditioner
JP3245947B2 (en) Air conditioner
JP2914020B2 (en) Heating and cooling machine
JP3584514B2 (en) Refrigeration equipment
JP2001201200A (en) Multi-split type air conditioner
JP3322758B2 (en) Air conditioner
JPH0694954B2 (en) Refrigerator superheat control device
JP2964774B2 (en) Operation control device for air conditioner
JPH10132406A (en) Refrigerating system
JP3330194B2 (en) Air conditioner
JPH0674621A (en) Air conditioner
JP3341486B2 (en) Operation control device for air conditioner
JPH03122460A (en) Operating controller for refrigerating machine
JPH02272260A (en) Operation-controlling device in air-conditioning apparatus
JPH0571832A (en) Air-conditioner

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080308

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100308

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees