JP3235262B2 - Operation control device for air conditioner - Google Patents

Operation control device for air conditioner

Info

Publication number
JP3235262B2
JP3235262B2 JP09174793A JP9174793A JP3235262B2 JP 3235262 B2 JP3235262 B2 JP 3235262B2 JP 09174793 A JP09174793 A JP 09174793A JP 9174793 A JP9174793 A JP 9174793A JP 3235262 B2 JP3235262 B2 JP 3235262B2
Authority
JP
Japan
Prior art keywords
compressor
expansion valve
control means
electric expansion
residual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09174793A
Other languages
Japanese (ja)
Other versions
JPH0626716A (en
Inventor
博之 井上
政樹 山本
伸一 中石
貴一 増茂
幸雄 重永
弘宗 松岡
晶夫 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP09174793A priority Critical patent/JP3235262B2/en
Publication of JPH0626716A publication Critical patent/JPH0626716A/en
Application granted granted Critical
Publication of JP3235262B2 publication Critical patent/JP3235262B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/19Pumping down refrigerant from one part of the cycle to another part of the cycle, e.g. when the cycle is changed from cooling to heating, or before a defrost cycle is started

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、空気調和装置の運転制
御装置に係り、特に、圧縮機停止後の液戻り防止対策に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operation control device for an air conditioner, and more particularly to a measure for preventing liquid return after a compressor is stopped.

【0002】[0002]

【従来の技術】従来より、例えば特開平2−75862
号公報に開示されるごとく、空気調和装置の冷媒回路に
おいて、吐出管とレシーバ−室外電動膨張弁間の液ライ
ンとの間に過負荷制御等のための補助用バイパス路を設
け、この補助用バイパス路に、凝縮能力を補助するため
の補助熱交換器を介設し、例えば暖房運転中の過負荷時
に補助熱交換器を使用することで、室内側の負荷の低減
を補い、或いは冷房運転中に室外熱交換器の能力を補助
し、もって、冷媒状態を適正に維持しようとするものは
公知の技術である。
2. Description of the Related Art Conventionally, for example, Japanese Patent Application Laid-Open No. 2-75862
In the refrigerant circuit of the air conditioner, an auxiliary bypass for overload control and the like is provided between the discharge pipe and the liquid line between the receiver and the outdoor electric expansion valve, and the auxiliary bypass is provided. An auxiliary heat exchanger for assisting the condensing capacity is interposed in the bypass path. For example, by using the auxiliary heat exchanger at the time of overload during the heating operation, the reduction of the indoor load is compensated, or the cooling operation is performed. It is a known technique to assist the capacity of the outdoor heat exchanger therein and to maintain the refrigerant state properly.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、特に上
記従来のもののように、補助熱交換器を補助用バイパス
路に介設したものでは、下記のような問題があった。
However, in the case where the auxiliary heat exchanger is interposed in the auxiliary bypass passage as in the above-mentioned conventional one, there are the following problems.

【0004】すなわち、圧縮機が停止すると、ガスライ
ンでは高圧側と低圧側とが連通され、均圧化されてこの
均圧制御により高低差圧がほぼ解消している。しかる
に、補助熱交換器の出口付近から室内熱交換器に至る液
ラインには、なお中間圧が残存しており、この中間圧と
均圧化され低圧になっている圧縮機の吐出側圧力との差
圧によって、液冷媒が圧縮機の吐出側に流入することが
ある。
[0004] That is, when the compressor is stopped, the high pressure side and the low pressure side are communicated with each other in the gas line, the pressure is equalized, and the pressure difference is substantially eliminated by the equalization control. However, an intermediate pressure still remains in the liquid line extending from the vicinity of the outlet of the auxiliary heat exchanger to the indoor heat exchanger, and the intermediate pressure is equalized with the discharge pressure of the compressor, which is reduced to a low pressure. , The liquid refrigerant may flow into the discharge side of the compressor.

【0005】そして、この逆流した冷媒が、圧縮機の吐
出側に配設された油分離器の油戻し通路を介して圧縮機
の油ドーム内に流入すると、その後、長時間停止してか
ら圧縮機を起動するときに、油のフォーミングを生じ、
油圧が圧縮機の運転に必要な圧力まで上昇しないために
油圧保護スイッチが作動して空気調和装置の異常停止を
招いたり、液圧縮を生じる等の虞れがあった。
[0005] When the back-flowed refrigerant flows into the oil dome of the compressor through the oil return passage of the oil separator provided on the discharge side of the compressor, the refrigerant is stopped for a long time and then compressed. When starting the machine, oil forming occurs,
Since the oil pressure does not rise to the pressure required for the operation of the compressor, the oil pressure protection switch may be activated to cause an abnormal stop of the air conditioner or to cause liquid compression.

【0006】また、補助用バイパス路からの液戻りがな
くても、冷房運転時には室外熱交換器から、暖房運転時
には室内熱交換器からそれぞれ液冷媒が逆流することが
あり、やはり上述の異常停止や液圧縮の虞れがあった。
さらに、液圧縮が生じるほど大量の液戻りがなくても、
圧縮機の発停が頻繁に繰り返されるような条件では、少
しずつ液冷媒が圧縮機やアキュムレータに蓄積される
と、潤滑油が液冷媒で希釈される結果、圧縮機の摺動部
に形成される潤滑油膜の厚みが薄くなり、圧縮機の焼き
付き等の故障を生じる虞れもあった。
[0006] Even if there is no liquid return from the auxiliary bypass, the liquid refrigerant may flow backward from the outdoor heat exchanger during the cooling operation and from the indoor heat exchanger during the heating operation. And the possibility of liquid compression.
Furthermore, even if there is not so much liquid return that liquid compression occurs,
Under such conditions that the start and stop of the compressor are frequently repeated, when the liquid refrigerant is gradually accumulated in the compressor or the accumulator, the lubricating oil is diluted with the liquid refrigerant and formed on the sliding portion of the compressor. The thickness of the lubricating oil film becomes thin, which may cause a failure such as burn-in of the compressor.

【0007】本発明はかかる点に鑑みてなされたもので
あり、その目的は、空気調和装置の圧縮機が停止する前
に、液冷媒を、室外熱交換器、室内熱交換器,補助熱交
換器等からレシーバに移動させる手段を講ずることによ
り、上述のような液冷媒の戻りによる油のフォーミング
又は液圧縮、液冷媒の圧縮機等への蓄積による油の希釈
等を有効に防止し、もって、信頼性の向上を図ることに
ある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a liquid refrigerant with an outdoor heat exchanger, an indoor heat exchanger, and an auxiliary heat exchanger before a compressor of an air conditioner is stopped. By taking measures to move the liquid refrigerant from the device to the receiver, it is possible to effectively prevent oil forming or liquid compression due to the return of the liquid refrigerant as described above, dilution of the oil due to accumulation of the liquid refrigerant in the compressor, and the like. And to improve the reliability.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明の解決手段は、冷房運転中に圧縮機を停止さ
せる前に、圧縮機を運転しながら室外電動膨張弁を開き
室内電動膨張弁を閉じて、液冷媒をレシーバに回収させ
ることにある。
In order to achieve the above-mentioned object, the present invention provides an outdoor electric expansion valve which opens an outdoor electric expansion valve while operating a compressor before stopping the compressor during a cooling operation. Close the valve and allow the liquid refrigerant to be collected by the receiver.

【0009】具体的に、請求項1,3,6,9の発明に
講じた手段は、図1に示すように、容量可変形圧縮機
(1)、室外熱交換器(6)、室外電動膨張弁(8)、
レシーバ(9)、室内電動膨張弁(13)及び室内熱交
換器(12)を順次接続してなる冷媒回路(14)を備
えた空気調和装置を前提とする。
More specifically, as shown in FIG. 1, the means adopted in the first, third , sixth , and ninth aspects of the present invention include a variable displacement compressor (1), an outdoor heat exchanger (6), and an outdoor electric motor. Expansion valve (8),
It is assumed that the air conditioner includes a refrigerant circuit (14) in which a receiver (9), an indoor electric expansion valve (13), and an indoor heat exchanger (12) are sequentially connected.

【0010】そして、空気調和装置の運転制御装置とし
て、停止指令を受け、上記室内電動膨張弁(13)及び
室外電動膨張弁(8)を閉じて、圧縮機(1)を停止さ
せるよう制御する停止制御手段(52A)と、冷房運転
中に停止指令を受けたとき、所定時間の間上記停止制御
手段(52A)の作動を待機させ、圧縮機(1)を低容
量にして、室外電動膨張弁(8)を大開度に開き、室内
電動膨張弁(13)を閉じるよう制御する残留運転制御
手段(51A)とを設ける構成としたものである。
[0010] As an operation control device of the air conditioner, a stop command is received, and the indoor electric expansion valve (13) and the outdoor electric expansion valve (8) are closed to control the compressor (1) to stop. When the stop control means (52A) receives a stop command during the cooling operation, the operation of the stop control means (52A) is put on standby for a predetermined time, the compressor (1) is reduced in capacity, and the outdoor electric expansion is performed. A residual operation control means (51A) for controlling the valve (8) to open to a large opening and to close the indoor electric expansion valve (13) is provided.

【0011】また、請求項1,3の発明の講じた手段
は、上記の構成に加え、図1の破線部分に示すように、
圧縮機(1)の吐出管と液ラインとをバイパス接続する
補助バイパス路(11e)と、該補助バイパス路(11
e)に設けられ、凝縮能力を補助するための補助熱交換
器(6c)と、補助バイパス路(11e)を開閉するた
めの開閉機構(SVS)とを設ける。そして、残留運転制
御手段(51A)を、所定時間の間上記補助バイパス路
(11e)の開閉機構(SVS)を開くよう制御するもの
としたものである。
[0011] Further , means taken by the first and third aspects of the present invention.
Is in addition to the above configuration, as shown by the broken line in FIG.
An auxiliary bypass passage (11e) for bypass-connecting the discharge pipe of the compressor (1) and the liquid line, and an auxiliary bypass passage (11
e), an auxiliary heat exchanger (6c) for assisting the condensing capacity and an opening / closing mechanism (SVS) for opening and closing the auxiliary bypass passage (11e). The residual operation control means (51A) controls the opening and closing mechanism (SVS) of the auxiliary bypass path (11e) for a predetermined time.

【0012】更に、請求項1の発明の講じた手段は、上
記の構成に加え、補助バイパス路(11e)の出口側端
部はレシーバ(9)の上部に接続されているものとす
る。そして、図1の点線部分に示すように、残留運転制
御手段(51A)の制御の終了後、さらに一定時間の間
停止制御手段(52A)の制御を待機させ、室外電動膨
張弁(8)及び室内電動膨張弁(13)を閉じるととも
に、上記補助バイパス路(11e)の開閉機構(SVS)
を開いて、圧縮機(1)を停止させるよう制御する待機
運転制御手段(53A)を設けたものである。
[0012] Further , the measures taken by the invention of claim 1 are as follows.
In addition to the above configuration, the outlet side end of the auxiliary bypass path (11e) is connected to the upper part of the receiver (9). Then, as shown by the dotted line in FIG. 1, after the control of the residual operation control means (51A) is completed, the control of the stop control means (52A) is put on standby for a further fixed time, and the outdoor electric expansion valve (8) and The indoor electric expansion valve (13) is closed, and the auxiliary bypass passage (11e) is opened and closed (SVS).
And a standby operation control means (53A) for controlling to stop the compressor (1).

【0013】請求項2,4,7,10の発明の講じた手
段は、図1に示すように、容量可変形圧縮機(1)、室
外熱交換器(6)、室外電動膨張弁(8)、レシーバ
(9)、室内電動膨張弁(13)及び室内熱交換器(1
2)を順次接続してなる冷媒回路(14)を備えた空気
調和装置を前提とする。
As shown in FIG. 1, the means adopted by the invention of claims 2 , 4 , 7 , and 10 is a variable displacement compressor (1), an outdoor heat exchanger (6), and an outdoor electric expansion valve (8). ), Receiver (9), indoor electric expansion valve (13), and indoor heat exchanger (1).
It is assumed that the air conditioner includes a refrigerant circuit (14) formed by sequentially connecting 2).

【0014】そして、空気調和装置の運転制御装置とし
て、停止指令を受け、室外電動膨張弁(8)を閉じ、室
内電動膨張弁(13)を微小開度以下に閉じて、圧縮機
(1)を停止させるよう制御する停止制御手段(52
B)と、暖房運転中に停止指令を受けたとき、所定時間
の間上記停止制御手段(52B)の作動を待機させ、圧
縮機(1)を低容量にして、室外電動膨張弁(8)を閉
じ、室内電動膨張弁(13)を開くよう制御する残留運
転制御手段(51B)とを設ける構成としたものであ
る。
As an operation control device of the air conditioner, the outdoor electric expansion valve (8) is closed when the stop command is received, the indoor electric expansion valve (13) is closed to a small opening degree or less, and the compressor (1) Control means (52) for controlling to stop
B), when a stop command is received during the heating operation, the operation of the stop control means (52B) is put on standby for a predetermined time, the capacity of the compressor (1) is reduced, and the outdoor electric expansion valve (8) And a residual operation control means (51B) for controlling to open the indoor electric expansion valve (13).

【0015】また、請求項2,4の発明の講じた手段
は、上記の構成に加え、図1の破線部分に示すように、
圧縮機(1)の吐出管と液ラインとをバイパス接続する
補助バイパス路(11e)と、該補助バイパス路(11
e)に設けられ、凝縮能力を補助するための補助熱交換
器(6c)と、補助バイパス路(11e)を開閉するた
めの開閉機構(SVS)とを設けるものとする。さらに、
残留運転制御手段(51B)を、所定時間の間上記補助
バイパス路(11e)の開閉機構(SVS)を開くよう制
御するものとしたものである。
Means taken by the invention according to claims 2 and 4
Is in addition to the above configuration, as shown by the broken line in FIG.
An auxiliary bypass passage (11e) for bypass-connecting the discharge pipe of the compressor (1) and the liquid line, and an auxiliary bypass passage (11
e), an auxiliary heat exchanger (6c) for assisting the condensing capacity and an opening / closing mechanism (SVS) for opening and closing the auxiliary bypass passage (11e) are provided. further,
The residual operation control means (51B) controls the opening and closing mechanism (SVS) of the auxiliary bypass path (11e) for a predetermined time.

【0016】更に、請求項2の発明の講じた手段は、上
記の構成に加え、補助バイパス路(11e)の出口側端
部はレシーバ(9)の上部に接続されているものとす
る。そして、図1の点線部分に示すように、残留運転制
御手段(51B)の制御の終了後、さらに一定時間の間
停止制御手段(52B)の制御を待機させ、室外電動膨
張弁(8)を閉じるとともに、上記補助バイパス路(1
1e)の開閉機構(SVS)を開いて、圧縮機(1)を停
止させるよう制御する待機運転制御手段(53B)を設
けたものである。
Further , the means taken by the invention of claim 2 is as follows.
In addition to the above configuration, the outlet side end of the auxiliary bypass path (11e) is connected to the upper part of the receiver (9). Then, as shown by the dotted line in FIG. 1, after the control of the residual operation control means (51B) is completed, the control of the stop control means (52B) is put on standby for a further fixed time, and the outdoor electric expansion valve (8) is turned off. Close and use the auxiliary bypass (1)
A standby operation control means (53B) for controlling the opening and closing mechanism (SVS) of 1e) to stop the compressor (1) is provided.

【0017】また、請求項3,4の発明の講じた手段
は、上記の構成に加え、図6に示すように、補助バイパ
ス路(11e)の開閉機構(SVS)をバイパスする液封
防止回路(40)と、該液封防止回路(40)に介設さ
れ、補助バイパス路(11e)の下流側の圧力が上流側
の圧力よりも所定値以上高くなると開くよう作動する高
圧制御弁(41)とを設けたものである。
Means taken by the invention according to claims 3 and 4
In addition to the above configuration, as shown in FIG. 6, a liquid-seal prevention circuit (40) that bypasses the opening / closing mechanism (SVS) of the auxiliary bypass path (11e), and a liquid-seal prevention circuit (40) interposed therebetween. And a high-pressure control valve (41) that opens when the pressure on the downstream side of the auxiliary bypass passage (11e) becomes higher than the pressure on the upstream side by a predetermined value or more.

【0018】請求項5の発明の講じた手段は、上記請求
項1又は2の発明において、図6に示すように、補助バ
イパス路(11e)の開閉機構(SVS)をバイパスする
液封防止回路(40)と、該液封防止回路(40)に介
設され、補助バイパス路(11e)の下流側の圧力が上
流側の圧力よりも所定値以上高くなると開くよう作動す
る高圧制御弁(41)とを設けたものである。
The measures taken by the invention of claim 5 are the above-mentioned claim.
6. In the invention of item 1 or 2 , as shown in FIG. 6, a liquid-seal prevention circuit (40) that bypasses the opening / closing mechanism (SVS) of the auxiliary bypass path (11e), and an intervening part in the liquid-seal prevention circuit (40). And a high-pressure control valve (41) that opens when the pressure on the downstream side of the auxiliary bypass passage (11e) becomes higher than the pressure on the upstream side by a predetermined value or more.

【0019】また、請求項6,7の発明の講じた手段
は、上記の構成に加え、残留運転制御手段(51)を、
圧縮機(1)の起動後、第1設定時間が経過するまでに
停止指令を受けたときには、アキュムレータ(10)の
容量に対応した長時間の間残留運転を行うものとしたも
のである。
[0019] The measures taken by the invention according to claims 6 and 7 are as follows.
Includes a residual operation control unit (51) in addition to the above configuration ,
When a stop command is received before the first set time elapses after the start of the compressor (1), the residual operation is performed for a long time corresponding to the capacity of the accumulator (10).

【0020】請求項8の発明の講じた手段は、上記請求
項6又は7の発明において、図1の破線部分に示すよう
に、圧縮機(1)の吐出管と液ラインとをバイパス接続
する補助バイパス路(11e)と、該補助バイパス路
(11e)に設けられ、凝縮能力を補助するための補助
熱交換器(6c)と、補助バイパス路(11e)を開閉
するための開閉機構(SVS)とを設ける。そして、残留
運転制御手段(51A)を、所定時間の間上記補助バイ
パス路(11e)の開閉機構(SVS)を開くよう制御す
るものとしたものである。
The measures taken by the invention of claim 8 are the above-mentioned claim.
In the invention of Item 6 or 7 , as shown by the broken line in FIG. 1, an auxiliary bypass passage (11e) for bypass-connecting the discharge pipe of the compressor (1) and the liquid line, and an auxiliary bypass passage (11e) are provided. An auxiliary heat exchanger (6c) for assisting the condensation capacity and an opening / closing mechanism (SVS) for opening and closing the auxiliary bypass path (11e) are provided. The residual operation control means (51A) controls the opening and closing mechanism (SVS) of the auxiliary bypass path (11e) for a predetermined time.

【0021】また、請求項9,10の発明の講じた手段
は、上記の構成に加え、残留運転制御手段(51)を、
圧縮機(1)の起動後、デフロスト運転又は油戻し運転
の終了から第2設定時間が経過するまでに圧縮機(1)
の停止指令を受けたときには、アキュムレータ(10)
の容量に対応した長時間の間残留運転を行うものとした
ものである。
[0021] The measures taken by the invention according to claims 9 and 10 are as follows.
Includes a residual operation control unit (51) in addition to the above configuration ,
After the start of the compressor (1), the compressor (1) is operated until the second set time elapses from the end of the defrost operation or the oil return operation.
When the stop command is received, the accumulator (10)
The residual operation is to be performed for a long time corresponding to the capacity.

【0022】請求項11の発明の講じた手段は、上記
求項9又は10の発明において、図1の破線部分に示す
ように、圧縮機(1)の吐出管と液ラインとをバイパス
接続する補助バイパス路(11e)と、該補助バイパス
路(11e)に設けられ、凝縮能力を補助するための補
助熱交換器(6c)と、補助バイパス路(11e)を開
閉するための開閉機構(SVS)とを設ける。そして、残
留運転制御手段(51A)を、所定時間の間上記補助バ
イパス路(11e)の開閉機構(SVS)を開くよう制御
するものとしたものである。
The means taken by the invention of claim 11 is the above-mentioned contractor.
In the invention according to claim 9 or 10 , as shown by a broken line in FIG. 1, an auxiliary bypass path (11e) for bypass-connecting the discharge pipe of the compressor (1) and the liquid line, and the auxiliary bypass path (11e). And an opening / closing mechanism (SVS) for opening and closing the auxiliary heat exchanger (6c) for opening and closing the auxiliary bypass path (11e). The residual operation control means (51A) controls the opening and closing mechanism (SVS) of the auxiliary bypass path (11e) for a predetermined time.

【0023】請求項12の発明の講じた手段は、上記
求項6,7又は8の発明ににおいて、残留運転制御手段
(51)を、圧縮機(1)の起動後、デフロスト運転又
は油戻し運転の終了から第2設定時間が経過するまでに
圧縮機(1)の停止指令を受けたときには、アキュムレ
ータ(10)の容量に対応した長時間の間残留運転を行
うものとしたものである。
The means taken by the invention of claim 12 is the above-mentioned contractor.
In the invention according to claim 6, 7 or 8 , the residual operation control means (51) is provided after the compressor (1) is started until the second set time elapses from the end of the defrost operation or the oil return operation. When the stop command of (1) is received, the residual operation is performed for a long time corresponding to the capacity of the accumulator (10).

【0024】請求項13の発明の講じた手段は、上記
求項6乃至12の何れか1つの発明において、残留運転
制御手段(51)による残留運転中に、圧縮機(1)の
起動指令があったとき、そのまま通常運転に移行するよ
う制御する通常運転移行制御手段を設けたものである。
The means taken in the invention of claim 13, the
In the invention according to any one of Claims 6 to 12, when the start-up command of the compressor (1) is issued during the residual operation by the residual operation control means (51), control is performed so as to directly shift to the normal operation. Operation transition control means is provided.

【0025】請求項14の発明の講じた手段は、上記
求項13の発明において、通常運転移行制御手段により
通常運転に移行してから圧縮機(1)の停止指令を受け
たとき、残留運転開始前の通常運転の連続運転時間と残
留運転から移行した通常運転の連続運転時間との和が上
記第1設定時間よりも大きいときには、残留運転制御手
段(51)の作動を強制的に停止させて、停止制御手段
(52)の制御に移行させる残留運転回避手段(54
A)を設けたものである。
The means taken in the invention of claim 14, the
In the invention as set forth in claim 13 , when the stop instruction of the compressor (1) is received after the transition to the normal operation by the normal operation transition control means, the continuous operation time of the normal operation before the start of the residual operation and the transition from the residual operation are performed. When the sum of the normal operation and the continuous operation time is longer than the first set time, the operation of the residual operation control means (51) is forcibly stopped and the operation is shifted to the control of the stop control means (52). Avoidance measures (54
A) is provided.

【0026】請求項15の発明の講じた手段は、上記
求項6乃至14の何れか1つの発明において、冷媒回路
(14)の低圧側圧力を検出する低圧検出手段(LP)
を設け、残留運転制御手段(51)を、残留運転中、上
記低圧検出手段(LP)の出力を受け、閉じている側の
電動膨張弁(13又は8)を低圧側圧力が下限圧力以下
のときには微小開度に開き、低圧側圧力が下限圧力より
も高いときには閉じるよう制御する、ように構成したも
のである。
The means taken in the invention of claim 15, the
The low-pressure detecting means (LP) for detecting the low-pressure side pressure of the refrigerant circuit (14) according to any one of claims 6 to 14,
The residual operation control means (51) receives the output of the low pressure detecting means (LP) during the residual operation, and sets the closed electric expansion valve (13 or 8) to a low pressure side pressure lower than the lower limit pressure. In some cases, the opening degree is controlled to be a small opening, and when the low pressure side pressure is higher than the lower limit pressure, the opening degree is controlled to be closed.

【0027】請求項16の発明の講じた手段は、上記
求項6乃至15の何れか1つの発明において、吐出管温
度を検出する吐出管温度検出手段(Thd)と、空気調和
装置の運転中に停止指令を受けたとき、上記吐出管温度
検出手段(Thd)で検出される吐出管温度が所定温度以
上のときには、残留運転制御手段(51)の作動を強制
的に停止させて、停止制御手段(52)の制御に移行さ
せる残留運転回避手段(54B)とを設けたものであ
る。
The means taken in the invention of claim 16, the
The invention according to any one of claims 6 to 15, wherein the discharge pipe temperature detecting means (Thd) for detecting the discharge pipe temperature and the discharge pipe temperature detecting means when a stop command is received during operation of the air conditioner. When the discharge pipe temperature detected at (Thd) is equal to or higher than a predetermined temperature, the operation of the residual operation control means (51) is forcibly stopped, and the operation is shifted to the control of the stop control means (52). 54B).

【0028】請求項17の発明の講じた手段は、上記
求項6乃至15の何れか1つの発明において、圧縮機
(1)の潤滑油の温度を検出する油温度検出手段と、空
気調和装置の運転中に停止指令を受けたとき、上記油温
度検出手段で検出される潤滑油の温度が所定温度以上の
ときには、残留運転制御手段(51)の作動を強制的に
停止させて、停止制御手段(52)の制御に移行させる
残留運転回避手段(54C)とを設けたものである。
The means taken in the invention of claim 17, the
The invention according to any one of claims 6 to 15, wherein the oil temperature detecting means for detecting a temperature of the lubricating oil of the compressor (1); When the temperature of the lubricating oil detected by the detection means is equal to or higher than the predetermined temperature, the operation of the residual operation control means (51) is forcibly stopped, and the operation is shifted to the control of the stop control means (52). 54C).

【0029】[0029]

【作用】以上の構成により、請求項1,3,6,9の発
明では、空気調和装置の冷房運転中、空気調和装置の運
転終了時やサーモオフ時などに、圧縮機(1)の停止指
令がなされると、残留運転制御手段(51A)により、
所定時間の間停止制御手段(52A)の制御を待機させ
て、圧縮機(1)を運転して、室内電動膨張弁(13)
を閉じ、室外電動膨張弁(8)を開くよう制御されるの
で、いわゆるポンプダウン作用により、冷房運転中に室
外熱交換器(6)に貯溜されている液冷媒がレシーバ
(9)に回収される。そして、この状態で、停止制御手
段(52A)により各弁が閉じられるので、圧縮機
(1)の停止中、液ライン側から圧縮機(1)への液冷
媒の流入が阻止される。
With the above arrangement, according to the first, third , sixth , and ninth aspects of the present invention, a command to stop the compressor (1) is issued during the cooling operation of the air conditioner, at the end of operation of the air conditioner, or at the time of thermo-off. Is performed, the residual operation control means (51A)
The control of the stop control means (52A) is put on standby for a predetermined time, the compressor (1) is operated, and the indoor electric expansion valve (13) is operated.
Is closed and the outdoor electric expansion valve (8) is opened, so that the liquid refrigerant stored in the outdoor heat exchanger (6) is recovered by the receiver (9) during the cooling operation by the so-called pump-down operation. You. Then, in this state, each valve is closed by the stop control means (52A), so that the flow of the liquid refrigerant from the liquid line side to the compressor (1) is stopped while the compressor (1) is stopped.

【0030】また、請求項1,3の発明では、残留運転
制御手段(51A)による残留運転時に、補助バイパス
路(11e)の開閉機構(SVS)が開かれるので、補助
熱交換器(6c)に残留している液冷媒もレシーバ
(9)に回収され、圧縮機(1)の液戻りがより確実に
防止されることになる。
In the first and third aspects of the present invention, when the residual operation is performed by the residual operation control means (51A), the opening / closing mechanism (SVS) of the auxiliary bypass passage (11e) is opened, so that the auxiliary heat exchanger (6c) is opened. The liquid refrigerant remaining in the compressor (1) is also recovered by the receiver (9), and the liquid return of the compressor (1) is more reliably prevented.

【0031】更に、請求項1の発明では、残留運転制御
手段(51A)の制御が終了すると、レシーバ(9)へ
の液冷媒の回収によりレシーバ(9)内の圧力が上昇し
ている可能性があるが、待機運転制御手段(53A)に
より、停止制御手段(52A)の制御をさらに一定時間
の間待機させて、補助バイパス路(11e)の開閉機構
(SVS)を開くように制御されるので、レシーバ(9)
の上部に接続された補助バイパス路(11e)を介して
ガス冷媒が吐出側に流出し、圧縮機(1)の吐出側と均
圧化される。したがって、閉じられた弁からガス冷媒が
騒音と共に逆流するのが防止されることになる。
Further, according to the first aspect of the present invention, when the control of the residual operation control means (51A) ends, the pressure in the receiver (9) may increase due to the recovery of the liquid refrigerant to the receiver (9). However, the standby operation control unit (53A) controls the stop control unit (52A) to wait for a certain period of time to open the opening / closing mechanism (SVS) of the auxiliary bypass path (11e). So the receiver (9)
The gas refrigerant flows out to the discharge side via the auxiliary bypass path (11e) connected to the upper part of the compressor, and is equalized with the discharge side of the compressor (1). Therefore, the gas refrigerant is prevented from flowing back together with the noise from the closed valve.

【0032】請求項2,4,7,10の発明では、暖房
運転中に停止指令を受けたとき、残留運転制御手段(5
1B)により、所定時間の間圧縮機(1)を低容量にし
て室外電動膨張弁(8)を閉じ、室内電動膨張弁(1
3)を開くように制御されるので、ポンプダウン作用に
よって、凝縮器となっていた室内熱交換器(12)に貯
溜されている液冷媒がレシーバ(9)に回収される。し
たがって、その後停止制御手段(52B)により、室外
電動膨張弁(8)を閉じ、室内電動膨張弁(13)を微
小開度以下に閉じて、圧縮機(1)を停止させるよう制
御されても、室内熱交換器(12)側から圧縮機(1)
の吐出側への液戻りが阻止されることになる。
According to the second, fourth , seventh and tenth aspects of the present invention, when a stop command is received during the heating operation, the residual operation control means (5)
1B), the compressor (1) is reduced in capacity for a predetermined time, the outdoor electric expansion valve (8) is closed, and the indoor electric expansion valve (1) is closed.
Since it is controlled to open 3), the liquid refrigerant stored in the indoor heat exchanger (12), which has been a condenser, is recovered by the receiver (9) by the pump-down action. Therefore, even after the stop control means (52B) is controlled to close the outdoor electric expansion valve (8), close the indoor electric expansion valve (13) to a small opening degree or less, and stop the compressor (1). , Compressor (1) from indoor heat exchanger (12) side
Is prevented from returning to the discharge side.

【0033】また、請求項2,4の発明では、残留運転
制御手段(51B)の残留運転中、補助バイパス路(1
1e)の開閉機構(SVS)が開かれるので、補助熱交換
器(6c)の液冷媒がレシーバ(9)に回収され、ポン
プダウン作用がより確実に得られる。したがって、圧縮
機(1)への液戻りがより確実に阻止されることにな
る。
According to the second and fourth aspects of the present invention, during the residual operation of the residual operation control means (51B), the auxiliary bypass path (1
Since the opening and closing mechanism (SVS) of 1e) is opened, the liquid refrigerant of the auxiliary heat exchanger (6c) is recovered by the receiver (9), and the pump-down action can be more reliably obtained. Therefore, the return of the liquid to the compressor (1) is more reliably prevented.

【0034】更に、請求項2の発明では、残留運転制御
手段(51B)の制御の終了後、待機運転制御手段(5
3B)により、さらに一定時間の間停止制御手段(52
B)の制御を待機させ、室外電動膨張弁(8)を閉じる
とともに、補助バイパス路(11e)の開閉機構(SV
S)のみを開いて、圧縮機(1)を停止させるように制
御されるので、液冷媒の回収によりレシーバ(9)内の
ガス冷媒圧力が上昇したときにも、レシーバ(9)内の
ガス冷媒が圧縮機(1)の吐出側に流出し、均圧化され
て、ガス冷媒の流出に伴う騒音の発生が防止されること
になる。
Further, according to the present invention, after the control of the residual operation control means (51B) is completed, the standby operation control means (5) is provided.
3B), the stop control means (52
B), the outdoor electric expansion valve (8) is closed, and the opening and closing mechanism (SV) of the auxiliary bypass passage (11e) is closed.
Since only the S) is opened and the compressor (1) is controlled to stop, even if the gas refrigerant pressure in the receiver (9) increases due to the recovery of the liquid refrigerant, the gas in the receiver (9) is The refrigerant flows out to the discharge side of the compressor (1) and is equalized, so that generation of noise due to the outflow of the gas refrigerant is prevented.

【0035】請求項3,4,5の発明では、残留運転に
より多量の液冷媒が貯溜されたレシーバ(9)内の圧力
が上昇しても、その上昇した圧力値が所定値以上になる
と、補助バイパス路(11e)に付設された液封防止回
路(40)の高圧制御弁(41)を介して、液冷媒が徐
々に補助熱交換器(6c)側に流出するので、機器類の
破損が防止されることになる。
According to the third , fourth , and fifth aspects of the present invention, even if the pressure in the receiver (9) in which a large amount of liquid refrigerant is stored increases due to the residual operation, if the increased pressure value exceeds a predetermined value, The liquid refrigerant gradually flows out to the auxiliary heat exchanger (6c) through the high-pressure control valve (41) of the liquid seal prevention circuit (40) attached to the auxiliary bypass passage (11e), and the equipment is damaged. Is prevented.

【0036】請求項6,7の発明では、空気調和装置の
運転中、頻繁に圧縮機(1)の発停が繰り返されるよう
な条件下において、残留運転制御手段(51)により、
圧縮機(1)の停止前に、長時間の間、ポンプダウン作
用を伴う残留運転が行われるので、圧縮機(1)やアキ
ュムレータに蓄積された液冷媒がほぼレシーバ(9)に
回収される。したがって、圧縮機(1)が停止後再起動
する際にも、液冷媒による油の希釈等に起因する圧縮機
の故障が回避されることになる。
[0036] In the invention of claim 6 and 7, during operation of the air conditioner, under conditions such start-stop are repeated frequently compressor (1), the residual operation control means (51),
Before the compressor (1) is stopped, the residual operation with the pump-down action is performed for a long time, so that the liquid refrigerant accumulated in the compressor (1) and the accumulator is almost recovered by the receiver (9). . Therefore, even when the compressor (1) is restarted after being stopped, failure of the compressor due to dilution of oil by the liquid refrigerant or the like is avoided.

【0037】請求項8の発明では、残留運転制御手段
(51B)の残留運転中、補助バイパス路(11e)の
開閉機構(SVS)が開かれるので、補助熱交換器(6
c)の液冷媒がレシーバ(9)に回収され、ポンプダウ
ン作用がより確実に得られる。したがって、圧縮機
(1)への液戻りがより確実に阻止されることになる。
In the eighth aspect of the present invention, the opening and closing mechanism (SVS) of the auxiliary bypass passage (11e) is opened during the residual operation of the residual operation control means (51B), so that the auxiliary heat exchanger (6) is opened.
The liquid refrigerant of c) is collected in the receiver (9), and the pump-down action can be obtained more reliably. Therefore, the return of the liquid to the compressor (1) is more reliably prevented.

【0038】請求項9,10,12の発明では、空気調
和装置の運転中、特に冷媒が湿り側となるデフロスト又
は油戻し運転が行われてそれほど時間が経過していない
際にも、残留運転制御手段(51)により、圧縮機
(1)の停止前に長時間の間残留運転が行われるので、
上記請求項6,7の発明と同様の作用が得られることに
なる。
According to the ninth , tenth , and twelfth aspects of the present invention, the residual operation is performed during the operation of the air conditioner, particularly when not much time has passed since the defrost or oil return operation in which the refrigerant is on the wet side is performed. Since the control unit (51) performs the residual operation for a long time before stopping the compressor (1),
The same operation as that of the above-described claims 6 and 7 can be obtained.

【0039】請求項11の発明では、残留運転制御手段
(51B)の残留運転中、補助バイパス路(11e)の
開閉機構(SVS)が開かれるので、補助熱交換器(6
c)の液冷媒がレシーバ(9)に回収され、ポンプダウ
ン作用がより確実に得られる。したがって、圧縮機
(1)への液戻りがより確実に阻止されることになる。
According to the eleventh aspect of the present invention, since the opening and closing mechanism (SVS) of the auxiliary bypass passage (11e) is opened during the residual operation of the residual operation control means (51B), the auxiliary heat exchanger (6) is opened.
The liquid refrigerant of c) is collected in the receiver (9), and the pump-down action can be obtained more reliably. Therefore, the return of the liquid to the compressor (1) is more reliably prevented.

【0040】請求項13の発明では、通常運転移行制御
手段により、残留運転から通常運転に移行することで、
圧縮機(1)の停止による冷媒の逆流を生じることがな
い。したがって、そのまま残留運転を行って圧縮機
(1)を停止させてから再起動させる場合のような空調
の快適性の悪化が生じることなく、信頼性も良好に維持
されることになる。
According to the thirteenth aspect of the present invention, the normal operation shift control means shifts from the residual operation to the normal operation.
The refrigerant does not flow backward due to the stop of the compressor (1). Therefore, the reliability of the compressor (1) is maintained without deterioration of the comfort of the air conditioning as in the case where the compressor (1) is stopped and then restarted by performing the residual operation as it is.

【0041】請求項14の発明では、上記請求項13
発明の作用において、残留運転から直接移行された通常
運転中に、停止指令があった場合、通常運転に移行して
から第1設定時間以上の時間が経過していなくても、残
留運転前の通常運転の時間と残留運転後の通常運転の時
間との和が第1設定時間を越えていれば、それほど液冷
媒の蓄積は生じていない。したがって、残留運転回避手
段(54A)により、かかる条件下では残留運転への突
入を回避することで、余分な残留運転による空調の快適
性の悪化が回避されることになる。
According to a fourteenth aspect of the present invention, in the operation of the thirteenth aspect , when a stop command is issued during the normal operation directly shifted from the residual operation, the first set time is set after the shift to the normal operation. Even if the above time has not elapsed, if the sum of the normal operation time before the residual operation and the normal operation time after the residual operation exceeds the first set time, the accumulation of the liquid refrigerant is not so large. Absent. Therefore, the remaining operation avoiding means (54A) avoids the entry into the residual operation under such conditions, thereby avoiding the deterioration of the comfort of the air conditioning due to the extra residual operation.

【0042】請求項15の発明では、残留運転中に、電
動膨張弁(8又は13)の開閉制御により、低圧側圧力
が下限圧力以上に維持されるので、長時間の残留運転が
確保される。したがって、アキュムレータ(10)等の
液冷媒が十分排出され、油の希釈等の虞れが回避される
ことになる。
According to the fifteenth aspect , during the residual operation, the low pressure side pressure is maintained at or above the lower limit pressure by opening / closing control of the electric expansion valve (8 or 13), so that the residual operation for a long time is secured. . Therefore, the liquid refrigerant such as the accumulator (10) is sufficiently discharged, and the danger of oil dilution or the like is avoided.

【0043】請求項16の発明では、吐出管温度が所定
温度以上の状態では、冷媒は湿り状態ではなく乾き状態
であり、圧縮機(1)等への液冷媒の蓄積は少ないの
で、残留運転を行わなくても油の希釈等の虞れはほとん
どないことになる。したがって、残留運転回避手段(5
4B)により、かかる条件下では残留運転への突入を回
避することで、余分な残留運転による空調の快適性の悪
化が回避されることになる。
According to the sixteenth aspect of the present invention, when the discharge pipe temperature is equal to or higher than the predetermined temperature, the refrigerant is not wet but dry, and the accumulation of the liquid refrigerant in the compressor (1) or the like is small. Even without performing the above, there is almost no fear of oil dilution or the like. Therefore, the residual operation avoidance means (5
According to 4B), under such a condition, the entry into the residual operation is avoided, so that the deterioration of the comfort of the air conditioning due to the extra residual operation is avoided.

【0044】請求項17の発明では、油温度が高い状態
では、圧縮機(1)等への液冷媒の蓄積は少なく、残留
運転を行わなくても油の希釈等の虞れはほとんどないこ
とになる。したがって、残留運転回避手段(54B)に
より、かかる条件下では残留運転への突入を回避するこ
とで、余分な残留運転による空調の快適性の悪化が回避
されることになる。
According to the seventeenth aspect , when the oil temperature is high, the accumulation of the liquid refrigerant in the compressor (1) and the like is small, and there is almost no danger of oil dilution or the like without performing the residual operation. become. Therefore, the remaining operation avoiding means (54B) prevents entry into the residual operation under such conditions, thereby avoiding deterioration of the comfort of air conditioning due to extra residual operation.

【0045】[0045]

【実施例】以下、本発明の実施例について、図2以下の
図面に基づき説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to FIGS.

【0046】まず、本発明の第1実施例について説明す
る。図2は本発明の第1実施例に係るマルチ型空気調和
装置の冷媒配管系統を示し、(X)は室外ユニット、
(Y1),(Y2),…は該室外ユニット(X)に並列
に接続された室内ユニットである。上記室外ユニット
(X)の内部には、2つの三方切換弁(SV1),(SV
2)の切換えにより、運転容量が100%,67%,3
3%の3段階に調節される圧縮機(1)と、上記圧縮機
(1)から吐出されるガス冷媒中の油を分離する第1,
第2油分離器(4a),(4b)と、冷房運転時には図
中実線の如く切換わり暖房運転時には図中破線の如く切
換わる四路切換弁(5)と、冷房運転時に凝縮器、暖房
運転時に蒸発器となる一対の室外熱交換器(6a),
(6b)及び該室外熱交換器(6a),(6b)に付設
された2台の室外ファン(F1),(F2)とが配設さ
れている。上記各室外熱交換器(6a),(6b)は、
回路中で並列に配置されており、各室外熱交換器(6
a),(6b)に対して、冷房運転時には冷媒流量を調
節し、暖房運転時には冷媒の絞り作用を行う一対の室外
電動膨張弁(8a1),(8a2)及び(8b1),(8b2)
が配設されている。さらに室外ユニット(X)には、液
化した冷媒を貯蔵するためのレシ―バ(9)と、一対の
第1,第2アキュムレータ(10a),(10b)とが
配設されていて、該各機器(1)〜(10b)は、順次
冷媒配管(11)により冷媒の流通可能に接続されてい
る。また上記室内ユニット(Y1),(Y2),…は同
一構成であり、各々、冷房運転時には蒸発器、暖房運転
時には凝縮器となる室内熱交換器(12)およびそのフ
ァン(12a)と、暖房運転時に冷媒流量を調節し、冷
房運転時に冷媒の絞り作用を行う室内電動膨張弁(1
3)とがそれぞれ配設され、合流後液側手動閉鎖弁(1
7)及びガス側手動閉鎖弁(18)を介し液側連絡配管
(11a)及びガス側連絡配管(11b)によって室外
ユニット(X)との間を接続されている。すなわち、以
上の各機器は冷媒配管(11)により、冷媒の流通可能
に接続されていて、室外空気との熱交換により得た熱を
室内空気に放出するようにした主冷媒回路(14)が構
成されている。
First, a first embodiment of the present invention will be described. FIG. 2 shows a refrigerant piping system of the multi-type air conditioner according to the first embodiment of the present invention, wherein (X) is an outdoor unit,
(Y1), (Y2),... Are indoor units connected in parallel to the outdoor unit (X). Inside the outdoor unit (X), two three-way switching valves (SV1), (SV1)
The operation capacity is 100%, 67%, 3
A compressor (1) adjusted to three stages of 3%, and a first (1) for separating oil in a gas refrigerant discharged from the compressor (1).
A second oil separator (4a), (4b), a four-way switching valve (5) that switches during cooling operation as shown by a solid line in the figure and that switches during heating operation as shown by a broken line in the figure, and a condenser and heating during cooling operation A pair of outdoor heat exchangers (6a) serving as evaporators during operation,
(6b) and two outdoor fans (F1) and (F2) attached to the outdoor heat exchangers (6a) and (6b). Each of the above outdoor heat exchangers (6a) and (6b)
It is arranged in parallel in the circuit, and each outdoor heat exchanger (6
Contrary to (a) and (6b), a pair of outdoor electric expansion valves (8a1), (8a2) and (8b1), (8b2) for adjusting the flow rate of the refrigerant during the cooling operation and performing the throttling operation of the refrigerant during the heating operation.
Are arranged. Further, the outdoor unit (X) is provided with a receiver (9) for storing a liquefied refrigerant and a pair of first and second accumulators (10a) and (10b). The devices (1) to (10b) are sequentially connected by a refrigerant pipe (11) so that the refrigerant can flow. The indoor units (Y1), (Y2),... Have the same configuration, and include an indoor heat exchanger (12) and a fan (12a), which serve as an evaporator during a cooling operation and a condenser during a heating operation, respectively. An indoor electric expansion valve (1) that adjusts the refrigerant flow rate during operation and performs a throttle function of the refrigerant during cooling operation.
3) are arranged respectively, and after merging, the liquid side manual shutoff valve (1)
7) and the outdoor unit (X) are connected by a liquid side communication pipe (11a) and a gas side communication pipe (11b) via a gas side manual shutoff valve (18). That is, a main refrigerant circuit (14) is connected to each of the above devices by a refrigerant pipe (11) so as to allow a refrigerant to flow therethrough, and discharges heat obtained by heat exchange with outdoor air to indoor air. It is configured.

【0047】次に、上記各主要機器以外に補助用の諸機
器が設けられている。吐出管と吸入管との間には、圧縮
機(1)の停止時等に高圧側圧力と低圧側圧力とを均圧
化するための均圧ホットガスバイパス路(11d)が設
けられ、該均圧ホットガスバイパス路(11d)には、
サ―モオフ状態等による圧縮機(1)の停止時、再起動
前に一定時間開作動する均圧用開閉弁(SVP)が介設さ
れている。また、上記第1,第2油分離器(4a),
(4b)から第2アキュムレータ(10b)出口の立上
がり配管まで、キャピラリチュ―ブ(32)を介して油
を戻すための油戻し管(33)が設けられている。
Next, auxiliary devices other than the above main devices are provided. An equalizing hot gas bypass passage (11d) is provided between the discharge pipe and the suction pipe to equalize the high pressure side and the low pressure side pressure when the compressor (1) is stopped. In the equalizing hot gas bypass passage (11d),
When the compressor (1) is stopped due to a thermo-off state or the like, a pressure equalizing on-off valve (SVP) that opens for a predetermined time before restarting is provided. Further, the first and second oil separators (4a),
An oil return pipe (33) for returning oil through a capillary tube (32) is provided from (4b) to the rising pipe at the outlet of the second accumulator (10b).

【0048】さらに、上記油分離器(4a),(4b)
−四路切換弁(5)間の吐出管とレシーバ(9)上部と
を接続する暖房過負荷制御回路(11e)が設けられて
おり、該暖房過負荷制御回路(11e)には、吐出管側
から順に、補助熱交換器(6c)と、キャピラリチュ―
ブ(23)と、開閉機構としての過負荷制御開閉弁(S
VS)とが介設されている。また、暖房過負荷制御回路
(11e)には過負荷制御弁(SVS)をバイパスする液
封防止回路(40)が付設されており、該液封防止回路
(40)には、液ライン側の圧力が補助熱交換器(6
c)側の圧力よりも所定値以上高くなったときのみ開い
て冷媒の流通を許容する高圧制御弁(41)が介設され
ている。
Further, the oil separators (4a) and (4b)
A heating overload control circuit (11e) for connecting the discharge pipe between the four-way switching valve (5) and the upper part of the receiver (9), wherein the heating overload control circuit (11e) includes a discharge pipe; In order from the side, the auxiliary heat exchanger (6c) and the capillary tube
(23) and an overload control on-off valve (S
VS). The heating overload control circuit (11e) is provided with a liquid seal prevention circuit (40) that bypasses the overload control valve (SVS). The pressure is the auxiliary heat exchanger (6
A high-pressure control valve (41) that opens only when the pressure becomes higher than the pressure on the side c) by a predetermined value or more and allows the refrigerant to flow is interposed.

【0049】また、液ラインの室外電動膨張弁(8a1)
〜(8b2)−レシーバ(9)間の一部位と第1アキュム
レータ(10a)上流側の吸入管とをバイパス接続する
リキッドインジェクションバイパス路(11f)が設け
られており、該バイパス路(11f)には、吸入冷媒の
過熱を調節すべく開閉するインジェクション開閉弁(S
VL)が介設されている。
The outdoor electric expansion valve (8a1) for the liquid line
A liquid injection bypass passage (11f) for bypass-connecting a part between (8b2) -receiver (9) and a suction pipe upstream of the first accumulator (10a) is provided, and the bypass passage (11f) is provided in the bypass passage (11f). Is an injection on-off valve (S) that opens and closes to regulate overheating of the suction refrigerant.
VL).

【0050】なお、(GP)はゲ―ジポ―トである。Note that (GP) is a gage port.

【0051】また、装置には多くのセンサ類が配置され
ていて、(Th1a),(Th1b)は各室外熱交換器(6a),
(6b)のガス管温度を検出するガス管センサ、(Th2
a),(Th2b)は各室外熱交換器(6a),(6b)の液管
温度を検出する液管センサ、(Thd)は圧縮機(1)の
吐出管温度Tdを検出する吐出管温度検出手段としての
吐出管センサ、(Thr)は各室内ユニット(Y1)の空
気吸込口に配設され、吸込空気温度(室温)を検出する
室内吸込センサ、(LP)は吸入圧力(低圧側圧力)T
eを検出する低圧検出手段としての低圧センサ、(63
QL)は油圧と吸入圧力との圧力差を検出する差圧セン
サ、(HP)は吐出圧力(高圧側圧力)を検出する高圧
センサ、(63H)は圧縮機保護用の高圧圧力開閉器で
あって、これらのセンサ類の信号は、空気調和装置のコ
ントローラ(図示せず)に入力可能になされている。
Further, a large number of sensors are arranged in the apparatus, and (Th1a) and (Th1b) are the outdoor heat exchangers (6a) and (Th1b).
(6b) a gas pipe sensor for detecting the gas pipe temperature, (Th2
a) and (Th2b) are liquid tube sensors for detecting liquid tube temperatures of the outdoor heat exchangers (6a) and (6b), and (Thd) is a discharge tube temperature for detecting a discharge tube temperature Td of the compressor (1). A discharge pipe sensor as a detection means, (Thr) is disposed at an air suction port of each indoor unit (Y1) and detects an intake air temperature (room temperature), and (LP) is a suction pressure (low pressure side pressure). ) T
e, a low-pressure sensor as a low-pressure detecting means for detecting e.
QL) is a differential pressure sensor that detects the pressure difference between oil pressure and suction pressure, (HP) is a high pressure sensor that detects discharge pressure (high pressure side pressure), and (63H) is a high pressure switch that protects the compressor. The signals from these sensors can be input to a controller (not shown) of the air conditioner.

【0052】図2において、空気調和装置の冷房運転
時、四路切換弁(5)が図中実線側に切換わり、圧縮機
(1)で圧縮された冷媒が各室外熱交換器(6a),
(6b)で凝縮され、レシーバ(9)に貯溜された後、
液側連絡配管(11a)を経て各室内ユニット(Y
1),(Y2),…に分岐して送られる。各室内ユニッ
ト(Y1),(Y2),…では、冷媒が各室内電動膨張
弁(13)で減圧され、各室内熱交換器(12)で蒸発
した後合流して、ガス側連絡配管(11b)を経て室外
ユニット(X)に戻り、アキュムレータ(10a),
(10b)で混入している液冷媒が除去されてから、圧
縮機(1)に吸入されるように循環する。
In FIG. 2, during the cooling operation of the air conditioner, the four-way switching valve (5) is switched to the solid line side in the figure, and the refrigerant compressed by the compressor (1) is supplied to each outdoor heat exchanger (6a). ,
After being condensed in (6b) and stored in the receiver (9),
Through the liquid side connection pipe (11a), each indoor unit (Y
1), (Y2),... In each of the indoor units (Y1), (Y2),..., The refrigerant is decompressed by each of the indoor electric expansion valves (13), evaporated in each of the indoor heat exchangers (12), and then joined to form a gas-side communication pipe (11b). ), Return to the outdoor unit (X), and accumulators (10a),
After the mixed liquid refrigerant is removed in (10b), the refrigerant is circulated so as to be sucked into the compressor (1).

【0053】また、暖房運転時には、四路切換弁(5)
が図中破線側に切換わり、冷媒の流れは上記冷房運転時
と逆となって、圧縮機(1)で圧縮された冷媒が各室内
熱交換器(12),(12),…で凝縮され、合流して
液状態で室外ユニット(X)に流れ、レシーバ(9)に
貯溜される。そして、各室外電動膨張弁(8a1)〜(8
b2)により減圧され、各室外熱交換器(6a),(6
b)で蒸発した後圧縮機(1)に戻るように循環する。
During the heating operation, the four-way switching valve (5)
Is switched to the broken line side in the figure, and the flow of the refrigerant is opposite to that in the cooling operation, and the refrigerant compressed in the compressor (1) is condensed in the indoor heat exchangers (12), (12),. Then, they merge and flow in a liquid state to the outdoor unit (X), and are stored in the receiver (9). Then, each of the outdoor electric expansion valves (8a1) to (8
The pressure is reduced by b2) and each outdoor heat exchanger (6a), (6
After evaporating in b), it circulates back to the compressor (1).

【0054】次に、空気調和装置の電気回路について、
図3に基づき説明する。図3において、三相交流電源
(TeS)には、外部機器回路(100)が接続されてい
るとともに、三相交流電源中の二相配線に、メイン機器
駆動用基板(110)と、弁駆動用基板(120)とが
接続されている。さらに、上記メイン機器駆動用基板
(110)に対し、第1変圧器(Tr1)を介して制御用
基板(130)が接続されている。
Next, regarding the electric circuit of the air conditioner,
This will be described with reference to FIG. In FIG. 3, an external device circuit (100) is connected to a three-phase AC power supply (TeS), and a main device drive board (110) and a valve drive And a connection substrate (120). Further, a control substrate (130) is connected to the main device driving substrate (110) via a first transformer (Tr1).

【0055】上記外部機器回路(100)において、
(MC)は圧縮機(1)を駆動するための圧縮機モー
タ、(MF1),(MF2)はそれぞれ二台の室外ファン
(F1),(F2)を駆動するためのファンモータであ
って、上記圧縮機モータ(MC)には、後述の起動,停
止用の電磁リレー(52C)の常開接点(52C-1)と、後
述の過電流保護スイッチ(51C)を開作動させるための
ヒューズ(51C-f)とが直列に接続され、さらに、起動
時制御用の電磁リレー(42C),(6C)の常開接点
(42C-1),(6C-1)が付設されている。また、各フ
ァンモータ(MF1),(MF2)には、後述の起動,停止
用の電磁リレー(52F1),(52F2)の常開接点(52F1-
1),(52F2-1)と、過電流保護スイッチ(51F1),(51
F2)を開作動させるためのヒューズ(51F1-f),(51F2
-f)とが直列に接続されている。
In the external device circuit (100),
(MC) is a compressor motor for driving the compressor (1), (MF1) and (MF2) are fan motors for driving two outdoor fans (F1) and (F2), respectively. The compressor motor (MC) has a normally open contact (52C-1) of an electromagnetic relay (52C) for starting and stopping described later and a fuse (52C) for opening an overcurrent protection switch (51C) described later. 51C-f) are connected in series, and the normally open contacts (42C-1) and (6C-1) of the electromagnetic relays (42C) and (6C) for startup control are additionally provided. Each fan motor (MF1) and (MF2) has a normally open contact (52F1--F) for starting and stopping electromagnetic relays (52F1) and (52F2) described later.
1), (52F2-1) and overcurrent protection switch (51F1), (51F1)
Fuse (51F1-f) for opening operation of F2), (51F2
-f) are connected in series.

【0056】また、メイン機器駆動用基板(110)に
は、高圧保護用スイッチ(63H),圧縮機(1)の過電
流保護スイッチ(51C),圧縮機(1)の温度上昇保護
スイッチ(49C)及びファン過電流保護スイッチ(51F
1),(51F2)とを配置してなる保護回路(111)
と、各々常開のリレー接点(RY2),(RY4),(RY
6),(RY7)及び(RY8)に直列に接続されたファン
駆動用電磁リレー(52F1),(52F2),圧縮機駆動用電
磁リレー(52C)及び圧縮機起動制御用電磁リレー(42
C),(6C)を配設してなる第1アクチュエータ駆動
回路(112)と、各々常開のリレー接点((RY9)〜
(RY15 )に直列に接続された異常表示用電磁リレー
(WL),上記四路切換弁(2)を切換えるための電磁
リレー(20S),上記アンローダ用三方切換弁(SV
1),(SV2)を切換えるための電磁リレー(20RS1),
(20RS2),上記均圧用開閉弁(SVP)を開閉するための
電磁リレー(20R1),上記過負荷制御開閉弁(SVS)を
開閉するための電磁リレー(20R2)及び上記インジェ
クション開閉弁(SVL)を開閉するための電磁リレー
(20R3)を配設してなる第2アクチュエータ駆動回路
(113)とが主要回路として設けられている。
The main device driving board (110) includes a high voltage protection switch (63H), an overcurrent protection switch (51C) for the compressor (1), and a temperature rise protection switch (49C) for the compressor (1). ) And fan overcurrent protection switch (51F
Protection circuit (111) including (1) and (51F2)
And normally open relay contacts (RY2), (RY4), (RY
6), (RY7) and (RY8), the fan drive electromagnetic relays (52F1) and (52F2), the compressor drive electromagnetic relay (52C) and the compressor start control electromagnetic relay (42
C) and (6C), a first actuator drive circuit (112), and normally open relay contacts ((RY9) to (RY9) to
(RY15), an electromagnetic relay (WL) for abnormality indication, an electromagnetic relay (20S) for switching the four-way switching valve (2), and a three-way switching valve (SV) for the unloader.
1), electromagnetic relay (20RS1) for switching (SV2),
(20RS2), an electromagnetic relay (20R1) for opening and closing the equalizing on-off valve (SVP), an electromagnetic relay (20R2) for opening and closing the overload control on-off valve (SVS), and the injection on-off valve (SVL) And a second actuator drive circuit (113) provided with an electromagnetic relay (20R3) for opening and closing the actuator.

【0057】なお、(CH)はクランクケースヒータ、
(52C-2)は上記圧縮機駆動用電磁リレー(52C)の常
開接点であって、上記クランクケースヒータ(CH)を
オン.オフするもの、(Q1)は電源生成用パワートラ
ンジスタである。
(CH) is a crankcase heater,
(52C-2) is a normally open contact of the compressor driving electromagnetic relay (52C), which turns on the crankcase heater (CH). The transistor which is turned off, (Q1) is a power transistor for generating power.

【0058】一方、上記弁駆動用基板(120)には、
第2変圧器(Tr2)を介して、4個の室外電動膨張弁
(8a1)〜(8b2)のパルスモータ(20E1) 〜(20E4)が
配設されている。
On the other hand, the valve driving substrate (120) includes:
Pulse motors (20E1) to (20E4) of four outdoor electric expansion valves (8a1) to (8b2) are arranged via the second transformer (Tr2).

【0059】さらに、上記制御用基板(130)には、
サービスモード切換スイッチ(DS1),圧縮機強制運転
又は油圧保護リセット設定スイッチ(SS1)、低騒音入
力切換スイッチ(SS2)、冷暖切換スイッチ(SS3)、
配管長設定スイッチ(SS4)、高圧調節スイッチ(SS
5)、デフロスト切換スイッチ(SS6)及び圧縮機強制
運転ボタンスイッチ又は油圧保護リセットボタンスイッ
チ(BS1)が設けられているとともに、上記油圧の差圧
センサ(63QL)、各ガス管センサ(Th1a),(Th1b)、
吐出管センサ(Thd)、各液管センサ(Th2b),(Th2
b)、高圧センサ(HP)及び低圧センサ(LP)が信号
線を介して接続されている。
Further, the control board (130) includes:
Service mode changeover switch (DS1), compressor forced operation or oil pressure protection reset setting switch (SS1), low noise input changeover switch (SS2), cooling / heating changeover switch (SS3),
Pipe length setting switch (SS4), high pressure adjustment switch (SS
5), a defrost changeover switch (SS6) and a compressor forced operation button switch or a hydraulic pressure protection reset button switch (BS1) are provided, and the differential pressure sensor for pressure (63QL), each gas pipe sensor (Th1a), (Th1b),
Discharge pipe sensor (Thd), each liquid pipe sensor (Th2b), (Th2
b), a high pressure sensor (HP) and a low pressure sensor (LP) are connected via a signal line.

【0060】次に、空気調和装置の冷房運転中における
制御の内容について説明する。
Next, the contents of the control during the cooling operation of the air conditioner will be described.

【0061】まず、ステップST1で、通常冷房運転を
行い、その間、室外ファン((F1),(F2)を運転
し、室外電動膨張弁(8a1)〜(8b2)は全開(200
0パルス)に、室内電動膨張弁(13)を過熱度一定制
御による制御開度とし、圧縮機(1)を運転する。そし
て、空気調和装置の運転が終了したり、全室内ユニット
(Y1),(Y2),…がサーモオフとなる等の運転状
態に応じ、停止指令が出力されると、ステップST2の
判別がYESになるとともに、ステップST3に進む。
First, in step ST1, normal cooling operation is performed, during which the outdoor fans ((F1) and (F2) are operated, and the outdoor electric expansion valves (8a1) to (8b2) are fully opened (200).
At 0 pulse), the indoor electric expansion valve (13) is set to the control opening by the superheat constant control, and the compressor (1) is operated. When the stop command is output according to the operation state such as the operation of the air conditioner is completed or all the indoor units (Y1), (Y2),... Are turned off, the determination in step ST2 becomes YES. At the same time, the process proceeds to step ST3.

【0062】ステップST3では、以下のように、残留
ポンプダウン運転を行う。このとき、室外ファン(F
1),(F2)を運転し、圧縮機(1)の容量を最低ス
テップ33%とし、室外電動膨張弁(8a1)〜(8b2)
は全開とし、各室内電動膨張弁(13),…を全閉とす
るとともに、暖房過負荷制御回路(11e)の過負荷制
御弁(SVS)を開くよう制御する。そして、ステップS
T4で、1分間が経過するまで上記残留ポンプダウン運
転を行って、1分間が経過すると、ステップST5に進
む。すなわち、室外熱交換器(6a),(6b)や補助
熱交換器(6c)に貯溜されている液冷媒をレシーバ
(9)にほぼ回収するようにしている。
In step ST3, a residual pump down operation is performed as follows. At this time, the outdoor fan (F
1) and (F2) are operated to set the capacity of the compressor (1) to a minimum step of 33%, and the outdoor electric expansion valves (8a1) to (8b2)
Are fully opened, the indoor electric expansion valves (13),... Are fully closed, and the overload control valve (SVS) of the heating overload control circuit (11e) is controlled to open. And step S
At T4, the residual pump down operation is performed until one minute elapses, and when one minute elapses, the process proceeds to step ST5. That is, the liquid refrigerant stored in the outdoor heat exchangers (6a) and (6b) and the auxiliary heat exchanger (6c) is almost recovered to the receiver (9).

【0063】ステップST5では、以下のように待機運
転の制御を行う。つまり、室外ファン(F1),(F
2)を停止させ、圧縮機(1)を停止させるとともに、
室内電動膨張弁(13),…及び室外電動膨張弁(8a
1)〜(8b2)はいずれも全閉とする一方、暖房過負荷
制御回路(11e)の過負荷制御弁(SVS)のみ開くよ
う制御する。そして、ステップST6で、3分間が経過
したか否かを判別して、3分間が経過すると、ステップ
ST7に進む。すなわち、レシーバ(9)内の冷媒圧力
が上昇して、ガス冷媒が音響と共に逆流することがある
のを防止するようにしている。
In step ST5, the standby operation is controlled as follows. That is, the outdoor fans (F1), (F
2) to stop the compressor (1),
The indoor electric expansion valve (13), ... and the outdoor electric expansion valve (8a
1) to (8b2) are controlled to be fully closed while only the overload control valve (SVS) of the heating overload control circuit (11e) is opened. Then, in step ST6, it is determined whether or not three minutes have elapsed. When three minutes have elapsed, the process proceeds to step ST7. That is, the refrigerant pressure in the receiver (9) is prevented from rising, and the gas refrigerant is prevented from flowing back together with the sound.

【0064】さらに、ステップST7で、暖房過負荷制
御回路(11e)の過負荷制御弁(SVS)を閉じ、他の
機器は上記待機運転の制御状態のままに制御する停止制
御を行う。
Further, at step ST7, the overload control valve (SVS) of the heating overload control circuit (11e) is closed, and the other devices perform stop control for controlling the other devices in the standby operation control state.

【0065】上記ステップST3及び4の制御により、
残留運転制御手段(51A)が構成され、ステップST
7の制御により、停止制御手段(52A)が構成されて
いる。
Under the control of steps ST3 and ST4,
The residual operation control means (51A) is constituted, and step ST
The control of 7 constitutes a stop control means (52A).

【0066】また、ステップST3及びST4の制御中
の過負荷制御弁(SVS)を開く制御により、残留運転制
御手段(51A)の機能が構成されている。
The control of opening the overload control valve (SVS) during the control of steps ST3 and ST4 constitutes the function of the residual operation control means (51A).

【0067】さらに、ステップST5及びST6の制御
により、待機運転制御手段(53A)が構成されてい
る。
Further, the standby operation control means (53A) is constituted by the control in steps ST5 and ST6.

【0068】したがって、上記第1実施例の冷房運転中
の制御では、空気調和装置の冷房運転中、空気調和装置
の運転終了時や各室内ユニット(Y1),(Y2),…
がいずれもサーモオフのときなどに、圧縮機(1)の停
止指令がなされると、停止制御手段(52A)により各
弁を閉じて圧縮機(1)を停止させる前に、残留運転制
御手段(51A)により、所定時間(上記実施例では1
分間)の間、圧縮機(1)の容量を最低容量33%にし
て、室内電動膨張弁(13),…を閉じ、室外電動膨張
弁(8a1)〜(8b2)を全開にして、残留ポンプダウン
運転が行われる。つまり、冷房運転中には、室外熱交換
器(6a),(6b)に液冷媒が相当程度貯溜されてい
るので、この状態で、圧縮機(1)を停止させ、各弁を
閉じると、中間圧となっている液ラインと均圧化され低
圧となっている圧縮機(1)の吐出側との差圧によっ
て、室外熱交換器(6a),(6b)に残存する液冷媒
が圧縮機(1)の吐出側に流入し、油分離器(4a),
(4b)から油戻し通路(33)を介して圧縮機(1)
内に流入し、油圧が圧縮機(1)の運転に必要な所定値
まで達しないために差圧センサ(63QL)の作動による
異常停止や液圧縮を生じる虞れがある。
Therefore, in the control during the cooling operation of the first embodiment, during the cooling operation of the air conditioner, at the end of the operation of the air conditioner, and at the indoor units (Y1), (Y2),.
When a stop command for the compressor (1) is issued, for example, when the thermostat is turned off, the residual operation control means (52) is closed before the stop control means (52A) closes each valve to stop the compressor (1). 51A), a predetermined time (1 in the above embodiment)
), The capacity of the compressor (1) is set to the minimum capacity of 33%, the indoor electric expansion valves (13), ... are closed, the outdoor electric expansion valves (8a1) to (8b2) are fully opened, and the residual pump is opened. Down operation is performed. In other words, during the cooling operation, the liquid refrigerant is considerably stored in the outdoor heat exchangers (6a) and (6b). In this state, when the compressor (1) is stopped and each valve is closed, The liquid refrigerant remaining in the outdoor heat exchangers (6a) and (6b) is compressed by the differential pressure between the liquid line at the intermediate pressure and the discharge side of the compressor (1) at the equalized pressure. Flows into the discharge side of the machine (1), the oil separator (4a),
Compressor (1) from (4b) via oil return passage (33)
And the hydraulic pressure does not reach a predetermined value required for the operation of the compressor (1), which may cause an abnormal stop or liquid compression due to the operation of the differential pressure sensor (63QL).

【0069】これに対して、上記実施例における冷房運
転の制御では、残留運転制御手段(51A)により、残
留ポンプダウン運転が行われ、室外熱交換器(6a),
(6b)の液冷媒がレシーバ(9)に回収されて、この
状態で、停止制御手段(52A)により、各弁が閉じら
れるので、圧縮機(1)の停止中、液ライン側から圧縮
機(1)の吐出側への液冷媒の逆流が阻止される。よっ
て、上述の異常停止や液圧縮等を有効に防止することが
できる。
On the other hand, in the control of the cooling operation in the above embodiment, the residual pump down operation is performed by the residual operation control means (51A), and the outdoor heat exchanger (6a),
The liquid refrigerant of (6b) is collected in the receiver (9), and in this state, each valve is closed by the stop control means (52A). The backflow of the liquid refrigerant to the discharge side in (1) is prevented. Therefore, the above-described abnormal stop, liquid compression, and the like can be effectively prevented.

【0070】また、暖房過負荷制御回路(11e)を有
する空気調和装置では、上記残留運転制御手段(51
A)による残留ポンプダウン運転時に、過負荷制御弁
(SVS)を開いておくことで、補助熱交換器(6c)に
残留している液冷媒をもレシーバ(9)に回収すること
ができ、圧縮機(1)の液戻りをより確実に防止するこ
とができる。
In the air conditioner having the heating overload control circuit (11e), the residual operation control means (51)
By opening the overload control valve (SVS) during the residual pump down operation according to A), the liquid refrigerant remaining in the auxiliary heat exchanger (6c) can also be recovered in the receiver (9), The liquid return of the compressor (1) can be more reliably prevented.

【0071】特に、残留運転制御手段(51A)の制御
が終了した後、待機運転制御手段(53A)により、停
止制御手段(52A)の制御をさらに一定時間(上記実
施例では3分間)の間待機させ、その間暖房過負荷制御
回路(11e)の過負荷制御弁(SVS)を開くことで、
上記残留ポンプダウン運転によりレシーバ(9)内の圧
力が上昇しても、待機制御中にガス冷媒が大量に吐出側
に脱出するのが許容され、均圧化が図られる。したがっ
て、閉じられた弁からガス冷媒が大きな騒音と共に逆流
するのを防止しうるという利点がある。
In particular, after the control of the residual operation control means (51A) is completed, the control of the stop control means (52A) is further controlled by the standby operation control means (53A) for a certain period of time (3 minutes in the above embodiment). By waiting, and by opening the overload control valve (SVS) of the heating overload control circuit (11e) during that time,
Even if the pressure in the receiver (9) increases due to the residual pump-down operation, a large amount of gas refrigerant is allowed to escape to the discharge side during standby control, and pressure equalization is achieved. Therefore, there is an advantage that the gas refrigerant can be prevented from flowing back together with the loud noise from the closed valve.

【0072】さらに、上記第1実施例のごとく、暖房過
負荷制御回路(11e)に液封防止回路(40)を付設
し、高圧制御弁(41)を介設することで、大量の液冷
媒が貯溜されたレシーバ(9)内の圧力が上昇しても、
徐々に冷媒が補助熱交換器(6c)側に逃れ、レシーバ
(9)等の機器類の破損を防止しうる利点がある。
Further, as in the first embodiment, the heating overload control circuit (11e) is provided with a liquid-seal prevention circuit (40) and a high-pressure control valve (41) is interposed between the heating overload control circuit (11e) and a large amount of liquid refrigerant. Even if the pressure in the receiver (9) where
There is an advantage that the refrigerant gradually escapes to the auxiliary heat exchanger (6c) side, and damage to devices such as the receiver (9) can be prevented.

【0073】次に、第1実施例における暖房運転中の制
御について説明する。
Next, control during the heating operation in the first embodiment will be described.

【0074】図5は暖房運転中における制御内容を示
し、ステップSR1で、暖房運転を行っている間、ステ
ップSR2の判別で、停止指令があると、ステップSR
3に移行して、室外ファン(F1),(F2)を運転
し、圧縮機(1)の容量を最低容量33%に、室外電動
膨張弁(8a1)〜(8b2)を全閉にし、各室内電動膨張
弁(13),…を小開度(200パルス)に開くととも
に、暖房過負荷制御回路(11e)の過負荷制御弁(S
VS)を開いて、各室内熱交換器(12),…及び補助熱
交換器(6c)に残存する液冷媒をレシーバ(9)側に
逃す。
FIG. 5 shows the contents of the control during the heating operation. In step SR1, while the heating operation is being performed, if a stop command is issued in step SR2, a step SR1 is issued.
3, the outdoor fans (F1) and (F2) are operated, the capacity of the compressor (1) is reduced to a minimum capacity of 33%, and the outdoor electric expansion valves (8a1) to (8b2) are fully closed. The indoor electric expansion valves (13),... Are opened to a small opening (200 pulses), and the overload control valve (S) of the heating overload control circuit (11e) is opened.
VS), and the liquid refrigerant remaining in each of the indoor heat exchangers (12),... And the auxiliary heat exchanger (6c) is released to the receiver (9).

【0075】次に、ステップSR4で、1分間が経過す
ると、ステップSR5に進んで、室外ファン(F1),
(F2)及び圧縮機(1)の運転を停止させ、室外電動
膨張弁(8a1)〜(8b2)を全閉にし、各室内電動膨張
弁(13),…を微小開度(200パルス)に開くとと
もに、暖房過負荷制御回路(11e)の過負荷制御弁
(SVS)を開いて、レシーバ(9)上部からのガス冷媒
の流出を許容する。
Next, when one minute has elapsed in step SR4, the process proceeds to step SR5, where the outdoor fan (F1),
(F2) and the operation of the compressor (1) are stopped, the outdoor electric expansion valves (8a1) to (8b2) are fully closed, and the indoor electric expansion valves (13),. At the same time, the overload control valve (SVS) of the heating overload control circuit (11e) is opened to allow the gas refrigerant to flow out from the upper portion of the receiver (9).

【0076】そして、ステップSR6で、3分間の待機
を行った後、ステップSR7に進んで、室外ファン(F
1),(F2)及び圧縮機(1)の運転は停止し、室外
電動膨張弁(8a1)〜(8b2)を全閉に、室内電動膨張
弁(13),…を微小開度に開いたままで、暖房過負荷
制御回路(11e)の過負荷制御弁(SVS)を閉じて、
停止状態とする。
Then, after waiting for 3 minutes in step SR6, the process proceeds to step SR7, where the outdoor fan (F
1), (F2) and the operation of the compressor (1) are stopped, the outdoor electric expansion valves (8a1) to (8b2) are fully closed, and the indoor electric expansion valves (13),. Until the overload control valve (SVS) of the heating overload control circuit (11e) is closed,
Stop.

【0077】以上のフローにおいて、ステップSR3及
び4の制御により、残留運転制御手段(51B)が構成
され、ステップSR4の制御により、停止制御手段(5
2B)が構成されている。
In the above flow, the residual operation control means (51B) is constituted by the control of steps SR3 and SR4, and the stop control means (5) is controlled by the control of step SR4.
2B).

【0078】また、ステップSR3の過負荷制御弁(S
VS)を開く制御により、残留運転制御手段(51B)の
制御が構成されている。
Further, the overload control valve (S
The control of the residual operation control means (51B) is constituted by the control for opening VS).

【0079】さらに、ステップSR5及び6の制御によ
り、待機運転制御手段(53B)が構成されている。
Further, the standby operation control means (53B) is constituted by the control of steps SR5 and SR6.

【0080】したがって、上記実施例の暖房運転中の制
御では、停止指令を受けたとき、残留運転制御手段(5
1B)により、所定時間(上記実施例では1分間)の
間、圧縮機(1)を低容量に(上記実施例では33%)
して室外電動膨張弁(8a1)〜(8b2)を閉じ、室内電
動膨張弁(13),…を開く(上記実施例では200パ
ルス)ように制御されるので、上記冷房運転中の冷媒の
流れとは逆の流れで、室内熱交換器(12),…に貯溜
していた液冷媒がレシーバ(9)に回収される。したが
って、その後停止制御手段(52B)により、室外電動
膨張弁(8a1)〜(8b2)を閉じ、室内電動膨張弁(1
3),…を微小開度以下に閉じて、圧縮機(1)を停止
させるよう制御されても、室内熱交換器(12),…側
から液冷媒が圧縮機(1)の吐出側に戻ることがなく、
よって、油圧の差圧センサ(63QL)の作動による異常
停止や液圧縮を有効に防止することができるのである。
Therefore, in the control during the heating operation in the above embodiment, when the stop command is received, the residual operation control means (5)
1B), the compressor (1) is reduced in capacity (33% in the above embodiment) for a predetermined time (1 minute in the above embodiment).
Are controlled so that the outdoor electric expansion valves (8a1) to (8b2) are closed and the indoor electric expansion valves (13),... Are opened (200 pulses in the above embodiment). The liquid refrigerant stored in the indoor heat exchangers (12),... Is recovered by the receiver (9). Therefore, thereafter, the outdoor electric expansion valves (8a1) to (8b2) are closed by the stop control means (52B), and the indoor electric expansion valve (1) is closed.
3) are closed to a small opening or less and the compressor (1) is stopped so that the liquid refrigerant flows from the indoor heat exchangers (12), ... to the discharge side of the compressor (1). Without going back,
Therefore, abnormal stop and liquid compression due to the operation of the hydraulic differential pressure sensor (63QL) can be effectively prevented.

【0081】なお、上記実施例では、ステップSR3の
制御で、室内電動膨張弁(13),…を微小開度(20
0パルス)に開くようにしたが、本発明はかかる実施例
に限定されるものではなく、各室内電動膨張弁(1
3),…を全開に開くようにしてもよい。その場合、大
開度に開くほうが液冷媒の回収作用は顕著となるが、室
内電動膨張弁(13),…が微小開度にしか開かれてい
なくても、ある程度レシーバ(9)に回収できれば、ガ
ス側連絡配管(11b)が大径であることから、圧縮機
(1)の停止後にガス側連絡配管(11b)を介して多
少の液冷媒が逆流しても十分連絡配管(11b)内で吸
収でき、圧縮機(1)の液戻りが問題となることはな
い。
In the above embodiment, the indoor electric expansion valves (13),.
(0 pulse), but the present invention is not limited to this embodiment, and each indoor electric expansion valve (1
3),... May be fully opened. In this case, the operation of recovering the liquid refrigerant becomes more remarkable when opened to a large opening, but if the indoor electric expansion valves (13),. Since the gas side communication pipe (11b) has a large diameter, even if a small amount of liquid refrigerant flows backward through the gas side communication pipe (11b) after the compressor (1) is stopped, it is sufficient in the communication pipe (11b). It can be absorbed and liquid return of the compressor (1) does not pose a problem.

【0082】また、暖房過負荷制御回路(11e)を設
け、補助熱交換器(6c)を備えたものでは、残留運転
制御手段(51B)の残留ポンプダウン運転中、過負荷
制御弁(SVS)を開くよう制御することで、補助熱交換
器(6c)の液冷媒をレシーバ(9)に回収でき、異常
停止や液圧縮等の防止効果が大となる。
In the apparatus provided with the heating overload control circuit (11e) and the auxiliary heat exchanger (6c), the overload control valve (SVS) is used during the residual pump down operation of the residual operation control means (51B). , The liquid refrigerant in the auxiliary heat exchanger (6c) can be recovered by the receiver (9), and the effect of preventing abnormal stop, liquid compression, and the like is increased.

【0083】さらに、残留運転制御手段(51B)の制
御の終了後、待機運転制御手段(53B)により、さら
に一定時間(上記実施例では3分間)の間、停止制御手
段(52B)の制御を待機させ、室外電動膨張弁(8a
1)〜(8b2)を閉じるとともに、暖房過負荷制御回路
(11e)の過負荷制御弁(SVS)のみを開いて、圧縮
機(1)を停止させるように制御した場合、液冷媒の回
収によりレシーバ(9)内のガス冷媒圧力が上昇したと
きにも、レシーバ(9)内のガス冷媒を圧縮機(1)の
吐出側に流出させて、騒音の発生を招くことなく、均圧
化を図ることができる。
Further, after the end of the control of the residual operation control means (51B), the standby operation control means (53B) controls the stop control means (52B) for a further fixed time (3 minutes in the above embodiment). Wait for the outdoor electric expansion valve (8a
1) to (8b2) are closed, and only the overload control valve (SVS) of the heating overload control circuit (11e) is opened to control the compressor (1) to stop. Even when the pressure of the gas refrigerant in the receiver (9) rises, the gas refrigerant in the receiver (9) flows out to the discharge side of the compressor (1) to equalize the pressure without causing noise. Can be planned.

【0084】なお、上記実施例における停止制御手段
(52B)及び待機制御手段(53B)では、室内電動
膨張弁(13),…を微小開度に開くようにしたが、本
発明はかかる実施例に限定されるものではなく、各室内
電動膨張弁(13),…を閉じるようにしてもよい。
In the stop control means (52B) and the standby control means (53B) in the above-described embodiment, the indoor electric expansion valves (13),... Are opened to a minute opening. The indoor electric expansion valves (13),... May be closed.

【0085】次に、第2実施例について説明する。図6
は第2実施例における空気調和装置の冷媒配管系統を示
す。本発明の特徴として、上記リキッドインジェクショ
ンバイパス路(11f)の液ライン側は、暖房過負荷制
御回路(11e)の過負荷制御開閉弁(SVS)−レシー
バ(9)間の一部位に接続されている。その他の構成
は、上記第1実施例と同様である。
Next, a second embodiment will be described. FIG.
Represents a refrigerant piping system of the air conditioner in the second embodiment. As a feature of the present invention, the liquid line side of the liquid injection bypass passage (11f) is connected to a portion of the heating overload control circuit (11e) between the overload control on-off valve (SVS) and the receiver (9). I have. Other configurations are the same as in the first embodiment.

【0086】そして、この場合、残留運転制御手段(5
1A)の残留ポンプダウン運転制御の間、インジェクシ
ョン開閉弁(SVL)を開き、レシーバ(9)上部のガス
冷媒をアキュムレータ(10)側に吸入させるようにし
ている。
In this case, the residual operation control means (5
During the residual pump down operation control of 1A), the injection on-off valve (SVL) is opened so that the gas refrigerant above the receiver (9) is sucked into the accumulator (10) side.

【0087】したがって、本第2実施例では、インジェ
クション開閉弁(SVL)を開くことにより、レシーバ
(9)上部のガス冷媒が吸入側に吸い込まれ、レシーバ
(9)内のガス圧力が低下するので、液冷媒のレシーバ
(9)への流入が容易となり、短時間の残留ポンプダウ
ン運転でも、十分な液冷媒を回収することができる。
Therefore, in the second embodiment, by opening the injection on-off valve (SVL), the gas refrigerant above the receiver (9) is sucked into the suction side, and the gas pressure in the receiver (9) decreases. In addition, the flow of the liquid refrigerant into the receiver (9) is facilitated, and sufficient liquid refrigerant can be collected even with a short residual pump-down operation.

【0088】すなわち、特に外気温度が低い状態での冷
房運転時、圧縮機(1)が停止される際に、冷媒回収に
よりレシーバ(9)のガス圧力が上昇すると、冷媒回路
(14)の高圧側圧力が過上昇して上記高圧保護スイッ
チ(63H)の作動による装置の異常停止(高圧カッ
ト)を招く虞れが生じるが、レシーバ(9)内のガス圧
力が低下することで、かかる高圧カットを招くことな
く、残留ポンプダウン運転を行うことができるのであ
る。
That is, when the compressor (1) is stopped and the gas pressure of the receiver (9) rises due to the refrigerant recovery during the cooling operation particularly when the outside air temperature is low, the high pressure of the refrigerant circuit (14) is increased. An excessive rise in the side pressure may cause an abnormal stop (high-pressure cut) of the device due to the operation of the high-pressure protection switch (63H). However, when the gas pressure in the receiver (9) decreases, the high-pressure cut may occur. Thus, the residual pump down operation can be performed without inducing.

【0089】なお、上記各実施例では、複数の室内ユニ
ット(Y1),(Y2),…を有する空気調和装置を例
にとったが、本発明はかかる実施例に限定されるもので
はなく、例えば単一の室内ユニットに単一の室内熱交換
器を配置したものについても適用しうるものである。
In each of the above embodiments, an air conditioner having a plurality of indoor units (Y1), (Y2),... Has been taken as an example. However, the present invention is not limited to such an embodiment. For example, the present invention is also applicable to an arrangement in which a single indoor heat exchanger is arranged in a single indoor unit.

【0090】また、本発明は、圧縮機(1)の容量をイ
ンバータにより周波数制御するようにしたものにも適用
しうる。
The present invention is also applicable to a compressor (1) in which the capacity is frequency-controlled by an inverter.

【0091】次に、本発明の第3実施例について、説明
する。
Next, a third embodiment of the present invention will be described.

【0092】図7のフロ―チャ―トは、第3実施例に係
る暖房運転中の制御内容を示し、サーモオフ又はリモコ
ン装置からの指令による停止指令があった場合、ステッ
プSP1で、上記吐出管センサ(Thd)で検出される吐
出管温度Tdが所定温度95℃よりも低いか否かを判別
して、Td<95℃であれば、ステップSP2に進ん
で、外気温度Toが所定温度−5℃以下か否かを判別
し、To≦−5℃でなければ、ステップSP3に進ん
で、圧縮機(1)の運転開始から第1設定時間(10分
間)以内か否かを判別する。そして、圧縮機(1)の運
転開始から10分以内であれば、ステップSP6に進ん
で、アキュムレータ(10)内の液冷媒を排出するに十
分な時間として設定された長時間(ここでは10分間)
の間、上記第1実施例とほぼ同様の残留ポンプダウン運
転を行う(図5のステップSR3参照)。一方、上記ス
テップSP3の判別で、圧縮機(1)の運転開始から1
0分間が経過したときには、さらに、ステップSP4
で、デフロスト又は油回収運転の終了から20分以内か
否かを判別し、20分以内の場合のみ、ステップSP5
に進んで、残留ポンプダウン運転を行う。
The flowchart of FIG. 7 shows the control contents during the heating operation according to the third embodiment. When a stop command is issued by a thermo-off or a command from a remote control device, at step SP1, the discharge pipe is turned on. It is determined whether or not the discharge pipe temperature Td detected by the sensor (Thd) is lower than a predetermined temperature of 95 ° C., and if Td <95 ° C., the process proceeds to step SP2, where the outside air temperature To is reduced to the predetermined temperature −5. It is determined whether or not the temperature is equal to or lower than 0 ° C., and if To ≦ −5 ° C., the process proceeds to step SP3, and determines whether or not the operation of the compressor (1) is within the first set time (10 minutes). If it is within 10 minutes from the start of the operation of the compressor (1), the process proceeds to step SP6, where a long time (here, 10 minutes) set as a time sufficient to discharge the liquid refrigerant in the accumulator (10) is used. )
During this period, a residual pump down operation substantially similar to that of the first embodiment is performed (see step SR3 in FIG. 5). On the other hand, in the determination in step SP3, one cycle from the start of operation of the compressor (1)
If 0 minute has elapsed, the process further proceeds to step SP4
Then, it is determined whether or not it is within 20 minutes from the end of the defrost or oil recovery operation.
To perform the residual pump down operation.

【0093】そして、上記ステップSP5の残留ポンプ
ダウン運転が終了したとき、上記ステップSP1の判別
でTd≧95℃のとき、又は上記ステップSP4の判別
でデフロスト又は油回収運転から20分以内のときに
は、ステップSP6に進んで、圧縮機(1)を停止させ
る。
When the residual pump down operation in step SP5 is completed, when Td ≧ 95 ° C. in the determination in step SP1, or when the defrost or oil recovery operation is within 20 minutes in the determination in step SP4, Proceeding to step SP6, the compressor (1) is stopped.

【0094】上記ステップSP3からSP5に進む制御
により、残留運転制御手段(51)が構成されている。
すなわち、圧縮機(1)の発停が頻繁に繰り返されるよ
うな条件下では、圧縮機(1)やアキュムレータ(1
0)に液冷媒蓄積され、圧縮機(1)内の油が液冷媒に
よって希釈され、潤滑不良による圧縮機(1)の故障等
をきたす虞れがあるが、このように一定時間(10分
間)の間残留ポンプダウン運転を行ってから圧縮機
(1)を停止させることで、アキュムレータ(10)に
貯溜された液冷媒をほぼ完全にレシーバ(9)に回収す
ることができ、上述のような不具合を解消することがで
きるのである。
The control that proceeds from step SP3 to step SP5 constitutes a residual operation control means (51).
That is, under the condition that the start / stop of the compressor (1) is frequently repeated, the compressor (1) and the accumulator (1)
0), the oil in the compressor (1) is diluted by the liquid refrigerant, which may cause a failure of the compressor (1) due to poor lubrication. ), The compressor (1) is stopped after the residual pump-down operation is performed, whereby the liquid refrigerant stored in the accumulator (10) can be almost completely recovered in the receiver (9), as described above. Troubles can be eliminated.

【0095】また、ステップSP4からSP5に進む制
御により、残留運転制御手段(51)が構成されてい
る。すなわち、デフロスト運転や油回収運転は、冷媒循
環量を増大させるためにガス冷媒の状態が湿り気味とな
っているので、圧縮機(1)等の液冷媒量が増大してい
る。したがって、残留ポンプダウン運転を行ってから圧
縮機(1)を停止させることで、上述のような油の希釈
等の虞れを有効に解消することができる。
The control that proceeds from step SP4 to step SP5 constitutes a residual operation control means (51). That is, in the defrost operation and the oil recovery operation, the state of the gas refrigerant is slightly wet in order to increase the refrigerant circulation amount, so that the liquid refrigerant amount of the compressor (1) and the like is increasing. Therefore, by stopping the compressor (1) after performing the residual pump-down operation, it is possible to effectively eliminate the risk of oil dilution as described above.

【0096】さらに、ステップSP5の残留ポンプダウ
ン運転中、サーモオン等によって圧縮機(1)の再起動
指令があった場合には、圧縮機(1)を停止させること
なく、そのまま通常暖房運転に移行するようにしてい
る。この制御により、通常運転移行制御手段が構成され
ている。この制御により、圧縮機(1)の停止処理を行
うことによる液冷媒の逆流等を招くことなく、信頼性を
維持しながら、すぐに通常運転を行うことで、空調の快
適性を維持することができる。
Further, during the residual pump-down operation in step SP5, if there is a command to restart the compressor (1) due to thermo-on or the like, the compressor (1) is shifted to the normal heating operation without stopping it. I am trying to do it. This control constitutes a normal operation transition control unit. With this control, the comfort of the air conditioning is maintained by immediately performing the normal operation while maintaining the reliability without causing the liquid refrigerant to flow backward due to the stop processing of the compressor (1). Can be.

【0097】また、上記通常運転移行制御手段により通
常運転に復帰した後に、停止指令があったときには、そ
の前の残留ポンプダウン運転を開始するまでの圧縮機
(1)の連続運転時間と、通常運転復帰後の圧縮機の連
続運転時間とを比較して、両運転時間の和が第1設定時
間(10分間)よりも大きいときには、再び残留運転に
突入することなく、ステップSP6の圧縮機(1)の停
止制御に移行するようにしている。この制御により、残
留運転回避手段(54A)が構成されている(図示せ
ず)。すなわち、このような条件下では、圧縮機(1)
の起動後第1設定時間(10分間)が経過したと同様の
冷媒状態にあり、そのまま圧縮機(1)を停止させて
も、液冷媒量の増大を招く虞れは少ない。したがって、
余分な長時間の残留ポンプダウン運転を回避することに
より、空調の快適性の悪化を回避することができる。
When a stop command is issued after returning to the normal operation by the normal operation transition control means, the continuous operation time of the compressor (1) before the start of the residual pump down operation before the normal operation is determined. Comparing with the continuous operation time of the compressor after returning to operation, if the sum of both operation times is longer than the first set time (10 minutes), the compressor ( The process shifts to the stop control of 1). This control constitutes a residual operation avoiding means (54A) (not shown). That is, under such conditions, the compressor (1)
The state of the refrigerant is the same as when the first set time (10 minutes) has elapsed after the start of, and even if the compressor (1) is stopped as it is, there is little possibility that the amount of the liquid refrigerant will increase. Therefore,
By avoiding an excessively long residual pump-down operation, it is possible to avoid deterioration in air conditioning comfort.

【0098】ここで、上記残留ポンプダウン運転中、残
留ポンプダウン運転開始時には、上記第1実施例におけ
る図5のステップSR3と同様に、室外電動膨張弁
(8)を閉じ、室内電動膨張弁(13)を微小開度20
0パルスに開くが、この間、上記低圧センサ(LP)で
検出される低圧側圧力Teを下限圧力(蒸発圧力相当飽
和温度で−15.1〜−19.4℃)と比較し、低圧側
圧力Teが下限圧力以下になると(−19.4℃)室外
電動膨張弁(8)を200パルスだけ開き、低圧側圧力
Teが下限圧力(−15.1℃)以上に復帰すると室外
電動膨張弁(8)を閉じ、10分間の間、この開度制御
を繰り返す。この制御により、残留運転制御手段(5
1)の機能が構成されている。すなわち、残留ポンプダ
ウン運転中に、吸入ライン中の冷媒量が低下して低圧側
圧力が過低下すると、アキュムレータ(10)等の液冷
媒が十分排出されないのに、低圧カット等による圧縮機
(1)の停止を招くので、そのままでは長時間(10分
間)の残留ポンプダウン運転を継続できない。しかし、
かかる室外電動膨張弁(8)の開閉制御を行うことで、
長時間の残留ポンプダウン運転を確保することができ
る。したがって、アキュムレータ(10)等の液冷媒を
十分排出することができ、油の希釈等の虞れを有効に防
止することができる。
Here, during the residual pump down operation and at the start of the residual pump down operation, the outdoor electric expansion valve (8) is closed and the indoor electric expansion valve (8) is closed, as in step SR3 of FIG. 5 in the first embodiment. 13) is a minute opening 20
During this period, the low pressure side Te detected by the low pressure sensor (LP) is compared with a lower limit pressure (−15.1 to −19.4 ° C. at a saturation temperature corresponding to the evaporating pressure). When Te falls below the lower limit pressure (−19.4 ° C.), the outdoor electric expansion valve (8) is opened by 200 pulses, and when the low pressure side pressure Te returns to the lower limit pressure (−15.1 ° C.) or more, the outdoor electric expansion valve (8) opens. 8) is closed and this opening control is repeated for 10 minutes. By this control, the residual operation control means (5
The function of 1) is configured. That is, during the residual pump-down operation, if the amount of refrigerant in the suction line decreases and the low-pressure side pressure drops excessively, the compressor (1) by low-pressure cut or the like will not be able to sufficiently discharge the liquid refrigerant such as the accumulator (10). ), The residual pump-down operation for a long time (10 minutes) cannot be continued as it is. But,
By performing the open / close control of the outdoor electric expansion valve (8),
Long-term residual pump down operation can be ensured. Therefore, the liquid refrigerant such as the accumulator (10) can be sufficiently discharged, and the possibility of oil dilution or the like can be effectively prevented.

【0099】なお、この第3実施例では、さらに低圧側
圧力Teが−25.5℃以下になったときには均圧ホッ
トガスバイパス路(11d)の均圧用開閉弁(SVP)を
開き、低圧側圧力Teが−19.4℃以上に回復する
と、均圧用開閉弁(SVP)を閉じるように制御すること
で、さらに圧縮機(1)の保護を行うようになされてい
る。
In the third embodiment, when the low-pressure side pressure Te further drops below −25.5 ° C., the equalizing on-off valve (SVP) of the equalizing hot gas bypass passage (11d) is opened, and the low-pressure side When the pressure Te recovers to −19.4 ° C. or higher, the compressor (1) is further protected by controlling to close the equalizing on-off valve (SVP).

【0100】また、上記ステップSP1からSP6に移
行する制御により、残留運転回避手段(54B)が構成
されている。すなわち、吐出管温度Tdが所定温度95
℃以上の状態では、冷媒は湿り状態ではなく乾き状態で
あり、圧縮機(1)等への液冷媒の蓄積は少ないので、
残留運転を行わなくても油の希釈等の虞れはほとんどな
いことになる。したがって、残留運転回避手段(54
B)により、かかる条件下では残留運転への突入を回避
することで、余分な残留ポンプダウン運転による空調の
快適性の悪化を回避することができる。
The control for shifting from step SP1 to SP6 constitutes a residual operation avoiding means (54B). That is, the discharge pipe temperature Td is set to the predetermined temperature 95
When the temperature is higher than 0 ° C., the refrigerant is not wet but dry, and the accumulation of the liquid refrigerant in the compressor (1) or the like is small.
Even if the residual operation is not performed, there is almost no danger of oil dilution or the like. Therefore, the residual operation avoiding means (54
According to B), it is possible to avoid the entry into the residual operation under such conditions, thereby avoiding the deterioration of the comfort of the air conditioning due to the extra residual pump down operation.

【0101】さらに、上記ステップSP1の制御の代わ
りに、圧縮機(1)のドーム内の油の温度が所定温度
(例えば−10℃)よりも低いか否かによって、上記ス
テップSP2又はSP6に進む制御を行ってもよい。こ
の制御により、残留運転回避手段(54C)が構成され
ている。すなわち、油温度が高い状態では、吐出管温度
Tdが高いときと同様に、冷媒が乾き状態である。した
がって、このような残留運転の回避を行うことで、上述
と同様の効果を発揮することができる。
Further, instead of the control in step SP1, the process proceeds to step SP2 or SP6 depending on whether or not the oil temperature in the dome of the compressor (1) is lower than a predetermined temperature (for example, -10 ° C.). Control may be performed. This control constitutes a residual operation avoiding means (54C). That is, when the oil temperature is high, the refrigerant is in a dry state, as in the case where the discharge pipe temperature Td is high. Therefore, by avoiding such residual operation, the same effect as described above can be exerted.

【0102】[0102]

【発明の効果】以上説明したように、請求項1,3,
6,9の発明によれば、空気調和装置の冷房運転中、停
止指令を受けたとき、所定時間の間、圧縮機を低容量で
運転しながら室内電動膨張弁を閉じ室外電動膨張弁を開
く残留運転を行った後、圧縮機を停止させて室外電動膨
張弁及び室内電動膨張弁を閉じる停止制御を行うように
したので、冷房運転中に室外熱交換器に貯溜されている
液冷媒がレシーバに回収された状態で、圧縮機が停止し
各弁が閉じられ、圧縮機の停止中における液ライン側か
ら圧縮機への液冷媒の流入を阻止することができ、よっ
て、油のフォーミングに起因する空気調和装置の異常停
止や液圧縮等を有効に防止することができる。
As described above, claims 1 and 3
According to the invention of the sixth and ninth aspects , when the stop command is received during the cooling operation of the air conditioner, the indoor electric expansion valve is closed and the outdoor electric expansion valve is opened for a predetermined time while the compressor is operated at a low capacity. After performing the residual operation, the compressor is stopped, and the stop control for closing the outdoor electric expansion valve and the indoor electric expansion valve is performed, so that the liquid refrigerant stored in the outdoor heat exchanger during the cooling operation is received by the receiver. When the compressor is stopped, the compressor is stopped and each valve is closed, so that the flow of the liquid refrigerant from the liquid line side to the compressor during the stop of the compressor can be prevented. Abnormal stop of the air conditioner, liquid compression, and the like can be effectively prevented.

【0103】また、請求項1,3の発明によれば、吐出
管と液ラインとの間に補助熱交換器及び開閉機構を介し
て補助バイパス路を設け、残留運転時に、補助用バイパ
ス路の開閉機構を開くようにしたので、補助熱交換器に
残留している液冷媒をレシーバに回収することで、圧縮
機への液戻りをより確実に防止することができる。
According to the first and third aspects of the present invention, the auxiliary bypass is provided between the discharge pipe and the liquid line via the auxiliary heat exchanger and the opening / closing mechanism. Since the opening and closing mechanism is opened, the liquid refrigerant remaining in the auxiliary heat exchanger is recovered in the receiver, so that the liquid can be more reliably prevented from returning to the compressor.

【0104】更に、請求項1の発明によれば、補助バイ
パス路の出口側端部をレシーバ上部に接続し、残留運転
の終了後停止制御を行う前に、さらに一定時間の間、室
外電動膨張弁を閉じるとともに補助バイパス路の開閉機
構のみを開いて圧縮機を停止させる待機制御を行うよう
にしたので、レシーバの上部に接続された補助バイパス
路を介してガス冷媒を圧縮機の吐出側に流出させて、圧
縮機の吐出側と均圧化することで、閉じられた弁からガ
ス冷媒が大きな騒音と共に逆流するのを防止することが
できる。
Further, according to the first aspect of the invention, the outlet side end of the auxiliary bypass is connected to the upper portion of the receiver, and after the residual operation is completed, before the stop control is performed, the outdoor electric expansion is further performed for a certain period of time. Since the valve is closed and the standby control for stopping the compressor by opening only the opening / closing mechanism of the auxiliary bypass is performed, the gas refrigerant is transferred to the discharge side of the compressor via the auxiliary bypass connected to the upper part of the receiver. By causing the gas refrigerant to flow out and equalize the pressure with the discharge side of the compressor, it is possible to prevent the gas refrigerant from flowing back together with the loud noise from the closed valve.

【0105】請求項2,4,7,10の発明によれば、
空気調和装置の暖房運転中に停止指令を受けたとき、圧
縮機を低容量で運転しながら室外電動膨張弁を閉じ室内
電動膨張弁を開くように制御する残留運転を行った後、
圧縮機を停止させて室外電動膨張弁を閉じ室内電動膨張
弁を微小開度以下に閉じる停止制御を行うようにしたの
で、圧縮機の停止前に室内熱交換器に貯溜されていた液
冷媒がレシーバに回収され、圧縮機への液戻りを有効に
防止することができる。
According to the invention of claims 2 , 4 , 7 , and 10 ,
When a stop command is received during the heating operation of the air conditioner, after performing a residual operation of controlling to close the outdoor electric expansion valve and open the indoor electric expansion valve while operating the compressor at a low capacity,
Since the compressor is stopped, the outdoor electric expansion valve is closed, and the indoor electric expansion valve is controlled to stop at a small opening or less, the liquid refrigerant stored in the indoor heat exchanger before the compressor is stopped is removed. The liquid collected by the receiver can be effectively prevented from returning to the compressor.

【0106】また、請求項2,4の発明によれば、圧縮
機の吐出管と液ラインとを補助熱交換器及び開閉機構を
介してバイパス接続する補助バイパス路を設け、残留運
転中、補助バイパス路の開閉機構を開くようにしたの
で、残留運転中に補助熱交換器の液冷媒をレシーバに回
収することで、圧縮機への液戻りを有効に防止すること
ができ、よって、空気調和装置の異常停止や液圧縮等を
防止することができる。
According to the second and fourth aspects of the present invention, an auxiliary bypass is provided for bypass-connecting the discharge pipe of the compressor and the liquid line via the auxiliary heat exchanger and the opening / closing mechanism. Since the opening / closing mechanism of the bypass passage is opened, the liquid refrigerant of the auxiliary heat exchanger is recovered to the receiver during the residual operation, so that the liquid can be effectively prevented from returning to the compressor. It is possible to prevent abnormal stop of the device, liquid compression, and the like.

【0107】更に、請求項2の発明によれば、残留運転
の終了後停止制御の前に、一定時間の間、室外電動膨張
弁を閉じるとともに補助バイパス路の開閉機構のみを開
いて圧縮機を停止させる待機制御を行うようにしたの
で、残留運転中に液冷媒の回収によりレシーバ内のガス
冷媒圧力が上昇したときにも、レシーバ内のガス冷媒を
圧縮機の吐出側に流出させ均圧化させることにより、閉
じられた弁からガス冷媒が大きな騒音と共に逆流するの
を防止することができる。
Further, according to the second aspect of the present invention, after the residual operation is completed and before the stop control, the outdoor electric expansion valve is closed for a predetermined time and only the opening and closing mechanism of the auxiliary bypass is opened to start the compressor. Since the standby control to stop is performed, even when the gas refrigerant pressure in the receiver increases due to the recovery of the liquid refrigerant during the residual operation, the gas refrigerant in the receiver flows out to the discharge side of the compressor to equalize the pressure. By doing so, it is possible to prevent the gas refrigerant from flowing backward together with loud noise from the closed valve.

【0108】請求項3,4,5の発明によれば、補助バ
イパス路の開閉機構をバイパスする液封防止回路を設
け、この液封防止回路に補助バイパス路の下流側の圧力
が上流側の圧力よりも所定値以上高くなると開く高圧制
御弁を介設したので、残留運転により大量の液冷媒が貯
溜されたレシーバ内の圧力が上昇しても、液封防止回路
の高圧制御弁を介して液冷媒を徐々に補助熱交換器側に
流出させることにより、レシーバ内等の圧力上昇を抑制
することができ、よって、機器類の破損を有効に防止す
ることができる。
According to the third , fourth and fifth aspects of the present invention, a liquid-seal prevention circuit is provided for bypassing the opening / closing mechanism of the auxiliary bypass passage. Since the high pressure control valve which opens when the pressure becomes higher than the predetermined value is provided through the high pressure control valve of the liquid ring prevention circuit even if the pressure in the receiver in which a large amount of liquid refrigerant is stored due to the residual operation increases. By gradually flowing the liquid refrigerant to the auxiliary heat exchanger side, a pressure increase in the receiver or the like can be suppressed, and thus, damage to the devices can be effectively prevented.

【0109】請求項6,7の発明によれば、圧縮機の起
動後、第1設定時間が経過するまでに停止指令を受けた
ときには、長時間の間残留運転を行うようにしたので、
頻繁に圧縮機の発停が繰り返されるような条件下におい
て、圧縮機やアキュムレータに蓄積された液冷媒をほぼ
レシーバに回収することができ、よって、液冷媒による
油の希釈等による圧縮機の故障を有効に防止することが
できる。
According to the sixth and seventh aspects of the present invention, when the stop command is received before the first set time elapses after the start of the compressor, the residual operation is performed for a long time.
Under conditions where the compressor is repeatedly started and stopped frequently, the liquid refrigerant accumulated in the compressor and the accumulator can be almost recovered to the receiver, and therefore, the failure of the compressor due to dilution of the oil by the liquid refrigerant, etc. Can be effectively prevented.

【0110】請求項8の発明によれば、吐出管と液ライ
ンとの間に補助熱交換器及び開閉機構を介して補助バイ
パス路を設け、残留運転時に、補助用バイパス路の開閉
機構を開くようにしたので、補助熱交換器に残留してい
る液冷媒をレシーバに回収することで、圧縮機への液戻
りをより確実に防止することができる。
According to the eighth aspect of the present invention, the auxiliary bypass is provided between the discharge pipe and the liquid line via the auxiliary heat exchanger and the opening and closing mechanism, and the opening and closing mechanism of the auxiliary bypass is opened during the residual operation. With this configuration, the liquid refrigerant remaining in the auxiliary heat exchanger is collected in the receiver, so that the liquid can be more reliably prevented from returning to the compressor.

【0111】請求項9,10,12の発明によれば、デ
フロスト運転又は油戻し運転の終了から第2設定時間が
経過するまでに圧縮機の停止指令を受けたときには、長
時間の間残留運転を行うようにしたので、空気調和装置
の運転中、特に冷媒が湿り側となるデフロスト又は油戻
し運転が行われてそれほど時間が経過していない際に
も、上記請求項6,7の発明と同様に、圧縮機の故障を
有効に防止することができる。
According to the ninth , tenth , and twelfth aspects of the present invention, when the stop command of the compressor is received from the end of the defrost operation or the oil return operation until the lapse of the second set time, the residual operation is performed for a long time. During the operation of the air-conditioning apparatus, particularly when the defrost or oil return operation in which the refrigerant is on the wet side has not been performed for a long time, the invention according to claims 6 and 7 can be applied. Similarly, failure of the compressor can be effectively prevented.

【0112】請求項11の発明によれば、圧縮機の吐出
管と液ラインとを補助熱交換器及び開閉機構を介してバ
イパス接続する補助バイパス路を設け、残留運転中、補
助バイパス路の開閉機構を開くようにしたので、残留運
転中に補助熱交換器の液冷媒をレシーバに回収すること
で、圧縮機への液戻りを有効に防止することができ、よ
って、空気調和装置の異常停止や液圧縮等を防止するこ
とができる。
According to the eleventh aspect of the present invention, an auxiliary bypass path is provided for bypass-connecting the discharge pipe of the compressor and the liquid line via the auxiliary heat exchanger and the opening / closing mechanism. Since the mechanism is opened, the liquid refrigerant of the auxiliary heat exchanger is recovered to the receiver during the residual operation, so that the liquid can be effectively prevented from returning to the compressor. And liquid compression can be prevented.

【0113】請求項13の発明によれば、残留運転中
に、圧縮機の起動指令があったとき、そのまま通常運転
に移行するようにしたので、圧縮機の停止による液戻り
や空調の快適性の悪化を回避することができる。
According to the thirteenth aspect of the present invention, when there is an instruction to start the compressor during the residual operation, the operation is shifted to the normal operation without any change. Can be avoided.

【0114】請求項14の発明によれば、残留運転から
直接移行された通常運転中に停止指令があった場合、残
留運転前の通常運転の時間と残留運転から移行した通常
運転の時間との和が第1設定時間を越えていれば、残留
運転を行うことなく圧縮機を停止させるようにしたの
で、余分な残留ポンプダウン運転による空調の快適性の
悪化を回避することができる。
According to the fourteenth aspect of the present invention, when a stop command is issued during the normal operation directly shifted from the residual operation, the time of the normal operation before the residual operation and the time of the normal operation shifted from the residual operation are determined. If the sum exceeds the first set time, the compressor is stopped without performing the residual operation, so that it is possible to avoid deterioration in air conditioning comfort due to extra residual pump down operation.

【0115】請求項15の発明によれば、残留運転中、
閉じている側の電動膨張弁を、低圧側圧力が下限圧力以
下のときには微小開度に開き、低圧側圧力が下限圧力よ
りも高いときには閉じる開閉制御を行うようにしたの
で、低圧側圧力が下限圧力以上に維持され、長時間の残
留運転を確保することができ、よって、アキュムレータ
等の液冷媒を十分排出させて、上記各発明の実効を図る
ことができる。
According to the fifteenth aspect , during the residual operation,
When the low-pressure side pressure is lower than the lower limit pressure, the motor-operated expansion valve on the closed side is opened at a minute opening when the low-pressure side pressure is lower than the lower limit pressure, and when the low-pressure side pressure is higher than the lower limit pressure, the open / close control is performed. The pressure is maintained at or above the pressure, and a long-time residual operation can be secured. Therefore, the liquid refrigerant such as the accumulator can be sufficiently discharged, and the effects of the above-described inventions can be achieved.

【0116】請求項16の発明によれば、空気調和装置
の運転中に停止指令を受けたとき、吐出管温度が所定温
度以上のときには、残留運転を行うことなく圧縮機を停
止させるようにしたので、圧縮機等への液冷媒の蓄積が
少ない湿り条件下で、余分な残留運転による空調の快適
性の悪化を回避することができる。
According to the sixteenth aspect , when a stop command is received during operation of the air conditioner, when the discharge pipe temperature is equal to or higher than a predetermined temperature, the compressor is stopped without performing residual operation. Therefore, under the humid condition where the accumulation of the liquid refrigerant in the compressor or the like is small, it is possible to avoid the deterioration of the comfort of the air conditioning due to the extra residual operation.

【0117】請求項17の発明によれば、空気調和装置
の運転中に停止指令を受けたとき、圧縮機の油の温度が
所定温度以上のときには、残留運転を行うことなく圧縮
機を停止させるようにしたので、圧縮機等への液冷媒の
蓄積が少ない湿り条件下で、余分な残留運転による空調
の快適性の悪化を回避することができる。
According to the seventeenth aspect , when a stop command is received during operation of the air conditioner, when the oil temperature of the compressor is equal to or higher than a predetermined temperature, the compressor is stopped without performing residual operation. With this configuration, it is possible to avoid the deterioration of the comfort of the air conditioning due to the extra residual operation under the humid condition where the accumulation of the liquid refrigerant in the compressor or the like is small.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の構成を示す図である。FIG. 1 is a diagram showing a configuration of the present invention.

【図2】第1実施例に係る空気調和装置の冷媒配管系統
図である。
FIG. 2 is a refrigerant piping system diagram of the air conditioner according to the first embodiment.

【図3】第1実施例に係る空気調和装置の電気配線図で
ある。
FIG. 3 is an electric wiring diagram of the air conditioner according to the first embodiment.

【図4】空気調和装置の冷房運転中の制御内容を示すフ
ロ―チャ―ト図である。
FIG. 4 is a flowchart showing control contents during a cooling operation of the air conditioner.

【図5】空気調和装置の暖房運転中の制御内容を示すフ
ロ―チャ―ト図である。
FIG. 5 is a flowchart showing control contents during a heating operation of the air-conditioning apparatus.

【図6】第2実施例に係る空気調和装置の冷媒配管系統
図である。
FIG. 6 is a refrigerant piping system diagram of an air conditioner according to a second embodiment.

【図7】第3実施例に係る空気調和装置の制御内容を示
すフロ―チャ―ト図である。
FIG. 7 is a flowchart showing the control contents of an air conditioner according to a third embodiment.

【符号の説明】[Explanation of symbols]

1 圧縮機 6a,6b 室外熱交換器 6c 補助熱交換器 8a1〜8b2 室外電動膨張弁 9 レシーバ 11e 暖房過負荷制御回路(補助バイパス路) 11f リキッドインジェクションバイパス路 12 室内熱交換器 13 室内電動膨張弁 14 主冷媒回路 40 液封防止回路 41 高圧制御弁 51 残留運転制御手段 52 停止制御手段 53 待機運転制御手段 54 残留運転回避手段 SVS 過負荷制御弁(開閉機構) SVL インジェクション開閉弁(開閉機構) Thd 吐出管センサ(吐出管温度検出手段) LP 低圧センサ(低圧検出手段) DESCRIPTION OF SYMBOLS 1 Compressor 6a, 6b Outdoor heat exchanger 6c Auxiliary heat exchanger 8a1-8b2 Outdoor electric expansion valve 9 Receiver 11e Heating overload control circuit (auxiliary bypass path) 11f Liquid injection bypass path 12 Indoor heat exchanger 13 Indoor electric expansion valve 14 Main refrigerant circuit 40 Liquid seal prevention circuit 41 High pressure control valve 51 Residual operation control means 52 Stop control means 53 Standby operation control means 54 Residual operation avoidance means SVS Overload control valve (opening / closing mechanism) SVL Injection opening / closing valve (opening / closing mechanism) Thd Discharge pipe sensor (discharge pipe temperature detection means) LP Low pressure sensor (low pressure detection means)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 増茂 貴一 大阪府堺市金岡町1304番地 ダイキン工 業株式会社 堺製作所 金岡工場内 (72)発明者 重永 幸雄 大阪府堺市金岡町1304番地 ダイキン工 業株式会社 堺製作所 金岡工場内 (72)発明者 松岡 弘宗 大阪府堺市金岡町1304番地 ダイキン工 業株式会社 堺製作所 金岡工場内 (72)発明者 樋口 晶夫 大阪府堺市金岡町1304番地 ダイキン工 業株式会社 堺製作所 金岡工場内 (56)参考文献 特開 平2−263028(JP,A) 実開 昭52−41556(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25B 1/00 F25B 13/00 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Kiichi Masumo 1304 Kanaokacho, Sakai City, Osaka Daikin Industries, Ltd.Sakai Factory Kanaoka Factory (72) Inventor Yukio Shigenaga 1304, Kanaokacho, Sakai City, Osaka Daikin Industries Inside the Sakai Plant Kanaoka Plant (72) Inventor Hiromune Matsuoka 1304 Kanaoka-cho, Sakai City, Osaka Daikin Industries, Ltd. Inside the Sakai Plant Kanaoka Plant (72) Inventor Akio Higuchi 1304 Kanaoka-cho, Sakai City, Osaka Daikin Plant (56) References JP-A-2-263028 (JP, A) JP 52-41556 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) ) F25B 1/00 F25B 13/00

Claims (17)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 容量可変形圧縮機(1)、室外熱交換器
(6)、室外電動膨張弁(8)、レシーバ(9)、室内
電動膨張弁(13)及び室内熱交換器(12)を順次接
続してなる冷媒回路(14)を備えた空気調和装置にお
いて、 停止指令を受け、上記室内電動膨張弁(13)及び室外
電動膨張弁(8)を閉じて、圧縮機(1)を停止させる
よう制御する停止制御手段(52A)と、 冷房運転中に停止指令を受けたとき、所定時間の間上記
停止制御手段(52A)の作動を待機させ、圧縮機
(1)を低容量にして、室外電動膨張弁(8)を大開度
に開き、室内電動膨張弁(13)を閉じるよう制御する
残留運転制御手段(51A)と 圧縮機(1)の吐出管と液ラインとをバイパス接続する
補助バイパス路(11e)と、 該補助バイパス路(11e)に設けられ、凝縮能力を補
助するための補助熱交換器(6c)と、 補助バイパス路(11e)を開閉するための開閉機構
(SVS)とを備えるとともに、上記 残留運転制御手段(51A)は、所定時間の間上記
補助バイパス路(11e)の開閉機構(SVS)を開くよ
う制御し 上記 補助バイパス路(11e)の出口側端部はレシーバ
(9)の上部に接続されており、上記 残留運転制御手段(51A)の制御の終了後、さら
に一定時間の間停止制御手段(52A)の制御を待機さ
せ、室外電動膨張弁(8)及び室内電動膨張弁(13)
を閉じるとともに、上記補助バイパス路(11e)の開
閉機構(SVS)を開いて、圧縮機(1)を停止させるよ
う制御する待機運転制御手段(53A)を備えたことを
特徴とする空気調和装置の運転制御装置。
1. Variable displacement compressor (1), outdoor heat exchanger (6), outdoor electric expansion valve (8), receiver (9), indoor electric expansion valve (13), and indoor heat exchanger (12) In the air conditioner provided with the refrigerant circuit (14) in which the compressor (1) is sequentially connected, the indoor electric expansion valve (13) and the outdoor electric expansion valve (8) are closed, and the compressor (1) is closed. A stop control means (52A) for controlling to stop, and when a stop command is received during the cooling operation, the operation of the stop control means (52A) is made to stand by for a predetermined time to reduce the capacity of the compressor (1). Te, bypass open outdoor electric expansion valve (8) to the large opening, and the residual operation control means for controlling to close the indoor motor-operated expansion valve (13) (51A), the discharge pipe of the compressor (1) and a liquid line An auxiliary bypass path (11e) to be connected; Provided 11e), together comprise the auxiliary heat exchanger to assist the condensation capacity and (6c), the opening and closing mechanism for opening and closing the auxiliary bypass path (11e) and (SVS), the residual operation control means (51A ) controls to open the closing mechanism (SVS) of the auxiliary bypass passage for a predetermined time (11e), the outlet end of the auxiliary bypass passage (11e) is connected to the top of the receiver (9) after completion of the control of the residual operation control means (51A), to further wait control for a certain time during the stop control means (52A), the outdoor electric expansion valve (8) and the indoor electric expansion valve (13)
And an open / close mechanism (SVS) for the auxiliary bypass passage (11e), and a standby operation control means (53A) for controlling the compressor (1) to stop. Operation control device.
【請求項2】 容量可変形圧縮機(1)、室外熱交換器
(6)、室外電動膨張弁(8)、レシーバ(9)、室内
電動膨張弁(13)及び室内熱交換器(12)を順次接
続してなる冷媒回路(14)を備えた空気調和装置にお
いて、 停止指令を受け、室外電動膨張弁(8)を閉じ、室内電
動膨張弁(13)を微小開度以下に閉じて、圧縮機
(1)を停止させるよう制御する停止制御手段(52
B)と、 暖房運転中に停止指令を受けたとき、所定時間の間上記
停止制御手段(52B)の作動を待機させ、圧縮機
(1)を低容量にして、室外電動膨張弁(8)を閉じ、
室内電動膨張弁(13)を開くよう制御する残留運転制
御手段(51B)と 圧縮機(1)の吐出管と液ラインとをバイパス接続する
補助バイパス路(11e)と、 該補助バイパス路(11e)に設けられ、凝縮能力を補
助するための補助熱交換器(6c)と、上記 補助バイパス路(11e)を開閉するための開閉機
構(SVS)とを備えるとともに、上記 残留運転制御手段(51B)は、所定時間の間上記
補助バイパス路(11e)の開閉機構(SVS)を開くよ
う制御し、 上記 補助バイパス路(11e)の出口側端部はレシーバ
(9)の上部に接続されており、 残留運転制御手段(51B)の制御の終了後、さらに一
定時間の間停止制御手段(52B)の制御を待機させ、
室外電動膨張弁(8)を閉じるとともに、上記補助バイ
パス路(11e)の開閉機構(SVS)を開いて、圧縮機
(1)を停止させるよう制御する待機運転制御手段(5
3B)を備えたことを特徴とする空気調和装置の運転制
御装置。
2. A variable displacement compressor (1), an outdoor heat exchanger (6), an outdoor electric expansion valve (8), a receiver (9), an indoor electric expansion valve (13), and an indoor heat exchanger (12). , The outdoor electric expansion valve (8) is closed, the indoor electric expansion valve (13) is closed to a small opening or less, Stop control means (52) for controlling to stop the compressor (1)
B), when a stop command is received during the heating operation, the operation of the stop control means (52B) is put on standby for a predetermined time, the capacity of the compressor (1) is reduced, and the outdoor electric expansion valve (8) Close
A residual operation control means for controlling to open the indoor electric expansion valve (13) (51B), an auxiliary bypass passage that bypasses connecting the discharge pipe and the liquid line of the compressor (1) and (11e), the auxiliary bypass passage ( provided 11e), an auxiliary heat exchanger to assist the condensation capacity and (6c), provided with a opening and closing mechanism (SVS) for opening and closing the auxiliary bypass path (11e), the residual operation control means ( 51B) controls to open the closing mechanism (SVS) of the auxiliary bypass passage for a predetermined time (11e), the outlet end of the auxiliary bypass passage (11e) is connected to an upper portion of the receiver (9) After the control of the residual operation control means (51B) is completed, the control of the stop control means (52B) is put on standby for a further fixed time,
A standby operation control means (5) for closing the outdoor electric expansion valve (8), opening the opening / closing mechanism (SVS) of the auxiliary bypass passage (11e), and stopping the compressor (1).
An operation control device for an air conditioner, comprising: 3B).
【請求項3】 容量可変形圧縮機(1)、室外熱交換器
(6)、室外電動膨張弁(8)、レシーバ(9)、室内
電動膨張弁(13)及び室内熱交換器(12)を順次接
続してなる冷媒回路(14)を備えた空気調和装置にお
いて、 停止指令を受け、上記室内電動膨張弁(13)及び室外
電動膨張弁(8)を閉じて、圧縮機(1)を停止させる
よう制御する停止制御手段(52A)と、 冷房運転中に停止指令を受けたとき、所定時間の間上記
停止制御手段(52A)の作動を待機させ、圧縮機
(1)を低容量にして、室外電動膨張弁(8)を大開度
に開き、室内電動膨張弁(13)を閉じるよう制御する
残留運転制御手段(51A)と 圧縮機(1)の吐出管と液ラインとをバイパス接続する
補助バイパス路(11e)と、 該補助バイパス路(11e)に設けられ、凝縮能力を補
助するための補助熱交換器(6c)と、上記 補助バイパス路(11e)を開閉するための開閉機
構(SVS)とを備えるとともに、上記 残留運転制御手段(51A)は、所定時間の間上記
補助バイパス路(11e)の開閉機構(SVS)を開くよ
う制御し、 上記 補助バイパス路(11e)の開閉機構(SVS)をバ
イパスする液封防止回路(40)と、 該液封防止回路(40)に介設され、補助バイパス路
(11e)の下流側の圧力が上流側の圧力よりも所定値
以上高くなると開くよう作動する高圧制御弁(41)と
を備えたことを特徴とする空気調和装置の運転制御装
置。
3. A variable displacement compressor (1), an outdoor heat exchanger (6), an outdoor electric expansion valve (8), a receiver (9), an indoor electric expansion valve (13), and an indoor heat exchanger (12). In the air conditioner provided with the refrigerant circuit (14) in which the compressor (1) is sequentially connected, the indoor electric expansion valve (13) and the outdoor electric expansion valve (8) are closed, and the compressor (1) is closed. A stop control means (52A) for controlling to stop, and when a stop command is received during the cooling operation, the operation of the stop control means (52A) is made to stand by for a predetermined time to reduce the capacity of the compressor (1). Te, bypass open outdoor electric expansion valve (8) to the large opening, and the residual operation control means for controlling to close the indoor motor-operated expansion valve (13) (51A), the discharge pipe of the compressor (1) and a liquid line An auxiliary bypass path (11e) to be connected; Provided 11e), an auxiliary heat exchanger to assist the condensation capacity and (6c), provided with a opening and closing mechanism (SVS) for opening and closing the auxiliary bypass path (11e), the residual operation control means ( 51A), said auxiliary bypass passage for a predetermined time period (controls to open the closing mechanism of 11e) (SVS), the auxiliary bypass line (opening and closing mechanism of 11e) (liquid seal prevention circuit that bypasses the SVS) (40) A high pressure control valve (41) interposed in the liquid ring prevention circuit (40) and operable to open when the pressure on the downstream side of the auxiliary bypass passage (11e) becomes higher than the pressure on the upstream side by a predetermined value or more. An operation control device for an air conditioner, comprising:
【請求項4】 容量可変形圧縮機(1)、室外熱交換器
(6)、室外電動膨張弁(8)、レシーバ(9)、室内
電動膨張弁(13)及び室内熱交換器(12)を順次接
続してなる冷媒回路(14)を備えた空気調和装置にお
いて、 停止指令を受け、室外電動膨張弁(8)を閉じ、室内電
動膨張弁(13)を微小開度以下に閉じて、圧縮機
(1)を停止させるよう制御する停止制御手段(52
B)と、 暖房運転中に停止指令を受けたとき、所定時間の間上記
停止制御手段(52B)の作動を待機させ、圧縮機
(1)を低容量にして、室外電動膨張弁(8)を閉じ、
室内電動膨張弁(13)を開くよう制御する残留運転制
御手段(51B)と 圧縮機(1)の吐出管と液ラインとをバイパス接続する
補助バイパス路(11e)と、 該補助バイパス路(11e)に設けられ、凝縮能力を補
助するための補助熱交換器(6c)と、上記 補助バイパス路(11e)を開閉するための開閉機
構(SVS)とを備えるとともに、上記 残留運転制御手段(51B)は、所定時間の間上記
補助バイパス路(11e)の開閉機構(SVS)を開くよ
う制御し、 上記 補助バイパス路(11e)の開閉機構(SVS)をバ
イパスする液封防止回路(40)と、 該液封防止回路(40)に介設され、補助バイパス路
(11e)の下流側の圧力が上流側の圧力よりも所定値
以上高くなると開くよう作動する高圧制御弁(41)と
を備えたことを特徴とする空気調和装置の運転制御装
置。
4. A variable displacement compressor (1), an outdoor heat exchanger (6), an outdoor electric expansion valve (8), a receiver (9), an indoor electric expansion valve (13), and an indoor heat exchanger (12). , The outdoor electric expansion valve (8) is closed, the indoor electric expansion valve (13) is closed to a small opening or less, Stop control means (52) for controlling to stop the compressor (1)
B), when a stop command is received during the heating operation, the operation of the stop control means (52B) is put on standby for a predetermined time, the capacity of the compressor (1) is reduced, and the outdoor electric expansion valve (8) Close
A residual operation control means for controlling to open the indoor electric expansion valve (13) (51B), an auxiliary bypass passage that bypasses connecting the discharge pipe and the liquid line of the compressor (1) and (11e), the auxiliary bypass passage ( provided 11e), an auxiliary heat exchanger to assist the condensation capacity and (6c), provided with a opening and closing mechanism (SVS) for opening and closing the auxiliary bypass path (11e), the residual operation control means ( 51B), said auxiliary bypass passage for a predetermined time period (controls to open the closing mechanism of 11e) (SVS), the auxiliary bypass line (opening and closing mechanism of 11e) (liquid seal prevention circuit that bypasses the SVS) (40) A high pressure control valve (41) interposed in the liquid ring prevention circuit (40) and operable to open when the pressure on the downstream side of the auxiliary bypass passage (11e) becomes higher than the pressure on the upstream side by a predetermined value or more. Equipped Operation control device for air conditioner according to claim.
【請求項5】 請求項1又は2記載の空気調和装置の運
転制御装置において、 補助バイパス路(11e)の開閉機構(SVS)をバイパ
スする液封防止回路(40)と、該液封防止回路(4
0)に介設され、補助バイパス路(11e)の下流側の
圧力が上流側の圧力よりも所定値以上高くなると開くよ
う作動する高圧制御弁(41)とを備えたことを特徴と
する空気調和装置の運転制御装置。
5. An operation control device for an air conditioner according to claim 1 , wherein the liquid-seal prevention circuit bypasses the opening / closing mechanism (SVS) of the auxiliary bypass passage, and the liquid-seal prevention circuit. (4
0), and a high-pressure control valve (41) that opens when the pressure on the downstream side of the auxiliary bypass passage (11e) becomes higher than the pressure on the upstream side by a predetermined value or more. Operation control device of the harmony device.
【請求項6】 容量可変形圧縮機(1)、室外熱交換器
(6)、室外電動膨張弁(8)、レシーバ(9)、室内
電動膨張弁(13)及び室内熱交換器(12)を順次接
続してなる冷媒回路(14)を備えた空気調和装置にお
いて、 停止指令を受け、上記室内電動膨張弁(13)及び室外
電動膨張弁(8)を閉じて、圧縮機(1)を停止させる
よう制御する停止制御手段(52A)と、 冷房運転中に停止指令を受けたとき、所定時間の間上記
停止制御手段(52A)の作動を待機させ、圧縮機
(1)を低容量にして、室外電動膨張弁(8)を大開度
に開き、室内電動膨張弁(13)を閉じるよう制御する
残留運転制御手段(51A)とを備え 上記 残留運転制御手段(51A)は、圧縮機(1)の起
動後、第1設定時間が経過するまでに停止指令を受けた
ときには、アキュムレータ(10)の容量に対応した長
時間の間残留運転を行うことを特徴とする空気調和装置
の運転制御装置。
6. A variable displacement compressor (1), an outdoor heat exchanger (6), an outdoor electric expansion valve (8), a receiver (9), an indoor electric expansion valve (13), and an indoor heat exchanger (12). , The indoor electric expansion valve (13) and the outdoor electric expansion valve (8) are closed in response to a stop command, and the compressor (1) is turned on. A stop control means (52A) for controlling to stop, and when a stop command is received during the cooling operation, the operation of the stop control means (52A) is made to stand by for a predetermined time to reduce the capacity of the compressor (1). Te, open the outdoor motor-operated expansion valve (8) to the large opening, and a residual operation control means for controlling to close the indoor motor-operated expansion valve (13) (51A), the remaining operation control means (51A) includes a compressor After the start of (1), a stop finger is required until the first set time elapses. Receiving the time was, the accumulator (10) operation control device for air conditioner which is characterized in that the residual operation between long corresponding to the capacity of.
【請求項7】 容量可変形圧縮機(1)、室外熱交換器
(6)、室外電動膨張弁(8)、レシーバ(9)、室内
電動膨張弁(13)及び室内熱交換器(12)を順次接
続してなる冷媒回路(14)を備えた空気調和装置にお
いて、 停止指令を受け、室外電動膨張弁(8)を閉じ、室内電
動膨張弁(13)を微小開度以下に閉じて、圧縮機
(1)を停止させるよう制御する停止制御手段(52
B)と、 暖房運転中に停止指令を受けたとき、所定時間の間上記
停止制御手段(52B)の作動を待機させ、圧縮機
(1)を低容量にして、室外電動膨張弁(8)を閉じ、
室内電動膨張弁(13)を開くよう制御する残留運転制
御手段(51B)とを備え 上記 残留運転制御手段(51B)は、圧縮機(1)の起
動後、第1設定時間が経過するまでに停止指令を受けた
ときには、アキュムレータ(10)の容量に対応した長
時間の間残留運転を行うことを特徴とする空気調和装置
の運転制御装置。
7. A variable displacement compressor (1), an outdoor heat exchanger (6), an outdoor electric expansion valve (8), a receiver (9), an indoor electric expansion valve (13), and an indoor heat exchanger (12). , The outdoor electric expansion valve (8) is closed, the indoor electric expansion valve (13) is closed to a small opening or less, Stop control means (52) for controlling to stop the compressor (1)
B), when a stop command is received during the heating operation, the operation of the stop control means (52B) is put on standby for a predetermined time, the capacity of the compressor (1) is reduced, and the outdoor electric expansion valve (8) Close
And a residual operation control means for controlling to open the indoor electric expansion valve (13) (51B), the residual operation control means (51B) after activation of the compressor (1), until the first predetermined time has elapsed An operation control device for an air conditioner, which performs a residual operation for a long time corresponding to the capacity of the accumulator (10) when a stop command is received.
【請求項8】 請求項6又は7記載の空気調和装置の運
転制御装置において、 圧縮機(1)の吐出管と液ラインとをバイパス接続する
補助バイパス路(11e)と、該補助バイパス路(11
e)に設けられ、凝縮能力を補助するための補助熱交換
器(6c)と、補助バイパス路(11e)を開閉するた
めの開閉機構(SVS)とを備えるとともに、 残留運転制御手段(51)は、所定時間の間上記補助バ
イパス路(11e)の開閉機構(SVS)を開くよう制御
することを特徴とする空気調和装置の運転制御装置。
8. An operation control device for an air conditioner according to claim 6 , wherein an auxiliary bypass path (11e) for bypass-connecting the discharge pipe of the compressor (1) and the liquid line, and the auxiliary bypass path (11e). 11
e), an auxiliary heat exchanger (6c) for assisting the condensing capacity, and an opening / closing mechanism (SVS) for opening and closing the auxiliary bypass passage (11e), and a residual operation control means (51). Is an operation control device for an air conditioner, which controls to open and close the opening and closing mechanism (SVS) of the auxiliary bypass path (11e) for a predetermined time.
【請求項9】 容量可変形圧縮機(1)、室外熱交換器
(6)、室外電動膨張弁(8)、レシーバ(9)、室内
電動膨張弁(13)及び室内熱交換器(12)を順次接
続してなる冷媒回路(14)を備えた空気調和装置にお
いて、 停止指令を受け、上記室内電動膨張弁(13)及び室外
電動膨張弁(8)を閉じて、圧縮機(1)を停止させる
よう制御する停止制御手段(52A)と、 冷房運転中に停止指令を受けたとき、所定時間の間上記
停止制御手段(52A)の作動を待機させ、圧縮機
(1)を低容量にして、室外電動膨張弁(8)を大開度
に開き、室内電動膨張弁(13)を閉じるよう制御する
残留運転制御手段(51A)とを備え 上記 残留運転制御手段(51A)は、圧縮機(1)の起
動後、デフロスト運転又は油戻し運転の終了から第2設
定時間が経過するまでに圧縮機(1)の停止指令を受け
たときには、アキュムレータ(10)の容量に対応した
長時間の間残留運転を行うことを特徴とする空気調和装
置の運転制御装置。
9. A variable displacement compressor (1), an outdoor heat exchanger (6), an outdoor electric expansion valve (8), a receiver (9), an indoor electric expansion valve (13), and an indoor heat exchanger (12). , The indoor electric expansion valve (13) and the outdoor electric expansion valve (8) are closed in response to a stop command, and the compressor (1) is turned on. A stop control means (52A) for controlling to stop, and when a stop command is received during the cooling operation, the operation of the stop control means (52A) is made to stand by for a predetermined time to reduce the capacity of the compressor (1). Te, open the outdoor motor-operated expansion valve (8) to the large opening, and a residual operation control means for controlling to close the indoor motor-operated expansion valve (13) (51A), the remaining operation control means (51A) includes a compressor After the start of (1), the defrost operation or the oil return operation ends When the stop command of the compressor (1) is received before the second set time elapses, the remaining operation is performed for a long time corresponding to the capacity of the accumulator (10). Control device.
【請求項10】 容量可変形圧縮機(1)、室外熱交換
器(6)、室外電動膨張弁(8)、レシーバ(9)、室
内電動膨張弁(13)及び室内熱交換器(12)を順次
接続してなる冷媒回路(14)を備えた空気調和装置に
おいて、 停止指令を受け、室外電動膨張弁(8)を閉じ、室内電
動膨張弁(13)を微小開度以下に閉じて、圧縮機
(1)を停止させるよう制御する停止制御手段(52
B)と、 暖房運転中に停止指令を受けたとき、所定時間の間上記
停止制御手段(52B)の作動を待機させ、圧縮機
(1)を低容量にして、室外電動膨張弁(8)を閉じ、
室内電動膨張弁(13)を開くよう制御する残留運転制
御手段(51B)とを備え 上記 残留運転制御手段(51B)は、圧縮機(1)の起
動後、デフロスト運転又は油戻し運転の終了から第2設
定時間が経過するまでに圧縮機(1)の停止指令を受け
たときには、アキュムレータ(10)の容量に対応した
長時間の間残留運転を行うことを特徴とする空気調和装
置の運転制御装置。
10. A variable displacement compressor (1), an outdoor heat exchanger (6), an outdoor electric expansion valve (8), a receiver (9), an indoor electric expansion valve (13), and an indoor heat exchanger (12). , The outdoor electric expansion valve (8) is closed, the indoor electric expansion valve (13) is closed to a small opening or less, Stop control means (52) for controlling to stop the compressor (1)
B), when a stop command is received during the heating operation, the operation of the stop control means (52B) is put on standby for a predetermined time, the capacity of the compressor (1) is reduced, and the outdoor electric expansion valve (8) Close
And a residual operation control means for controlling to open the indoor electric expansion valve (13) (51B), the residual operation control means (51B) after activation of the compressor (1), defrost operation or termination of the oil-return operation When the stop command of the compressor (1) is received before the second set time elapses, the residual operation is performed for a long time corresponding to the capacity of the accumulator (10). Control device.
【請求項11】 請求項9又は10記載の空気調和装置
の運転制御装置において、 圧縮機(1)の吐出管と液ラインとをバイパス接続する
補助バイパス路(11e)と、該補助バイパス路(11
e)に設けられ、凝縮能力を補助するための補助熱交換
器(6c)と、補助バイパス路(11e)を開閉するた
めの開閉機構(SVS)とを備えるとともに、 残留運転制御手段(51)は、所定時間の間上記補助バ
イパス路(11e)の開閉機構(SVS)を開くよう制御
することを特徴とする空気調和装置の運転制御装置。
11. An operation control device for an air conditioner according to claim 9 , wherein an auxiliary bypass passage (11e) for bypass-connecting the discharge pipe of the compressor (1) and the liquid line, and the auxiliary bypass passage (11). 11
e), an auxiliary heat exchanger (6c) for assisting the condensing capacity, and an opening / closing mechanism (SVS) for opening and closing the auxiliary bypass passage (11e), and a residual operation control means (51). Is an operation control device for an air conditioner, which controls to open and close the opening and closing mechanism (SVS) of the auxiliary bypass path (11e) for a predetermined time.
【請求項12】 請求項6,7又は8記載の空気調和装
置の運転制御装置において、 残留運転制御手段(51)は、圧縮機(1)の起動後、
デフロスト運転又は油戻し運転の終了から第2設定時間
が経過するまでに圧縮機(1)の停止指令を受けたとき
には、アキュムレータ(10)の容量に対応した長時間
の間残留運転を行うことを特徴とする空気調和装置の運
転制御装置。
12. The operation control device for an air conditioner according to claim 6, wherein the residual operation control means (51) comprises:
When the stop command of the compressor (1) is received before the second set time elapses from the end of the defrost operation or the oil return operation, the residual operation is performed for a long time corresponding to the capacity of the accumulator (10). An operation control device for an air conditioner characterized by the following.
【請求項13】 請求項6乃至12の何れか1記載の空
気調和装置の運転制御装置において、 残留運転制御手段(51)による残留運転中に、圧縮機
(1)の起動指令があったとき、そのまま通常運転に移
行するよう制御する通常運転移行制御手段を備えたこと
を特徴とする空気調和装置の運転制御装置。
13. The operation control device for an air conditioner according to claim 6, wherein a start command for the compressor (1) is issued during the residual operation by the residual operation control means (51). An operation control device for an air conditioner, comprising: normal operation transition control means for controlling to shift to normal operation as it is.
【請求項14】 請求項13記載の空気調和装置の運転
制御装置において、 通常運転移行制御手段により通常運転に移行してから圧
縮機(1)の停止指令を受けたとき、残留運転開始前の
通常運転の連続運転時間と残留運転から移行した通常運
転の連続運転時間との和が上記第1設定時間よりも大き
いときには、残留運転制御手段(51)の作動を強制的
に停止させて、停止制御手段(52)の制御に移行させ
る残留運転回避手段(54A)を備えたことを特徴とす
る空気調和装置の運転制御装置。
14. The operation control device for an air conditioner according to claim 13 , wherein when a stop command for the compressor (1) is received after the normal operation is shifted to the normal operation by the normal operation shift control means, the operation before the residual operation is started. When the sum of the continuous operation time of the normal operation and the continuous operation time of the normal operation shifted from the residual operation is longer than the first set time, the operation of the residual operation control means (51) is forcibly stopped and stopped. An operation control device for an air conditioner, comprising a residual operation avoiding means (54A) for shifting to control of the control means (52).
【請求項15】 請求項6乃至14の何れか1記載の空
気調和装置の運転制御装置において、 冷媒回路(14)の低圧側圧力を検出する低圧検出手段
(LP)を備え、 残留運転制御手段(51)は、残留運転中、上記低圧検
出手段(LP)の出力を受け、閉じている側の電動膨張
弁(13又は8)を、低圧側圧力が下限圧力以下のとき
には微小開度に開き、低圧側圧力が下限圧力よりも高い
ときには閉じるよう制御することを特徴とする空気調和
装置の運転制御装置。
15. The operation control device for an air conditioner according to claim 6, further comprising a low pressure detection means (LP) for detecting a low pressure side pressure of the refrigerant circuit, and a residual operation control means. (51) opens the closed electric expansion valve (13 or 8) to a small opening when the low pressure side pressure is equal to or lower than the lower limit pressure upon receiving the output of the low pressure detection means (LP) during the residual operation. An operation control device for an air conditioner, wherein the operation control device is controlled to close when a low pressure side pressure is higher than a lower limit pressure.
【請求項16】 請求項6乃至15の何れか1記載の空
気調和装置の運転制御装置において、 吐出管温度を検出する吐出管温度検出手段(Thd)と、 空気調和装置の運転中に停止指令を受けたとき、上記吐
出管温度検出手段(Thd)で検出される吐出管温度が所
定温度以上のときには、残留運転制御手段(51)の作
動を強制的に停止させて、停止制御手段(52)の制御
に移行させる残留運転回避手段(54B)とを備えたこ
とを特徴とする空気調和装置の運転制御装置。
16. An air conditioner operation control device according to claim 6, wherein a discharge pipe temperature detecting means (Thd) for detecting a discharge pipe temperature, and a stop command during operation of the air conditioner. When the discharge pipe temperature detected by the discharge pipe temperature detecting means (Thd) is equal to or higher than a predetermined temperature, the operation of the residual operation control means (51) is forcibly stopped, and the stop control means (52) And a residual operation avoiding means (54B) for shifting to the control of (1).
【請求項17】 請求項6乃至15の何れか1記載の空
気調和装置の運転制御装置において、 圧縮機(1)の潤滑油の温度を検出する油温度検出手段
と、 空気調和装置の運転中に停止指令を受けたとき、上記油
温度検出手段で検出される潤滑油の温度が所定温度以上
のときには、残留運転制御手段(51)の作動を強制的
に停止させて、停止制御手段(52)の制御に移行させ
る残留運転回避手段(54C)とを備えたことを特徴と
する空気調和装置の運転制御装置。
17. An operation control device for an air conditioner according to claim 6, wherein an oil temperature detecting means for detecting a temperature of lubricating oil of the compressor (1); When the temperature of the lubricating oil detected by the oil temperature detecting means is equal to or higher than a predetermined temperature, the operation of the residual operation control means (51) is forcibly stopped, and the stop control means (52) ), A residual operation avoiding means (54C) for shifting the control to the control of (1).
JP09174793A 1992-04-21 1993-04-20 Operation control device for air conditioner Expired - Fee Related JP3235262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09174793A JP3235262B2 (en) 1992-04-21 1993-04-20 Operation control device for air conditioner

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-101224 1992-04-21
JP10122492 1992-04-21
JP09174793A JP3235262B2 (en) 1992-04-21 1993-04-20 Operation control device for air conditioner

Publications (2)

Publication Number Publication Date
JPH0626716A JPH0626716A (en) 1994-02-04
JP3235262B2 true JP3235262B2 (en) 2001-12-04

Family

ID=26433191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09174793A Expired - Fee Related JP3235262B2 (en) 1992-04-21 1993-04-20 Operation control device for air conditioner

Country Status (1)

Country Link
JP (1) JP3235262B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4454224B2 (en) * 2002-12-27 2010-04-21 三洋電機株式会社 Oil recovery method for air conditioner and air conditioner
JP2005001409A (en) * 2003-06-09 2005-01-06 Sanden Corp Air-conditioner for vehicle
JP2008209036A (en) * 2007-02-23 2008-09-11 Daikin Ind Ltd Refrigeration device
JP4743906B2 (en) * 2008-05-26 2011-08-10 日立アプライアンス株式会社 Refrigeration cycle equipment
JP2009047418A (en) * 2008-10-27 2009-03-05 Mitsubishi Electric Corp Refrigeration and air-conditioning unit, and control method of refrigeration and air-conditioning unit
JP4785935B2 (en) * 2009-01-05 2011-10-05 三菱電機株式会社 Refrigeration cycle equipment
JP5404110B2 (en) * 2009-03-12 2014-01-29 三菱電機株式会社 Air conditioner
JP5111475B2 (en) * 2009-10-26 2013-01-09 三菱電機株式会社 Refrigeration cycle apparatus and air conditioner equipped with the same
WO2013114461A1 (en) 2012-02-02 2013-08-08 三菱電機株式会社 Air-conditioning unit and air-conditioning unit for railway vehicle
JP2014202469A (en) * 2013-04-10 2014-10-27 株式会社Ihi Heat pump unit and operation method of heat pump unit
WO2018042490A1 (en) * 2016-08-29 2018-03-08 三菱電機株式会社 Refrigeration cycle device
US11340001B2 (en) * 2017-03-01 2022-05-24 Mitsubishi Electric Corporation Refrigeration cycle apparatus
CN111435030A (en) * 2019-01-11 2020-07-21 日立江森自控空调有限公司 Air conditioner control method and air conditioner system
JP6904396B2 (en) * 2019-09-30 2021-07-14 ダイキン工業株式会社 Heat source unit and refrigeration equipment
CN114746704A (en) * 2019-12-05 2022-07-12 三菱电机株式会社 Refrigeration cycle device
WO2024034021A1 (en) * 2022-08-09 2024-02-15 三菱電機株式会社 Air-conditioning system and refrigeration cycle device

Also Published As

Publication number Publication date
JPH0626716A (en) 1994-02-04

Similar Documents

Publication Publication Date Title
JP3235262B2 (en) Operation control device for air conditioner
KR100788550B1 (en) Freezing apparatus
JP3341404B2 (en) Operation control device for air conditioner
JP2500519B2 (en) Operation control device for air conditioner
JP3147588B2 (en) Refrigeration equipment
JP3284588B2 (en) Operation control device for refrigeration equipment
JPH1089778A (en) Deep freezer
JP3271296B2 (en) Defrosting operation control device for refrigeration system
JPH05264113A (en) Operation control device of air conditioner
JP2914020B2 (en) Heating and cooling machine
JP3245947B2 (en) Air conditioner
JP3208837B2 (en) Start-up control device for refrigeration equipment
JP2500520B2 (en) Refrigerator protection device
JP2903862B2 (en) Operation control device for refrigeration equipment
JP2964774B2 (en) Operation control device for air conditioner
JP3099574B2 (en) Air conditioner pressure equalizer
JPH05256526A (en) Opening control device for motor-operated expansion valve
JPH03122460A (en) Operating controller for refrigerating machine
JPH10132406A (en) Refrigerating system
JPH07101130B2 (en) Operation control device for air conditioner
JPH0643653Y2 (en) Air conditioner
JP3407867B2 (en) Operation control method of air conditioner
JP2555779B2 (en) Operation control device for air conditioner
JPH0772653B2 (en) Operation control device for air conditioner
JP4023385B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070928

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080928

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090928

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees