JP6854668B2 - Vehicle air conditioner - Google Patents

Vehicle air conditioner Download PDF

Info

Publication number
JP6854668B2
JP6854668B2 JP2017036431A JP2017036431A JP6854668B2 JP 6854668 B2 JP6854668 B2 JP 6854668B2 JP 2017036431 A JP2017036431 A JP 2017036431A JP 2017036431 A JP2017036431 A JP 2017036431A JP 6854668 B2 JP6854668 B2 JP 6854668B2
Authority
JP
Japan
Prior art keywords
refrigerant
radiator
valve
compressor
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017036431A
Other languages
Japanese (ja)
Other versions
JP2018140722A (en
Inventor
耕平 山下
耕平 山下
竜 宮腰
竜 宮腰
めぐみ 重田
めぐみ 重田
和樹 関口
和樹 関口
孝史 青木
孝史 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Sanden Automotive Climate Systems Corp
Original Assignee
Honda Motor Co Ltd
Sanden Automotive Climate Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Sanden Automotive Climate Systems Corp filed Critical Honda Motor Co Ltd
Priority to JP2017036431A priority Critical patent/JP6854668B2/en
Priority to PCT/JP2018/001478 priority patent/WO2018159141A1/en
Publication of JP2018140722A publication Critical patent/JP2018140722A/en
Application granted granted Critical
Publication of JP6854668B2 publication Critical patent/JP6854668B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

本発明は、車両の車室内を空調するヒートポンプ方式の空気調和装置、特にハイブリッド自動車や電気自動車に適用可能な空気調和装置に関するものである。 The present invention relates to a heat pump type air conditioner for air-conditioning the interior of a vehicle, particularly an air conditioner applicable to a hybrid vehicle or an electric vehicle.

近年の環境問題の顕在化から、ハイブリッド自動車や電気自動車が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、冷媒を圧縮して吐出する圧縮器と、車室内側に設けられて冷媒を放熱させる内部凝縮機と、車室内側に設けられて冷媒を吸熱させる蒸発器と、車室外側に設けられて冷媒を放熱又は吸熱させる外部凝縮機と、この外部凝縮機に流入する冷媒を膨張させる第1膨張バルブと、蒸発器に流入する冷媒を膨張させる第2膨張バルブと、内部凝縮機及び第1膨張バルブをバイパスする配管と、圧縮器から吐出された冷媒を内部凝縮機に流すか、この内部凝縮機と第1膨張バルブをバイパスして前記配管から外部凝縮機に直接流すかを切り換える第1バルブを備え、圧縮器から吐出された冷媒を第1バルブにより内部凝縮機に流して放熱させ、この放熱した冷媒を第1膨張バルブで減圧した後、外部凝縮機において吸熱させる暖房モードと、圧縮器から吐出された冷媒を第1バルブにより内部凝縮機において放熱させ、放熱した冷媒を第2膨張バルブで減圧した後、蒸発器において吸熱させる除湿モードと、圧縮器から吐出された冷媒を第1バルブにより内部凝縮機及び第1膨張バルブをバイパスして外部凝縮機に流して放熱させ、第2膨張バルブで減圧した後、蒸発器において吸熱させる冷房モードを切り換えて実行するものが開発されている(例えば、特許文献1参照)。 Due to the emergence of environmental problems in recent years, hybrid vehicles and electric vehicles have become widespread. As an air conditioner that can be applied to such a vehicle, a compressor that compresses and discharges the refrigerant, an internal condenser that is provided on the vehicle interior side to dissipate the refrigerant, and an internal condenser that is provided on the vehicle interior side are provided. An evaporator that absorbs heat from the refrigerant, an external condenser that is provided outside the vehicle interior to dissipate or absorb heat, a first expansion valve that expands the refrigerant that flows into the external condenser, and a refrigerant that flows into the evaporator. The second expansion valve that inflates the refrigerant, the piping that bypasses the internal condenser and the first expansion valve, and the refrigerant discharged from the compressor flows to the internal condenser, or bypasses the internal condenser and the first expansion valve. A first valve for switching whether to flow directly from the pipe to the external condenser is provided, and the refrigerant discharged from the compressor is flowed to the internal condenser by the first valve to dissipate heat, and the radiated refrigerant is discharged by the first expansion valve. After depressurizing, the heating mode absorbs heat in the external condenser, the refrigerant discharged from the compressor is dissipated in the internal condenser by the first valve, the radiated refrigerant is depressurized by the second expansion valve, and then heat is absorbed in the evaporator. In the dehumidification mode, the refrigerant discharged from the compressor is bypassed by the internal condenser and the first expansion valve by the first valve to flow to the external condenser to dissipate heat, and after depressurizing by the second expansion valve, in the evaporator. Those that switch and execute the cooling mode for absorbing heat have been developed (see, for example, Patent Document 1).

特開2013−23210号公報Japanese Unexamined Patent Publication No. 2013-23210

上記のように、特許文献1では冷房モードに切り換わったときは内部凝縮機(本願での放熱器)には冷媒を流さない運転状態となる。即ち、第1バルブの内部凝縮器側の出口を閉じることになる。この状態では、冷媒は内部凝縮器(107)を含む第1バルブ(117)から第1膨張バルブ(119)までの閉回路内に閉じ込められることになるため、冷房モードに切り換わった直後の圧縮器の停止時に、圧縮器の吐出側の圧力よりも内部凝縮機側の圧力の方が高くなることがあった。 As described above, in Patent Document 1, when the cooling mode is switched to, the operating state is such that the refrigerant does not flow through the internal condenser (the radiator in the present application). That is, the outlet on the internal condenser side of the first valve is closed. In this state, the refrigerant is confined in the closed circuit from the first valve (117) to the first expansion valve (119) including the internal condenser (107), so that the compressor immediately after switching to the cooling mode is compressed. When the vessel was stopped, the pressure on the internal condenser side was sometimes higher than the pressure on the discharge side of the compressor.

ここで、三方弁である第1バルブの代わりに、内部凝縮機(本願での放熱器)側の開閉弁(本願での第1の開閉弁)と外部凝縮機(本願での室外熱交換器)側の開閉弁(本願での第2の開閉弁)の二つの開閉弁で流路を切り換える場合、圧縮器(本願での圧縮機)の吐出側の圧力よりも内部凝縮機側(放熱器側)の圧力の方が高くなる場合がある。 Here, instead of the first valve, which is a three-way valve, an on-off valve (first on-off valve in the present application) on the internal condenser (radiator in the present application) side and an external condenser (outdoor heat exchanger in the present application). ) Side on-off valve (second on-off valve in the present application) When switching the flow path with two on-off valves, the internal condenser side (radiator) is higher than the pressure on the discharge side of the compressor (compressor in the present application). The pressure on the side) may be higher.

特に、特許文献1では内部凝縮器の風下側にPTCヒータ(109。本願での補助加熱装置))が設けられているが、このPTCヒータ(109)を内部凝縮器の風上側に設けて発熱させた場合、このPTCヒータの発熱で内部凝縮器が加熱されるため、内部の圧力が上昇し、低負荷で圧縮器の回転数が低い運転状態では、圧縮器の吐出側の圧力よりも内部凝縮機側の圧力の方が高くなり易くなる。その場合は内部凝縮機側の開閉弁(本願での第1の開閉弁)に逆圧がかかり、ハンチングを引き起こす場合があり、この開閉弁にハンチングが発生すると、当該開閉弁において騒音や振動が生じると共に、その耐久性も低下すると云う問題があった。 In particular, in Patent Document 1, a PTC heater (109; an auxiliary heating device in the present application) is provided on the leeward side of the internal condenser, but this PTC heater (109) is provided on the leeward side of the internal condenser to generate heat. When this is done, the internal condenser is heated by the heat generated by this PTC heater, so the internal pressure rises, and in the operating state where the load is low and the compressor rotation speed is low, the pressure is higher than the pressure on the discharge side of the compressor. The pressure on the condenser side tends to be higher. In that case, a reverse pressure is applied to the on-off valve on the internal condenser side (the first on-off valve in the present application), which may cause hunting. When hunting occurs on this on-off valve, noise or vibration is generated in the on-off valve. There was a problem that the durability was lowered as well as the occurrence.

そこで、例えば圧縮器(本願での圧縮機)の吐出側の圧力と内部凝縮機側(放熱器側)の圧力を圧力センサによりそれぞれ検出して、係る開閉弁(本願での第1の開閉弁)の逆圧状態を判定し、対処することも考えられるが、圧力センサ(圧力を検出するためのセンサ本体及びその検出値を電圧に変換して出力するための電子部品を含む)にはそれぞれの検出誤差(バラツキ)があり、実際には逆圧となっているのにそれを的確に検出できずに開閉弁において騒音や振動が発生する問題もあった。 Therefore, for example, the pressure on the discharge side of the compressor (compressor in the present application) and the pressure on the internal condenser side (radiator side) are detected by pressure sensors, respectively, and the on-off valve (first on-off valve in the present application) is concerned. ), It is possible to determine the reverse pressure state and deal with it, but each pressure sensor (including the sensor body for detecting pressure and the electronic parts for converting the detected value into voltage and outputting it) There was also a problem that there was a detection error (variation), and although the pressure was actually reverse, it could not be detected accurately and noise and vibration were generated in the on-off valve.

本発明は、係る従来の技術的課題を解決するために成されたものであり、放熱器の入口側に設けられた第1の開閉弁が誤作動することで発生する騒音や振動を効果的に抑制し、当該開閉弁の耐久性を向上させることができる車両用空気調和装置を提供することを目的とする。 The present invention has been made to solve the above-mentioned conventional technical problems, and effectively eliminates noise and vibration generated by a malfunction of a first on-off valve provided on the inlet side of a radiator. It is an object of the present invention to provide an air conditioner for a vehicle capable of improving the durability of the on-off valve.

請求項1の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられた室外熱交換器と、放熱器を出て室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、圧縮機の吐出側と放熱器の入口側の間に設けられた第1の開閉弁と、この第1の開閉弁の上流側で分岐し、放熱器及び室外膨張弁をバイパスして圧縮機から吐出された冷媒を室外熱交換器に流すためのバイパス配管と、このバイパス配管に設けられた第2の開閉弁と、制御装置を備え、この制御装置により、第1の開閉弁を開き、第2の開閉弁を閉じることで、圧縮機から吐出された冷媒を放熱器に流し、この放熱器から出た冷媒を、室外膨張弁を経て室外熱交換器に流す第1の運転モードと、室外膨張弁を全閉とし、第1の開閉弁を閉じ、第2の開閉弁を開くことで、圧縮機から吐出された冷媒をバイパス配管により室外熱交換器に流し、この室外熱交換器から出た冷媒を吸熱器に流す第2の運転モードを切り換えて実行するものであって、制御装置は、第2の運転モードにおいて圧縮機の回転数が第1の所定値以下に低下した場合、室外膨張弁及び第1の開閉弁を開く逆圧防止制御を実行することを特徴とする。 The vehicle air conditioner according to claim 1 has a compressor that compresses the refrigerant, an air flow passage through which the air supplied to the vehicle interior flows, and air that dissipates the refrigerant and supplies the air to the vehicle interior from the air flow passage. A radiator for heating the refrigerant, a heat absorber for cooling the air supplied to the passenger compartment from the air flow passage by absorbing the refrigerant, an outdoor heat exchanger provided outside the passenger compartment, and the radiator. An outdoor expansion valve for reducing the pressure of the refrigerant flowing into the outdoor heat exchanger, a first on-off valve provided between the discharge side of the compressor and the inlet side of the radiator, and an upstream of the first on-off valve. Control with a bypass pipe for branching on the side, bypassing the radiator and the outdoor expansion valve, and allowing the refrigerant discharged from the compressor to flow to the outdoor heat exchanger, and a second on-off valve provided in this bypass pipe. A device is provided, and by opening the first on-off valve and closing the second on-off valve by this control device, the refrigerant discharged from the compressor flows to the radiator, and the refrigerant discharged from the radiator is discharged to the outside. The refrigerant discharged from the compressor is discharged by the first operation mode in which the air is passed through the expansion valve to the outdoor heat exchanger, the outdoor expansion valve is fully closed, the first on-off valve is closed, and the second on-off valve is opened. Is flowed to the outdoor heat exchanger by a bypass pipe, and the refrigerant discharged from the outdoor heat exchanger is flowed to the heat absorber by switching the second operation mode, and the control device is executed in the second operation mode. When the rotation speed of the compressor drops below the first predetermined value, the back pressure prevention control for opening the outdoor expansion valve and the first on-off valve is executed.

請求項2の発明の車両用空気調和装置は、上記発明において制御装置は、逆圧防止制御を開始する際、室外膨張弁と第1の開閉弁を同時に開くことを特徴とする。 The vehicle air conditioner according to the second aspect of the present invention is characterized in that, in the above invention, the control device opens the outdoor expansion valve and the first on-off valve at the same time when starting the back pressure prevention control.

請求項3の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられた室外熱交換器と、放熱器を出て室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、圧縮機の吐出側と放熱器の入口側の間に設けられた第1の開閉弁と、この第1の開閉弁の上流側で分岐し、放熱器及び室外膨張弁をバイパスして圧縮機から吐出された冷媒を室外熱交換器に流すためのバイパス配管と、このバイパス配管に設けられた第2の開閉弁と、制御装置を備え、この制御装置により、第1の開閉弁を開き、第2の開閉弁を閉じることで、圧縮機から吐出された冷媒を放熱器に流し、この放熱器から出た冷媒を、室外膨張弁を経て室外熱交換器に流す第1の運転モードと、室外膨張弁を全閉とし、第1の開閉弁を閉じ、第2の開閉弁を開くことで、圧縮機から吐出された冷媒をバイパス配管により室外熱交換器に流し、この室外熱交換器から出た冷媒を吸熱器に流す第2の運転モードを切り換えて実行するものであって、制御装置は、第2の運転モードにおいて圧縮機の回転数が第1の所定値以下に低下した場合、室外膨張弁と第1の開閉弁のうちの何れか一方を開く逆圧防止制御を実行することを特徴とする。 The vehicle air conditioner according to claim 3 has a compressor that compresses the refrigerant, an air flow passage through which the air supplied to the vehicle interior flows, and air that dissipates the refrigerant and supplies the air to the vehicle interior from the air flow passage. A radiator for heating the refrigerant, a heat absorber for cooling the air supplied to the passenger compartment from the air flow passage by absorbing the refrigerant, an outdoor heat exchanger provided outside the passenger compartment, and the radiator. An outdoor expansion valve for reducing the pressure of the refrigerant flowing into the outdoor heat exchanger, a first on-off valve provided between the discharge side of the compressor and the inlet side of the radiator, and an upstream of the first on-off valve. Control with a bypass pipe for branching on the side, bypassing the radiator and the outdoor expansion valve, and allowing the refrigerant discharged from the compressor to flow to the outdoor heat exchanger, and a second on-off valve provided in this bypass pipe. A device is provided, and by opening the first on-off valve and closing the second on-off valve by this control device, the refrigerant discharged from the compressor flows to the radiator, and the refrigerant discharged from the radiator is discharged to the outside. The refrigerant discharged from the compressor is discharged by the first operation mode in which the air is passed through the expansion valve to the outdoor heat exchanger, the outdoor expansion valve is fully closed, the first on-off valve is closed, and the second on-off valve is opened. Is flowed to the outdoor heat exchanger by a bypass pipe, and the refrigerant discharged from the outdoor heat exchanger is flowed to the heat absorber by switching the second operation mode, and the control device is executed in the second operation mode. When the rotation speed of the compressor drops below the first predetermined value, the back pressure prevention control for opening either the outdoor expansion valve or the first on-off valve is executed.

請求項4の発明の車両用空気調和装置は、上記各発明において制御装置は、逆圧防止制御を実行しているときに、圧縮機の回転数が第1の所定値より高い第2の所定値以上に上昇した場合、逆圧防止制御を終了して室外膨張弁が全閉となり、第1の開閉弁が閉じた状態に復帰することを特徴とする。 The vehicle air conditioner according to the fourth aspect of the present invention is the second predetermined value in which the rotation speed of the compressor is higher than the first predetermined value when the control device is executing the back pressure prevention control in each of the above inventions. When the value rises above the value, the back pressure prevention control is terminated, the outdoor expansion valve is fully closed, and the first on-off valve is returned to the closed state.

請求項5の発明の車両用空気調和装置は、上記各発明において圧縮機の吐出冷媒圧力を検出して出力する吐出圧力センサと、放熱器の冷媒圧力を検出して出力する放熱器圧力センサを備え、制御装置は、第2の運転モードにおいて、放熱器圧力センサが出力する放熱器圧力PCIより吐出圧力センサが出力する吐出圧力Pdが高く、その差が吐出圧力センサ及び放熱器圧力センサが有する検出誤差から導出される最大誤差値以上である場合、逆圧防止制御を実行しないことを特徴とする。 The vehicle air conditioner according to claim 5 includes a discharge pressure sensor that detects and outputs the discharge refrigerant pressure of the compressor and a radiator pressure sensor that detects and outputs the refrigerant pressure of the radiator in each of the above inventions. In the second operation mode, the control device has a discharge pressure Pd output by the discharge pressure sensor higher than the radiator pressure PCI output by the radiator pressure sensor, and the difference is between the discharge pressure sensor and the radiator pressure sensor. When it is equal to or more than the maximum error value derived from the detection error, the back pressure prevention control is not executed.

請求項6の発明の車両用空気調和装置は、上記各発明において空気流通路から車室内に供給する空気を加熱するための補助加熱装置を備え、第1の運転モードは、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を室外膨張弁で減圧した後、室外熱交換器にて吸熱させる暖房モードと、圧縮機から吐出された冷媒を放熱器から室外熱交換器に流して当該放熱器及び室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる除湿冷房モードと、圧縮機から吐出された冷媒を放熱器から室外熱交換器に流して当該室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる冷房モードのうちの何れか、又は、それらの組み合わせ、若しくは、それらの全てであり、第2の運転モードは、圧縮機から吐出された冷媒をバイパス配管から室外熱交換器に流して放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させると共に、補助加熱装置を発熱させる除湿暖房モードと、圧縮機から吐出された冷媒をバイパス配管から室外熱交換器に流して放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる最大冷房モードのうちの何れか、又は、それらの全てであることを特徴とする。 The vehicle air conditioner according to claim 6 includes an auxiliary heating device for heating the air supplied from the air flow passage to the vehicle interior in each of the above inventions, and the first operation mode is discharged from the compressor. A heating mode in which the heat is dissipated by a radiator, the dissipated refrigerant is decompressed by an outdoor expansion valve, and then heat is absorbed by an outdoor heat exchanger, and the refrigerant discharged from the compressor is discharged from the radiator to an outdoor heat exchanger. A dehumidifying cooling mode in which the heat is dissipated by the radiator and the outdoor heat exchanger, the radiated refrigerant is decompressed, and then the heat is absorbed by the heat absorber, and the refrigerant discharged from the compressor is exchanged from the radiator to the outdoor heat. One of the cooling modes in which the heat is dissipated by the outdoor heat exchanger, the heat is decompressed, and then the heat is absorbed by the heat absorber, or a combination thereof, or all of them. In the second operation mode, the refrigerant discharged from the compressor is flowed from the bypass pipe to the outdoor heat exchanger to dissipate heat, the dissipated refrigerant is depressurized, and then heat is absorbed by the heat exchanger, and the auxiliary heating device is used. Either the dehumidifying / heating mode that generates heat or the maximum cooling mode in which the refrigerant discharged from the compressor is flowed from the bypass pipe to the outdoor heat exchanger to dissipate heat, the dissipated refrigerant is depressurized, and then the heat is absorbed by the heat exchanger. Or all of them.

請求項7の発明の車両用空気調和装置は、上記発明において補助加熱装置は、空気流通路の空気の流れに対して、放熱器の上流側に設けられると共に、第2の運転モードは、除湿暖房モードであることを特徴とする。 In the vehicle air conditioner according to claim 7, in the above invention, the auxiliary heating device is provided on the upstream side of the radiator with respect to the air flow in the air flow passage, and the second operation mode is dehumidification. It is characterized by being in a heating mode.

請求項1及び請求項3の発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられた室外熱交換器と、放熱器を出て室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、圧縮機の吐出側と放熱器の入口側の間に設けられた第1の開閉弁と、この第1の開閉弁の上流側で分岐し、放熱器及び室外膨張弁をバイパスして圧縮機から吐出された冷媒を室外熱交換器に流すためのバイパス配管と、このバイパス配管に設けられた第2の開閉弁と、制御装置を備え、この制御装置により、第1の開閉弁を開き、第2の開閉弁を閉じることで、圧縮機から吐出された冷媒を放熱器に流し、この放熱器から出た冷媒を、室外膨張弁を経て室外熱交換器に流す第1の運転モードと、室外膨張弁を全閉とし、第1の開閉弁を閉じ、第2の開閉弁を開くことで、圧縮機から吐出された冷媒をバイパス配管により室外熱交換器に流し、この室外熱交換器から出た冷媒を吸熱器に流す第2の運転モードを切り換えて実行する車両用空気調和装置において、制御装置が、第2の運転モードにおいて圧縮機の回転数が第1の所定値以下に低下した場合、室外膨張弁、及び/又は、第1の開閉弁を開く逆圧防止制御を実行するようにしたので、第1の開閉弁が閉じられ、第2の開閉弁が開放される第2の運転モードにおいて、圧縮機の回転数が低下して第1の開閉弁に逆圧がかかり易くなる運転状態となったとき、室外膨張弁や第1の開閉弁が開放されることになる。 According to the inventions of claims 1 and 3, a compressor that compresses the refrigerant, an air flow passage through which the air supplied to the vehicle interior flows, and air that dissipates the refrigerant and supplies the air to the vehicle interior from the air flow passage. A radiator for heating, a heat exchanger for absorbing the refrigerant and cooling the air supplied to the passenger compartment from the air flow passage, an outdoor heat exchanger provided outside the passenger compartment, and the radiator. An outdoor expansion valve for reducing the pressure of the refrigerant flowing into the outdoor heat exchanger, a first on-off valve provided between the discharge side of the compressor and the inlet side of the radiator, and an upstream of the first on-off valve. A bypass pipe that branches on the side and bypasses the radiator and the outdoor expansion valve to allow the refrigerant discharged from the compressor to flow to the outdoor heat exchanger, and a second on-off valve provided in this bypass pipe. A device is provided, and by opening the first on-off valve and closing the second on-off valve by this control device, the refrigerant discharged from the compressor flows to the radiator, and the refrigerant discharged from the radiator is discharged to the outside. The refrigerant discharged from the compressor by the first operation mode in which the air flows through the expansion valve to the outdoor heat exchanger, the outdoor expansion valve is fully closed, the first on-off valve is closed, and the second on-off valve is opened. In the vehicle air conditioner, which is executed by switching the second operation mode in which the air is flown to the outdoor heat exchanger by the bypass pipe and the refrigerant discharged from the outdoor heat exchanger is flowed to the heat absorber, the control device is operated in the second operation. When the number of revolutions of the compressor drops below the first predetermined value in the mode, the outdoor expansion valve and / or the back pressure prevention control for opening the first on-off valve is executed, so that the first opening and closing is performed. In the second operation mode in which the valve is closed and the second on-off valve is opened, when the number of revolutions of the compressor decreases and the first on-off valve is likely to be subjected to a back pressure, the outdoor operation is performed. The expansion valve and the first on-off valve will be opened.

これにより、第1の開閉弁の入口側と出口側は均圧されるので、第1の開閉弁に逆圧がかかる不都合を解消することが可能となり、第1の開閉弁でハンチングが起こって騒音や振動が発生する不都合や、第1の開閉弁の耐久性が低下する問題を未然に解消、若しくは、抑制することができるようになる。 As a result, the inlet side and the outlet side of the first on-off valve are equalized, so that it is possible to eliminate the inconvenience of applying a back pressure to the first on-off valve, and hunting occurs in the first on-off valve. It becomes possible to solve or suppress the inconvenience of generating noise and vibration and the problem of deterioration of the durability of the first on-off valve.

特に、請求項1の発明では制御装置が、逆圧防止制御において室外膨張弁及び第1の開閉弁の双方を開くので、第1の開閉弁の入口側と出口側は迅速に均圧され、第1の開閉弁に逆圧がかかる不都合を効果的に解消することが可能となる。ここで、室外膨張弁と第1の開閉弁を開く場合、第1の開閉弁より先に室外膨張弁を開くと、第1の開閉弁に少しずつ冷媒が流れるために流動音が生じる危険性があるが、請求項2の発明の如く制御装置により逆圧防止制御を開始する際、室外膨張弁と第1の開閉弁を同時に開くようにすれば、係る不都合を防止、若しくは、抑制することができるようになる。 In particular, in the invention of claim 1, since the control device opens both the outdoor expansion valve and the first on-off valve in the back pressure prevention control, the inlet side and the outlet side of the first on-off valve are quickly equalized. It is possible to effectively eliminate the inconvenience of applying reverse pressure to the first on-off valve. Here, when the outdoor expansion valve and the first on-off valve are opened, if the outdoor expansion valve is opened before the first on-off valve, there is a risk that a flow noise will be generated because the refrigerant gradually flows through the first on-off valve. However, if the outdoor expansion valve and the first on-off valve are opened at the same time when the back pressure prevention control is started by the control device as in the invention of claim 2, such inconvenience can be prevented or suppressed. Will be able to.

そして、請求項4の発明の如く制御装置が逆圧防止制御を実行しているときに、圧縮機の回転数が第1の所定値より高い第2の所定値以上に上昇した場合、逆圧防止制御を終了して室外膨張弁が全閉となり、第1の開閉弁が閉じた状態に復帰するようにすれば、圧縮機の回転数が上昇して第1の開閉弁に逆圧がかかり難くなったことに応じて、支障無く本来の第2の運転モードの運転状態に復帰することが可能となる。 Then, when the control device is executing the back pressure prevention control as in the invention of claim 4, when the rotation speed of the compressor rises to a second predetermined value higher than the first predetermined value, the back pressure is increased. If the prevention control is terminated and the outdoor expansion valve is fully closed and the first on-off valve is returned to the closed state, the rotation speed of the compressor increases and a back pressure is applied to the first on-off valve. Depending on the difficulty, it is possible to return to the operating state of the original second operation mode without any trouble.

また、請求項5の発明の如く圧縮機の吐出冷媒圧力を検出して出力する吐出圧力センサと、放熱器の冷媒圧力を検出して出力する放熱器圧力センサを備え、制御装置が第2の運転モードにおいて、放熱器圧力センサが出力する放熱器圧力PCIより吐出圧力センサが出力する吐出圧力Pdが高く、その差が吐出圧力センサ及び放熱器圧力センサが有する検出誤差から導出される最大誤差値以上である場合、逆圧防止制御を実行しないようにすれば、各圧力センサの検出誤差を考慮しても明らかに第1の開閉弁に逆圧がかかっていない運転状態では、逆圧防止制御を行わないことで、不必要な室外膨張弁と第1の開閉弁の開放を回避し、第2の運転モードを円滑に継続することができるようになる。 Further, as in the invention of claim 5, a discharge pressure sensor that detects and outputs the discharge refrigerant pressure of the compressor and a radiator pressure sensor that detects and outputs the refrigerant pressure of the radiator is provided, and the control device is the second. In the operation mode, the discharge pressure Pd output by the discharge pressure sensor is higher than the radiator pressure PCI output by the radiator pressure sensor, and the difference is the maximum error value derived from the detection error of the discharge pressure sensor and the radiator pressure sensor. In the above case, if the back pressure prevention control is not executed, the back pressure prevention control is clearly performed in the operating state where the back pressure is not applied to the first on-off valve even if the detection error of each pressure sensor is taken into consideration. By not performing the above, it is possible to avoid unnecessary opening of the outdoor expansion valve and the first on-off valve, and to smoothly continue the second operation mode.

ここで、上記各発明の車両用空気調和装置の第1の運転モードは、請求項6の発明の如く、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を室外膨張弁で減圧した後、室外熱交換器にて吸熱させる暖房モードと、圧縮機から吐出された冷媒を放熱器から室外熱交換器に流して当該放熱器及び室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる除湿冷房モードと、圧縮機から吐出された冷媒を放熱器から室外熱交換器に流して当該室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる冷房モードのうちの何れか、又は、それらの組み合わせ、若しくは、それらの全てであり、第2の運転モードは、圧縮機から吐出された冷媒をバイパス配管から室外熱交換器に流して放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させると共に、空気流通路から車室内に供給する空気を加熱するための補助加熱装置を発熱させる除湿暖房モードと、圧縮機から吐出された冷媒をバイパス配管から室外熱交換器に流して放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる最大冷房モードのうちの何れか、又は、それらの全てである。 Here, in the first operation mode of the vehicle air conditioner of each of the above inventions, as in the invention of claim 6, the refrigerant discharged from the compressor is radiated by the radiator, and the radiated refrigerant is expanded outdoors. A heating mode in which heat is absorbed by an outdoor heat exchanger after depressurizing with a valve, and a refrigerant discharged from a compressor is flowed from a radiator to an outdoor heat exchanger to dissipate heat through the radiator and the outdoor heat exchanger to dissipate heat. The dehumidifying and cooling mode in which the heat is absorbed by the heat absorber after depressurizing the refrigerant, and the refrigerant discharged from the compressor is flowed from the radiator to the outdoor heat exchanger to dissipate heat in the outdoor heat exchanger and dissipate heat. One of the cooling modes in which the heat is absorbed by the heat exchanger after the refrigerant is depressurized, or a combination thereof, or all of them, and the second operation mode bypasses the refrigerant discharged from the compressor. The heat is radiated by flowing from the pipe to the outdoor heat exchanger, the radiated refrigerant is depressurized, and then the heat is absorbed by the heat absorber, and the auxiliary heating device for heating the air supplied from the air flow passage to the passenger compartment is heated. Either the dehumidifying / heating mode or the maximum cooling mode in which the refrigerant discharged from the compressor is flowed from the bypass pipe to the outdoor heat exchanger to dissipate heat, the dissipated refrigerant is depressurized, and then the heat is absorbed by the heat exchanger. Or all of them.

そして、請求項7の発明の如く補助加熱装置が空気流通路の空気の流れに対して放熱器の上流側に設けられ、第2の運転モードとして除湿暖房モードを実行する場合、放熱器は補助加熱装置の発熱で加熱されるために内部の圧力が上昇し、圧縮機の回転数が低い運転状態では第1の開閉弁に逆圧がかかり易くなるので、上記各発明の逆圧防止制御は極めて有効なものとなる。 When the auxiliary heating device is provided on the upstream side of the radiator with respect to the air flow in the air flow passage as in the invention of claim 7 and the dehumidifying and heating mode is executed as the second operation mode, the radiator is assisted. Since the internal pressure rises due to the heat generated by the heating device, the reverse pressure is likely to be applied to the first on-off valve in the operating state where the compressor rotation speed is low. It will be extremely effective.

本発明を適用した一実施形態の車両用空気調和装置の構成図である(暖房モード、除湿暖房モード、除湿冷房モード及び冷房モード)。It is a block diagram of the air conditioner for a vehicle of one Embodiment to which this invention was applied (heating mode, dehumidifying heating mode, dehumidifying cooling mode and cooling mode). 図1の車両用空気調和装置のコントローラの電気回路のブロック図である。It is a block diagram of the electric circuit of the controller of the air conditioner for a vehicle of FIG. 図1の車両用空気調和装置のMAX冷房モード(最大冷房モード)のときの構成図である。It is a block diagram in the MAX cooling mode (maximum cooling mode) of the air conditioner for a vehicle of FIG. 除湿暖房モードにおいて図2のコントローラが実行する逆圧防止制御の一例を説明する各機器のタイミングチャートである。It is a timing chart of each apparatus explaining an example of the back pressure prevention control executed by the controller of FIG. 2 in a dehumidifying heating mode. 除湿暖房モードにおいて図2のコントローラが実行する逆圧防止制御の一例を説明する各機器のもう一つのタイミングチャートである。It is another timing chart of each device explaining an example of the back pressure prevention control executed by the controller of FIG. 2 in a dehumidifying heating mode. 除湿暖房モードにおいて図2のコントローラが実行する逆圧防止制御の他の例を説明する各機器のタイミングチャートである。It is a timing chart of each apparatus explaining another example of the back pressure prevention control executed by the controller of FIG. 2 in a dehumidifying heating mode. 除湿暖房モードにおいて図2のコントローラが実行する逆圧防止制御のもう一つの他の例を説明する各機器のタイミングチャートである。It is a timing chart of each apparatus explaining another example of the back pressure prevention control executed by the controller of FIG. 2 in a dehumidifying heating mode.

以下、本発明の実施の形態について、図面に基づき詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の一実施例の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、バッテリに充電された電力で走行用の電動モータを駆動して走行するものであり(何れも図示せず)、本発明の車両用空気調和装置1も、バッテリの電力で駆動されるものとする。即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路を用いたヒートポンプ運転により暖房モードを行い、更に、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モード(最大冷房モード)、補助ヒータ単独モードの各運転モードを選択的に実行するものである。 FIG. 1 shows a configuration diagram of an air conditioner 1 for a vehicle according to an embodiment of the present invention. The vehicle of the embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and travels by driving an electric motor for traveling with electric power charged in a battery. Yes (neither is shown), and the vehicle air conditioner 1 of the present invention is also driven by the power of the battery. That is, the vehicle air conditioner 1 of the embodiment performs the heating mode by the heat pump operation using the refrigerant circuit in the electric vehicle that cannot be heated by the waste heat of the engine, and further, the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, Each operation mode of the MAX cooling mode (maximum cooling mode) and the auxiliary heater independent mode is selectively executed.

尚、車両として電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車にも本発明は有効であり、更には、エンジンで走行する通常の自動車にも適用可能であることは云うまでもない。また、上記暖房モード、除湿冷房モード、及び、冷房モードが本発明における第1の運転モード、除湿暖房モード、及び、MAX冷房モードが本発明における第2の運転モードである。 It should be noted that the present invention is effective not only for electric vehicles as vehicles but also for so-called hybrid vehicles that use an engine and an electric motor for traveling, and further, it can be applied to ordinary vehicles traveling with an engine. Needless to say. Further, the heating mode, the dehumidifying / cooling mode, and the cooling mode are the first operation mode in the present invention, the dehumidifying / heating mode, and the MAX cooling mode are the second operation modes in the present invention.

実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒が冷媒配管13Gを介して流入し、この冷媒を車室内に放熱させる放熱器4と、暖房時に冷媒を減圧膨張させる電動弁から成る室外膨張弁6と、車室外に設けられて冷房時には放熱器として機能し、暖房時には蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる電動弁から成る室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に車室内外から冷媒に吸熱させる吸熱器9と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。 The vehicle air conditioner 1 of the embodiment air-conditions (heating, cooling, dehumidifying, and ventilating) the interior of the electric vehicle, and includes an electric compressor 2 that compresses the refrigerant and the interior air of the vehicle. Is provided in the air flow passage 3 of the HVAC unit 10 through which air is circulated, and the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows in through the refrigerant pipe 13G, and the radiator 4 dissipates this refrigerant into the vehicle interior. An outdoor expansion valve 6 composed of an electric valve that decompresses and expands the refrigerant during heating, and a heat exchange between the refrigerant and the outside air so as to be provided outside the vehicle interior and function as a radiator during cooling and as an evaporator during heating. An indoor expansion valve 8 including an outdoor heat exchanger 7 for reducing the pressure and expansion of the refrigerant, and a heat absorber 9 provided in the air flow passage 3 for absorbing heat from the inside and outside of the vehicle during cooling and dehumidification. And the accumulator 12 and the like are sequentially connected by the refrigerant pipe 13, and the refrigerant circuit R is configured.

そして、この冷媒回路Rには所定量の冷媒と潤滑用のオイルが充填されている。尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。 The refrigerant circuit R is filled with a predetermined amount of refrigerant and lubricating oil. The outdoor heat exchanger 7 is provided with an outdoor blower 15. The outdoor blower 15 forcibly ventilates the outdoor air to the outdoor heat exchanger 7 to exchange heat between the outside air and the refrigerant, whereby the outdoor air is outdoors even when the vehicle is stopped (that is, the vehicle speed is 0 km / h). The heat exchanger 7 is configured to ventilate outside air.

また、室外熱交換器7は冷媒下流側にレシーバドライヤ部14と過冷却部16を順次有し、室外熱交換器7から出た冷媒配管13Aは冷房時に開放される電磁弁17を介してレシーバドライヤ部14に接続され、過冷却部16の出口側の冷媒配管13Bは室内膨張弁8を介して吸熱器9の入口側に接続されている。尚、レシーバドライヤ部14及び過冷却部16は構造的に室外熱交換器7の一部を構成している。 Further, the outdoor heat exchanger 7 has a receiver dryer portion 14 and a supercooling portion 16 in sequence on the downstream side of the refrigerant, and the refrigerant pipe 13A coming out of the outdoor heat exchanger 7 receives the receiver via an electromagnetic valve 17 opened during cooling. The refrigerant pipe 13B on the outlet side of the supercooling unit 16 is connected to the dryer unit 14 and is connected to the inlet side of the heat exchanger 9 via the indoor expansion valve 8. The receiver dryer section 14 and the supercooling section 16 structurally form a part of the outdoor heat exchanger 7.

また、過冷却部16と室内膨張弁8間の冷媒配管13Bは、吸熱器9の出口側の冷媒配管13Cと熱交換関係に設けられ、両者で内部熱交換器19を構成している。これにより、冷媒配管13Bを経て室内膨張弁8に流入する冷媒は、吸熱器9を出た低温の冷媒により冷却(過冷却)される構成とされている。 Further, the refrigerant pipe 13B between the supercooling unit 16 and the indoor expansion valve 8 is provided in a heat exchange relationship with the refrigerant pipe 13C on the outlet side of the heat absorber 9, and both constitute the internal heat exchanger 19. As a result, the refrigerant flowing into the indoor expansion valve 8 via the refrigerant pipe 13B is configured to be cooled (supercooled) by the low-temperature refrigerant leaving the heat absorber 9.

また、室外熱交換器7から出た冷媒配管13Aは冷媒配管13Dに分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される電磁弁21を介して内部熱交換器19の下流側における冷媒配管13Cに連通接続されている。この冷媒配管13Cがアキュムレータ12に接続され、アキュムレータ12は圧縮機2の冷媒吸込側に接続されている。更に、放熱器4の出口側の冷媒配管13Eは室外膨張弁6を介して室外熱交換器7の入口側に接続されている。 Further, the refrigerant pipe 13A coming out of the outdoor heat exchanger 7 is branched into the refrigerant pipe 13D, and the branched refrigerant pipe 13D is on the downstream side of the internal heat exchanger 19 via the electromagnetic valve 21 opened at the time of heating. Is connected to the refrigerant pipe 13C in the above. The refrigerant pipe 13C is connected to the accumulator 12, and the accumulator 12 is connected to the refrigerant suction side of the compressor 2. Further, the refrigerant pipe 13E on the outlet side of the radiator 4 is connected to the inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6.

また、圧縮機2の吐出側と放熱器4の入口側の間の冷媒配管13Gには後述する除湿暖房とMAX冷房時に閉じられる電磁弁30(本願での第1の開閉弁:リヒート用の電磁弁)が介設されている。この場合、冷媒配管13Gは電磁弁30の上流側でバイパス配管35に分岐しており、このバイパス配管35には除湿暖房とMAX冷房時に開放される電磁弁40(本願での第2の開閉弁:バイパス用の電磁弁)が設けられており、この電磁弁40を介して室外膨張弁6の下流側の冷媒配管13Eに連通接続されている。これらバイパス配管35、電磁弁30及び電磁弁40によりバイパス装置45が構成される。 Further, the refrigerant pipe 13G between the discharge side of the compressor 2 and the inlet side of the radiator 4 has a solenoid valve 30 that is closed during dehumidifying heating and MAX cooling, which will be described later (first on-off valve in the present application: solenoid for reheating). A valve) is installed. In this case, the refrigerant pipe 13G branches to the bypass pipe 35 on the upstream side of the solenoid valve 30, and the bypass pipe 35 is connected to the solenoid valve 40 (the second on-off valve in the present application) which is opened during dehumidifying heating and MAX cooling. : A solenoid valve for bypass) is provided, and is communicated with the refrigerant pipe 13E on the downstream side of the outdoor expansion valve 6 via the solenoid valve 40. The bypass device 45 is composed of the bypass pipe 35, the solenoid valve 30, and the solenoid valve 40.

このようなバイパス配管35、電磁弁30及び電磁弁40によりバイパス装置45を構成したことで、後述する如く圧縮機2から吐出された冷媒を室外熱交換器7に直接流入させる除湿暖房モードやMAX冷房モードと、圧縮機2から吐出された冷媒を放熱器4に流入させる暖房モードや除湿冷房モード、冷房モードとの切り換えを円滑に行うことができるようになる。 By configuring the bypass device 45 with such a bypass pipe 35, a solenoid valve 30, and a solenoid valve 40, a dehumidifying / heating mode or MAX in which the refrigerant discharged from the compressor 2 directly flows into the outdoor heat exchanger 7 as described later. It becomes possible to smoothly switch between the cooling mode and the heating mode, the dehumidifying cooling mode, and the cooling mode in which the refrigerant discharged from the compressor 2 flows into the radiator 4.

また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環モード)と、車室外の空気である外気(外気導入モード)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。 Further, in the air flow passage 3 on the air upstream side of the heat absorber 9, each suction port of the outside air suction port and the inside air suction port is formed (represented by the suction port 25 in FIG. 1), and this suction port is formed. The suction switching damper 26 for switching the air introduced into the air flow passage 3 into the inside air (inside air circulation mode), which is the air inside the vehicle interior, and the outside air (outside air introduction mode), which is the air outside the vehicle interior, is provided. There is. Further, an indoor blower fan 27 for supplying the introduced inside air and outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.

また、図1において23は実施例の車両用空気調和装置1に設けられた補助加熱装置としての補助ヒータである。実施例の補助ヒータ23は電気ヒータであるPTCヒータにて構成されており、空気流通路3の空気の流れに対して、放熱器4の空気上流側となる空気流通路3内に設けられている。そして、補助ヒータ23に通電されて発熱すると、吸熱器9を経て放熱器4に流入する空気流通路3内の空気が加熱される。即ち、この補助ヒータ23が所謂ヒータコアとなり、車室内の暖房を行い、或いは、それを補完する。 Further, in FIG. 1, 23 is an auxiliary heater as an auxiliary heating device provided in the vehicle air conditioner 1 of the embodiment. The auxiliary heater 23 of the embodiment is composed of a PTC heater which is an electric heater, and is provided in the air flow passage 3 which is on the air upstream side of the radiator 4 with respect to the air flow of the air flow passage 3. There is. Then, when the auxiliary heater 23 is energized to generate heat, the air in the air flow passage 3 flowing into the radiator 4 via the endothermic absorber 9 is heated. That is, the auxiliary heater 23 serves as a so-called heater core, which heats or complements the interior of the vehicle.

また、補助ヒータ23の空気上流側における空気流通路3内には、当該空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を補助ヒータ23及び放熱器4に通風する割合を調整するエアミックスダンパ28が設けられている。更に、放熱器4の空気下流側における空気流通路3には、FOOT(フット)、VENT(ベント)、DEF(デフ)の各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口から空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。 Further, in the air flow passage 3 on the air upstream side of the auxiliary heater 23, the air (inside air or outside air) in the air flow passage 3 after flowing into the air flow passage 3 and passing through the heat absorber 9 is assisted. An air mix damper 28 for adjusting the ratio of ventilation to the heater 23 and the radiator 4 is provided. Further, FOOT (foot), VENT (vent), and DEF (diff) outlets (represented by outlet 29 in FIG. 1) are formed in the air flow passage 3 on the air downstream side of the radiator 4. The outlet 29 is provided with an outlet switching damper 31 that switches and controls the blowing of air from each of the outlets.

次に、図2において32はプロセッサを備えたコンピュータの一例であるマイクロコンピュータから構成された制御装置としてのコントローラ(ECU)であり、このコントローラ32の入力には車両の外気温度(Tam)を検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれる空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2濃度センサ39と、吹出口29から車室内に吹き出される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力(吐出圧力Pd)を検出する吐出圧力センサ42と、圧縮機2の吐出冷媒温度を検出する吐出温度センサ43と、圧縮機2の吸込冷媒温度を検出する吸込温度センサ55と、放熱器4の入口の冷媒温度(放熱器入口温度TCIin)を検出する放熱器入口温度センサ44と、放熱器4の出口の冷媒温度(放熱器出口温度TCIout)を検出する放熱器出口温度センサ46と、放熱器4の冷媒圧力(放熱器4内、又は、放熱器4を出た直後の冷媒の圧力:放熱器圧力PCI)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器9を経た空気の温度、又は、吸熱器9自体の温度:吸熱器温度Te)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力(吸熱器9内、又は、吸熱器9を出た直後の冷媒の圧力)を検出する吸熱器圧力センサ49と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52と、設定温度や運転モードの切り換えを設定するための空調(エアコン)操作部53と、室外熱交換器7から出た直後の冷媒の温度(室外熱交換器温度TXO)を検出する室外熱交換器温度センサ54と、室外熱交換器7の冷媒圧力(室外熱交換器7内、又は、室外熱交換器7から出た直後の冷媒の圧力:室外熱交換器圧力PXO)を検出する室外熱交換器圧力センサ56の各出力が接続されている。また、コントローラ32の入力には更に、補助ヒータ23の温度(補助ヒータ23で加熱された直後の空気の温度、又は、補助ヒータ23自体の温度:補助ヒータ温度Tptc)を検出する補助ヒータ温度センサ50の出力も接続されている。 Next, in FIG. 2, reference numeral 32 denotes a controller (ECU) as a control device composed of a microcomputer which is an example of a computer provided with a processor, and the outside air temperature (Tam) of the vehicle is detected at the input of the controller 32. The outside air temperature sensor 33, the outside air humidity sensor 34 that detects the outside air humidity, the HVAC suction temperature sensor 36 that detects the temperature of the air sucked into the air flow passage 3 from the suction port 25, and the air (inside air) in the vehicle interior. The inside air temperature sensor 37 that detects the temperature, the inside air humidity sensor 38 that detects the humidity of the air inside the vehicle, the indoor CO 2 concentration sensor 39 that detects the carbon dioxide concentration inside the vehicle, and the air outlet 29 blows out into the vehicle interior. A blowout temperature sensor 41 that detects the temperature of the air to be generated, a discharge pressure sensor 42 that detects the discharge refrigerant pressure (discharge pressure Pd) of the compressor 2, and a discharge temperature sensor 43 that detects the discharge refrigerant temperature of the compressor 2. , The suction temperature sensor 55 that detects the suction refrigerant temperature of the compressor 2, the radiator inlet temperature sensor 44 that detects the refrigerant temperature at the inlet of the radiator 4 (radiator inlet temperature TCIin), and the refrigerant at the outlet of the radiator 4. The radiator outlet temperature sensor 46 that detects the temperature (radiator outlet temperature TCIout) and the refrigerant pressure of the radiator 4 (the pressure of the refrigerant in the radiator 4 or immediately after leaving the radiator 4: radiator pressure PCI). The radiator pressure sensor 47 that detects the temperature of the heat absorber 9 and the heat absorber temperature sensor 48 that detects the temperature of the heat absorber 9 (the temperature of the air that has passed through the heat absorber 9 or the temperature of the heat absorber 9 itself: the heat absorber temperature Te), and the heat absorber. A heat absorber pressure sensor 49 for detecting the refrigerant pressure of the device 9 (the pressure of the refrigerant in the heat absorber 9 or immediately after leaving the heat absorber 9) and, for example, a photosensor type for detecting the amount of solar radiation into the vehicle interior. From the solar radiation sensor 51, the vehicle speed sensor 52 for detecting the moving speed (vehicle speed) of the vehicle, the air conditioning (air conditioner) operation unit 53 for setting the set temperature and the switching of the operation mode, and the outdoor heat exchanger 7. The outdoor heat exchanger temperature sensor 54 that detects the temperature of the refrigerant immediately after it is discharged (outdoor heat exchanger temperature TXO) and the refrigerant pressure of the outdoor heat exchanger 7 (inside the outdoor heat exchanger 7 or the outdoor heat exchanger 7). Each output of the outdoor heat exchanger pressure sensor 56 that detects the pressure of the refrigerant immediately after exiting from: outdoor heat exchanger pressure PXO) is connected. Further, at the input of the controller 32, an auxiliary heater temperature sensor that detects the temperature of the auxiliary heater 23 (the temperature of the air immediately after being heated by the auxiliary heater 23 or the temperature of the auxiliary heater 23 itself: the auxiliary heater temperature Tptc). Fifty outputs are also connected.

尚、本願において各センサとは、温度や圧力を検出するためのセンサ本体と、このセンサ本体の検出値を電圧に変換してコントローラ32に出力するための電子部品を含むものとして扱う。 In the present application, each sensor is treated as including a sensor main body for detecting temperature and pressure, and an electronic component for converting the detected value of the sensor main body into a voltage and outputting it to the controller 32.

一方、コントローラ32の出力には、前記圧縮機2と、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口切換ダンパ31と、室外膨張弁6、室内膨張弁8と、補助ヒータ23、電磁弁30(リヒート用)、電磁弁17(冷房用)、電磁弁21(暖房用)、電磁弁40(バイパス用)の各電磁弁が接続されている。そして、コントローラ32は各センサの出力と空調操作部53にて入力された設定に基づいてこれらを制御する。 On the other hand, the output of the controller 32 includes the compressor 2, the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, the air outlet switching damper 31, and the outdoor expansion. Valve 6, indoor expansion valve 8 and auxiliary heater 23, solenoid valve 30 (for reheating), solenoid valve 17 (for cooling), solenoid valve 21 (for heating), solenoid valve 40 (for bypass) are connected. Has been done. Then, the controller 32 controls these based on the output of each sensor and the setting input by the air conditioner operation unit 53.

以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。コントローラ32は実施例では暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モード(最大冷房モード)、及び、補助ヒータ単独モードの各運転モードを切り換えて実行する。先ず、各運転モードにおける冷媒の流れと制御の概略について説明する。 With the above configuration, the operation of the vehicle air conditioner 1 of the embodiment will be described next. In the embodiment, the controller 32 switches and executes each operation mode of the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, the MAX cooling mode (maximum cooling mode), and the auxiliary heater independent mode. First, the outline of the flow and control of the refrigerant in each operation mode will be described.

(1)暖房モード(第1の運転モード)
コントローラ32により(オートモード)或いは空調操作部53へのマニュアル操作(マニュアルモード)により暖房モードが選択されると、コントローラ32は暖房用の電磁弁21を開放し、冷房用の電磁弁17を閉じる。また、リヒート用の電磁弁30を開放し、バイパス用の電磁弁40を閉じる。
(1) Heating mode (first operation mode)
When the heating mode is selected by the controller 32 (auto mode) or by manual operation (manual mode) to the air conditioning operation unit 53, the controller 32 opens the heating solenoid valve 21 and closes the cooling solenoid valve 17. .. Further, the solenoid valve 30 for reheating is opened, and the solenoid valve 40 for bypass is closed.

そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は図1に破線で示す如く、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全ての空気が補助ヒータ23及び放熱器4に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒(補助ヒータ23が動作するときは当該補助ヒータ23及び放熱器4)により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。 Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is blown out from the indoor blower 27 and passed through the heat absorber 9 in the air flow passage 3 as shown by the broken line in FIG. The air is ventilated to the auxiliary heater 23 and the radiator 4. As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the solenoid valve 30. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is the high-temperature refrigerant in the radiator 4 (when the auxiliary heater 23 operates, the auxiliary heater 23 and the radiator 4 are used. ), On the other hand, the refrigerant in the radiator 4 is deprived of heat by the air and cooled to be condensed.

放熱器4内で液化した冷媒は当該放熱器4を出た後、冷媒配管13Eを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び電磁弁21及び冷媒配管13Dを経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。即ち、室外熱交換器7から出た冷媒は吸熱器9を経ること無くアキュムレータ12に流れる。そして、放熱器4(補助ヒータ23が動作するときは当該補助ヒータ23及び放熱器4)にて加熱された空気は吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。 The refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 via the refrigerant pipe 13E. The refrigerant that has flowed into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7. The refrigerant that has flowed into the outdoor heat exchanger 7 evaporates and draws heat by running or from the outside air that is ventilated by the outdoor blower 15. That is, the refrigerant circuit R serves as a heat pump. Then, the low-temperature refrigerant that has exited the outdoor heat exchanger 7 enters the accumulator 12 from the refrigerant pipe 13C via the refrigerant pipe 13A, the solenoid valve 21, and the refrigerant pipe 13D, and after gas-liquid separation there, the gas refrigerant is used in the compressor 2. Repeat the circulation sucked into. That is, the refrigerant discharged from the outdoor heat exchanger 7 flows to the accumulator 12 without passing through the heat absorber 9. Then, since the air heated by the radiator 4 (when the auxiliary heater 23 operates, the auxiliary heater 23 and the radiator 4) is blown out from the air outlet 29, the interior of the vehicle is heated by this. Become.

コントローラ32は、後述する目標吹出温度TAOから算出される目標放熱器温度TCO(放熱器温度THの目標値)から目標放熱器圧力PCO(放熱器圧力PCIの目標値)を算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数NCを制御する。また、コントローラ32は、放熱器入口温度センサ44が検出する放熱器入口温度TCIin、放熱器出口温度センサ46が検出する放熱器出口温度TCIout及び放熱器圧力センサ47が検出する放熱器圧力PCIに基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度SCを制御する。前記目標放熱器温度TCOは基本的にはTCO=TAOとされるが、制御上の所定の制限が設けられる。 The controller 32 calculates the target radiator pressure PCO (target value of the radiator pressure PCI) from the target radiator temperature TCO (target value of the radiator temperature TH) calculated from the target blowout temperature TAO described later, and this target heat dissipation. The rotation speed NC of the compressor 2 is controlled based on the instrument pressure PCO and the refrigerant pressure of the radiator 4 (radiator pressure PCI; high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47. Further, the controller 32 is based on the radiator inlet temperature TCIin detected by the radiator inlet temperature sensor 44, the radiator outlet temperature TCIout detected by the radiator outlet temperature sensor 46, and the radiator pressure PCI detected by the radiator pressure sensor 47. The valve opening degree of the outdoor expansion valve 6 is controlled, and the supercooling degree SC of the refrigerant at the outlet of the radiator 4 is controlled. The target radiator temperature TCO is basically TCO = TAO, but a predetermined control limit is provided.

また、コントローラ32はこの暖房モードにおいては、車室内空調に要求される暖房能力に対して放熱器4による暖房能力が不足する場合、その不足する分を補助ヒータ23の発熱で補完するように補助ヒータ23の通電を制御する。それにより、快適な車室内暖房を実現し、且つ、室外熱交換器7の着霜も抑制する。このとき、補助ヒータ23は放熱器4の空気上流側に配置されているので、空気流通路3を流通する空気は放熱器4の前に補助ヒータ23に通風されることになる。 Further, in this heating mode, when the heating capacity of the radiator 4 is insufficient for the heating capacity required for the air conditioning in the vehicle interior, the controller 32 assists to supplement the insufficient heating capacity with the heat generated by the auxiliary heater 23. Controls the energization of the heater 23. As a result, comfortable vehicle interior heating is realized, and frost formation of the outdoor heat exchanger 7 is also suppressed. At this time, since the auxiliary heater 23 is arranged on the upstream side of the air of the radiator 4, the air flowing through the air flow passage 3 is ventilated to the auxiliary heater 23 in front of the radiator 4.

ここで、補助ヒータ23が放熱器4の空気下流側に配置されていると、実施例の如くPTCヒータで補助ヒータ23を構成した場合には、補助ヒータ23に流入する空気の温度が放熱器4によって上昇するため、PTCヒータの抵抗値が大きくなり、電流値も低くなって発熱量が低下してしまうが、放熱器4の空気上流側に補助ヒータ23を配置することで、実施例の如くPTCヒータから構成される補助ヒータ23の能力を十分に発揮させることができるようになる。 Here, if the auxiliary heater 23 is arranged on the downstream side of the air of the radiator 4, when the auxiliary heater 23 is configured by the PTC heater as in the embodiment, the temperature of the air flowing into the auxiliary heater 23 is the radiator. Since the temperature is increased by 4, the resistance value of the PTC heater increases, the current value also decreases, and the amount of heat generated decreases. However, by arranging the auxiliary heater 23 on the upstream side of the air of the radiator 4, the example of the embodiment As described above, the ability of the auxiliary heater 23 composed of the PTC heater can be fully exhibited.

(2)除湿暖房モード(第2の運転モード)
次に、除湿暖房モードでは、コントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を閉じ、電磁弁40を開放すると共に、室外膨張弁6の弁開度は全閉とする。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は図1に破線で示す如く、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全ての空気が補助ヒータ23及び放熱器4に通風される状態とする。
(2) Dehumidifying and heating mode (second operation mode)
Next, in the dehumidifying / heating mode, the controller 32 opens the solenoid valve 17 and closes the solenoid valve 21. Further, the solenoid valve 30 is closed, the solenoid valve 40 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is blown out from the indoor blower 27 and passed through the heat absorber 9 in the air flow passage 3 as shown by the broken line in FIG. The air is ventilated to the auxiliary heater 23 and the radiator 4.

これにより、圧縮機2から冷媒配管13Gに吐出された高温高圧のガス冷媒は、放熱器4に向かうこと無くバイパス配管35に流入し、電磁弁40を経て室外膨張弁6の下流側の冷媒配管13Eに至るようになる。このとき、室外膨張弁6は全閉とされているので、冷媒は室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。 As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the solenoid valve 40, and flows into the refrigerant pipe on the downstream side of the outdoor expansion valve 6. It will reach 13E. At this time, since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 is air-cooled and condensed by traveling there or by the outside air ventilated by the outdoor blower 15. The refrigerant exiting the outdoor heat exchanger 7 flows sequentially from the refrigerant pipe 13A through the solenoid valve 17 to the receiver dryer section 14 and the supercooling section 16. Here the refrigerant is supercooled.

室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却され、且つ、当該空気中の水分が吸熱器9に凝結して付着するので、空気流通路3内の空気は冷却され、且つ、除湿される。吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。 The refrigerant exiting the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13B, passes through the internal heat exchanger 19, and reaches the indoor expansion valve 8. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 is cooled by the endothermic action at this time, and the moisture in the air condenses and adheres to the heat absorber 9, so that the air in the air flow passage 3 is cooled and It is dehumidified. The refrigerant evaporated in the heat absorber 9 passes through the internal heat exchanger 19 and reaches the accumulator 12 via the refrigerant pipe 13C, and repeats the circulation of being sucked into the compressor 2 through the accumulator 12.

このとき、室外膨張弁6の弁開度は全閉とされているので、圧縮機2から吐出された冷媒が室外膨張弁6から放熱器4に逆流入する不都合を抑制若しくは防止することが可能となる。これにより、冷媒循環量の低下を抑制若しくは解消して空調能力を確保することができるようになる。更に、この除湿暖房モードにおいてコントローラ32は、補助ヒータ23に通電して発熱させる。これにより、吸熱器9にて冷却され、且つ、除湿された空気は補助ヒータ23を通過する過程で更に加熱され、温度が上昇するので車室内の除湿暖房が行われることになる。 At this time, since the valve opening degree of the outdoor expansion valve 6 is fully closed, it is possible to suppress or prevent the inconvenience that the refrigerant discharged from the compressor 2 flows back from the outdoor expansion valve 6 into the radiator 4. It becomes. As a result, it becomes possible to suppress or eliminate the decrease in the amount of refrigerant circulation and secure the air conditioning capacity. Further, in this dehumidifying / heating mode, the controller 32 energizes the auxiliary heater 23 to generate heat. As a result, the air cooled and dehumidified by the heat absorber 9 is further heated in the process of passing through the auxiliary heater 23, and the temperature rises, so that the dehumidifying and heating of the vehicle interior is performed.

コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づいて圧縮機2の回転数NCを制御すると共に、補助ヒータ温度センサ50が検出する補助ヒータ温度Tptcと前述した目標放熱器温度TCOに基づいて補助ヒータ23の通電(発熱)を制御することで、吸熱器9での空気の冷却と除湿を適切に行いながら、補助ヒータ23による加熱で吹出口29から車室内に吹き出される空気温度の低下を的確に防止する。 The controller 32 controls the rotation speed NC of the compressor 2 based on the temperature of the endothermic 9 (heat absorber temperature Te) detected by the endothermic temperature sensor 48 and the target endothermic temperature TEO which is the target value thereof, and also controls the rotation speed NC of the compressor 2. By controlling the energization (heat generation) of the auxiliary heater 23 based on the auxiliary heater temperature Tptc detected by the temperature sensor 50 and the above-mentioned target radiator temperature TCO, the air in the endothermic 9 can be appropriately cooled and dehumidified. The heating by the auxiliary heater 23 accurately prevents the temperature of the air blown from the outlet 29 into the vehicle interior from dropping.

これにより、車室内に吹き出される空気を除湿しながら、その温度を適切な暖房温度に制御することが可能となり、車室内の快適且つ効率的な除湿暖房を実現することができるようになる。また、前述した如く除湿暖房モードではエアミックスダンパ28は空気流通路3内の全ての空気を補助ヒータ23及び放熱器4に通風する状態とされるので、吸熱器9を経た空気を効率良く補助ヒータ23で加熱して省エネ性を向上させ、且つ、除湿暖房空調の制御性も向上させることができるようになる。 As a result, it becomes possible to control the temperature to an appropriate heating temperature while dehumidifying the air blown into the vehicle interior, and it becomes possible to realize comfortable and efficient dehumidification heating in the vehicle interior. Further, as described above, in the dehumidifying / heating mode, the air mix damper 28 is in a state of ventilating all the air in the air flow passage 3 to the auxiliary heater 23 and the radiator 4, so that the air passing through the heat absorber 9 is efficiently assisted. It becomes possible to improve energy saving by heating with the heater 23 and also to improve the controllability of dehumidifying, heating and air conditioning.

尚、実施例の如く補助ヒータ23を放熱器4の空気上流側に配置することで、補助ヒータ23が発熱すると、それによって加熱された空気が放熱器4に流入することになるため、放熱器4は加熱されるかたちとなるが、補助ヒータ23を放熱器4の空気下流側に配置した場合に比して、乗員の安全性(感電)は向上する。 By arranging the auxiliary heater 23 on the upstream side of the air of the radiator 4 as in the embodiment, when the auxiliary heater 23 generates heat, the heated air flows into the radiator 4, so that the radiator Although No. 4 is heated, the safety (electric shock) of the occupant is improved as compared with the case where the auxiliary heater 23 is arranged on the downstream side of the air of the radiator 4.

(3)除湿冷房モード(第1の運転モード)
次に、除湿冷房モードでは、コントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を開放し、電磁弁40を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は図1に破線で示す如く、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全ての空気が補助ヒータ23及び放熱器4に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
(3) Dehumidifying and cooling mode (first operation mode)
Next, in the dehumidifying / cooling mode, the controller 32 opens the solenoid valve 17 and closes the solenoid valve 21. Further, the solenoid valve 30 is opened and the solenoid valve 40 is closed. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is blown out from the indoor blower 27 and passed through the heat absorber 9 in the air flow passage 3 as shown by the broken line in FIG. The air is ventilated to the auxiliary heater 23 and the radiator 4. As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the solenoid valve 30. Since the air in the air flow passage 3 is ventilated to the radiator 4, the air in the air flow passage 3 is heated by the high temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived, cooled, and condensed.

放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至り、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。 The refrigerant exiting the radiator 4 reaches the outdoor expansion valve 6 via the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 via the outdoor expansion valve 6 which is slightly opened and controlled. The refrigerant flowing into the outdoor heat exchanger 7 is air-cooled and condensed by traveling there or by the outside air ventilated by the outdoor blower 15. The refrigerant exiting the outdoor heat exchanger 7 flows sequentially from the refrigerant pipe 13A through the solenoid valve 17 to the receiver dryer section 14 and the supercooling section 16. Here the refrigerant is supercooled.

室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。 The refrigerant exiting the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13B, passes through the internal heat exchanger 19, and reaches the indoor expansion valve 8. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Due to the endothermic action at this time, the moisture in the air blown out from the indoor blower 27 condenses and adheres to the heat absorber 9, so that the air is cooled and dehumidified.

吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。この除湿冷房モードではコントローラ32は補助ヒータ23に通電しないので、吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程で再加熱(暖房時よりも放熱能力は低い)される。これにより車室内の除湿冷房が行われることになる。 The refrigerant evaporated in the heat absorber 9 passes through the internal heat exchanger 19 and reaches the accumulator 12 via the refrigerant pipe 13C, and repeats the circulation of being sucked into the compressor 2 through the accumulator 12. In this dehumidifying / cooling mode, since the controller 32 does not energize the auxiliary heater 23, it is cooled by the heat absorber 9, and the dehumidified air is reheated in the process of passing through the radiator 4 (the heat dissipation capacity is lower than that during heating). To. As a result, the interior of the vehicle is dehumidified and cooled.

コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて圧縮機2の回転数NCを制御すると共に、前述した冷媒回路Rの高圧圧力に基づいて室外膨張弁6の弁開度を制御し、放熱器4の冷媒圧力(放熱器圧力PCI)を制御する。 The controller 32 controls the rotation speed NC of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48, and expands outdoors based on the high pressure of the refrigerant circuit R described above. The valve opening degree of the valve 6 is controlled, and the refrigerant pressure (radiator pressure PCI) of the radiator 4 is controlled.

(4)冷房モード(第1の運転モード)
次に、冷房モードでは、コントローラ32は上記除湿冷房モードの状態において室外膨張弁6の弁開度を全開とする。尚、コントローラ32はエアミックスダンパ28を制御し、図1に実線で示す如く、室内送風機27から吹き出されて吸熱器9を通過した後の空気流通路3内の空気が、補助ヒータ23及び放熱器4に通風される割合を調整する。また、コントローラ32は補助ヒータ23に通電しない。
(4) Cooling mode (first operation mode)
Next, in the cooling mode, the controller 32 fully opens the valve opening degree of the outdoor expansion valve 6 in the state of the dehumidifying cooling mode. The controller 32 controls the air mix damper 28, and as shown by the solid line in FIG. 1, the air in the air flow passage 3 after being blown out from the indoor blower 27 and passing through the heat absorber 9 dissipates heat to the auxiliary heater 23. Adjust the ratio of ventilation to the vessel 4. Further, the controller 32 does not energize the auxiliary heater 23.

これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入すると共に、放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至る。このとき室外膨張弁6は全開とされているので冷媒はそれを通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。 As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the solenoid valve 30, and the refrigerant discharged from the radiator 4 passes through the refrigerant pipe 13E and the outdoor expansion valve 6 To. At this time, since the outdoor expansion valve 6 is fully opened, the refrigerant passes through it and flows into the outdoor heat exchanger 7 as it is, where it is air-cooled by running or by the outside air ventilated by the outdoor blower 15 and condensed. Liquefaction. The refrigerant exiting the outdoor heat exchanger 7 flows sequentially from the refrigerant pipe 13A through the solenoid valve 17 to the receiver dryer section 14 and the supercooling section 16. Here the refrigerant is supercooled.

室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却される。また、空気中の水分は吸熱器9に凝結して付着する。 The refrigerant exiting the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13B, passes through the internal heat exchanger 19, and reaches the indoor expansion valve 8. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 is cooled by the endothermic action at this time. Further, the moisture in the air condenses and adheres to the heat absorber 9.

吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気が吹出口29から車室内に吹き出されるので(一部は放熱器4を通過して熱交換する)、これにより車室内の冷房が行われることになる。また、この冷房モードにおいては、コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づいて圧縮機2の回転数NCを制御する。 The refrigerant evaporated in the heat absorber 9 passes through the internal heat exchanger 19 and reaches the accumulator 12 via the refrigerant pipe 13C, and repeats the circulation of being sucked into the compressor 2 through the accumulator 12. Since the dehumidified air cooled by the heat absorber 9 is blown out into the vehicle interior from the air outlet 29 (a part of the air passes through the radiator 4 to exchange heat), the interior of the vehicle is cooled. become. Further, in this cooling mode, the controller 32 rotates the compressor 2 based on the temperature of the endothermic 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO which is the target value thereof. Control NC.

(5)MAX冷房モード(最大冷房モード:第2の運転モード)
次に、最大冷房モードとしてのMAX冷房モードでは、コントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を閉じ、電磁弁40を開放すると共に、室外膨張弁6の弁開度は全閉とする。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は図3に示す如く補助ヒータ23及び放熱器4に空気流通路3内の空気が通風されない状態とする。但し、多少通風されても支障はない。また、コントローラ32は補助ヒータ23に通電しない。
(5) MAX cooling mode (maximum cooling mode: second operation mode)
Next, in the MAX cooling mode as the maximum cooling mode, the controller 32 opens the solenoid valve 17 and closes the solenoid valve 21. Further, the solenoid valve 30 is closed, the solenoid valve 40 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is in a state where the air in the air flow passage 3 is not ventilated to the auxiliary heater 23 and the radiator 4 as shown in FIG. However, there is no problem even if there is some ventilation. Further, the controller 32 does not energize the auxiliary heater 23.

これにより、圧縮機2から冷媒配管13Gに吐出された高温高圧のガス冷媒は、放熱器4に向かうこと無くバイパス配管35に流入し、電磁弁40を経て室外膨張弁6の下流側の冷媒配管13Eに至るようになる。このとき、室外膨張弁6は全閉とされているので、冷媒は室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。 As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the solenoid valve 40, and flows into the refrigerant pipe on the downstream side of the outdoor expansion valve 6. It will reach 13E. At this time, since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 is air-cooled and condensed by traveling there or by the outside air ventilated by the outdoor blower 15. The refrigerant exiting the outdoor heat exchanger 7 flows sequentially from the refrigerant pipe 13A through the solenoid valve 17 to the receiver dryer section 14 and the supercooling section 16. Here the refrigerant is supercooled.

室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却される。また、空気中の水分は吸熱器9に凝結して付着するので、空気流通路3内の空気は除湿される。吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。このとき、室外膨張弁6は全閉とされているので、同様に圧縮機2から吐出された冷媒が室外膨張弁6から放熱器4に逆流入する不都合を抑制若しくは防止することが可能となる。これにより、冷媒循環量の低下を抑制若しくは解消して空調能力を確保することができるようになる。 The refrigerant exiting the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13B, passes through the internal heat exchanger 19, and reaches the indoor expansion valve 8. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 is cooled by the endothermic action at this time. Further, since the moisture in the air condenses and adheres to the heat absorber 9, the air in the air flow passage 3 is dehumidified. The refrigerant evaporated in the heat absorber 9 passes through the internal heat exchanger 19 and reaches the accumulator 12 via the refrigerant pipe 13C, and repeats the circulation of being sucked into the compressor 2 through the accumulator 12. At this time, since the outdoor expansion valve 6 is fully closed, it is possible to suppress or prevent the inconvenience that the refrigerant discharged from the compressor 2 flows back from the outdoor expansion valve 6 into the radiator 4. .. As a result, it becomes possible to suppress or eliminate the decrease in the amount of refrigerant circulation and secure the air conditioning capacity.

ここで、前述した冷房モードでは放熱器4に高温の冷媒が流れているため、放熱器4からHVACユニット10への直接の熱伝導が少なからず生じるが、このMAX冷房モードでは放熱器4に冷媒が流れないため、放熱器4からHVACユニット10に伝達される熱で吸熱器9からの空気流通路3内の空気が加熱されることも無くなる。そのため、車室内の強力な冷房が行われ、特に外気温度Tamが高いような環境下では、迅速に車室内を冷房して快適な車室内空調を実現することができるようになる。また、このMAX冷房モードにおいても、コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づいて圧縮機2の回転数NCを制御する。 Here, since the high-temperature refrigerant is flowing through the radiator 4 in the above-mentioned cooling mode, direct heat conduction from the radiator 4 to the HVAC unit 10 is not a little generated, but in this MAX cooling mode, the refrigerant is transferred to the radiator 4. Does not flow, so that the heat transferred from the radiator 4 to the HVAC unit 10 does not heat the air in the air flow passage 3 from the heat absorber 9. Therefore, the interior of the vehicle is strongly cooled, and particularly in an environment where the outside air temperature Tam is high, the interior of the vehicle can be quickly cooled to realize comfortable air conditioning in the vehicle interior. Further, even in this MAX cooling mode, the controller 32 rotates the compressor 2 based on the temperature of the endothermic 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO which is the target value thereof. Control the number NC.

(6)補助ヒータ単独モード
尚、実施例のコントローラ32は室外熱交換器7に過着霜が生じた場合などに、圧縮機2と室外送風機15を停止し、補助ヒータ23に通電してこの補助ヒータ23のみで車室内を暖房する補助ヒータ単独モードを有している。この場合にも、コントローラ32は補助ヒータ温度センサ50が検出する補助ヒータ温度Tptcと前述した目標ヒータ温度TCOに基づいて補助ヒータ23の通電(発熱)を制御する。
(6) Auxiliary heater independent mode The controller 32 of the embodiment stops the compressor 2 and the outdoor blower 15 when over-frost occurs in the outdoor heat exchanger 7, and energizes the auxiliary heater 23. It has an auxiliary heater independent mode that heats the vehicle interior with only the auxiliary heater 23. Also in this case, the controller 32 controls the energization (heat generation) of the auxiliary heater 23 based on the auxiliary heater temperature Tptc detected by the auxiliary heater temperature sensor 50 and the target heater temperature TCO described above.

また、コントローラ32は室内送風機27を運転し、エアミックスダンパ28は、室内送風機27から吹き出された空気流通路3内の空気を補助ヒータ23に通風し、風量を調整する状態とする。補助ヒータ23にて加熱された空気が吹出口29から車室内に吹き出されるので、これにより車室内の暖房が行われることになる。 Further, the controller 32 operates the indoor blower 27, and the air mix damper 28 ventilates the air in the air flow passage 3 blown out from the indoor blower 27 to the auxiliary heater 23 to adjust the air volume. Since the air heated by the auxiliary heater 23 is blown out from the outlet 29 into the vehicle interior, the vehicle interior is heated by this.

(7)運転モードの切換
空気流通路3内を流通される空気は上記各運転モードにおいて吸熱器9からの冷却や放熱器4(及び補助ヒータ23)からの加熱作用(エアミックスダンパ28で調整)を受けて吹出口29から車室内に吹き出される。コントローラ32は外気温度センサ33が検出する外気温度Tam、内気温度センサ37が検出する車室内の温度、前記ブロワ電圧、日射センサ51が検出する日射量等と、空調操作部53にて設定された車室内の目標車室内温度(設定温度)とに基づいて目標吹出温度TAOを算出し、各運転モードを切り換えて吹出口29から吹き出される空気の温度をこの目標吹出温度TAOに制御する。
(7) Switching of operation mode The air flowing through the air flow passage 3 is cooled by the heat absorber 9 and heated by the radiator 4 (and the auxiliary heater 23) in each of the above operation modes (adjusted by the air mix damper 28). ), And it is blown into the passenger compartment from the outlet 29. The controller 32 is set by the air conditioning operation unit 53 with the outside air temperature Tam detected by the outside air temperature sensor 33, the temperature inside the vehicle body detected by the inside air temperature sensor 37, the blower voltage, the amount of solar radiation detected by the solar radiation sensor 51, and the like. The target outlet temperature TAO is calculated based on the target vehicle interior temperature (set temperature) in the vehicle interior, and the temperature of the air blown from the outlet 29 is controlled to this target outlet temperature TAO by switching each operation mode.

この場合、コントローラ32は、外気温度Tam、車室内の湿度、目標吹出温度TAO、放熱器温度TH、目標放熱器温度TCO、吸熱器温度Te、目標吸熱器温度TEO、車室内の除湿要求の有無、等のパラメータに基づき、的確に暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モード及び補助ヒータ単独モードを切り換え、快適且つ効率的な車室内空調を実現する。 In this case, the controller 32 has the outside air temperature Tam, the humidity in the vehicle interior, the target blowout temperature TAO, the radiator temperature TH, the target radiator temperature TCO, the heat absorber temperature Te, the target heat absorber temperature TEO, and the presence or absence of a dehumidification request in the vehicle interior. Based on the parameters such as, etc., the heating mode, dehumidifying heating mode, dehumidifying cooling mode, cooling mode, MAX cooling mode and auxiliary heater independent mode are accurately switched to realize comfortable and efficient vehicle interior air conditioning.

(8)除湿暖房モードにおける逆圧防止制御(その1)
次に、図4及び図5を参照しながら上記除湿暖房モード(第2の運転モード)においてコントローラ32が実行する逆圧防止制御について説明する。
(8) Back pressure prevention control in dehumidifying and heating mode (1)
Next, the back pressure prevention control executed by the controller 32 in the dehumidifying / heating mode (second operation mode) will be described with reference to FIGS. 4 and 5.

(8−1)逆圧防止制御の開始
除湿暖房モード(第2の運転モード)では前述した如く電磁弁30が閉じられ、室外膨張弁6(0PLS)も全閉となり、冷媒が放熱器4内等に閉じ込められた状態となる。そして、補助ヒータ23が通電されて発熱するため、放熱器4にはこの補助ヒータ23で加熱された空気が通風されることになり、放熱器4内の冷媒の圧力、即ち放熱器圧力PCIは高くなる。
(8-1) Start of reverse pressure prevention control In the dehumidifying / heating mode (second operation mode), the solenoid valve 30 is closed, the outdoor expansion valve 6 (0PLS) is also fully closed, and the refrigerant is inside the radiator 4. It will be in a state of being trapped in etc. Then, since the auxiliary heater 23 is energized and generates heat, the air heated by the auxiliary heater 23 is ventilated to the radiator 4, and the pressure of the refrigerant in the radiator 4, that is, the radiator pressure PCI is changed. It gets higher.

一方、係る運転状態において低負荷となり、吸熱器温度Teに基づいて制御されている圧縮機2の回転数NCが低下して来ると、圧縮機2の吐出圧力Pdが低下する。そのため、電磁弁30の入口側の圧力(吐出圧力Pd)が、出口側の圧力(放熱器圧力PCI)よりも低くなって電磁弁30に逆圧がかかり易くなる。 On the other hand, when the load becomes low in such an operating state and the rotation speed NC of the compressor 2 controlled based on the endothermic temperature Te decreases, the discharge pressure Pd of the compressor 2 decreases. Therefore, the pressure on the inlet side (discharge pressure Pd) of the solenoid valve 30 becomes lower than the pressure on the outlet side (radiator pressure PCI), and a back pressure is likely to be applied to the solenoid valve 30.

そこで、実施例ではコントローラ32は、この除湿暖房モードにおいて圧縮機2の回転数NCが第1の所定値NC1(所定の低い値)以下に低下した場合、室外膨張弁6を所定値PLS1まで開き、電磁弁30も開く逆圧防止制御を実行する。この場合、コントローラ32は室外膨張弁6を開き始めるタイミングと電磁弁30を開くタイミングを同時とする。また、その間に圧縮機2がON/OFFされても回転数NCが後述する第2の所定値NC2以上とならなければ逆圧防止制御を継続する(図4)。 Therefore, in the embodiment, when the rotation speed NC of the compressor 2 drops below the first predetermined value NC1 (predetermined low value) in this dehumidifying / heating mode, the controller 32 opens the outdoor expansion valve 6 to the predetermined value PLS1. , The back pressure prevention control that also opens the solenoid valve 30 is executed. In this case, the controller 32 sets the timing at which the outdoor expansion valve 6 starts to open and the timing at which the solenoid valve 30 opens at the same time. Further, even if the compressor 2 is turned ON / OFF during that period, the reverse pressure prevention control is continued unless the rotation speed NC becomes equal to or higher than the second predetermined value NC2 described later (FIG. 4).

このように室外膨張弁6及び電磁弁30が開放されることによって、圧縮機2から吐出された冷媒は放熱器4側にも少量流れ、放熱器4から室外膨張弁6に向かい、室外熱交換器7に流入するようになる。これにより、電磁弁30の入口側と出口側は均圧されるので、電磁弁30に逆圧がかかる不都合は解消され、電磁弁30でハンチングが起こって騒音や振動が発生する不都合や、電磁弁30の耐久性が低下する問題を未然に解消、若しくは、抑制することができるようになる。 By opening the outdoor expansion valve 6 and the solenoid valve 30 in this way, a small amount of the refrigerant discharged from the compressor 2 also flows to the radiator 4 side, and the refrigerant flows from the radiator 4 to the outdoor expansion valve 6 to exchange outdoor heat. It will flow into the vessel 7. As a result, the pressure on the inlet side and the outlet side of the solenoid valve 30 is equalized, so that the inconvenience of applying a reverse pressure to the solenoid valve 30 is eliminated. The problem that the durability of the valve 30 is lowered can be solved or suppressed.

特に、実施例の如く逆圧防止制御において室外膨張弁6と電磁弁30の双方をコントローラ32が開くことで、電磁弁30の入口側と出口側は迅速に均圧され、電磁弁30に逆圧がかかる不都合を効果的に解消することが可能となる。ここで、室外膨張弁6と電磁弁30を開く場合、電磁弁30より先に室外膨張弁6を開くと、電磁弁30に少しずつ冷媒が流れるために「ちょろちょろ」と流動音が生じる危険性があるが、実施例ではコントローラ32は、逆圧防止制御を開始する際、室外膨張弁6と電磁弁30を同時に開くので、係る不都合も防止、若しくは、抑制することができるようになる。 In particular, when the controller 32 opens both the outdoor expansion valve 6 and the solenoid valve 30 in the back pressure prevention control as in the embodiment, the pressure on the inlet side and the outlet side of the solenoid valve 30 is quickly equalized, and the pressure is equalized to the solenoid valve 30. It is possible to effectively eliminate the inconvenience of applying pressure. Here, when the outdoor expansion valve 6 and the solenoid valve 30 are opened, if the outdoor expansion valve 6 is opened before the solenoid valve 30, there is a risk that the refrigerant gradually flows through the solenoid valve 30 and a flow noise is generated. However, in the embodiment, the controller 32 opens the outdoor expansion valve 6 and the solenoid valve 30 at the same time when the back pressure prevention control is started, so that such inconvenience can be prevented or suppressed.

(8−2)逆圧防止制御の終了
その後、圧縮機2の回転数NCが上昇していけば、吐出圧力Pdも高くなるため、電磁弁30には逆圧はかかり難くなる。そこで、コントローラ32は圧縮機2の回転数NCが前記第1の所定値NC1より高い第2の所定値NC2以上に上昇した場合、逆圧防止制御を終了し、室外膨張弁6を閉じていって全閉とすると共に、電磁弁30も閉じる。これにより、冷媒回路Rは室外膨張弁6が全閉(0PLS)となり、電磁弁30が閉じた状態に復帰する。即ち、圧縮機2の回転数NCが上昇して電磁弁30に逆圧がかかり難くなったことに応じて、支障無く本来の除湿暖房モードの運転状態に復帰することが可能となる。
(8-2) Completion of Back Pressure Prevention Control After that, if the rotation speed NC of the compressor 2 increases, the discharge pressure Pd also increases, so that the back pressure is less likely to be applied to the solenoid valve 30. Therefore, when the rotation speed NC of the compressor 2 rises to a second predetermined value NC2 or higher, which is higher than the first predetermined value NC1, the controller 32 ends the back pressure prevention control and closes the outdoor expansion valve 6. The solenoid valve 30 is also closed as well as being fully closed. As a result, in the refrigerant circuit R, the outdoor expansion valve 6 is fully closed (0PLS), and the solenoid valve 30 returns to the closed state. That is, it is possible to return to the original operation state of the dehumidifying / heating mode without any trouble when the rotation speed NC of the compressor 2 increases and the back pressure is less likely to be applied to the solenoid valve 30.

(8−3)逆圧防止制御の禁止
他方、コントローラ32はこの除湿暖房モードにおいて、常時電磁弁30の入口側と出口側の圧力を監視している。尚、この実施例では電磁弁30の入口側の圧力を前述した吐出圧力センサ42が検出して出力する吐出圧力Pdから判断し、電磁弁30の出口側の圧力を前述した放熱器圧力センサ47が検出して出力する放熱器圧力PCIから判断する。
(8-3) Prohibition of reverse pressure prevention control On the other hand, the controller 32 constantly monitors the pressure on the inlet side and the outlet side of the solenoid valve 30 in this dehumidifying / heating mode. In this embodiment, the pressure on the inlet side of the electromagnetic valve 30 is determined from the discharge pressure Pd detected and output by the discharge pressure sensor 42 described above, and the pressure on the outlet side of the electromagnetic valve 30 is determined from the pressure sensor 47 described above. Judges from the radiator pressure PCI detected and output by.

そして、実施例では電磁弁30の入口側の圧力である吐出圧力Pdと、出口側の圧力である放熱器圧力PCIとの差ΔPdx(=Pd−PCI)が所定の最大誤差値α以上である場合、例えば圧縮機2の回転数NCが前述した第1の所定値NC1以下に低下したとしても、図5に示す如く逆圧防止制御を実行せず(禁止)、室外膨張弁6が全閉となり、電磁弁30が閉じた状態を継続する。 Then, in the embodiment, the difference ΔPdx (= Pd-PCI) between the discharge pressure Pd, which is the pressure on the inlet side of the solenoid valve 30, and the radiator pressure PCI, which is the pressure on the outlet side, is equal to or greater than the predetermined maximum error value α. In this case, for example, even if the rotation speed NC of the compressor 2 drops below the first predetermined value NC1 described above, the back pressure prevention control is not executed (prohibited) as shown in FIG. 5, and the outdoor expansion valve 6 is fully closed. Then, the solenoid valve 30 continues to be closed.

ここで、上述した最大誤差値αは、吐出圧力センサ42と放熱器圧力センサ47が有する検出誤差(バラツキ)から導出される。この場合、吐出圧力センサ42(センサ本体と電子部品)の検出誤差がプラスマイナスe1であり、放熱器圧力センサ47(センサ本体と電子部品)の検出誤差がプラスマイナスe2であることが予め分かっているものとすると、真の吐出圧力(Pdrと称する)はPd−e1≦Pdr≦Pd+e1、真の放熱器圧力(PCIrと称する)はPCI−e2≦PCIr≦PCI+e2となる。 Here, the above-mentioned maximum error value α is derived from the detection error (variation) of the discharge pressure sensor 42 and the radiator pressure sensor 47. In this case, it is known in advance that the detection error of the discharge pressure sensor 42 (sensor body and electronic component) is plus or minus e1, and the detection error of the radiator pressure sensor 47 (sensor body and electronic component) is plus or minus e2. If so, the true discharge pressure (referred to as Pdr) is Pd-e1 ≤ Pdr ≤ Pd + e1, and the true radiator pressure (referred to as PCIr) is PCI-e2 ≤ PCIr ≤ PCI + e2.

従って、PCI+e2≦Pd−e1であれば、電磁弁30の入口側の圧力と出口側の圧力は明らかに逆転していないことになる。そこで、コントローラ32は実施例では、上記最大誤差値αをe1+e2(α=e1+e2)とし、α(=e1+e2)≦差Pdx(=Pd−PCI)であるときは逆圧防止制御を実行せず、図5に示す如く回転数NCが第1の所定値NC1以下となっており、且つ、ΔPdx<αとなったときに、室外膨張弁6と電磁弁30を開いて逆圧防止制御を開始する。 Therefore, if PCI + e2 ≦ Pd−e1, the pressure on the inlet side and the pressure on the outlet side of the solenoid valve 30 are clearly not reversed. Therefore, in the embodiment, the controller 32 sets the maximum error value α to e1 + e2 (α = e1 + e2), and does not execute the back pressure prevention control when α (= e1 + e2) ≤ difference Pdx (= Pd-PCI). As shown in FIG. 5, when the rotation speed NC is equal to or less than the first predetermined value NC1 and ΔPdx <α, the outdoor expansion valve 6 and the solenoid valve 30 are opened to start the back pressure prevention control. ..

このように、放熱器圧力センサ47が出力する放熱器圧力PCIより吐出圧力センサ42が出力する吐出圧力Pdが高く、その差ΔPdx(=Pd−PCI)が吐出圧力センサ42及び放熱器圧力センサ47が有する検出誤差e1、e2から導出される最大誤差値α以上である場合、逆圧防止制御を実行しないようにすれば、各圧力センサ42、47の検出誤差e1、e2を考慮しても明らかに電磁弁30に逆圧がかかっていない運転状態では、逆圧防止制御を行わないことで、不必要な室外膨張弁6と電磁弁30の開放を回避し、除湿暖房モードを円滑に継続することができるようになる。 As described above, the discharge pressure Pd output by the discharge pressure sensor 42 is higher than the radiator pressure PCI output by the radiator pressure sensor 47, and the difference ΔPdx (= Pd-PCI) is the discharge pressure sensor 42 and the radiator pressure sensor 47. If the maximum error value α or more derived from the detection errors e1 and e2 of the pressure sensors 42 and e2 is not executed, it is clear even if the detection errors e1 and e2 of the pressure sensors 42 and 47 are taken into consideration. In the operating state where no back pressure is applied to the electromagnetic valve 30, by not performing the back pressure prevention control, unnecessary opening of the outdoor expansion valve 6 and the electromagnetic valve 30 is avoided, and the dehumidifying / heating mode is smoothly continued. You will be able to do it.

(9)逆圧防止制御(その2)
尚、上記実施例では逆圧防止制御において、室外膨張弁6と電磁弁30の双方を開放するようにしたが、図6に示すように圧縮機2の回転数NCが第1の所定値NC1以下に低下し、且つ、電磁弁30の入口側と出口側の圧力の差ΔPdxが最大誤差値αより小さいときに電磁弁30のみを開くようにしても良い。電磁弁30が開放されれば、入口側と出口側の圧力差そのものが無くなるので、当該電磁弁30に逆圧がかかる不都合も解消、若しくは、抑制することができるようになる。
(9) Back pressure prevention control (2)
In the above embodiment, both the outdoor expansion valve 6 and the solenoid valve 30 are opened in the back pressure prevention control, but as shown in FIG. 6, the rotation speed NC of the compressor 2 is the first predetermined value NC1. Only the solenoid valve 30 may be opened when the pressure difference between the inlet side and the outlet side of the solenoid valve 30 decreases to the following and the difference ΔPdx is smaller than the maximum error value α. When the solenoid valve 30 is opened, the pressure difference itself between the inlet side and the outlet side disappears, so that the inconvenience of applying a reverse pressure to the solenoid valve 30 can be eliminated or suppressed.

(10)逆圧防止制御(その3)
また、図7に示すように圧縮機2の回転数NCが第1の所定値NC1以下に低下し、且つ、電磁弁30の入口側と出口側の圧力の差ΔPdxが最大誤差値αより小さいときに室外膨張弁6のみを開くようにしても良い。室外膨張弁6を開いていけば、バイパス配管35−室外膨張弁6−冷媒配管13E−放熱器4を介して電磁弁30の出口側は入口側に連通されることになるので、当該電磁弁30に逆圧がかかる不都合も解消、若しくは、抑制することができるようになる。
(10) Back pressure prevention control (3)
Further, as shown in FIG. 7, the rotation speed NC of the compressor 2 drops to the first predetermined value NC1 or less, and the pressure difference ΔPdx between the inlet side and the outlet side of the solenoid valve 30 is smaller than the maximum error value α. Occasionally, only the outdoor expansion valve 6 may be opened. If the outdoor expansion valve 6 is opened, the outlet side of the solenoid valve 30 is communicated with the inlet side via the bypass pipe 35-outdoor expansion valve 6-refrigerant pipe 13E-radiator 4, so that the solenoid valve The inconvenience of applying a reverse pressure to 30 can be eliminated or suppressed.

尚、上記逆圧防止制御(その2)及び(その3)においても、前述と同様に逆圧防止制御の終了と禁止が行われるものとする。また、上記各実施例では除湿暖房モードにおいて電磁弁30の逆圧防止制御を実行するようにしたが、第2の運転モードとしてMAX冷房モードにおいても実行してもよい。但し、除湿暖房モードでは、放熱器4は補助ヒータ23の発熱で加熱されるために内部の圧力が上昇し、圧縮機2の回転数NCが低い運転状態では電磁弁30に逆圧がかかり易くなるので、逆圧防止制御は極めて有効となる。 In the reverse pressure prevention control (No. 2) and (No. 3), the back pressure prevention control is terminated and prohibited in the same manner as described above. Further, in each of the above embodiments, the back pressure prevention control of the solenoid valve 30 is executed in the dehumidifying / heating mode, but it may be executed in the MAX cooling mode as the second operation mode. However, in the dehumidifying / heating mode, the radiator 4 is heated by the heat generated by the auxiliary heater 23, so that the internal pressure rises, and the solenoid valve 30 is likely to be subjected to a back pressure in an operating state where the rotation speed NC of the compressor 2 is low. Therefore, the back pressure prevention control is extremely effective.

また、実施例では暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モード、及び、補助ヒータ単独モードの各運転モードを切り換えて実行する車両用空気調和装置1に本発明を適用したが、それに限らず、請求項1〜請求項5の発明では、第1の運転モード(暖房モード、除湿冷房モード、冷房モード)の少なくとも何れかと、第2の運転モード(除湿暖房モード、MAX冷房モード)の少なくとも何れかとを切り換えて実行する場合にも有効である。 Further, in the embodiment, the present invention is applied to the vehicle air conditioner 1 that switches and executes each operation mode of the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, the MAX cooling mode, and the auxiliary heater independent mode. However, the present invention is not limited to this, and in the invention of claims 1 to 5, at least one of the first operation modes (heating mode, dehumidifying / cooling mode, cooling mode) and the second operation mode (dehumidifying / heating mode, MAX cooling). It is also effective when executing by switching at least one of the modes).

更に、補助加熱装置は、実施例で示した補助ヒータ23に限られるものでは無く、ヒータで加熱された熱媒体を循環させて空気流通路内の空気を加熱する熱媒体循環回路や、エンジンで加熱されたラジエター水を循環するヒータコア等を利用してもよい。また、上記各実施例で説明した冷媒回路Rの構成はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能であることは云うまでもない。 Further, the auxiliary heating device is not limited to the auxiliary heater 23 shown in the embodiment, but is a heat medium circulation circuit that circulates a heat medium heated by the heater to heat the air in the air flow passage, or an engine. A heater core or the like that circulates heated radiator water may be used. Further, the configuration of the refrigerant circuit R described in each of the above embodiments is not limited to that, and it goes without saying that the configuration can be changed without departing from the spirit of the present invention.

1 車両用空気調和装置
2 圧縮機
3 空気流通路
4 放熱器
6 室外膨張弁
7 室外熱交換器
8 室内膨張弁
9 吸熱器
17 電磁弁
21 電磁弁
23 補助ヒータ(補助加熱装置)
27 室内送風機(ブロワファン)
28 エアミックスダンパ
30 電磁弁(第1の電磁弁)
40 電磁弁(第2の電磁弁)
32 コントローラ(制御装置)
35 バイパス配管
42 吐出圧力センサ
45 バイパス装置
47 放熱器圧力センサ
R 冷媒回路
1 Vehicle air conditioner 2 Compressor 3 Air flow passage 4 Heat radiator 6 Outdoor expansion valve 7 Outdoor heat exchanger 8 Indoor expansion valve 9 Heat absorber 17 Solenoid valve 21 Solenoid valve 23 Auxiliary heater (auxiliary heating device)
27 Indoor blower (blower fan)
28 Air mix damper 30 Solenoid valve (first solenoid valve)
40 Solenoid valve (second solenoid valve)
32 controller (control device)
35 Bypass piping 42 Discharge pressure sensor 45 Bypass device 47 Dissipator pressure sensor R Refrigerant circuit

Claims (7)

冷媒を圧縮する圧縮機と、
車室内に供給する空気が流通する空気流通路と、
冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための吸熱器と、
車室外に設けられた室外熱交換器と、
前記放熱器を出て前記室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、
前記圧縮機の吐出側と前記放熱器の入口側の間に設けられた第1の開閉弁と、
該第1の開閉弁の上流側で分岐し、前記放熱器及び前記室外膨張弁をバイパスして前記圧縮機から吐出された冷媒を前記室外熱交換器に流すためのバイパス配管と、
該バイパス配管に設けられた第2の開閉弁と、
制御装置を備え、
該制御装置により、前記第1の開閉弁を開き、前記第2の開閉弁を閉じることで、前記圧縮機から吐出された冷媒を前記放熱器に流し、該放熱器から出た冷媒を、前記室外膨張弁を経て前記室外熱交換器に流す第1の運転モードと、
前記室外膨張弁を全閉とし、前記第1の開閉弁を閉じ、前記第2の開閉弁を開くことで、前記圧縮機から吐出された冷媒を前記バイパス配管により前記室外熱交換器に流し、該室外熱交換器から出た冷媒を前記吸熱器に流す第2の運転モードを切り換えて実行する車両用空気調和装置において、
前記制御装置は、前記第2の運転モードにおいて前記圧縮機の回転数が第1の所定値以下に低下した場合、前記室外膨張弁及び前記第1の開閉弁を開く逆圧防止制御を実行することを特徴とする車両用空気調和装置。
A compressor that compresses the refrigerant and
An air flow passage through which the air supplied to the passenger compartment flows, and
A radiator for radiating the refrigerant and heating the air supplied from the air flow passage to the passenger compartment,
An endothermic absorber for absorbing heat from the refrigerant and cooling the air supplied from the air flow passage to the passenger compartment.
An outdoor heat exchanger installed outside the passenger compartment,
An outdoor expansion valve for reducing the pressure of the refrigerant that exits the radiator and flows into the outdoor heat exchanger.
A first on-off valve provided between the discharge side of the compressor and the inlet side of the radiator, and
A bypass pipe that branches on the upstream side of the first on-off valve, bypasses the radiator and the outdoor expansion valve, and allows the refrigerant discharged from the compressor to flow to the outdoor heat exchanger.
A second on-off valve provided in the bypass pipe and
Equipped with a control device
By opening the first on-off valve and closing the second on-off valve by the control device, the refrigerant discharged from the compressor is allowed to flow through the radiator, and the refrigerant discharged from the radiator is discharged. The first operation mode in which the heat is passed through the outdoor expansion valve to the outdoor heat exchanger,
By fully closing the outdoor expansion valve, closing the first on-off valve, and opening the second on-off valve, the refrigerant discharged from the compressor flows into the outdoor heat exchanger through the bypass pipe. In a vehicle air conditioner that switches and executes a second operation mode in which the refrigerant discharged from the outdoor heat exchanger flows through the heat absorber.
The control device executes back pressure prevention control for opening the outdoor expansion valve and the first on-off valve when the rotation speed of the compressor drops to the first predetermined value or less in the second operation mode. An air conditioner for vehicles characterized by this.
前記制御装置は、前記逆圧防止制御を開始する際、前記室外膨張弁と前記第1の開閉弁を同時に開くことを特徴とする請求項1に記載の車両用空気調和装置。 The vehicle air conditioner according to claim 1, wherein the control device opens the outdoor expansion valve and the first on-off valve at the same time when the back pressure prevention control is started. 冷媒を圧縮する圧縮機と、
車室内に供給する空気が流通する空気流通路と、
冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための吸熱器と、
車室外に設けられた室外熱交換器と、
前記放熱器を出て前記室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、
前記圧縮機の吐出側と前記放熱器の入口側の間に設けられた第1の開閉弁と、
該第1の開閉弁の上流側で分岐し、前記放熱器及び前記室外膨張弁をバイパスして前記圧縮機から吐出された冷媒を前記室外熱交換器に流すためのバイパス配管と、
該バイパス配管に設けられた第2の開閉弁と、
制御装置を備え、
該制御装置により、前記第1の開閉弁を開き、前記第2の開閉弁を閉じることで、前記圧縮機から吐出された冷媒を前記放熱器に流し、該放熱器から出た冷媒を、前記室外膨張弁を経て前記室外熱交換器に流す第1の運転モードと、
前記室外膨張弁を全閉とし、前記第1の開閉弁を閉じ、前記第2の開閉弁を開くことで、前記圧縮機から吐出された冷媒を前記バイパス配管により前記室外熱交換器に流し、該室外熱交換器から出た冷媒を前記吸熱器に流す第2の運転モードを切り換えて実行する車両用空気調和装置において、
前記制御装置は、前記第2の運転モードにおいて前記圧縮機の回転数が第1の所定値以下に低下した場合、前記室外膨張弁と前記第1の開閉弁のうちの何れか一方を開く逆圧防止制御を実行することを特徴とする車両用空気調和装置。
A compressor that compresses the refrigerant and
An air flow passage through which the air supplied to the passenger compartment flows, and
A radiator for radiating the refrigerant and heating the air supplied from the air flow passage to the passenger compartment,
An endothermic absorber for absorbing heat from the refrigerant and cooling the air supplied from the air flow passage to the passenger compartment.
An outdoor heat exchanger installed outside the passenger compartment,
An outdoor expansion valve for reducing the pressure of the refrigerant that exits the radiator and flows into the outdoor heat exchanger.
A first on-off valve provided between the discharge side of the compressor and the inlet side of the radiator, and
A bypass pipe that branches on the upstream side of the first on-off valve, bypasses the radiator and the outdoor expansion valve, and allows the refrigerant discharged from the compressor to flow to the outdoor heat exchanger.
A second on-off valve provided in the bypass pipe and
Equipped with a control device
By opening the first on-off valve and closing the second on-off valve by the control device, the refrigerant discharged from the compressor is allowed to flow through the radiator, and the refrigerant discharged from the radiator is discharged. The first operation mode in which the heat is passed through the outdoor expansion valve to the outdoor heat exchanger,
By fully closing the outdoor expansion valve, closing the first on-off valve, and opening the second on-off valve, the refrigerant discharged from the compressor flows into the outdoor heat exchanger through the bypass pipe. In a vehicle air conditioner that switches and executes a second operation mode in which the refrigerant discharged from the outdoor heat exchanger flows through the heat absorber.
The control device opens either the outdoor expansion valve or the first on-off valve when the rotation speed of the compressor drops below the first predetermined value in the second operation mode. An air conditioner for vehicles characterized by performing pressure prevention control.
前記制御装置は、前記逆圧防止制御を実行しているときに、前記圧縮機の回転数が前記第1の所定値より高い第2の所定値以上に上昇した場合、前記逆圧防止制御を終了して前記室外膨張弁が全閉となり、前記第1の開閉弁が閉じた状態に復帰することを特徴とする請求項1乃至請求項3のうちの何れかに記載の車両用空気調和装置。 When the control device is executing the back pressure prevention control and the rotation speed of the compressor rises to a second predetermined value higher than the first predetermined value, the back pressure prevention control is performed. The vehicle air conditioner according to any one of claims 1 to 3, wherein the outdoor expansion valve is fully closed and the first on-off valve is returned to the closed state. .. 前記圧縮機の吐出冷媒圧力を検出して出力する吐出圧力センサと、
前記放熱器の冷媒圧力を検出して出力する放熱器圧力センサを備え、
前記制御装置は、前記第2の運転モードにおいて、前記放熱器圧力センサが出力する放熱器圧力PCIより前記吐出圧力センサが出力する吐出圧力Pdが高く、その差が前記吐出圧力センサ及び前記放熱器圧力センサが有する検出誤差から導出される最大誤差値以上である場合、前記逆圧防止制御を実行しないことを特徴とする請求項1乃至請求項4のうちの何れかに記載の車両用空気調和装置。
A discharge pressure sensor that detects and outputs the discharge refrigerant pressure of the compressor,
A radiator pressure sensor that detects and outputs the refrigerant pressure of the radiator is provided.
In the second operation mode, the control device has a discharge pressure Pd output by the discharge pressure sensor higher than the radiator pressure PCI output by the radiator pressure sensor, and the difference is the difference between the discharge pressure sensor and the radiator. The vehicle air conditioning according to any one of claims 1 to 4, wherein the reverse pressure prevention control is not executed when the value is equal to or more than the maximum error value derived from the detection error of the pressure sensor. apparatus.
前記空気流通路から前記車室内に供給する空気を加熱するための補助加熱装置を備え、
前記第1の運転モードは、
前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を前記室外膨張弁で減圧した後、前記室外熱交換器にて吸熱させる暖房モードと、
前記圧縮機から吐出された冷媒を前記放熱器から前記室外熱交換器に流して当該放熱器及び室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる除湿冷房モードと、
前記圧縮機から吐出された冷媒を前記放熱器から前記室外熱交換器に流して当該室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる冷房モードのうちの何れか、又は、それらの組み合わせ、若しくは、それらの全てであり、
前記第2の運転モードは、
前記圧縮機から吐出された冷媒を前記バイパス配管から前記室外熱交換器に流して放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させると共に、前記補助加熱装置を発熱させる除湿暖房モードと、
前記圧縮機から吐出された冷媒を前記バイパス配管から前記室外熱交換器に流して放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる最大冷房モードのうちの何れか、又は、それらの全てであることを特徴とする請求項1乃至請求項5のうちの何れかに記載の車両用空気調和装置。
An auxiliary heating device for heating the air supplied from the air flow passage to the passenger compartment is provided.
The first operation mode is
A heating mode in which the refrigerant discharged from the compressor is dissipated by the radiator, the dissipated refrigerant is decompressed by the outdoor expansion valve, and then heat is absorbed by the outdoor heat exchanger.
The refrigerant discharged from the compressor is allowed to flow from the radiator to the outdoor heat exchanger to dissipate heat in the radiator and the outdoor heat exchanger, depressurize the radiated refrigerant, and then absorb heat in the heat exchanger. Dehumidifying and cooling mode and
A cooling mode in which the refrigerant discharged from the compressor is flowed from the radiator to the outdoor heat exchanger to dissipate heat in the outdoor heat exchanger, the radiated refrigerant is depressurized, and then heat is absorbed by the heat exchanger. Any of them, or a combination of them, or all of them.
The second operation mode is
The refrigerant discharged from the compressor is allowed to flow from the bypass pipe to the outdoor heat exchanger to dissipate heat, and after depressurizing the radiated refrigerant, the heat absorber absorbs heat and dehumidifies the auxiliary heating device. Heating mode and
One of the maximum cooling modes in which the refrigerant discharged from the compressor is allowed to flow from the bypass pipe to the outdoor heat exchanger to dissipate heat, the radiated refrigerant is depressurized, and then heat is absorbed by the heat absorber, or The vehicle air conditioner according to any one of claims 1 to 5, wherein the air conditioner is all of them.
前記補助加熱装置は、前記空気流通路の空気の流れに対して、前記放熱器の上流側に設けられると共に、
前記第2の運転モードは、前記除湿暖房モードであることを特徴とする請求項6に記載の車両用空気調和装置。
The auxiliary heating device is provided on the upstream side of the radiator with respect to the air flow in the air flow passage, and is also provided.
The vehicle air conditioner according to claim 6, wherein the second operation mode is the dehumidification / heating mode.
JP2017036431A 2017-02-28 2017-02-28 Vehicle air conditioner Active JP6854668B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017036431A JP6854668B2 (en) 2017-02-28 2017-02-28 Vehicle air conditioner
PCT/JP2018/001478 WO2018159141A1 (en) 2017-02-28 2018-01-12 Vehicle air conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017036431A JP6854668B2 (en) 2017-02-28 2017-02-28 Vehicle air conditioner

Publications (2)

Publication Number Publication Date
JP2018140722A JP2018140722A (en) 2018-09-13
JP6854668B2 true JP6854668B2 (en) 2021-04-07

Family

ID=63371141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017036431A Active JP6854668B2 (en) 2017-02-28 2017-02-28 Vehicle air conditioner

Country Status (2)

Country Link
JP (1) JP6854668B2 (en)
WO (1) WO2018159141A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6710061B2 (en) * 2016-02-26 2020-06-17 サンデン・オートモーティブクライメイトシステム株式会社 Air conditioner for vehicle

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3246249B2 (en) * 1995-02-09 2002-01-15 松下電器産業株式会社 Heat pump cooling / heating dehumidification control device for electric vehicles
JP2002106978A (en) * 2000-10-03 2002-04-10 Tgk Co Ltd Refrigerating cycle with bypass conduit
DE10126257A1 (en) * 2001-05-29 2002-12-05 Behr Gmbh & Co Heating / cooling circuit for an air conditioning system of a motor vehicle, air conditioning system and method for regulating the same
EP1467879B1 (en) * 2002-01-14 2007-09-26 Behr GmbH & Co. KG Heating/cooling circuit for an air-conditioning system of a motor vehicle, air-conditioning system and a method for controlling the same
JP4023320B2 (en) * 2003-01-09 2007-12-19 株式会社デンソー Heater for air conditioner
JP6119616B2 (en) * 2014-01-14 2017-04-26 株式会社デンソー Heat pump cycle
JP6300272B2 (en) * 2014-08-08 2018-03-28 本田技研工業株式会社 Air conditioner for vehicles
JP6590551B2 (en) * 2015-06-26 2019-10-16 サンデン・オートモーティブクライメイトシステム株式会社 Air conditioner for vehicles
JP6228263B2 (en) * 2016-06-06 2017-11-08 株式会社日本クライメイトシステムズ Air conditioner for vehicles

Also Published As

Publication number Publication date
WO2018159141A1 (en) 2018-09-07
JP2018140722A (en) 2018-09-13

Similar Documents

Publication Publication Date Title
JP7095848B2 (en) Vehicle air conditioner
JP6997558B2 (en) Vehicle air conditioner
CN110505968B (en) Air conditioner for vehicle
JP6607638B2 (en) Air conditioner for vehicles
CN107709067B (en) Air conditioner for vehicle
WO2017146268A1 (en) Vehicle air conditioner
JP6496958B2 (en) Air conditioner for vehicles
JP6963405B2 (en) Vehicle air conditioner
WO2020066719A1 (en) Vehicle air conditioner
WO2017150592A1 (en) Vehicle air-conditioning device
JP6680601B2 (en) Vehicle air conditioner
WO2017146266A1 (en) Air-conditioning device for vehicle
CN110049887B (en) Air conditioner for vehicle
JP7280770B2 (en) Vehicle air conditioner
WO2017179597A1 (en) Vehicle air conditioner
US10933719B2 (en) Vehicle air-conditioning apparatus
JP6831209B2 (en) Vehicle air conditioner
JP6831239B2 (en) Vehicle air conditioner
JP6738156B2 (en) Vehicle air conditioner
JP7164986B2 (en) Vehicle air conditioner
JP6854668B2 (en) Vehicle air conditioner
WO2022064946A1 (en) Air conditioning device for vehicle
WO2020235262A1 (en) Vehicle air conditioner
WO2023002993A1 (en) Vehicular air conditioner
WO2022202836A1 (en) Vehicle air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200117

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210316

R150 Certificate of patent or registration of utility model

Ref document number: 6854668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350