WO2017146266A1 - Air-conditioning device for vehicle - Google Patents

Air-conditioning device for vehicle Download PDF

Info

Publication number
WO2017146266A1
WO2017146266A1 PCT/JP2017/008039 JP2017008039W WO2017146266A1 WO 2017146266 A1 WO2017146266 A1 WO 2017146266A1 JP 2017008039 W JP2017008039 W JP 2017008039W WO 2017146266 A1 WO2017146266 A1 WO 2017146266A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
refrigerant
compressor
cooling mode
radiator
Prior art date
Application number
PCT/JP2017/008039
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 謙一
竜 宮腰
耕平 山下
Original Assignee
サンデン・オートモーティブクライメイトシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブクライメイトシステム株式会社 filed Critical サンデン・オートモーティブクライメイトシステム株式会社
Publication of WO2017146266A1 publication Critical patent/WO2017146266A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements

Definitions

  • the present invention relates to a heat pump type air conditioner that air-conditions the interior of a vehicle, and more particularly to an air conditioner that can be applied to a hybrid vehicle or an electric vehicle.
  • an air conditioner that can be applied to such a vehicle, a compressor that compresses and discharges the refrigerant, an internal condenser that is provided on the vehicle interior side and dissipates the refrigerant, and is provided on the vehicle interior side.
  • An evaporator that absorbs the refrigerant, an external condenser that dissipates or absorbs heat from the passenger compartment, a first expansion valve that expands the refrigerant that flows into the external condenser, and a refrigerant that flows into the evaporator
  • a second expansion valve for expanding the internal combustion engine, piping for bypassing the internal condenser and the first expansion valve, and flowing the refrigerant discharged from the compressor to the internal condenser or bypassing the internal condenser and the first expansion valve
  • a first valve that switches between direct flow from the pipe to the external condenser, the refrigerant discharged from the compressor is caused to flow through the internal condenser by the first valve to dissipate the heat, and the discharged refrigerant is passed through the first expansion valve.
  • the refrigerant discharged from the compressor is radiated in the internal condenser by the first valve, the radiated refrigerant is depressurized by the second expansion valve, and the refrigerant absorbs heat in the evaporator.
  • the dehumidification mode to be performed, and the refrigerant discharged from the compressor bypasses the internal condenser and the first expansion valve by the first valve and flows to the external condenser to radiate heat, and after the pressure is reduced by the second expansion valve,
  • a device that switches and executes a cooling mode for absorbing heat has been developed (see, for example, Patent Document 1).
  • Patent Document 1 when the first valve of Patent Document 1 is configured with two on-off valves provided in each refrigerant pipe branched from the discharge side of the compressor, when switching to the cooling mode, the other heating mode, and the dehumidifying mode, One of the on-off valves is opened and the other is closed.
  • the pressure difference before and after these on-off valves is large, there is a problem that a relatively large noise is generated by the refrigerant that flows suddenly to the on-off valves that are opened.
  • Patent Documents when switching between heating and cooling, there has been proposed one that suppresses the generation of abnormal noise by lowering the pressure difference between the high pressure side and the low pressure side of the refrigerant circuit and then opening the on-off valve (for example, Patent Documents). 2).
  • the present invention has been made to solve the conventional technical problems, and is equipped with a bypass pipe that bypasses a radiator and an outdoor expansion valve, and an air conditioner for a vehicle that includes an on-off valve for switching a flow path.
  • An object of the present invention is to eliminate or reduce noise generated when an on-off valve is opened when switching between a cooling mode and a maximum cooling mode.
  • An air conditioner for a vehicle includes a compressor that compresses a refrigerant, an air flow passage through which air supplied to the vehicle interior flows, and air that radiates the refrigerant and supplies the refrigerant to the vehicle interior from the air flow passage.
  • Cooling mode in which the refrigerant discharged from the compressor flows from the radiator to the outdoor heat exchanger and is radiated by the outdoor heat exchanger, and the radiated refrigerant is decompressed and then absorbed by the heat absorber.
  • the outdoor expansion valve is fully closed, the first on-off valve is closed, and the second on-off valve is opened, so that the refrigerant discharged from the compressor flows to the outdoor heat exchanger through the bypass pipe to dissipate heat.
  • the maximum cooling mode in which heat is absorbed by the heat absorber is switched and executed.
  • the control device switches the pressure difference before and after the second on-off valve when switching from the cooling mode to the maximum cooling mode.
  • the control device controls the rotation speed of the compressor or stops the compressor before and after the second on-off valve in the noise improvement control.
  • the second on-off valve is opened, the first on-off valve is closed, and the outdoor expansion valve is fully closed.
  • a vehicular air conditioner according to the first aspect of the present invention, wherein the control device stops the compressor and opens the second on-off valve after a predetermined period of time in the noise improvement control. The valve is closed and the outdoor expansion valve is fully closed.
  • an air conditioning apparatus for a vehicle, comprising: a compressor that compresses a refrigerant; an air flow passage through which air supplied to a vehicle interior flows; A heat sink for heating the air, a heat absorber for absorbing the refrigerant to cool the air supplied from the air flow passage to the vehicle interior, an outdoor heat exchanger provided outside the vehicle interior, and the radiator
  • An outdoor expansion valve for decompressing the refrigerant flowing into the outdoor heat exchanger, a first on-off valve provided between the discharge side of the compressor and the inlet side of the radiator, and upstream of the first on-off valve
  • a bypass pipe for branching on the side, bypassing the radiator and the outdoor expansion valve to flow the refrigerant discharged from the compressor to the outdoor heat exchanger, a second on-off valve provided in the bypass pipe, and a control A first opening / closing valve and a second opening / closing by the control device.
  • Cooling mode in which the refrigerant discharged from the compressor flows from the radiator to the outdoor heat exchanger and is radiated by the outdoor heat exchanger, and the radiated refrigerant is decompressed and then absorbed by the heat absorber.
  • the outdoor expansion valve is fully closed, the first on-off valve is closed, and the second on-off valve is opened, so that the refrigerant discharged from the compressor flows to the outdoor heat exchanger through the bypass pipe to dissipate heat.
  • the maximum cooling mode in which heat is absorbed by the heat absorber is switched and executed.
  • the control device switches the pressure difference before and after the first on-off valve when switching from the maximum cooling mode to the cooling mode.
  • the control device reduces the pressure difference before and after the first on-off valve by opening the outdoor expansion valve, and the pressure difference is predetermined. When the value is less than or equal to the value, the first on-off valve is opened and the second on-off valve is closed.
  • the control device controls the rotational speed of the compressor in the noise improvement control or stops the compressor before and after the first on-off valve.
  • An air conditioner for a vehicle includes a compressor that compresses a refrigerant, an air flow passage through which air supplied to the vehicle interior flows, and air that radiates the refrigerant and supplies the refrigerant to the vehicle interior from the air flow passage A heat sink for heating the air, a heat absorber for absorbing the refrigerant to cool the air supplied from the air flow passage to the vehicle interior, an outdoor heat exchanger provided outside the vehicle interior, and the radiator
  • a bypass pipe for branching on the side, bypassing the radiator
  • the refrigerant discharged from the compressor is caused to flow through the outdoor heat exchanger through the bypass pipe to dissipate the heat, and after the decompressed refrigerant is decompressed, the heat absorber
  • the first on-off valve is an electromagnetic valve that closes in an energized state and opens in a non-energized state, and the control device stops operation from the maximum cooling mode. Then, after reducing the pressure difference before and after the first on-off valve, noise improvement control is performed to de-energize the first on-off valve.
  • the control device reduces the pressure difference before and after the first on-off valve by stopping the compressor and opening the outdoor expansion valve in the noise improvement control.
  • the first on-off valve is de-energized when the pressure difference becomes a predetermined value or less.
  • the first on-off valve When the pressure difference before and after the first on-off valve is less than or equal to a predetermined value at the time, the first on-off valve is de-energized, and when the pressure difference is higher than the predetermined value, the pressure drops below the predetermined value, or The first on-off valve is deenergized after a predetermined time has elapsed.
  • the compressor for compressing the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air supplied to the vehicle interior from the air flow passage by radiating the refrigerant are heated.
  • Radiator a heat absorber for absorbing the refrigerant to cool the air supplied from the air flow passage to the vehicle interior, an outdoor heat exchanger provided outside the vehicle compartment, and an outdoor heat exchanger exiting the radiator
  • An outdoor expansion valve for depressurizing the refrigerant flowing into the compressor, a first on-off valve provided between the discharge side of the compressor and the inlet side of the radiator, and a branch on the upstream side of the first on-off valve.
  • the valve is fully closed, the first on-off valve is closed, and the second on-off valve is opened, so that the refrigerant discharged from the compressor flows to the outdoor heat exchanger through the bypass pipe to dissipate the heat,
  • a vehicle air conditioner that switches and executes the maximum cooling mode in which heat is absorbed by the heat absorber after reducing the pressure, when the control device switches from the cooling mode to the maximum cooling mode, the pressure difference before and after the second on-off valve is reduced.
  • the control device as in the second aspect of the invention reduces the pressure difference before and after the second on-off valve by controlling the rotational speed of the compressor or stopping the compressor in the noise improvement control.
  • the control device stops the compressor, opens the second on-off valve after a predetermined time, closes the first on-off valve, and fully closes the outdoor expansion valve.
  • the pressure upstream and downstream of the second on-off valve is effectively reduced by reducing the pressure on the upstream side of the refrigerant of the second on-off valve. Noise can be eliminated or reduced accurately.
  • the rotation of the compressor is started before switching from the cooling mode to the maximum cooling mode as in the inventions of the second and third aspects. Since the number is controlled or stopped, it is possible to reduce the amount of refrigerant that lies in the radiator when the maximum cooling mode is switched. Thereby, the refrigerant circulation amount during execution of the maximum cooling mode can be ensured, and the decrease in capacity can be suppressed or prevented.
  • the compressor for compressing the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air supplied to the vehicle interior from the air flow passage by radiating the refrigerant are heated.
  • Radiator a heat absorber for absorbing the refrigerant to cool the air supplied from the air flow passage to the vehicle interior, an outdoor heat exchanger provided outside the vehicle compartment, and an outdoor heat exchanger exiting the radiator
  • An outdoor expansion valve for depressurizing the refrigerant flowing into the compressor, a first on-off valve provided between the discharge side of the compressor and the inlet side of the radiator, and a branch on the upstream side of the first on-off valve.
  • the valve is fully closed, the first on-off valve is closed, and the second on-off valve is opened, so that the refrigerant discharged from the compressor flows to the outdoor heat exchanger through the bypass pipe to dissipate the heat,
  • a vehicle air conditioner that switches and executes the maximum cooling mode in which heat is absorbed by the heat absorber after depressurization, when the control device switches from the maximum cooling mode to the cooling mode, the pressure difference before and after the first on-off valve is reduced.
  • the noise improvement control is executed to open the first on-off valve and close the second on-off valve, when switching from the maximum cooling mode to the cooling mode, the first on-off valve is opened.
  • Radiator side Toward the refrigerant can be significantly suppressed or eliminated that rapidly flows.
  • noise generated when the first on-off valve is opened can be eliminated or reduced.
  • the control device reduces the pressure difference before and after the first on-off valve by opening the outdoor expansion valve in the noise improvement control as in the fifth aspect of the invention, and the pressure difference becomes a predetermined value or less.
  • the control device may control the rotation speed of the compressor in the noise improvement control, or reduce the pressure difference before and after the first on-off valve by stopping the compressor, or When the pressure difference before and after the first opening / closing valve is higher than the predetermined value when the outdoor expansion valve is fully opened, the pressure difference before and after the first opening / closing valve is reduced by controlling the rotation speed of the compressor.
  • the compressor for compressing the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air supplied to the vehicle interior from the air flow passage by dissipating the refrigerant are heated.
  • Radiator a heat absorber for absorbing the refrigerant to cool the air supplied from the air flow passage to the vehicle interior, an outdoor heat exchanger provided outside the vehicle compartment, and an outdoor heat exchanger exiting the radiator
  • An outdoor expansion valve for depressurizing the refrigerant flowing into the compressor, a first on-off valve provided between the discharge side of the compressor and the inlet side of the radiator, and a branch on the upstream side of the first on-off valve.
  • the control device at least the outdoor expansion valve is fully closed, and the first on-off valve
  • the maximum cooling that closes and opens the second on-off valve causes the refrigerant discharged from the compressor to flow through the outdoor heat exchanger through the bypass pipe to dissipate the heat, decompress the refrigerant that has been radiated, and then absorb the heat with the heat absorber
  • the vehicle air conditioner that executes the mode
  • the first on-off valve is an electromagnetic valve that closes in an energized state and opens in a non-energized state
  • the control device stops operation from the maximum cooling mode
  • the noise improvement control for de-energizing the first on-off valve is executed after reducing the pressure difference before and after the on-off valve, when the operation is stopped from the maximum cooling mode, the first on-off
  • the control device stops the compressor and opens the outdoor expansion valve to reduce the pressure difference before and after the first on-off valve. If the first on-off valve is de-energized when the value becomes less than the value, the pressure difference before and after the first on-off valve is effective in the noise improvement control when the operation is stopped from the maximum cooling mode. Therefore, the first on-off valve can be quickly de-energized, and the noise generated at the time of stopping can be accurately eliminated or reduced.
  • the control device stops the compressor, fully opens the outdoor expansion valve, and before and after the first on-off valve when the outdoor expansion valve is fully opened.
  • the first on-off valve is de-energized.
  • the pressure difference is higher than the predetermined value, the first on-off valve is Even in the case of non-energization, in the noise improvement control when the operation is stopped from the maximum cooling mode, the pressure difference before and after the first on-off valve is effectively reduced, and the first on-off valve is quickly de-energized.
  • noise generated at the time of stopping can be eliminated or reduced accurately.
  • FIG. 3 It is a block diagram of the air conditioning apparatus for vehicles of one Embodiment to which this invention is applied (heating mode, dehumidification heating mode, dehumidification cooling mode, and cooling mode). It is a block diagram of the electric circuit of the controller of the vehicle air conditioner of FIG. It is a block diagram at the time of the MAX cooling mode (maximum cooling mode) of the vehicle air conditioner of FIG. 3 is a timing chart of each device for explaining an example of noise improvement control executed by the controller of FIG. 2 when switching from the cooling mode to the MAX cooling mode (maximum cooling mode). It is a timing chart of each apparatus explaining an example of the noise improvement control which the controller of FIG. 2 performs when switching from the MAX cooling mode (maximum cooling mode) to the cooling mode. It is a timing chart of each apparatus explaining an example of the noise improvement control which the controller of FIG. 2 performs when a driving
  • FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 according to an embodiment of the present invention.
  • a vehicle according to an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and travels by driving an electric motor for traveling with electric power charged in a battery. Yes (both not shown), the vehicle air conditioner 1 of the present invention is also driven by the power of the battery.
  • EV electric vehicle
  • an engine internal combustion engine
  • the vehicle air conditioner 1 of the embodiment performs a heating mode by a heat pump operation using a refrigerant circuit in an electric vehicle that cannot be heated by engine waste heat, and further includes a dehumidifying heating mode, a dehumidifying cooling mode, a cooling mode, Each operation mode of the MAX cooling mode (maximum cooling mode) is selectively executed.
  • the present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and an electric motor for traveling, and is also applicable to ordinary vehicles that run on an engine. Needless to say.
  • the vehicle air conditioner 1 performs air conditioning (heating, cooling, dehumidification, and ventilation) in a vehicle interior of an electric vehicle, and includes an electric compressor 2 that compresses refrigerant and vehicle interior air. Is provided in the air flow passage 3 of the HVAC unit 10 through which air is circulated, and the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows in through the refrigerant pipe 13G, and dissipates the refrigerant into the vehicle compartment.
  • an outdoor expansion valve 6 comprising an electric valve that decompresses and expands the refrigerant during heating, and functions as a radiator during cooling and functions as a radiator during heating, and exchanges heat between the refrigerant and the outside air so as to function as an evaporator during heating.
  • An outdoor heat exchanger 7 that performs the above operation, an indoor expansion valve 8 that is an electric valve that decompresses and expands the refrigerant, and a heat absorber 9 that is provided in the air flow passage 3 and absorbs heat from outside the vehicle interior to the refrigerant during cooling and dehumidification.
  • And accumulator 12 etc. Are sequentially connected by a refrigerant pipe 13, the refrigerant circuit R is formed.
  • the refrigerant circuit R is filled with a predetermined amount of refrigerant and lubricating oil.
  • the outdoor heat exchanger 7 is provided with an outdoor blower 15.
  • the outdoor blower 15 exchanges heat between the outside air and the refrigerant by forcibly passing outside air through the outdoor heat exchanger 7, so that the outdoor air blower 15 can also be used outdoors even when the vehicle is stopped (that is, the vehicle speed is 0 km / h). It is comprised so that external air may be ventilated by the heat exchanger 7.
  • the outdoor heat exchanger 7 has a receiver dryer section 14 and a supercooling section 16 sequentially on the downstream side of the refrigerant, and the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is received via an electromagnetic valve 17 opened during cooling.
  • the refrigerant pipe 13 ⁇ / b> B connected to the dryer unit 14 and on the outlet side of the supercooling unit 16 is connected to the inlet side of the heat absorber 9 via the indoor expansion valve 8.
  • the receiver dryer part 14 and the supercooling part 16 structurally constitute a part of the outdoor heat exchanger 7.
  • the refrigerant pipe 13B between the subcooling section 16 and the indoor expansion valve 8 is provided in a heat exchange relationship with the refrigerant pipe 13C on the outlet side of the heat absorber 9, and constitutes an internal heat exchanger 19 together.
  • the refrigerant flowing into the indoor expansion valve 8 through the refrigerant pipe 13B is cooled (supercooled) by the low-temperature refrigerant that has exited the heat absorber 9.
  • the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched into a refrigerant pipe 13D, and this branched refrigerant pipe 13D is downstream of the internal heat exchanger 19 via an electromagnetic valve 21 opened during heating.
  • the refrigerant pipe 13C is connected in communication.
  • the refrigerant pipe 13 ⁇ / b> C is connected to the accumulator 12, and the accumulator 12 is connected to the refrigerant suction side of the compressor 2.
  • the refrigerant pipe 13E on the outlet side of the radiator 4 is connected to the inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6.
  • a refrigerant pipe 13G between the discharge side of the compressor 2 and the inlet side of the radiator 4 is provided with a solenoid valve 30 (which constitutes a flow path switching device) that is closed during dehumidification heating and MAX cooling described later. Yes.
  • the refrigerant pipe 13G is branched into a bypass pipe 35 on the upstream side of the electromagnetic valve 30, and the bypass pipe 35 is opened by the electromagnetic valve 40 (which also constitutes a flow path switching device) during dehumidifying heating and MAX cooling. )
  • the electromagnetic valve 40 which also constitutes a flow path switching device during dehumidifying heating and MAX cooling.
  • the bypass device 45 is configured by the bypass pipe 35, the electromagnetic valve 30, and the electromagnetic valve 40, the dehumidifying heating mode or the MAX for allowing the refrigerant discharged from the compressor 2 to directly flow into the outdoor heat exchanger 7 as will be described later. Switching between the cooling mode and the heating mode in which the refrigerant discharged from the compressor 2 flows into the radiator 4, the dehumidifying cooling mode, and the cooling mode can be performed smoothly.
  • the air flow passage 3 on the air upstream side of the heat absorber 9 is formed with each of an outside air inlet and an inside air inlet (represented by the inlet 25 in FIG. 1).
  • a suction switching damper 26 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation mode) which is air inside the passenger compartment and the outside air (outside air introduction mode) which is outside the passenger compartment.
  • an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
  • 23 is an auxiliary heater as an auxiliary heating device provided in the vehicle air conditioner 1 of the embodiment.
  • the auxiliary heater 23 of the embodiment is composed of a PTC heater which is an electric heater, and is provided in the air flow passage 3 on the air upstream side of the radiator 4 with respect to the air flow in the air flow passage 3. Yes.
  • the auxiliary heater 23 When the auxiliary heater 23 is energized and generates heat, the air in the air flow passage 3 flowing into the radiator 4 through the heat absorber 9 is heated.
  • the auxiliary heater 23 serves as a so-called heater core, which heats or complements the passenger compartment.
  • air in the air flow passage 3 on the upstream side of the auxiliary heater 23 flows into the air flow passage 3 and assists air (inside air or outside air) in the air flow passage 3 after passing through the heat absorber 9.
  • An air mix damper 28 is provided for adjusting the ratio of ventilation through the heater 23 and the radiator 4.
  • FOOT foot
  • VENT vent
  • DEF (def) outlets represented by the outlet 29 as a representative in FIG.
  • reference numeral 32 denotes a controller (ECU) as a control device composed of a microcomputer which is an example of a computer provided with a processor.
  • the controller 32 detects the outside air temperature (Tam) of the vehicle.
  • the outside air temperature sensor 33 for detecting the outside air humidity
  • the HVAC suction temperature sensor 36 for detecting the temperature of the air sucked into the air flow passage 3 from the suction port 25, and the air (inside air) in the passenger compartment.
  • An inside air temperature sensor 37 that detects the temperature
  • an inside air humidity sensor 38 that detects the humidity of the air in the vehicle interior
  • an indoor CO 2 concentration sensor 39 that detects the carbon dioxide concentration in the vehicle interior
  • an air outlet from the air outlet 29 And a discharge pressure sensor 41 for detecting the discharge refrigerant pressure (discharge pressure Pd) of the compressor 2.
  • a discharge temperature sensor 43 that detects the discharge refrigerant temperature of the compressor 2
  • a suction pressure sensor 44 that detects the suction refrigerant pressure of the compressor 2
  • a suction temperature sensor 55 that detects the suction refrigerant temperature of the compressor 2.
  • radiator temperature sensor 46 that detects the temperature of the radiator 4 (the temperature of the air that has passed through the radiator 4 or the temperature of the radiator 4 itself: the radiator temperature TH), and the refrigerant pressure (the radiator of the radiator 4).
  • 4 or a radiator pressure sensor 47 that detects the pressure of the refrigerant immediately after exiting the radiator 4: the radiator pressure PCI, and the temperature of the heat absorber 9 (the temperature of the air passing through the heat absorber 9 or the heat absorption).
  • a heat absorber pressure sensor 49 for detecting the amount of solar radiation into the passenger compartment
  • a photosensor-type solar radiation sensor 51 for detecting the moving speed (vehicle speed) of the vehicle, an air conditioning (air conditioner) operation unit 53 for setting a set temperature and an operation mode, and outdoor heat
  • An outdoor heat exchanger temperature sensor 54 for detecting the temperature of the exchanger 7 (the temperature of the refrigerant immediately after leaving the outdoor heat exchanger 7 or the temperature of the outdoor heat exchanger 7 itself: the outdoor heat exchanger temperature TXO);
  • the pressure of the outdoor heat exchanger pressure sensor 56 that detects the refrigerant pressure of the outdoor heat exchanger 7 (the pressure of the refrigerant in the outdoor heat exchanger 7 or immediately after exiting the outdoor heat exchanger 7: outdoor heat exchanger pressure PXO).
  • the input of the controller 32 further includes an auxiliary heater temperature sensor for detecting the temperature of the auxiliary heater 23 (the temperature of the air immediately after being heated by the auxiliary heater 23 or the temperature of the auxiliary heater 23 itself: the auxiliary heater temperature Tptc). 50 outputs are also connected.
  • the output of the controller 32 includes the compressor 2, the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, the outlet switching damper 31, and the outdoor expansion.
  • the controller 32 switches between the operation modes of the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, and the MAX cooling mode (maximum cooling mode).
  • the controller 32 switches between the operation modes of the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, and the MAX cooling mode (maximum cooling mode).
  • heating mode When the heating mode is selected by the controller 32 (auto mode) or by the manual operation (manual mode) to the air conditioning operation unit 53, the controller 32 opens the solenoid valve 21 (for heating) and opens the solenoid valve. Close 17 (for cooling). Further, the electromagnetic valve 30 (for dehumidification) is opened, and the electromagnetic valve 40 (for dehumidification) is closed. Then, the compressor 2 and each of the blowers 15 and 27 are operated, and the air mix damper 28 is blown out from the indoor blower 27 and passes through the heat absorber 9 as shown by a broken line in FIG. It is assumed that air is passed through the auxiliary heater 23 and the radiator 4.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30. Since the air in the airflow passage 3 is passed through the radiator 4, the air in the airflow passage 3 is converted into the high-temperature refrigerant in the radiator 4 (when the auxiliary heater 23 operates, the auxiliary heater 23 and the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air, and is condensed and liquefied. The refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15. That is, the refrigerant circuit R becomes a heat pump.
  • the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 from the refrigerant pipe 13C through the refrigerant pipe 13A, the electromagnetic valve 21 and the refrigerant pipe 13D, and is separated into gas and liquid there. Repeated circulation inhaled.
  • the controller 32 calculates a target radiator pressure PCO (target value of the radiator pressure PCI) from a target radiator temperature TCO (target value of the radiator temperature TH) calculated from a target outlet temperature TAO described later, and this target heat dissipation.
  • the number of revolutions of the compressor 2 is controlled based on the compressor pressure PCO and the refrigerant pressure of the radiator 4 detected by the radiator pressure sensor 47 (radiator pressure PCI; high pressure of the refrigerant circuit R).
  • the controller 32 determines the valve opening degree of the outdoor expansion valve 6 based on the temperature of the radiator 4 (the radiator temperature TH) detected by the radiator temperature sensor 46 and the radiator pressure PCI detected by the radiator pressure sensor 47. And the supercooling degree SC of the refrigerant at the outlet of the radiator 4 is controlled.
  • the auxiliary heater 23 is disposed on the air upstream side of the radiator 4, the air flowing through the air flow passage 3 is vented to the auxiliary heater 23 before the radiator 4.
  • the auxiliary heater 23 is disposed on the air downstream side of the radiator 4
  • the auxiliary heater 23 is configured by a PCT heater as in the embodiment, the temperature of the air flowing into the auxiliary heater 23 is determined by the radiator. 4, the resistance value of the PTC heater increases, the current value also decreases, and the heat generation amount decreases.
  • the controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is closed, the electromagnetic valve 40 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 and each of the blowers 15 and 27 are operated, and the air mix damper 28 is blown out from the indoor blower 27 and passes through the heat absorber 9 as shown by a broken line in FIG. It is assumed that air is passed through the auxiliary heater 23 and the radiator 4.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the electromagnetic valve 40, and is connected to the refrigerant pipe on the downstream side of the outdoor expansion valve 6. 13E.
  • the outdoor expansion valve 6 since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16.
  • the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates.
  • the air blown out from the indoor blower 27 by the heat absorption action at this time is cooled, and moisture in the air condenses and adheres to the heat absorber 9, so that the air in the air flow passage 3 is cooled, and Dehumidified.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through.
  • the valve opening degree of the outdoor expansion valve 6 is fully closed, it is possible to suppress or prevent inconvenience that the refrigerant discharged from the compressor 2 flows backward from the outdoor expansion valve 6 into the radiator 4. It becomes. Thereby, the fall of a refrigerant
  • the air cooled and dehumidified by the heat absorber 9 is further heated in the process of passing through the auxiliary heater 23 and the temperature rises, so that the dehumidifying heating in the passenger compartment is performed.
  • the controller 32 controls the rotational speed of the compressor 2 on the basis of the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO that is the target value, and the auxiliary heater temperature.
  • auxiliary heater 23 By controlling the energization (heat generation) of the auxiliary heater 23 based on the auxiliary heater temperature Tptc detected by the sensor 50 and the target radiator temperature TCO described above, while appropriately cooling and dehumidifying the air in the heat absorber 9, A decrease in the temperature of the air blown from the outlet 29 into the passenger compartment by heating by the auxiliary heater 23 is accurately prevented. As a result, it is possible to control the temperature to an appropriate heating temperature while dehumidifying the air blown into the vehicle interior, and it is possible to realize comfortable and efficient dehumidification heating in the vehicle interior.
  • the air mix damper 28 is in a state where all the air in the air flow passage 3 is passed through the auxiliary heater 23 and the radiator 4, so that the air passing through the heat absorber 9 is efficiently assisted. Heating by the heater 23 can improve the energy saving performance, and the controllability of the dehumidifying heating air conditioning can also be improved.
  • the auxiliary heater 23 is disposed on the air upstream side of the radiator 4, the air heated by the auxiliary heater 23 passes through the radiator 4. In this dehumidifying heating mode, the refrigerant is supplied to the radiator 4. Therefore, the disadvantage that the radiator 4 absorbs heat from the air heated by the auxiliary heater 23 is also eliminated.
  • the controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is opened and the electromagnetic valve 40 is closed. Then, the compressor 2 and each of the blowers 15 and 27 are operated, and the air mix damper 28 is blown out from the indoor blower 27 and passes through the heat absorber 9 as shown by a broken line in FIG. It is assumed that air is passed through the auxiliary heater 23 and the radiator 4.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived and cooled, and condensates.
  • the refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 that is controlled to open.
  • the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates.
  • the air Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through.
  • the controller 32 does not energize the auxiliary heater 23, so the air cooled by the heat absorber 9 is reheated in the process of passing through the radiator 4 (the heat dissipation capability is lower than that during heating). The As a result, dehumidifying and cooling in the passenger compartment is performed.
  • the controller 32 controls the rotational speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48, and also uses the outdoor expansion valve based on the high pressure of the refrigerant circuit R described above. 6 is controlled to control the refrigerant pressure of the radiator 4 (radiator pressure PCI).
  • the controller 32 fully opens the valve opening degree of the outdoor expansion valve 6 in the dehumidifying and cooling mode.
  • the controller 32 controls the air mix damper 28, and the air in the air flow passage 3 after being blown out from the indoor blower 27 and passing through the heat absorber 9 as shown by a solid line in FIG. The rate of ventilation through the vessel 4 is adjusted.
  • the controller 32 does not energize the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30, and the refrigerant exiting the radiator 4 passes through the refrigerant pipe 13E and the outdoor expansion valve 6.
  • the outdoor expansion valve 6 since the outdoor expansion valve 6 is fully opened, the refrigerant passes through it and flows into the outdoor heat exchanger 7 as it is, where it is cooled by air or by outside air that is ventilated by the outdoor blower 15 and condensed. Liquefaction.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates.
  • the air blown out from the indoor blower 27 by the heat absorption action at this time is cooled. Further, moisture in the air condenses and adheres to the heat absorber 9.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through. Since the air cooled and dehumidified by the heat absorber 9 is blown into the vehicle interior from the air outlet 29 (partly passes through the radiator 4 to exchange heat), the vehicle interior is thereby cooled. become.
  • the controller 32 rotates the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO that is the target value. To control.
  • MAX cooling mode (maximum cooling mode)
  • the controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is closed, the electromagnetic valve 40 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 keeps the air in the air flow passage 3 from passing through the auxiliary heater 23 and the radiator 4 as shown in FIG. However, there is no problem even if it is ventilated somewhat. Further, the controller 32 does not energize the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the electromagnetic valve 40, and is connected to the refrigerant pipe on the downstream side of the outdoor expansion valve 6. 13E.
  • the outdoor expansion valve 6 since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16.
  • the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 by the heat absorption action at this time is cooled. In addition, since moisture in the air condenses and adheres to the heat absorber 9, the air in the air flow passage 3 is dehumidified.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through.
  • the outdoor expansion valve 6 since the outdoor expansion valve 6 is fully closed, similarly, it is possible to suppress or prevent the disadvantage that the refrigerant discharged from the compressor 2 flows backward from the outdoor expansion valve 6 into the radiator 4. . Thereby, the fall of a refrigerant
  • the high-temperature refrigerant flows through the radiator 4 in the cooling mode described above, direct heat conduction from the radiator 4 to the HVAC unit 10 occurs not a little, but in this MAX cooling mode, the refrigerant flows into the radiator 4. Therefore, the air in the air flow passage 3 from the heat absorber 9 is not heated by the heat transmitted from the radiator 4 to the HVAC unit 10. Therefore, powerful cooling of the passenger compartment is performed, and particularly in an environment where the outside air temperature Tam is high, the passenger compartment can be quickly cooled to realize comfortable air conditioning in the passenger compartment.
  • the controller 32 rotates the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO that is the target value. Control the number.
  • (6) Switching of operation mode The air flowing through the air flow passage 3 is cooled by the heat absorber 9 and heated by the heat radiator 4 (and the auxiliary heater 23) in each of the operation modes (adjusted by the air mix damper 28). ) And is blown out from the air outlet 29 into the passenger compartment.
  • the controller 32 is set by the air-conditioning operation unit 53, the outside air temperature Tam detected by the outside air temperature sensor 33, the temperature in the vehicle interior detected by the inside air temperature sensor 37, the blower voltage, the amount of solar radiation detected by the solar radiation sensor 51, and the like.
  • the target blowout temperature TAO is calculated based on the target passenger compartment temperature (set temperature) in the passenger compartment, and the temperature of the air blown from the blowout port 29 is controlled to this target blowout temperature TAO by switching each operation mode.
  • the controller 32 determines whether the outside air temperature Tam, the humidity in the vehicle interior, the target outlet temperature TAO, the radiator temperature TH, the target radiator temperature TCO, the heat absorber temperature Te, the target heat absorber temperature TEO, or the dehumidification request in the vehicle interior. By switching each operation mode based on parameters such as, etc., it switches between heating mode, dehumidifying heating mode, dehumidifying cooling mode, cooling mode and MAX cooling mode accurately according to the environmental conditions and necessity of dehumidification. In addition, efficient cabin air conditioning is realized. (7) Noise improvement control at the time of switching from the cooling mode to the MAX cooling mode Next, referring to FIG.
  • the timing chart of FIG. 4 shows the pressure difference ⁇ Pdx before and after the electromagnetic valve 40 (second opening / closing valve of the present invention) when switching from the cooling mode to the MAX cooling mode, and the electromagnetic valve 30 (first opening / closing of the present invention).
  • the pressure difference ⁇ Pix before and after the valve), the rotational speed NC of the compressor 2, and the states of the outdoor expansion valve 6, the electromagnetic valve 40, and the electromagnetic valve 30 are shown.
  • the pressure difference ⁇ Pdx before and after the solenoid valve 40 is equal to the pressure Pd on the refrigerant upstream side (front) of the solenoid valve 40 detected by the discharge pressure sensor 42 and the outdoor heat exchanger 7 detected by the outdoor heat exchanger temperature sensor 54.
  • the pressure difference ⁇ Pix before and after the solenoid valve 30 is the refrigerant upstream side (front) pressure Pd of the solenoid valve 30 detected by the discharge pressure sensor 42 and the coolant downstream side of the solenoid valve 30 detected by the radiator pressure sensor 47.
  • the controller 32 executes noise improvement control described below when switching the operation mode from the cooling mode to the MAX cooling mode. That is, when the controller 32 switches from the cooling mode to the MAX cooling mode, before the operation mode is switched, in the embodiment, the pressure difference Pdx before and after the electromagnetic valve 40 is less than or equal to a predetermined value A (for example, 0.2 MPa).
  • the rotational speed NC of the compressor 2 is adjusted (controlled in a decreasing direction).
  • the discharge pressure Pd decreases, so the pressure difference Pdx before and after the electromagnetic valve 40 decreases.
  • the controller 32 opens the electromagnetic valve 40, closes the electromagnetic valve 30, and fully closes the outdoor expansion valve 6. Transition to mode air conditioning operation.
  • (7-2) Noise improvement control at the time of switching from the cooling mode to the MAX cooling mode (part 2)
  • the controller 32 controls the rotational speed NC of the compressor 2 so that the pressure difference ⁇ Pdx before and after the solenoid valve 40 is equal to or less than the predetermined value A.
  • the rotation speed NC of the compressor 2 may be set to a predetermined rotation speed NC1 (FIG. 4, for example, 800 rpm to 3000 rpm) which is a predetermined low value.
  • a predetermined rotation speed NC1 FOG. 4, for example, 800 rpm to 3000 rpm
  • the discharge pressure Pd decreases, so the pressure difference Pdx before and after the electromagnetic valve 40 decreases.
  • the controller 32 opens the electromagnetic valve 40, closes the electromagnetic valve 30, and fully closes the outdoor expansion valve 6, thereby increasing the MAX. Transition to air conditioning operation in cooling mode.
  • the compressor 2 may be stopped by the controller 32 in the noise improvement control.
  • the pressure in the refrigerant circuit R approaches an equilibrium state (the high-pressure side pressure decreases and the low-pressure side pressure increases), so the pressure difference ⁇ Pdx before and after the electromagnetic valve 40 also decreases.
  • the controller 32 opens the electromagnetic valve 40, closes the electromagnetic valve 30, closes the outdoor expansion valve 6 and closes the compressor 2.
  • the controller 32 when switching from the cooling mode to the MAX cooling mode, the controller 32 reduces the pressure difference ⁇ Pdx before and after the solenoid valve 40, then opens the solenoid valve 40, closes the solenoid valve 30, and opens the outdoor expansion valve 6. Since the noise improvement control for fully closing is executed, when switching from the cooling mode to the MAX cooling mode, when the solenoid valve 40 is opened, the refrigerant suddenly flows through the bypass pipe 35 toward the outdoor heat exchanger 7 side. Can be significantly suppressed or eliminated. As a result, when switching from the cooling mode to the MAX cooling mode, noise generated when the electromagnetic valve 40 is opened can be eliminated or reduced.
  • the controller 32 controls the rotational speed NC of the compressor 2 or
  • the pressure difference ⁇ Pdx before and after the electromagnetic valve 40 is reduced, and when the pressure difference ⁇ Pdx becomes a predetermined value A or less, the electromagnetic valve 40 is opened, the electromagnetic valve 30 is closed, and the outdoor Since the expansion valve 6 is fully closed, in the noise improvement control when the operation mode is switched, the pressure difference ⁇ Pdx before and after the solenoid valve 40 is reduced by reducing the pressure (Pd) on the refrigerant upstream side of the solenoid valve 40.
  • the mode can be quickly switched to the MAX cooling mode, and noise generated at the time of switching can be eliminated or reduced accurately. Further, before switching from the cooling mode to the MAX cooling mode, that is, before the electromagnetic valve 30 is closed and the outdoor expansion valve 6 is fully closed, the rotational speed NC of the compressor 2 is reduced or stopped. It is also possible to reduce the amount of refrigerant that has fallen into the radiator 4 at the time of switching to the MAX cooling mode. As a result, it is possible to secure the refrigerant circulation amount in the refrigerant circuit R during execution of the MAX cooling mode, and to suppress or prevent a decrease in capacity.
  • the pressure difference ⁇ Pdx before and after the solenoid valve 40 after the compressor 2 is stopped is equal to or less than a predetermined value A.
  • the solenoid valve 40 is opened.
  • the present invention is not limited to this, and after the compressor 2 is stopped, the solenoid valve 40 is opened after a predetermined time (for example, 10 seconds) has elapsed. 30 may be closed and the outdoor expansion valve 6 may be fully closed, and the compressor 2 may be activated to start the air conditioning operation in the MAX cooling mode.
  • the electromagnetic valve 40 is opened after the predetermined time has elapsed, the electromagnetic valve 30 is closed, and the outdoor expansion valve 6 is fully closed.
  • the pressure Pd upstream of the refrigerant of the solenoid valve 40 is reduced to effectively reduce the pressure difference Pdx before and after the solenoid valve 40, and noise generated at the time of switching is eliminated accurately, or Can be reduced.
  • Noise improvement control at the time of switching from the MAX cooling mode to the cooling mode Next, referring to FIG. 5, the operation mode of the vehicle air conditioner 1 is changed from the above-described MAX cooling mode (maximum cooling mode) to cooling.
  • the timing chart of FIG. 5 shows the pressure difference ⁇ Pdx before and after the electromagnetic valve 40 (second opening / closing valve of the present invention) when switching from the MAX cooling mode to the cooling mode, and the electromagnetic valve 30 (first opening / closing of the present invention).
  • the pressure difference ⁇ Pix before and after the valve), the rotational speed NC of the compressor 2, and the states of the outdoor expansion valve 6, the electromagnetic valve 40, and the electromagnetic valve 30 are shown.
  • the controller 32 calculates the pressure difference ⁇ Pdx before and after the solenoid valve 40 and the pressure difference ⁇ Pix before and after the solenoid valve 30 in the same manner as described above (in the case of FIG. 4).
  • the controller 32 executes the noise improvement control described below also when switching the operation mode from the MAX cooling mode to the cooling mode. That is, when the controller 32 switches from the MAX cooling mode to the cooling mode, before the operation mode is switched, in the embodiment, the pressure difference Pix before and after the solenoid valve 30 is equal to or less than a predetermined value A (for example, 0.2 MPa).
  • the valve opening of the outdoor expansion valve 6 is opened from the fully closed state toward the fully open state.
  • the outdoor expansion valve 6 is opened, the discharge side of the compressor 2 and the outlet side of the radiator 4 are communicated with each other via the electromagnetic valve 40 and the outdoor expansion valve 6, and the radiator pressure PCI is increased and the discharge pressure Pd is increased.
  • the controller 32 opens the electromagnetic valve 30 and closes the electromagnetic valve 40.
  • the outdoor expansion valve 6 is fully opened before the pressure difference ⁇ Pix becomes equal to or less than the predetermined value A, or when the pressure difference ⁇ Pix becomes equal to or less than the predetermined value A, but is fully opened at the same time or thereafter. Become. Thereby, it transfers to the air-conditioning driving
  • the valve opening degree of the outdoor expansion valve 6 is changed from the fully closed state to the fully opened state, and when the electromagnetic valve 30 is fully opened, It may be determined whether the pressure difference Pix before and after is equal to or less than a predetermined value A. In that case, if the pressure difference Pix before and after the solenoid valve 30 is less than or equal to the predetermined value A when the valve opening degree of the outdoor expansion valve 6 is fully opened, the solenoid valve 30 is opened and the solenoid valve 40 is turned on. Close and enter cooling mode.
  • the controller 32 controls the rotational speed NC of the compressor 2 to decrease ( Adjustment). Also in this case, when the pressure difference ⁇ Pix becomes equal to or less than the predetermined value A, the solenoid valve 30 is opened, the solenoid valve 40 is closed, and the cooling mode is entered. As described above, when the controller 32 switches from the MAX cooling mode to the cooling mode, the controller 32 executes the noise improvement control that opens the solenoid valve 30 and closes the solenoid valve 40 after reducing the pressure difference ⁇ Pix before and after the solenoid valve 30.
  • the controller 32 opens the outdoor expansion valve 6 to reduce the pressure difference ⁇ Pix before and after the electromagnetic valve 30 and to reduce the pressure difference.
  • the controller 32 controls the rotational speed NC of the compressor 2 as necessary, or When the pressure difference ⁇ Pix before and after the solenoid valve 30 is reduced by stopping the compressor 2, or when the pressure difference ⁇ Pix before and after the solenoid valve 30 is higher than the predetermined value A when the outdoor expansion valve 6 is fully opened.
  • the pressure difference ⁇ Pix before and after the electromagnetic valve 30 is reduced by controlling the rotational speed of the compressor 2, the pressure difference ⁇ Pix before and after the electromagnetic valve 30 can be reduced more quickly and effectively. Will be able to. (9) Noise improvement control when operation is stopped from the MAX cooling mode Next, referring to FIG.
  • the timing chart of FIG. 6 shows the pressure difference ⁇ Pdx before and after the solenoid valve 40 (second on-off valve of the present invention) when the operation is stopped from the MAX cooling mode, and the solenoid valve 30 (first on-off valve of the present invention). ), The rotational speed NC of the compressor 2, the state of the outdoor expansion valve 6, the electromagnetic valve 40, and the electromagnetic valve 30.
  • the controller 32 calculates the pressure difference ⁇ Pdx before and after the solenoid valve 40 and the pressure difference ⁇ Pix before and after the solenoid valve 30 in the same manner as described above (in the case of FIG. 4).
  • the solenoid valve 30 (the first on-off valve of the present invention) is a so-called normally open solenoid valve that closes when energized and opens in a non-energized state
  • the solenoid valve 40 (the second on-off valve of the present invention) It is a so-called normally closed solenoid valve that opens when energized and closes when not energized.
  • the controller 32 executes the noise improvement control described below even when the operation is stopped from the MAX cooling mode. That is, when stopping the operation from the MAX cooling mode, the controller 32 first stops the compressor 2 and stops the outdoor expansion valve 6 from the fully closed state to the fully opened state before stopping the operation. Go. Since the compressor 2 is stopped and the outdoor expansion valve 6 is opened, the pressure in the refrigerant circuit R approaches an equilibrium state (the high-pressure side pressure is lowered and the low-pressure side pressure is raised), so that the pressure difference ⁇ Pix before and after the electromagnetic valve 30 Also getting smaller.
  • the controller 32 stops the operation by deenergizing the solenoid valve 30 and the solenoid valve 40.
  • the solenoid valve 30 is opened by de-energization, and the solenoid valve 40 is closed.
  • the controller 32 reduces the pressure difference ⁇ Pix before and after the solenoid valve 30 when stopping the operation from the MAX cooling mode.
  • the controller 32 stops the compressor 2 and opens the outdoor expansion valve 6 to reduce the pressure difference ⁇ Pix before and after the electromagnetic valve 30, and the pressure difference ⁇ Pix becomes a predetermined value A or less. In this case, the solenoid valve 30 is deenergized.
  • the pressure difference ⁇ Pix before and after the solenoid valve 30 is effectively reduced, and the solenoid valve is quickly 30 can be de-energized, and noise generated at the time of stopping can be accurately eliminated or reduced.
  • the electromagnetic valve 30 when the pressure difference Pix is higher than the predetermined value A, the electromagnetic valve 30 is de-energized when the pressure difference Pix drops below the predetermined value A. (9-3) Noise improvement control when operation is stopped from the MAX cooling mode (part 3) Alternatively, when the outdoor expansion valve 6 is fully opened, it is determined whether or not the pressure difference ⁇ Pix before and after the electromagnetic valve 30 is equal to or less than a predetermined value A. If the pressure difference ⁇ Pix is equal to or less than the predetermined value A, the electromagnetic valve 30 When the pressure difference Pix is higher than the predetermined value A, the solenoid valve 30 may be deenergized after a predetermined time has elapsed.
  • the present invention is applied to the vehicle air conditioner 1 that switches and executes each operation mode of the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, and the MAX cooling mode.
  • the present invention is also effective for a vehicle air conditioner that performs switching between the cooling mode and the MAX cooling mode.
  • the switching control of each operation mode shown in the embodiment is not limited thereto, and the outside air temperature Tam, the humidity in the vehicle interior, the target blowing temperature TAO, depending on the capability and usage environment of the vehicle air conditioner, Adopt any one of parameters such as radiator temperature TH, target radiator temperature TCO, heat absorber temperature Te, target heat absorber temperature TEO, presence / absence of dehumidification request in vehicle interior, or a combination thereof, or all of them. Appropriate conditions should be set.
  • the auxiliary heating device is not limited to the auxiliary heater 23 shown in the embodiment, and a heat medium circulation circuit that heats the air in the air flow passage by circulating the heat medium heated by the heater or an engine. You may utilize the heater core etc. which circulate through the heated radiator water.
  • the configuration of the refrigerant circuit R described in each of the above embodiments is not limited thereto, and it is needless to say that the refrigerant circuit R can be changed without departing from the gist of the present invention.

Abstract

Provided is an air-conditioning device for a vehicle comprising an opening/closing valve for switching flow paths and a bypass pipe that bypasses a radiator and an outside-passenger-compatment expansion valve, wherein the noise generated when opening the opening/closing valve while switching between cooling mode and maximum cooling mode, for example, is reduced or eliminated. The following modes are switched between and executed: a cooling mode in which a solenoid valve (30) is opened and a solenoid valve (40) is closed; and a MAX cooling mode in which the solenoid valve (30) is closed and the solenoid valve (40) is opened, and refrigerant is fed to an outside-passenger-compatment heat exchanger (7) via the bypass pipe (35). When switching from cooling mode to MAX cooling mode, a controller performs control to reduce noise, wherein after reducing the pressure differential before and after the solenoid valve (40), the solenoid valve (40) is opened and the solenoid valve (30) is closed, and the outside-passenger-compatment expansion valve (6) is completely closed.

Description

車両用空気調和装置Air conditioner for vehicles
 本発明は、車両の車室内を空調するヒートポンプ方式の空気調和装置、特にハイブリッド自動車や電気自動車に適用可能な空気調和装置に関するものである。 The present invention relates to a heat pump type air conditioner that air-conditions the interior of a vehicle, and more particularly to an air conditioner that can be applied to a hybrid vehicle or an electric vehicle.
 近年の環境問題の顕在化から、ハイブリッド自動車や電気自動車が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、冷媒を圧縮して吐出する圧縮器と、車室内側に設けられて冷媒を放熱させる内部凝縮機と、車室内側に設けられて冷媒を吸熱させる蒸発器と、車室外側に設けられて冷媒を放熱又は吸熱させる外部凝縮機と、この外部凝縮機に流入する冷媒を膨張させる第1膨張バルブと、蒸発器に流入する冷媒を膨張させる第2膨張バルブと、内部凝縮機及び第1膨張バルブをバイパスする配管と、圧縮器から吐出された冷媒を内部凝縮機に流すか、この内部凝縮機と第1膨張バルブをバイパスして前記配管から外部凝縮機に直接流すかを切り換える第1バルブを備え、圧縮器から吐出された冷媒を第1バルブにより内部凝縮機に流して放熱させ、この放熱した冷媒を第1膨張バルブで減圧した後、外部凝縮機において吸熱させる暖房モードと、圧縮器から吐出された冷媒を第1バルブにより内部凝縮機において放熱させ、放熱した冷媒を第2膨張バルブで減圧した後、蒸発器において吸熱させる除湿モードと、圧縮器から吐出された冷媒を第1バルブにより内部凝縮機及び第1膨張バルブをバイパスして外部凝縮機に流して放熱させ、第2膨張バルブで減圧した後、蒸発器において吸熱させる冷房モードを切り換えて実行するものが開発されている(例えば、特許文献1参照)。 Recently, hybrid vehicles and electric vehicles have become popular due to the emergence of environmental problems. As an air conditioner that can be applied to such a vehicle, a compressor that compresses and discharges the refrigerant, an internal condenser that is provided on the vehicle interior side and dissipates the refrigerant, and is provided on the vehicle interior side. An evaporator that absorbs the refrigerant, an external condenser that dissipates or absorbs heat from the passenger compartment, a first expansion valve that expands the refrigerant that flows into the external condenser, and a refrigerant that flows into the evaporator A second expansion valve for expanding the internal combustion engine, piping for bypassing the internal condenser and the first expansion valve, and flowing the refrigerant discharged from the compressor to the internal condenser or bypassing the internal condenser and the first expansion valve A first valve that switches between direct flow from the pipe to the external condenser, the refrigerant discharged from the compressor is caused to flow through the internal condenser by the first valve to dissipate the heat, and the discharged refrigerant is passed through the first expansion valve. After heating, the refrigerant discharged from the compressor is radiated in the internal condenser by the first valve, the radiated refrigerant is depressurized by the second expansion valve, and the refrigerant absorbs heat in the evaporator. The dehumidification mode to be performed, and the refrigerant discharged from the compressor bypasses the internal condenser and the first expansion valve by the first valve and flows to the external condenser to radiate heat, and after the pressure is reduced by the second expansion valve, A device that switches and executes a cooling mode for absorbing heat has been developed (see, for example, Patent Document 1).
特開2013−23210号公報JP2013-23210A 特開2014−88151号公報JP 2014-88151 A
 ここで、上記特許文献1の第1バルブを圧縮器の吐出側から分岐した各冷媒配管に設けた二つの開閉弁で構成した場合、冷房モードとその他の暖房モード、除湿モードに切り換える際、各開閉弁は一方が開、他方が閉じられることになるが、これら開閉弁前後の圧力差は大きいため、開放される開閉弁に急激に流れる冷媒により、比較的大きい騒音が発生する問題がある。
 ここで、暖房と冷房を切り換える際に、冷媒回路の高圧側と低圧側の圧力差を下げてから開閉弁を開放することで異音の発生を抑えるものが提案されている(例えば、特許文献2参照)。
 本発明は、係る従来の技術的課題を解決するために成されたものであり、放熱器と室外膨張弁をバイパスするバイパス配管と、流路を切り換えるための開閉弁を備えた車両用空気調和装置において、冷房モードと最大冷房モードの切換時などに開閉弁を開く際に生じる騒音を解消、若しくは、低減することを目的とする。
Here, when the first valve of Patent Document 1 is configured with two on-off valves provided in each refrigerant pipe branched from the discharge side of the compressor, when switching to the cooling mode, the other heating mode, and the dehumidifying mode, One of the on-off valves is opened and the other is closed. However, since the pressure difference before and after these on-off valves is large, there is a problem that a relatively large noise is generated by the refrigerant that flows suddenly to the on-off valves that are opened.
Here, when switching between heating and cooling, there has been proposed one that suppresses the generation of abnormal noise by lowering the pressure difference between the high pressure side and the low pressure side of the refrigerant circuit and then opening the on-off valve (for example, Patent Documents). 2).
The present invention has been made to solve the conventional technical problems, and is equipped with a bypass pipe that bypasses a radiator and an outdoor expansion valve, and an air conditioner for a vehicle that includes an on-off valve for switching a flow path. An object of the present invention is to eliminate or reduce noise generated when an on-off valve is opened when switching between a cooling mode and a maximum cooling mode.
 請求項1の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられた室外熱交換器と、放熱器を出て室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、圧縮機の吐出側と放熱器の入口側の間に設けられた第1の開閉弁と、この第1の開閉弁の上流側で分岐し、放熱器及び室外膨張弁をバイパスして圧縮機から吐出された冷媒を室外熱交換器に流すためのバイパス配管と、このバイパス配管に設けられた第2の開閉弁と、制御装置を備え、この制御装置により、第1の開閉弁を開き、第2の開閉弁を閉じることで、圧縮機から吐出された冷媒を放熱器から室外熱交換器に流して当該室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる冷房モードと、室外膨張弁を全閉とし、第1の開閉弁を閉じ、第2の開閉弁を開くことで、圧縮機から吐出された冷媒をバイパス配管により室外熱交換器に流して放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる最大冷房モードを切り換えて実行するものであって、制御装置は、冷房モードから最大冷房モードに切り換える際、第2の開閉弁前後の圧力差を縮小した後、当該第2の開閉弁を開き、第1の開閉弁を閉じ、室外膨張弁を全閉とする騒音改善制御を実行することを特徴とする。
 請求項2の発明の車両用空気調和装置は、上記発明において制御装置は、騒音改善制御において、圧縮機の回転数を制御し、又は、当該圧縮機を停止することで第2の開閉弁前後の圧力差を縮小させ、当該圧力差が所定値以下となった場合に、当該第2の開閉弁を開き、第1の開閉弁を閉じ、室外膨張弁を全閉とすることを特徴とする。
 請求項3の発明の車両用空気調和装置は、請求項1の発明において制御装置は、騒音改善制御において、圧縮機を停止し、所定時間経過後に第2の開閉弁を開き、第1の開閉弁を閉じ、室外膨張弁を全閉とすることを特徴とする。
 請求項4の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられた室外熱交換器と、放熱器を出て室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、圧縮機の吐出側と放熱器の入口側の間に設けられた第1の開閉弁と、この第1の開閉弁の上流側で分岐し、放熱器及び室外膨張弁をバイパスして圧縮機から吐出された冷媒を室外熱交換器に流すためのバイパス配管と、このバイパス配管に設けられた第2の開閉弁と、制御装置を備え、この制御装置により、第1の開閉弁を開き、第2の開閉弁を閉じることで、圧縮機から吐出された冷媒を放熱器から室外熱交換器に流して当該室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる冷房モードと、室外膨張弁を全閉とし、第1の開閉弁を閉じ、第2の開閉弁を開くことで、圧縮機から吐出された冷媒をバイパス配管により室外熱交換器に流して放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる最大冷房モードを切り換えて実行するものであって、制御装置は、最大冷房モードから冷房モードに切り換える際、第1の開閉弁前後の圧力差を縮小した後、当該第1の開閉弁を開き、第2の開閉弁を閉じる騒音改善制御を実行することを特徴とする。
 請求項5の発明の車両用空気調和装置は、上記発明において制御装置は、騒音改善制御において、室外膨張弁を開くことで第1の開閉弁前後の圧力差を縮小させ、当該圧力差が所定値以下となった場合に、当該第1の開閉弁を開き、第2の開閉弁を閉じることを特徴とする。
 請求項6の発明の車両用空気調和装置は、上記発明において制御装置は、騒音改善制御において、圧縮機の回転数を制御し、又は、当該圧縮機を停止することで第1の開閉弁前後の圧力差を縮小させ、若しくは、室外膨張弁が全開となった時点で第1の開閉弁前後の圧力差が前記所定値より高い場合に、圧縮機の回転数を制御することで第1の開閉弁前後の圧力差を縮小させることを特徴とする。
 請求項7の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられた室外熱交換器と、放熱器を出て室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、圧縮機の吐出側と放熱器の入口側の間に設けられた第1の開閉弁と、この第1の開閉弁の上流側で分岐し、放熱器及び室外膨張弁をバイパスして圧縮機から吐出された冷媒を室外熱交換器に流すためのバイパス配管と、このバイパス配管に設けられた第2の開閉弁と、制御装置を備え、この制御装置により少なくとも、室外膨張弁を全閉とし、第1の開閉弁を閉じ、第2の開閉弁を開くことで、圧縮機から吐出された冷媒をバイパス配管により室外熱交換器に流して放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる最大冷房モードを実行するものであって、第1の開閉弁は通電状態で閉じ、非通電状態で開く電磁弁であると共に、制御装置は、最大冷房モードから運転を停止する際、第1の開閉弁前後の圧力差を縮小した後、当該第1の開閉弁を非通電とする騒音改善制御を実行することを特徴とする。
 請求項8の発明の車両用空気調和装置は、上記発明において制御装置は、騒音改善制御において、圧縮機を停止し、室外膨張弁を開くことで第1の開閉弁前後の圧力差を縮小させ、当該圧力差が所定値以下となった場合に、当該第1の開閉弁を非通電とすることを特徴とする。
 請求項9の発明の車両用空気調和装置は、請求項7の発明において制御装置は、騒音改善制御において、圧縮機を停止し、室外膨張弁を全開とすると共に、当該室外膨張弁が全開となった時点で第1の開閉弁前後の圧力差が所定値以下である場合、第1の開閉弁を非通電とし、前記所定値より高い場合は、当該所定値以下に低下したとき、又は、所定時間経過後に第1の開閉弁を非通電とすることを特徴とする。
An air conditioner for a vehicle according to a first aspect of the present invention includes a compressor that compresses a refrigerant, an air flow passage through which air supplied to the vehicle interior flows, and air that radiates the refrigerant and supplies the refrigerant to the vehicle interior from the air flow passage. A heat sink for heating the air, a heat absorber for absorbing the refrigerant to cool the air supplied from the air flow passage to the vehicle interior, an outdoor heat exchanger provided outside the vehicle interior, and the radiator An outdoor expansion valve for decompressing the refrigerant flowing into the outdoor heat exchanger, a first on-off valve provided between the discharge side of the compressor and the inlet side of the radiator, and upstream of the first on-off valve A bypass pipe for branching on the side, bypassing the radiator and the outdoor expansion valve to flow the refrigerant discharged from the compressor to the outdoor heat exchanger, a second on-off valve provided in the bypass pipe, and a control A first opening / closing valve and a second opening / closing by the control device. Cooling mode in which the refrigerant discharged from the compressor flows from the radiator to the outdoor heat exchanger and is radiated by the outdoor heat exchanger, and the radiated refrigerant is decompressed and then absorbed by the heat absorber. The outdoor expansion valve is fully closed, the first on-off valve is closed, and the second on-off valve is opened, so that the refrigerant discharged from the compressor flows to the outdoor heat exchanger through the bypass pipe to dissipate heat. After the pressure of the refrigerant is reduced, the maximum cooling mode in which heat is absorbed by the heat absorber is switched and executed. The control device switches the pressure difference before and after the second on-off valve when switching from the cooling mode to the maximum cooling mode. Is reduced, the second on-off valve is opened, the first on-off valve is closed, and the outdoor expansion valve is fully closed, and noise improvement control is executed.
According to a second aspect of the present invention, in the vehicle air conditioner according to the second aspect of the present invention, the control device controls the rotation speed of the compressor or stops the compressor before and after the second on-off valve in the noise improvement control. When the pressure difference is reduced to a predetermined value or less, the second on-off valve is opened, the first on-off valve is closed, and the outdoor expansion valve is fully closed. .
According to a third aspect of the present invention, there is provided a vehicular air conditioner according to the first aspect of the present invention, wherein the control device stops the compressor and opens the second on-off valve after a predetermined period of time in the noise improvement control. The valve is closed and the outdoor expansion valve is fully closed.
According to a fourth aspect of the present invention, there is provided an air conditioning apparatus for a vehicle, comprising: a compressor that compresses a refrigerant; an air flow passage through which air supplied to a vehicle interior flows; A heat sink for heating the air, a heat absorber for absorbing the refrigerant to cool the air supplied from the air flow passage to the vehicle interior, an outdoor heat exchanger provided outside the vehicle interior, and the radiator An outdoor expansion valve for decompressing the refrigerant flowing into the outdoor heat exchanger, a first on-off valve provided between the discharge side of the compressor and the inlet side of the radiator, and upstream of the first on-off valve A bypass pipe for branching on the side, bypassing the radiator and the outdoor expansion valve to flow the refrigerant discharged from the compressor to the outdoor heat exchanger, a second on-off valve provided in the bypass pipe, and a control A first opening / closing valve and a second opening / closing by the control device. Cooling mode in which the refrigerant discharged from the compressor flows from the radiator to the outdoor heat exchanger and is radiated by the outdoor heat exchanger, and the radiated refrigerant is decompressed and then absorbed by the heat absorber. The outdoor expansion valve is fully closed, the first on-off valve is closed, and the second on-off valve is opened, so that the refrigerant discharged from the compressor flows to the outdoor heat exchanger through the bypass pipe to dissipate heat. After the decompression of the refrigerant, the maximum cooling mode in which heat is absorbed by the heat absorber is switched and executed. The control device switches the pressure difference before and after the first on-off valve when switching from the maximum cooling mode to the cooling mode. After the reduction, the first on-off valve is opened, and the noise improvement control for closing the second on-off valve is executed.
According to a fifth aspect of the present invention, in the vehicle air conditioner according to the fifth aspect of the invention, in the noise improvement control, the control device reduces the pressure difference before and after the first on-off valve by opening the outdoor expansion valve, and the pressure difference is predetermined. When the value is less than or equal to the value, the first on-off valve is opened and the second on-off valve is closed.
According to a sixth aspect of the present invention, there is provided an air conditioning apparatus for a vehicle according to the present invention, wherein the control device controls the rotational speed of the compressor in the noise improvement control or stops the compressor before and after the first on-off valve. When the pressure difference before and after the first on-off valve is higher than the predetermined value at the time when the outdoor expansion valve is fully opened, the first rotational speed is controlled by controlling the rotational speed of the compressor. The pressure difference before and after the on-off valve is reduced.
An air conditioner for a vehicle according to a seventh aspect of the invention includes a compressor that compresses a refrigerant, an air flow passage through which air supplied to the vehicle interior flows, and air that radiates the refrigerant and supplies the refrigerant to the vehicle interior from the air flow passage A heat sink for heating the air, a heat absorber for absorbing the refrigerant to cool the air supplied from the air flow passage to the vehicle interior, an outdoor heat exchanger provided outside the vehicle interior, and the radiator An outdoor expansion valve for decompressing the refrigerant flowing into the outdoor heat exchanger, a first on-off valve provided between the discharge side of the compressor and the inlet side of the radiator, and upstream of the first on-off valve A bypass pipe for branching on the side, bypassing the radiator and the outdoor expansion valve to flow the refrigerant discharged from the compressor to the outdoor heat exchanger, a second on-off valve provided in the bypass pipe, and a control And at least the outdoor expansion valve is fully closed by this control device. By closing the first on-off valve and opening the second on-off valve, the refrigerant discharged from the compressor is caused to flow through the outdoor heat exchanger through the bypass pipe to dissipate the heat, and after the decompressed refrigerant is decompressed, the heat absorber And the first on-off valve is an electromagnetic valve that closes in an energized state and opens in a non-energized state, and the control device stops operation from the maximum cooling mode. Then, after reducing the pressure difference before and after the first on-off valve, noise improvement control is performed to de-energize the first on-off valve.
According to an eighth aspect of the present invention, in the vehicle air conditioner according to the present invention, the control device reduces the pressure difference before and after the first on-off valve by stopping the compressor and opening the outdoor expansion valve in the noise improvement control. The first on-off valve is de-energized when the pressure difference becomes a predetermined value or less.
According to a ninth aspect of the present invention, there is provided a vehicular air conditioner according to the seventh aspect of the present invention, wherein the control device stops the compressor and fully opens the outdoor expansion valve in the noise improvement control, and the outdoor expansion valve is fully opened. When the pressure difference before and after the first on-off valve is less than or equal to a predetermined value at the time, the first on-off valve is de-energized, and when the pressure difference is higher than the predetermined value, the pressure drops below the predetermined value, or The first on-off valve is deenergized after a predetermined time has elapsed.
 請求項1の発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられた室外熱交換器と、放熱器を出て室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、圧縮機の吐出側と放熱器の入口側の間に設けられた第1の開閉弁と、この第1の開閉弁の上流側で分岐し、放熱器及び室外膨張弁をバイパスして圧縮機から吐出された冷媒を室外熱交換器に流すためのバイパス配管と、このバイパス配管に設けられた第2の開閉弁と、制御装置を備え、この制御装置により、第1の開閉弁を開き、第2の開閉弁を閉じることで、圧縮機から吐出された冷媒を放熱器から室外熱交換器に流して当該室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる冷房モードと、室外膨張弁を全閉とし、第1の開閉弁を閉じ、第2の開閉弁を開くことで、圧縮機から吐出された冷媒をバイパス配管により室外熱交換器に流して放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる最大冷房モードを切り換えて実行する車両用空気調和装置において、制御装置が、冷房モードから最大冷房モードに切り換える際、第2の開閉弁前後の圧力差を縮小した後、当該第2の開閉弁を開き、第1の開閉弁を閉じ、室外膨張弁を全閉とする騒音改善制御を実行するようにしたので、冷房モードから最大冷房モードに切り換える際、第2の開閉弁を開放したときに、バイパス配管を室外熱交換器側に向かって冷媒が急激に流れることを大幅に抑制又は解消することができる。これにより、冷房モードから最大冷房モードへの切換時に、第2の開閉弁を開放したときに生じる騒音を解消、若しくは、低減することができるようになる。
 この場合、請求項2の発明の如く制御装置が、騒音改善制御において、圧縮機の回転数を制御し、又は、当該圧縮機を停止することで第2の開閉弁前後の圧力差を縮小させ、当該圧力差が所定値以下となった場合に、当該第2の開閉弁を開き、第1の開閉弁を閉じ、室外膨張弁を全閉とするようにすれば、モード切り換え時の騒音改善制御において、第2の開閉弁の冷媒上流側の圧力を下げることで当該第2の開閉弁前後の圧力差を効果的に縮小させ、迅速に最大冷房モードに切り換え、且つ、切り換え時に生じる騒音を的確に解消、若しくは、低減することができるようなる。
 また、請求項3の発明の如く制御装置が、騒音改善制御において、圧縮機を停止し、所定時間経過後に第2の開閉弁を開き、第1の開閉弁を閉じ、室外膨張弁を全閉とするようにしても、モード切り換え時の騒音改善制御において、第2の開閉弁の冷媒上流側の圧力を下げて当該第2の開閉弁前後の圧力差を効果的に縮小させ、切り換え時に生じる騒音を的確に解消、若しくは、低減することができるようなる。更に、上記請求項2や請求項3の発明の如く冷房モードから最大冷房モードに切り換える前に、即ち、第1の開閉弁を閉じ、室外膨張弁を全閉とする前に、圧縮機の回転数を制御し、或いは、停止させるので、最大冷房モードに切り換わった時点で放熱器に寝込んでしまう冷媒の量を少なくすることもできる。これにより、最大冷房モードを実行中における冷媒循環量を確保し、能力の低下を抑制若しくは防止することもできるようになる。
 請求項4の発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられた室外熱交換器と、放熱器を出て室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、圧縮機の吐出側と放熱器の入口側の間に設けられた第1の開閉弁と、この第1の開閉弁の上流側で分岐し、放熱器及び室外膨張弁をバイパスして圧縮機から吐出された冷媒を室外熱交換器に流すためのバイパス配管と、このバイパス配管に設けられた第2の開閉弁と、制御装置を備え、この制御装置により、第1の開閉弁を開き、第2の開閉弁を閉じることで、圧縮機から吐出された冷媒を放熱器から室外熱交換器に流して当該室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる冷房モードと、室外膨張弁を全閉とし、第1の開閉弁を閉じ、第2の開閉弁を開くことで、圧縮機から吐出された冷媒をバイパス配管により室外熱交換器に流して放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる最大冷房モードを切り換えて実行する車両用空気調和装置において、制御装置が、最大冷房モードから冷房モードに切り換える際、第1の開閉弁前後の圧力差を縮小した後、当該第1の開閉弁を開き、第2の開閉弁を閉じる騒音改善制御を実行するようにしたので、最大冷房モードから冷房モードに切り換える際、第1の開閉弁を開放したときに、放熱器側に向かって冷媒が急激に流れることを大幅に抑制又は解消することができる。これにより、最大冷房モードから冷房モードへの切換時に、第1の開閉弁を開放したときに生じる騒音を解消、若しくは、低減することができるようになる。
 この場合、請求項5の発明の如く制御装置が、騒音改善制御において、室外膨張弁を開くことで第1の開閉弁前後の圧力差を縮小させ、当該圧力差が所定値以下となった場合に、当該第1の開閉弁を開き、第2の開閉弁を閉じるようにすれば、モード切り換え時の騒音改善制御において、第1の開閉弁の冷媒下流側の圧力を上げることで当該第1の開閉弁前後の圧力差を効果的に縮小させ、迅速に冷房モードに切り換え、且つ、切り換え時に生じる騒音を的確に解消、若しくは、低減することができるようなる。
 更に、上記発明に加えて制御装置が、騒音改善制御において、圧縮機の回転数を制御し、又は、当該圧縮機を停止することで第1の開閉弁前後の圧力差を縮小させ、若しくは、室外膨張弁が全開となった時点で第1の開閉弁前後の圧力差が前記所定値より高い場合に、圧縮機の回転数を制御することで第1の開閉弁前後の圧力差を縮小させるようにすれば、第1の開閉弁前後の圧力差をより一層迅速且つ効果的に縮小させることができるようになる。
 請求項7の発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられた室外熱交換器と、放熱器を出て室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、圧縮機の吐出側と放熱器の入口側の間に設けられた第1の開閉弁と、この第1の開閉弁の上流側で分岐し、放熱器及び室外膨張弁をバイパスして圧縮機から吐出された冷媒を室外熱交換器に流すためのバイパス配管と、このバイパス配管に設けられた第2の開閉弁と、制御装置を備え、この制御装置により少なくとも、室外膨張弁を全閉とし、第1の開閉弁を閉じ、第2の開閉弁を開くことで、圧縮機から吐出された冷媒をバイパス配管により室外熱交換器に流して放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる最大冷房モードを実行する車両用空気調和装置において、第1の開閉弁が通電状態で閉じ、非通電状態で開く電磁弁である場合に、制御装置が、最大冷房モードから運転を停止する際、第1の開閉弁前後の圧力差を縮小した後、当該第1の開閉弁を非通電とする騒音改善制御を実行するようにしたので、最大冷房モードから運転を停止する際、第1の開閉弁を非通電として当該第1の開閉弁が開いたときに、放熱器側に向かって冷媒が急激に流れることを大幅に抑制又は解消することができる。これにより、最大冷房モードから運転を停止したときに、第1の開閉弁が開くことによって生じる騒音を解消、若しくは、低減することができるようになる。
 この場合、請求項8の発明の如く制御装置が、騒音改善制御において、圧縮機を停止し、室外膨張弁を開くことで第1の開閉弁前後の圧力差を縮小させ、当該圧力差が所定値以下となった場合に、当該第1の開閉弁を非通電とするようにすれば、最大冷房モードから運転を停止するときの騒音改善制御において、第1の開閉弁前後の圧力差を効果的に縮小させ、迅速に第1の開閉弁を非通電とし、且つ、停止時に生じる騒音を的確に解消、若しくは、低減することができるようなる。
 また、請求項9の発明の如く制御装置が、騒音改善制御において、圧縮機を停止し、室外膨張弁を全開とすると共に、当該室外膨張弁が全開となった時点で第1の開閉弁前後の圧力差が所定値以下である場合、第1の開閉弁を非通電とし、前記所定値より高い場合は、当該所定値以下に低下したとき、又は、所定時間経過後に第1の開閉弁を非通電とするようにしても、最大冷房モードから運転を停止するときの騒音改善制御において、第1の開閉弁前後の圧力差を効果的に縮小させ、迅速に第1の開閉弁を非通電とし、且つ、停止時に生じる騒音を的確に解消、若しくは、低減することができるようなる。
According to the first aspect of the present invention, the compressor for compressing the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air supplied to the vehicle interior from the air flow passage by radiating the refrigerant are heated. Radiator, a heat absorber for absorbing the refrigerant to cool the air supplied from the air flow passage to the vehicle interior, an outdoor heat exchanger provided outside the vehicle compartment, and an outdoor heat exchanger exiting the radiator An outdoor expansion valve for depressurizing the refrigerant flowing into the compressor, a first on-off valve provided between the discharge side of the compressor and the inlet side of the radiator, and a branch on the upstream side of the first on-off valve. A bypass pipe for bypassing the radiator and the outdoor expansion valve and allowing the refrigerant discharged from the compressor to flow to the outdoor heat exchanger, a second on-off valve provided in the bypass pipe, and a control device, With this control device, the first on-off valve is opened and the second on-off valve is closed. A cooling mode in which the refrigerant discharged from the compressor flows from the radiator to the outdoor heat exchanger, dissipates heat in the outdoor heat exchanger, and after the decompressed refrigerant is depressurized, heat is absorbed in the heat absorber, and outdoor expansion The valve is fully closed, the first on-off valve is closed, and the second on-off valve is opened, so that the refrigerant discharged from the compressor flows to the outdoor heat exchanger through the bypass pipe to dissipate the heat, In a vehicle air conditioner that switches and executes the maximum cooling mode in which heat is absorbed by the heat absorber after reducing the pressure, when the control device switches from the cooling mode to the maximum cooling mode, the pressure difference before and after the second on-off valve is reduced. After that, since the noise improvement control is executed to open the second on-off valve, close the first on-off valve, and fully close the outdoor expansion valve, when switching from the cooling mode to the maximum cooling mode, Open the 2 open / close valve When the bypass pipe can refrigerant toward the outdoor heat exchanger side is greatly suppressed or eliminated in that rapidly flows. Thereby, at the time of switching from the cooling mode to the maximum cooling mode, noise generated when the second on-off valve is opened can be eliminated or reduced.
In this case, the control device as in the second aspect of the invention reduces the pressure difference before and after the second on-off valve by controlling the rotational speed of the compressor or stopping the compressor in the noise improvement control. When the pressure difference becomes a predetermined value or less, the second on-off valve is opened, the first on-off valve is closed, and the outdoor expansion valve is fully closed. In the control, the pressure difference before and after the second on-off valve is effectively reduced by lowering the pressure on the refrigerant upstream side of the second on-off valve, the maximum cooling mode is quickly switched, and the noise generated at the time of switching is reduced. It can be solved or reduced accurately.
In the noise improvement control, the control device stops the compressor, opens the second on-off valve after a predetermined time, closes the first on-off valve, and fully closes the outdoor expansion valve. Even in this case, in the noise improvement control at the time of mode switching, the pressure upstream and downstream of the second on-off valve is effectively reduced by reducing the pressure on the upstream side of the refrigerant of the second on-off valve. Noise can be eliminated or reduced accurately. Further, before switching from the cooling mode to the maximum cooling mode as in the inventions of the second and third aspects, that is, before the first on-off valve is closed and the outdoor expansion valve is fully closed, the rotation of the compressor is started. Since the number is controlled or stopped, it is possible to reduce the amount of refrigerant that lies in the radiator when the maximum cooling mode is switched. Thereby, the refrigerant circulation amount during execution of the maximum cooling mode can be ensured, and the decrease in capacity can be suppressed or prevented.
According to the invention of claim 4, the compressor for compressing the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air supplied to the vehicle interior from the air flow passage by radiating the refrigerant are heated. Radiator, a heat absorber for absorbing the refrigerant to cool the air supplied from the air flow passage to the vehicle interior, an outdoor heat exchanger provided outside the vehicle compartment, and an outdoor heat exchanger exiting the radiator An outdoor expansion valve for depressurizing the refrigerant flowing into the compressor, a first on-off valve provided between the discharge side of the compressor and the inlet side of the radiator, and a branch on the upstream side of the first on-off valve. A bypass pipe for bypassing the radiator and the outdoor expansion valve and allowing the refrigerant discharged from the compressor to flow to the outdoor heat exchanger, a second on-off valve provided in the bypass pipe, and a control device, With this control device, the first on-off valve is opened and the second on-off valve is closed. A cooling mode in which the refrigerant discharged from the compressor flows from the radiator to the outdoor heat exchanger, dissipates heat in the outdoor heat exchanger, and after the decompressed refrigerant is depressurized, heat is absorbed in the heat absorber, and outdoor expansion The valve is fully closed, the first on-off valve is closed, and the second on-off valve is opened, so that the refrigerant discharged from the compressor flows to the outdoor heat exchanger through the bypass pipe to dissipate the heat, In a vehicle air conditioner that switches and executes the maximum cooling mode in which heat is absorbed by the heat absorber after depressurization, when the control device switches from the maximum cooling mode to the cooling mode, the pressure difference before and after the first on-off valve is reduced. After that, since the noise improvement control is executed to open the first on-off valve and close the second on-off valve, when switching from the maximum cooling mode to the cooling mode, the first on-off valve is opened. , Radiator side Toward the refrigerant can be significantly suppressed or eliminated that rapidly flows. Thereby, at the time of switching from the maximum cooling mode to the cooling mode, noise generated when the first on-off valve is opened can be eliminated or reduced.
In this case, when the control device reduces the pressure difference before and after the first on-off valve by opening the outdoor expansion valve in the noise improvement control as in the fifth aspect of the invention, and the pressure difference becomes a predetermined value or less. In addition, if the first on-off valve is opened and the second on-off valve is closed, in the noise improvement control at the time of mode switching, the first on-off valve is increased by increasing the pressure downstream of the refrigerant. The pressure difference between the front and rear valves can be effectively reduced to quickly switch to the cooling mode, and noise generated at the time of switching can be accurately eliminated or reduced.
Further, in addition to the above invention, the control device may control the rotation speed of the compressor in the noise improvement control, or reduce the pressure difference before and after the first on-off valve by stopping the compressor, or When the pressure difference before and after the first opening / closing valve is higher than the predetermined value when the outdoor expansion valve is fully opened, the pressure difference before and after the first opening / closing valve is reduced by controlling the rotation speed of the compressor. In this way, the pressure difference before and after the first on-off valve can be reduced more quickly and effectively.
According to the seventh aspect of the present invention, the compressor for compressing the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air supplied to the vehicle interior from the air flow passage by dissipating the refrigerant are heated. Radiator, a heat absorber for absorbing the refrigerant to cool the air supplied from the air flow passage to the vehicle interior, an outdoor heat exchanger provided outside the vehicle compartment, and an outdoor heat exchanger exiting the radiator An outdoor expansion valve for depressurizing the refrigerant flowing into the compressor, a first on-off valve provided between the discharge side of the compressor and the inlet side of the radiator, and a branch on the upstream side of the first on-off valve. A bypass pipe for bypassing the radiator and the outdoor expansion valve and allowing the refrigerant discharged from the compressor to flow to the outdoor heat exchanger, a second on-off valve provided in the bypass pipe, and a control device, By this control device, at least the outdoor expansion valve is fully closed, and the first on-off valve The maximum cooling that closes and opens the second on-off valve causes the refrigerant discharged from the compressor to flow through the outdoor heat exchanger through the bypass pipe to dissipate the heat, decompress the refrigerant that has been radiated, and then absorb the heat with the heat absorber In the vehicle air conditioner that executes the mode, when the first on-off valve is an electromagnetic valve that closes in an energized state and opens in a non-energized state, when the control device stops operation from the maximum cooling mode, Since the noise improvement control for de-energizing the first on-off valve is executed after reducing the pressure difference before and after the on-off valve, when the operation is stopped from the maximum cooling mode, the first on-off valve is When the first on-off valve is opened as non-energized, it is possible to greatly suppress or eliminate the sudden flow of the refrigerant toward the radiator side. As a result, when the operation is stopped from the maximum cooling mode, noise generated by opening the first on-off valve can be eliminated or reduced.
In this case, in the noise improvement control, the control device stops the compressor and opens the outdoor expansion valve to reduce the pressure difference before and after the first on-off valve. If the first on-off valve is de-energized when the value becomes less than the value, the pressure difference before and after the first on-off valve is effective in the noise improvement control when the operation is stopped from the maximum cooling mode. Therefore, the first on-off valve can be quickly de-energized, and the noise generated at the time of stopping can be accurately eliminated or reduced.
According to the ninth aspect of the present invention, in the noise improvement control, the control device stops the compressor, fully opens the outdoor expansion valve, and before and after the first on-off valve when the outdoor expansion valve is fully opened. When the pressure difference is less than or equal to a predetermined value, the first on-off valve is de-energized. When the pressure difference is higher than the predetermined value, the first on-off valve is Even in the case of non-energization, in the noise improvement control when the operation is stopped from the maximum cooling mode, the pressure difference before and after the first on-off valve is effectively reduced, and the first on-off valve is quickly de-energized. In addition, noise generated at the time of stopping can be eliminated or reduced accurately.
本発明を適用した一実施形態の車両用空気調和装置の構成図である(暖房モード、除湿暖房モード、除湿冷房モード及び冷房モード)。It is a block diagram of the air conditioning apparatus for vehicles of one Embodiment to which this invention is applied (heating mode, dehumidification heating mode, dehumidification cooling mode, and cooling mode). 図1の車両用空気調和装置のコントローラの電気回路のブロック図である。It is a block diagram of the electric circuit of the controller of the vehicle air conditioner of FIG. 図1の車両用空気調和装置のMAX冷房モード(最大冷房モード)のときの構成図である。It is a block diagram at the time of the MAX cooling mode (maximum cooling mode) of the vehicle air conditioner of FIG. 冷房モードからMAX冷房モード(最大冷房モード)に切り換えるときに図2のコントローラが実行する騒音改善制御の一例を説明する各機器のタイミングチャートである。3 is a timing chart of each device for explaining an example of noise improvement control executed by the controller of FIG. 2 when switching from the cooling mode to the MAX cooling mode (maximum cooling mode). MAX冷房モード(最大冷房モード)から冷房モードに切り換えるときに図2のコントローラが実行する騒音改善制御の一例を説明する各機器のタイミングチャートである。It is a timing chart of each apparatus explaining an example of the noise improvement control which the controller of FIG. 2 performs when switching from the MAX cooling mode (maximum cooling mode) to the cooling mode. MAX冷房モード(最大冷房モード)から運転を停止するときに図2のコントローラが実行する騒音改善制御の一例を説明する各機器のタイミングチャートである。It is a timing chart of each apparatus explaining an example of the noise improvement control which the controller of FIG. 2 performs when a driving | operation is stopped from MAX cooling mode (maximum cooling mode).
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。
 図1は本発明の一実施例の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、バッテリに充電された電力で走行用の電動モータを駆動して走行するものであり(何れも図示せず)、本発明の車両用空気調和装置1も、バッテリの電力で駆動されるものとする。即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路を用いたヒートポンプ運転により暖房モードを行い、更に、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モード(最大冷房モード)の各運転モードを選択的に実行するものである。
 尚、車両として電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車にも本発明は有効であり、更には、エンジンで走行する通常の自動車にも適用可能であることは云うまでもない。
 実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒が冷媒配管13Gを介して流入し、この冷媒を車室内に放熱させる放熱器4と、暖房時に冷媒を減圧膨張させる電動弁から成る室外膨張弁6と、車室外に設けられて冷房時には放熱器として機能し、暖房時には蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる電動弁から成る室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に車室内外から冷媒に吸熱させる吸熱器9と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。
 そして、この冷媒回路Rには所定量の冷媒と潤滑用のオイルが充填されている。尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。
 また、室外熱交換器7は冷媒下流側にレシーバドライヤ部14と過冷却部16を順次有し、室外熱交換器7から出た冷媒配管13Aは冷房時に開放される電磁弁17を介してレシーバドライヤ部14に接続され、過冷却部16の出口側の冷媒配管13Bは室内膨張弁8介して吸熱器9の入口側に接続されている。尚、レシーバドライヤ部14及び過冷却部16は構造的に室外熱交換器7の一部を構成している。
 また、過冷却部16と室内膨張弁8間の冷媒配管13Bは、吸熱器9の出口側の冷媒配管13Cと熱交換関係に設けられ、両者で内部熱交換器19を構成している。これにより、冷媒配管13Bを経て室内膨張弁8に流入する冷媒は、吸熱器9を出た低温の冷媒により冷却(過冷却)される構成とされている。
 また、室外熱交換器7から出た冷媒配管13Aは冷媒配管13Dに分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される電磁弁21を介して内部熱交換器19の下流側における冷媒配管13Cに連通接続されている。この冷媒配管13Cがアキュムレータ12に接続され、アキュムレータ12は圧縮機2の冷媒吸込側に接続されている。更に、放熱器4の出口側の冷媒配管13Eは室外膨張弁6を介して室外熱交換器7の入口側に接続されている。
 また、圧縮機2の吐出側と放熱器4の入口側の間の冷媒配管13Gには後述する除湿暖房とMAX冷房時に閉じられる電磁弁30(流路切換装置を構成する)が介設されている。この場合、冷媒配管13Gは電磁弁30の上流側でバイパス配管35に分岐しており、このバイパス配管35は除湿暖房とMAX冷房時に開放される電磁弁40(これも流路切換装置を構成する)を介して室外膨張弁6の下流側の冷媒配管13Eに連通接続されている。これらバイパス配管35、電磁弁30及び電磁弁40により本発明におけるバイパス装置45が構成される。
 このようなバイパス配管35、電磁弁30及び電磁弁40によりバイパス装置45を構成したことで、後述する如く圧縮機2から吐出された冷媒を室外熱交換器7に直接流入させる除湿暖房モードやMAX冷房モードと、圧縮機2から吐出された冷媒を放熱器4に流入させる暖房モードや除湿冷房モード、冷房モードとの切り換えを円滑に行うことができるようになる。
 また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環モード)と、車室外の空気である外気(外気導入モード)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。
 また、図1において23は実施例の車両用空気調和装置1に設けられた補助加熱装置としての補助ヒータである。実施例の補助ヒータ23は電気ヒータであるPTCヒータにて構成されており、空気流通路3の空気の流れに対して、放熱器4の空気上流側となる空気流通路3内に設けられている。そして、補助ヒータ23に通電されて発熱すると、吸熱器9を経て放熱器4に流入する空気流通路3内の空気が加熱される。即ち、この補助ヒータ23が所謂ヒータコアとなり、車室内の暖房を行い、或いは、それを補完する。
 また、補助ヒータ23の空気上流側における空気流通路3内には、当該空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を補助ヒータ23及び放熱器4に通風する割合を調整するエアミックスダンパ28が設けられている。更に、放熱器4の空気下流側における空気流通路3には、FOOT(フット)、VENT(ベント)、DEF(デフ)の各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口から空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。
 次に、図2において32はプロセッサを備えたコンピュータの一例であるマイクロコンピュータから構成された制御装置としてのコントローラ(ECU)であり、このコントローラ32の入力には車両の外気温度(Tam)を検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれる空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO濃度センサ39と、吹出口29から車室内に吹き出される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力(吐出圧力Pd)を検出する吐出圧力センサ42と、圧縮機2の吐出冷媒温度を検出する吐出温度センサ43と、圧縮機2の吸込冷媒圧力を検出する吸込圧力センサ44と、圧縮機2の吸込冷媒温度を検出する吸込温度センサ55と、放熱器4の温度(放熱器4を経た空気の温度、又は、放熱器4自体の温度:放熱器温度TH)を検出する放熱器温度センサ46と、放熱器4の冷媒圧力(放熱器4内、又は、放熱器4を出た直後の冷媒の圧力:放熱器圧力PCI)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器9を経た空気の温度、又は、吸熱器9自体の温度:吸熱器温度Te)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力(吸熱器9内、又は、吸熱器9を出た直後の冷媒の圧力)を検出する吸熱器圧力センサ49と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52と、設定温度や運転モードの切り換えを設定するための空調(エアコン)操作部53と、室外熱交換器7の温度(室外熱交換器7から出た直後の冷媒の温度、又は、室外熱交換器7自体の温度:室外熱交換器温度TXO)を検出する室外熱交換器温度センサ54と、室外熱交換器7の冷媒圧力(室外熱交換器7内、又は、室外熱交換器7から出た直後の冷媒の圧力:室外熱交換器圧力PXO)を検出する室外熱交換器圧力センサ56の各出力が接続されている。また、コントローラ32の入力には更に、補助ヒータ23の温度(補助ヒータ23で加熱された直後の空気の温度、又は、補助ヒータ23自体の温度:補助ヒータ温度Tptc)を検出する補助ヒータ温度センサ50の出力も接続されている。
 一方、コントローラ32の出力には、前記圧縮機2と、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口切換ダンパ31と、室外膨張弁6、室内膨張弁8と、補助ヒータ23、電磁弁30(除湿用)、電磁弁17(冷房用)、電磁弁21(暖房用)、電磁弁40(これも除湿用)の各電磁弁が接続されている。そして、コントローラ32は各センサの出力と空調操作部53にて入力された設定に基づいてこれらを制御する。
 以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。コントローラ32は実施例では暖房モード、除湿暖房モード、除湿冷房モード、冷房モード及びMAX冷房モード(最大冷房モード)の各運転モードを切り換えて実行する。先ず、各運転モードにおける冷媒の流れと制御の概略について説明する。
 (1)暖房モード
 コントローラ32により(オートモード)或いは空調操作部53へのマニュアル操作(マニュアルモード)により暖房モードが選択されると、コントローラ32は電磁弁21(暖房用)を開放し、電磁弁17(冷房用)を閉じる。また、電磁弁30(除湿用)を開放し、電磁弁40(除湿用)を閉じる。
 そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は図1に破線で示す如く、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全ての空気が補助ヒータ23及び放熱器4に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒(補助ヒータ23が動作するときは当該補助ヒータ23及び放熱器4)により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
 放熱器4内で液化した冷媒は当該放熱器4を出た後、冷媒配管13Eを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び電磁弁21及び冷媒配管13Dを経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4(補助ヒータ23が動作するときは当該補助ヒータ23及び放熱器4)にて加熱された空気は吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。
 コントローラ32は、後述する目標吹出温度TAOから算出される目標放熱器温度TCO(放熱器温度THの目標値)から目標放熱器圧力PCO(放熱器圧力PCIの目標値)を算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御する。また、コントローラ32は、放熱器温度センサ46が検出する放熱器4の温度(放熱器温度TH)及び放熱器圧力センサ47が検出する放熱器圧力PCIに基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度SCを制御する。前記目標放熱器温度TCOは基本的にはTCO=TAOとされるが、制御上の所定の制限が設けられる。
 また、コントローラ32はこの暖房モードにおいては、車室内空調に要求される暖房能力に対して放熱器4による暖房能力が不足する場合、その不足する分を補助ヒータ23の発熱で補完するように補助ヒータ23の通電を制御する。それにより、快適な車室内暖房を実現し、且つ、室外熱交換器7の着霜も抑制する。このとき、補助ヒータ23は放熱器4の空気上流側に配置されているので、空気流通路3を流通する空気は放熱器4の前に補助ヒータ23に通風されることになる。
 ここで、補助ヒータ23が放熱器4の空気下流側に配置されていると、実施例の如くPCTヒータで補助ヒータ23を構成した場合には、補助ヒータ23に流入する空気の温度が放熱器4によって上昇するため、PTCヒータの抵抗値が大きくなり、電流値も低くなって発熱量が低下してしまうが、放熱器4の空気上流側に補助ヒータ23を配置することで、実施例の如くPTCヒータから構成される補助ヒータ23の能力を十分に発揮させることができるようになる。
 (2)除湿暖房モード
 次に、除湿暖房モードでは、コントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を閉じ、電磁弁40を開放すると共に、室外膨張弁6の弁開度は全閉とする。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は図1に破線で示す如く、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全ての空気が補助ヒータ23及び放熱器4に通風される状態とする。
 これにより、圧縮機2から冷媒配管13Gに吐出された高温高圧のガス冷媒は、放熱器4に向かうこと無くバイパス配管35に流入し、電磁弁40を経て室外膨張弁6の下流側の冷媒配管13Eに至るようになる。このとき、室外膨張弁6は全閉とされているので、冷媒は室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却され、且つ、当該空気中の水分が吸熱器9に凝結して付着するので、空気流通路3内の空気は冷却され、且つ、除湿される。吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。
 このとき、室外膨張弁6の弁開度は全閉とされているので、圧縮機2から吐出された冷媒が室外膨張弁6から放熱器4に逆流入する不都合を抑制若しくは防止することが可能となる。これにより、冷媒循環量の低下を抑制若しくは解消して空調能力を確保することができるようになる。更に、この除湿暖房モードにおいてコントローラ32は、補助ヒータ23に通電して発熱させる。これにより、吸熱器9にて冷却され、且つ、除湿された空気は補助ヒータ23を通過する過程で更に加熱され、温度が上昇するので車室内の除湿暖房が行われることになる。
 コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づいて圧縮機2の回転数を制御すると共に、補助ヒータ温度センサ50が検出する補助ヒータ温度Tptcと前述した目標放熱器温度TCOに基づいて補助ヒータ23の通電(発熱)を制御することで、吸熱器9での空気の冷却と除湿を適切に行いながら、補助ヒータ23による加熱で吹出口29から車室内に吹き出される空気温度の低下を的確に防止する。
 これにより、車室内に吹き出される空気を除湿しながら、その温度を適切な暖房温度に制御することが可能となり、車室内の快適且つ効率的な除湿暖房を実現することができるようになる。また、前述した如く除湿暖房モードではエアミックスダンパ28は空気流通路3内の全ての空気を補助ヒータ23及び放熱器4に通風する状態とされるので、吸熱器9を経た空気を効率良く補助ヒータ23で加熱して省エネ性を向上させ、且つ、除湿暖房空調の制御性も向上させることができるようになる。
 尚、補助ヒータ23は放熱器4の空気上流側に配置されているので、補助ヒータ23で加熱された空気は放熱器4を通過することになるが、この除湿暖房モードでは放熱器4に冷媒は流されないので、補助ヒータ23にて加熱された空気から放熱器4が吸熱してしまう不都合も解消される。即ち、放熱器4によって車室内に吹き出される空気の温度が低下してしまうことが抑制され、COPも向上することになる。
 (3)除湿冷房モード
 次に、除湿冷房モードでは、コントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を開放し、電磁弁40を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は図1に破線で示す如く、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全ての空気が補助ヒータ23及び放熱器4に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
 放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至り、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。この除湿冷房モードではコントローラ32は補助ヒータ23に通電しないので、吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程で再加熱(暖房時よりも放熱能力は低い)される。これにより車室内の除湿冷房が行われることになる。
 コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて圧縮機2の回転数を制御すると共に、前述した冷媒回路Rの高圧圧力に基づいて室外膨張弁6の弁開度を制御し、放熱器4の冷媒圧力(放熱器圧力PCI)を制御する。
 (4)冷房モード
 次に、冷房モードでは、コントローラ32は上記除湿冷房モードの状態において室外膨張弁6の弁開度を全開とする。尚、コントローラ32はエアミックスダンパ28を制御し、図1に実線で示す如く、室内送風機27から吹き出されて吸熱器9を通過した後の空気流通路3内の空気が、補助ヒータ23及び放熱器4に通風される割合を調整する。また、コントローラ32は補助ヒータ23に通電しない。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入すると共に、放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至る。このとき室外膨張弁6は全開とされているので冷媒はそれを通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却される。また、空気中の水分は吸熱器9に凝結して付着する。
 吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気が吹出口29から車室内に吹き出されるので(一部は放熱器4を通過して熱交換する)、これにより車室内の冷房が行われることになる。また、この冷房モードにおいては、コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づいて圧縮機2の回転数を制御する。
 (5)MAX冷房モード(最大冷房モード)
 次に、最大冷房モードとしてのMAX冷房モードでは、コントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を閉じ、電磁弁40を開放すると共に、室外膨張弁6の弁開度は全閉とする。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は図3に示す如く補助ヒータ23及び放熱器4に空気流通路3内の空気が通風されない状態とする。但し、多少通風されても支障はない。また、コントローラ32は補助ヒータ23に通電しない。
 これにより、圧縮機2から冷媒配管13Gに吐出された高温高圧のガス冷媒は、放熱器4に向かうこと無くバイパス配管35に流入し、電磁弁40を経て室外膨張弁6の下流側の冷媒配管13Eに至るようになる。このとき、室外膨張弁6は全閉とされているので、冷媒は室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却される。また、空気中の水分は吸熱器9に凝結して付着するので、空気流通路3内の空気は除湿される。吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。このとき、室外膨張弁6は全閉とされているので、同様に圧縮機2から吐出された冷媒が室外膨張弁6から放熱器4に逆流入する不都合を抑制若しくは防止することが可能となる。これにより、冷媒循環量の低下を抑制若しくは解消して空調能力を確保することができるようになる。
 ここで、前述した冷房モードでは放熱器4に高温の冷媒が流れているため、放熱器4からHVACユニット10への直接の熱伝導が少なからず生じるが、このMAX冷房モードでは放熱器4に冷媒が流れないため、放熱器4からHVACユニット10に伝達される熱で吸熱器9からの空気流通路3内の空気が加熱されることも無くなる。そのため、車室内の強力な冷房が行われ、特に外気温度Tamが高いような環境下では、迅速に車室内を冷房して快適な車室内空調を実現することができるようになる。また、このMAX冷房モードにおいても、コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づいて圧縮機2の回転数を制御する。
 (6)運転モードの切換
 空気流通路3内を流通される空気は上記各運転モードにおいて吸熱器9からの冷却や放熱器4(及び補助ヒータ23)からの加熱作用(エアミックスダンパ28で調整)を受けて吹出口29から車室内に吹き出される。コントローラ32は外気温度センサ33が検出する外気温度Tam、内気温度センサ37が検出する車室内の温度、前記ブロワ電圧、日射センサ51が検出する日射量等と、空調操作部53にて設定された車室内の目標車室内温度(設定温度)とに基づいて目標吹出温度TAOを算出し、各運転モードを切り換えて吹出口29から吹き出される空気の温度をこの目標吹出温度TAOに制御する。
 この場合、コントローラ32は、外気温度Tam、車室内の湿度、目標吹出温度TAO、放熱器温度TH、目標放熱器温度TCO、吸熱器温度Te、目標吸熱器温度TEO、車室内の除湿要求の有無、等のパラメータに基づいて各運転モードの切り換えを行うことで、環境条件や除湿の要否に応じて的確に暖房モード、除湿暖房モード、除湿冷房モード、冷房モード及びMAX冷房モードを切り換え、快適且つ効率的な車室内空調を実現する。
 (7)冷房モードからMAX冷房モードへの切り換え時の騒音改善制御
 次に、図4を参照しながら、車両用空気調和装置1の運転モードを、前述した冷房モードからMAX冷房モード(最大冷房モード)に切り換える際にコントローラ32が実行する騒音改善制御の一例について説明する。図4のタイミングチャートは、冷房モードからMAX冷房モードに切り換わる際の電磁弁40(本発明の第2の開閉弁)の前後の圧力差ΔPdxと、電磁弁30(本発明の第1の開閉弁)の前後の圧力差ΔPixと、圧縮機2の回転数NCと、室外膨張弁6、電磁弁40、及び、電磁弁30の状態を示している。
 尚、電磁弁40の前後の圧力差ΔPdxは、吐出圧力センサ42が検出する電磁弁40の冷媒上流側(前)の圧力Pdと、室外熱交換器温度センサ54が検出する室外熱交換器7から出た直後の冷媒の温度(室外熱交換器温度TXO)から換算される電磁弁40の冷媒下流側(後)の室外熱交換器圧力PXO(実施例の如く室外熱交換器圧力センサ56が設けられている場合には、室外熱交換器圧力センサ56が検出する室外熱交換器圧力PCOを用いてもよい)との差(ΔPdx=Pd−PXO)であり、コントローラ32が算出する。
 また、電磁弁30の前後の圧力差ΔPixは、吐出圧力センサ42が検出する電磁弁30の冷媒上流側(前)の圧力Pdと、放熱器圧力センサ47が検出する電磁弁30の冷媒下流側(後)の圧力である放熱器圧力PCIとの差(ΔPix=Pd−PCI)であり、これもコントローラ32が算出している(以下の騒音改善制御においても同じ)。
 (7−1)冷房モードからMAX冷房モードへの切り換え時の騒音改善制御(その1)
 運転モードが冷房モードからMAX冷房モードに切り換わる際、冷房モードにおいては電磁弁40の前後の圧力差ΔPdxは図4に示すように大きい値となっている。そのため、冷房モードでは閉じている電磁弁40を、係る圧力差のままMAX冷房モードとするために開くと、圧縮機2の吐出側から電磁弁40を経て室外熱交換器7の入口側の方向にバイパス配管35内を冷媒が急激に流れ、電磁弁40において大きな音(騒音)が発生することになる。
 そこで、コントローラ32は冷房モードからMAX冷房モードに運転モードを切り換える際、以下に説明する騒音改善制御を実行する。即ち、コントローラ32は冷房モードからMAX冷房モードに切り換える場合、運転モードを切り換える前に、実施例では電磁弁40の前後の圧力差Pdxが所定値A(例えば、0.2MPa等)以下となるように圧縮機2の回転数NCを調整(下げる方向に制御)する。圧縮機2の回転数NCを下げる方向に制御することで、吐出圧力Pdは低下するため、電磁弁40の前後の圧力差Pdxは小さくなっていく。
 そして、圧力差ΔPdxが図4中の所定値A以下に縮小した場合、コントローラ32は電磁弁40を開くと共に、電磁弁30を閉じ、室外膨張弁6を全閉状態にすることで、MAX冷房モードの空調運転に移行する。
 (7−2)冷房モードからMAX冷房モードへの切り換え時の騒音改善制御(その2)
 ここで、上記実施例の騒音改善制御では、コントローラ32が電磁弁40の前後の圧力差ΔPdxが所定値A以下となるように圧縮機2の回転数NCを制御するようにしたが、それに限らず、圧縮機2の回転数NCを予め定めた低い値である所定回転数NC1(図4。例えば、800rpm~3000rpm)とするようにしてもよい。圧縮機2の回転数NCを低い所定回転数NC1に制御することで、吐出圧力Pdは低下するため、電磁弁40の前後の圧力差Pdxは小さくなっていく。そして、この場合も圧力差ΔPdxが前述した所定値A以下に縮小したとき、コントローラ32は電磁弁40を開くと共に、電磁弁30を閉じ、室外膨張弁6を全閉状態にすることで、MAX冷房モードの空調運転に移行する。
 (7−3)冷房モードからMAX冷房モードへの切り換え時の騒音改善制御(その3)
 また、上記騒音改善制御で、コントローラ32により圧縮機2を停止させてもよい。圧縮機2が停止することで、冷媒回路R内の圧力が平衡状態に向かうため(高圧側圧力は下がり、低圧側圧力は上がる)、電磁弁40の前後の圧力差ΔPdxも小さくなっていく。そして、この場合も圧力差ΔPdxが前述した所定値A以下に縮小したとき、コントローラ32は電磁弁40を開くと共に、電磁弁30を閉じ、室外膨張弁6を全閉状態とし、圧縮機2を起動することで、MAX冷房モードの空調運転に開始する。
 このように、コントローラ32は、冷房モードからMAX冷房モードに切り換える際、電磁弁40の前後の圧力差ΔPdxを縮小した後、当該電磁弁40を開き、電磁弁30を閉じ、室外膨張弁6を全閉とする騒音改善制御を実行するので、冷房モードからMAX冷房モードに切り換える際、電磁弁40を開放したときに、バイパス配管35を室外熱交換器7側に向かって冷媒が急激に流れることを大幅に抑制又は解消することができる。これにより、冷房モードからMAX冷房モードへの切換時に、電磁弁40を開放したときに生じる騒音を解消、若しくは、低減することができるようになる。
 特に上記各騒音改善制御(冷房モードからMAX冷房モードへの切り換え時の騒音改善制御(その1)~(その3))では、コントローラ32が圧縮機2の回転数NCを制御し、又は、当該圧縮機2を停止することで電磁弁40の前後の圧力差ΔPdxを縮小させ、当該圧力差ΔPdxが所定値A以下となった場合に、当該電磁弁40を開き、電磁弁30を閉じ、室外膨張弁6を全閉とするようにしたので、運転モードを切り換えるときの騒音改善制御において、電磁弁40の冷媒上流側の圧力(Pd)を下げることで当該電磁弁40の前後の圧力差ΔPdxを効果的に縮小させ、迅速にMAX冷房モードに切り換え、且つ、切り換え時に生じる騒音を的確に解消、若しくは、低減することができるようなる。
 また、冷房モードからMAX冷房モードに切り換える前に、即ち、電磁弁30を閉じ、室外膨張弁6を全閉とする前に、圧縮機2の回転数NCを低下させ、或いは、停止させるので、MAX冷房モードに切り換わった時点で放熱器4に寝込んでしまう冷媒の量を少なくすることもできる。これにより、MAX冷房モードを実行中における冷媒回路R内の冷媒循環量を確保し、能力の低下を抑制若しくは防止することもできるようになる。
 (7−4)冷房モードからMAX冷房モードへの切り換え時の騒音改善制御(その4)
 尚、上記騒音改善制御(冷房モードからMAX冷房モードへの切り換え時の騒音改善制御(その3))では、圧縮機2を停止させてから電磁弁40の前後の圧力差ΔPdxが所定値A以下となった場合に電磁弁40を開くようにしたが、それに限らず、圧縮機2を停止させてから、予め定めた所定時間(例えば、10秒等)経過後に電磁弁40を開き、電磁弁30を閉じ、室外膨張弁6を全閉状態とすると共に、圧縮機2を起動してMAX冷房モードの空調運転を開始するようにしてもよい。
 このように、コントローラ32が騒音改善制御において、圧縮機2を停止し、所定時間経過後に電磁弁40を開き、電磁弁30を閉じ、室外膨張弁6を全閉とするようにしても、運転モードを切り換えるときの騒音改善制御において、電磁弁40の冷媒上流側の圧力Pdを下げて当該電磁弁40の前後の圧力差Pdxを効果的に縮小させ、切り換え時に生じる騒音を的確に解消、若しくは、低減することができるようなる。
 (8)MAX冷房モードから冷房モードへの切り換え時の騒音改善制御
 次に、図5を参照しながら、車両用空気調和装置1の運転モードを、前述したMAX冷房モード(最大冷房モード)から冷房モードに切り換える際にコントローラ32が実行する騒音改善制御の一例について説明する。図5のタイミングチャートは、MAX冷房モードから冷房モードに切り換わる際の電磁弁40(本発明の第2の開閉弁)の前後の圧力差ΔPdxと、電磁弁30(本発明の第1の開閉弁)の前後の圧力差ΔPixと、圧縮機2の回転数NCと、室外膨張弁6、電磁弁40、及び、電磁弁30の状態を示している。尚、電磁弁40の前後の圧力差ΔPdxと電磁弁30の前後の圧力差ΔPixは前述(図4の場合)と同様にコントローラ32が算出するものとする。
 (8−1)MAX冷房モードから冷房モードへの切り換え時の騒音改善制御(その1)
 運転モードがMAX冷房モードから冷房モードに切り換わる際、MAX冷房モードにおいては電磁弁30の前後の圧力差ΔPixは図5に示すように大きい値となっている。そのため、MAX冷房モードでは閉じている電磁弁30を、係る圧力差のまま冷房モードとするために開くと、圧縮機2の吐出側から電磁弁30を経て放熱器4の入口側の方向に冷媒配管13G内を冷媒が急激に流れ、電磁弁30において大きな音(騒音)が発生することになる。
 そこで、コントローラ32はMAX冷房モードから冷房モードに運転モードを切り換える際にも、以下に説明する騒音改善制御を実行する。即ち、コントローラ32はMAX冷房モードから冷房モードに切り換える場合、運転モードを切り換える前に、実施例では電磁弁30の前後の圧力差Pixが所定値A(例えば、0.2MPa等)以下となるように室外膨張弁6の弁開度を全閉の状態から全開の状態に向けて開いていく。室外膨張弁6が開くことにより、圧縮機2の吐出側と放熱器4の出口側が電磁弁40及び室外膨張弁6を介して連通されることになり、放熱器圧力PCIが上がって吐出圧力Pdとの差(ΔPix=Pd−PCI)である電磁弁30の前後の圧力差ΔPixは小さくなっていく。
 そして、圧力差ΔPixが図5中の所定値A以下に縮小した場合、コントローラ32は電磁弁30を開くと共に、電磁弁40を閉じる。また、室外膨張弁6は圧力差ΔPixが所定値A以下になる前に、或いは、所定値A以下になったと同時、若しくは、その後に全開状態になるが、同時、若しくは、その後に全開状態となる。これにより、冷房モードの空調運転に移行することになる。
 (8−2)MAX冷房モードから冷房モードへの切り換え時の騒音改善制御(その2)
 ここで、上記実施例の騒音改善制御(MAX冷房モードから冷房モードへの切り換え時の騒音改善制御(その1))で圧力差ΔPixが下がり難い場合、必要に応じて係る室外膨張弁6の制御に加えて、コントローラ32により圧縮機2の回転数NCを下げる方向に制御(調整)し、若しくは、圧縮機2を停止させるようにしてもよい。停止させる場合には、冷房モードに移行した時点で圧縮機2を起動することになる。
 (8−3)MAX冷房モードから冷房モードへの切り換え時の騒音改善制御(その3)
 また、騒音改善制御においてコントローラ32により、MAX冷房モードから冷房モードに切り換える前に、室外膨張弁6の弁開度を全閉の状態から全開の状態とし、全開となった時点で電磁弁30の前後の圧力差Pixが所定値A以下となっているか否か判断するようにしてもよい。
 その場合は、室外膨張弁6の弁開度が全開の状態となった時点で電磁弁30の前後の圧力差Pixが所定値A以下となっていれば電磁弁30を開き、電磁弁40を閉じて冷房モードに移行する。一方、室外膨張弁6が全開の状態となった時点で電磁弁30の前後の圧力差Pixが所定値Aより依然高い場合は、コントローラ32は圧縮機2の回転数NCを下げる方向に制御(調整)するようにしてもよい。その場合も、圧力差ΔPixが所定値A以下となった時点で電磁弁30を開き、電磁弁40を閉じて冷房モードに移行することになる。
 このように、コントローラ32は、MAX冷房モードから冷房モードに切り換える際、電磁弁30の前後の圧力差ΔPixを縮小した後、当該電磁弁30を開き、電磁弁40を閉じる騒音改善制御を実行するので、MAX冷房モードから冷房モードに切り換える際、電磁弁30を開放したときに、放熱器4側に向かって冷媒が急激に流れることを大幅に抑制又は解消することができる。これにより、MAX冷房モードから冷房モードへの切換時に、電磁弁30を開放したときに生じる騒音を解消、若しくは、低減することができるようになる。
 特に、上記MAX冷房モードから冷房モードへの切り換え時の騒音改善制御(その1)では、コントローラ32が室外膨張弁6を開くことで電磁弁30の前後の圧力差ΔPixを縮小させ、当該圧力差ΔPixが所定値A以下となった場合に(MAX冷房モードから冷房モードへの切り換え時の騒音改善制御(その3)の如く、室外膨張弁6が全開の状態となった時点で圧力差ΔPixが所定値A以下となっているか否か判断する場合を含む)、当該電磁弁30を開き、電磁弁40を閉じるようにしたので、運転モードを切り換えるときの騒音改善制御において、電磁弁30の冷媒下流側の圧力(放熱器圧力PCI)を上げることで、当該電磁弁30の前後の圧力差ΔPixを効果的に縮小させ、迅速に冷房モードに切り換え、且つ、切り換え時に生じる騒音を的確に解消、若しくは、低減することができるようなる。
 更に、上記MAX冷房モードから冷房モードへの切り換え時の騒音改善制御(その2)や(その3)では、コントローラ32が、必要に応じて圧縮機2の回転数NCを制御し、又は、当該圧縮機2を停止することで電磁弁30の前後の圧力差ΔPixを縮小させ、若しくは、室外膨張弁6が全開となった時点で電磁弁30の前後の圧力差ΔPixが所定値Aより高い場合に、圧縮機2の回転数を制御することで電磁弁30の前後の圧力差ΔPixを縮小させるようにしたので、電磁弁30の前後の圧力差ΔPixをより一層迅速且つ効果的に縮小させることができるようになる。
 (9)MAX冷房モードから運転を停止するときの騒音改善制御
 次に、図6を参照しながら、車両用空気調和装置1を、前述したMAX冷房モード(最大冷房モード)から運転を停止する際にコントローラ32が実行する騒音改善制御の一例について説明する。図6のタイミングチャートは、MAX冷房モードから運転を停止する際の電磁弁40(本発明の第2の開閉弁)の前後の圧力差ΔPdxと、電磁弁30(本発明の第1の開閉弁)の前後の圧力差ΔPixと、圧縮機2の回転数NCと、室外膨張弁6、電磁弁40、及び、電磁弁30の状態を示している。
 尚、電磁弁40の前後の圧力差ΔPdxと電磁弁30の前後の圧力差ΔPixは前述(図4の場合)と同様にコントローラ32が算出するものとする。また、電磁弁30(本発明の第1の開閉弁)は通電されて閉じ、非通電の状態では開く所謂ノーマルオープンの電磁弁であり、電磁弁40(本発明の第2の開閉弁)は通電されて開き、非通電の状態では閉じる所謂ノーマルクローズの電磁弁であるものとする。
 (9−1)MAX冷房モードから運転を停止するときの騒音改善制御(その1)
 MAX冷房モードから運転を停止する際、MAX冷房モードにおいては電磁弁30の前後の圧力差ΔPixは図6に示すように大きい値となっている。また、電磁弁30は非通電(運転停止)の状態で開く。そのため、MAX冷房モードでは閉じている電磁弁30が、係る圧力差のままで非通電(運転停止)となって開くと、圧縮機2の吐出側から電磁弁30を経て放熱器4の入口側の方向に冷媒配管13G内を冷媒が急激に流れ、同様に電磁弁30において大きな音(騒音)が発生することになる。
 そこで、コントローラ32はMAX冷房モードから運転を停止する際にも、以下に説明する騒音改善制御を実行する。即ち、コントローラ32はMAX冷房モードから運転を停止する場合、運転を停止する前に、先ず圧縮機2を停止し、室外膨張弁6の弁開度を全閉の状態から全開の状態に開いていく。圧縮機2が停止し、室外膨張弁6が開くことで冷媒回路R内の圧力が平衡状態に向かうため(高圧側圧力は下がり、低圧側圧力は上がる)、電磁弁30の前後の圧力差ΔPixも小さくなっていく。
 そして、実施例では圧力差ΔPixが所定値A(例えば、0.2MPa)以下となった場合に、コントローラ32は電磁弁30と電磁弁40を非通電として運転を停止する。電磁弁30は非通電となることで開き、電磁弁40は閉じることになる。このように、電磁弁30が通電状態で閉じ、非通電状態で開く場合に、コントローラ32は、MAX冷房モードから運転を停止する際、電磁弁30の前後の圧力差ΔPixを縮小した後、当該電磁弁30を非通電とする騒音改善制御を実行するので、MAX冷房モードから運転を停止する際、電磁弁30を非通電として当該電磁弁30が開いたときに、放熱器4側に向かって冷媒が急激に流れることを大幅に抑制又は解消することができる。これにより、MAX冷房モードから運転を停止したときに、電磁弁30が開くことによって生じる騒音を解消、若しくは、低減することができるようになる。
 特に、上記の実施例ではコントローラ32が、圧縮機2を停止し、室外膨張弁6を開くことで電磁弁30の前後の圧力差ΔPixを縮小させ、当該圧力差ΔPixが所定値A以下となった場合に、当該電磁弁30を非通電とするので、MAX冷房モードから運転を停止するときの騒音改善制御において、電磁弁30の前後の圧力差ΔPixを効果的に縮小させ、迅速に電磁弁30を非通電とし、且つ、停止時に生じる騒音を的確に解消、若しくは、低減することができるようなる。
 (9−2)MAX冷房モードから運転を停止するときの騒音改善制御(その2)
 ここで、上記実施例(MAX冷房モードから運転を停止するときの騒音改善制御(その1))以外にも、例えば、コントローラ32が、MAX冷房モードから運転を停止する際の騒音改善制御において、圧縮機2を停止し、室外膨張弁6を全開とすると共に、当該室外膨張弁6が全開となった時点で電磁弁30の前後の圧力差ΔPixが所定値A以下であるか否か判断するようにしてもよい。その場合には、圧力差ΔPixが所定値A以下である場合は電磁弁30を非通電とする。一方、圧力差Pixが所定値Aより高い場合は、当該所定値A以下に低下したときに電磁弁30を非通電とすることになる。
 (9−3)MAX冷房モードから運転を停止するときの騒音改善制御(その3)
 又は、室外膨張弁6が全開となった時点で電磁弁30の前後の圧力差ΔPixが所定値A以下であるか否か判断し、圧力差ΔPixが所定値A以下である場合は電磁弁30を非通電とし、圧力差Pixが所定値Aより高い場合は、所定時間経過後に電磁弁30を非通電とするようにしてもよい。
 これら(MAX冷房モードから運転を停止するときの騒音改善制御(その2)、(その3))によっても、MAX冷房モードから運転を停止するときの騒音改善制御において、電磁弁30の前後の圧力差ΔPixを効果的に縮小させ、迅速に電磁弁30を非通電とし、且つ、停止時に生じる騒音を的確に解消、若しくは、低減することができるようなる。
 尚、実施例では暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、及び、MAX冷房モードの各運転モードを切り換えて実行する車両用空気調和装置1に本発明を適用したが、それに限らず、冷房モードとMAX冷房モードを切り換えて実行する車両用空気調和装置にも本発明は有効である。
 また、実施例で示した各運転モードの切換制御は、それに限られるものでは無く、車両用空気調和装置の能力や使用環境に応じて、外気温度Tam、車室内の湿度、目標吹出温度TAO、放熱器温度TH、目標放熱器温度TCO、吸熱器温度Te、目標吸熱器温度TEO、車室内の除湿要求の有無、等のパラメータの何れか、又は、それらの組み合わせ、それらの全てを採用して適切な条件を設定すると良い。
 更に、補助加熱装置は、実施例で示した補助ヒータ23に限られるものでは無く、ヒータで加熱された熱媒体を循環させて空気流通路内の空気を加熱する熱媒体循環回路や、エンジンで加熱されたラジエター水を循環するヒータコア等を利用してもよい。また、上記各実施例で説明した冷媒回路Rの構成はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能であることは云うまでもない。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 according to an embodiment of the present invention. A vehicle according to an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and travels by driving an electric motor for traveling with electric power charged in a battery. Yes (both not shown), the vehicle air conditioner 1 of the present invention is also driven by the power of the battery. That is, the vehicle air conditioner 1 of the embodiment performs a heating mode by a heat pump operation using a refrigerant circuit in an electric vehicle that cannot be heated by engine waste heat, and further includes a dehumidifying heating mode, a dehumidifying cooling mode, a cooling mode, Each operation mode of the MAX cooling mode (maximum cooling mode) is selectively executed.
The present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and an electric motor for traveling, and is also applicable to ordinary vehicles that run on an engine. Needless to say.
The vehicle air conditioner 1 according to the embodiment performs air conditioning (heating, cooling, dehumidification, and ventilation) in a vehicle interior of an electric vehicle, and includes an electric compressor 2 that compresses refrigerant and vehicle interior air. Is provided in the air flow passage 3 of the HVAC unit 10 through which air is circulated, and the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows in through the refrigerant pipe 13G, and dissipates the refrigerant into the vehicle compartment. And an outdoor expansion valve 6 comprising an electric valve that decompresses and expands the refrigerant during heating, and functions as a radiator during cooling and functions as a radiator during heating, and exchanges heat between the refrigerant and the outside air so as to function as an evaporator during heating. An outdoor heat exchanger 7 that performs the above operation, an indoor expansion valve 8 that is an electric valve that decompresses and expands the refrigerant, and a heat absorber 9 that is provided in the air flow passage 3 and absorbs heat from outside the vehicle interior to the refrigerant during cooling and dehumidification. And accumulator 12 etc. Are sequentially connected by a refrigerant pipe 13, the refrigerant circuit R is formed.
The refrigerant circuit R is filled with a predetermined amount of refrigerant and lubricating oil. The outdoor heat exchanger 7 is provided with an outdoor blower 15. The outdoor blower 15 exchanges heat between the outside air and the refrigerant by forcibly passing outside air through the outdoor heat exchanger 7, so that the outdoor air blower 15 can also be used outdoors even when the vehicle is stopped (that is, the vehicle speed is 0 km / h). It is comprised so that external air may be ventilated by the heat exchanger 7. FIG.
The outdoor heat exchanger 7 has a receiver dryer section 14 and a supercooling section 16 sequentially on the downstream side of the refrigerant, and the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is received via an electromagnetic valve 17 opened during cooling. The refrigerant pipe 13 </ b> B connected to the dryer unit 14 and on the outlet side of the supercooling unit 16 is connected to the inlet side of the heat absorber 9 via the indoor expansion valve 8. In addition, the receiver dryer part 14 and the supercooling part 16 structurally constitute a part of the outdoor heat exchanger 7.
The refrigerant pipe 13B between the subcooling section 16 and the indoor expansion valve 8 is provided in a heat exchange relationship with the refrigerant pipe 13C on the outlet side of the heat absorber 9, and constitutes an internal heat exchanger 19 together. Thus, the refrigerant flowing into the indoor expansion valve 8 through the refrigerant pipe 13B is cooled (supercooled) by the low-temperature refrigerant that has exited the heat absorber 9.
Further, the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched into a refrigerant pipe 13D, and this branched refrigerant pipe 13D is downstream of the internal heat exchanger 19 via an electromagnetic valve 21 opened during heating. The refrigerant pipe 13C is connected in communication. The refrigerant pipe 13 </ b> C is connected to the accumulator 12, and the accumulator 12 is connected to the refrigerant suction side of the compressor 2. Further, the refrigerant pipe 13E on the outlet side of the radiator 4 is connected to the inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6.
A refrigerant pipe 13G between the discharge side of the compressor 2 and the inlet side of the radiator 4 is provided with a solenoid valve 30 (which constitutes a flow path switching device) that is closed during dehumidification heating and MAX cooling described later. Yes. In this case, the refrigerant pipe 13G is branched into a bypass pipe 35 on the upstream side of the electromagnetic valve 30, and the bypass pipe 35 is opened by the electromagnetic valve 40 (which also constitutes a flow path switching device) during dehumidifying heating and MAX cooling. ) Through the refrigerant pipe 13E on the downstream side of the outdoor expansion valve 6. These bypass pipe 35, electromagnetic valve 30 and electromagnetic valve 40 constitute a bypass device 45 in the present invention.
Since the bypass device 45 is configured by the bypass pipe 35, the electromagnetic valve 30, and the electromagnetic valve 40, the dehumidifying heating mode or the MAX for allowing the refrigerant discharged from the compressor 2 to directly flow into the outdoor heat exchanger 7 as will be described later. Switching between the cooling mode and the heating mode in which the refrigerant discharged from the compressor 2 flows into the radiator 4, the dehumidifying cooling mode, and the cooling mode can be performed smoothly.
The air flow passage 3 on the air upstream side of the heat absorber 9 is formed with each of an outside air inlet and an inside air inlet (represented by the inlet 25 in FIG. 1). 25 is provided with a suction switching damper 26 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation mode) which is air inside the passenger compartment and the outside air (outside air introduction mode) which is outside the passenger compartment. Yes. Furthermore, an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
Moreover, in FIG. 1, 23 is an auxiliary heater as an auxiliary heating device provided in the vehicle air conditioner 1 of the embodiment. The auxiliary heater 23 of the embodiment is composed of a PTC heater which is an electric heater, and is provided in the air flow passage 3 on the air upstream side of the radiator 4 with respect to the air flow in the air flow passage 3. Yes. When the auxiliary heater 23 is energized and generates heat, the air in the air flow passage 3 flowing into the radiator 4 through the heat absorber 9 is heated. In other words, the auxiliary heater 23 serves as a so-called heater core, which heats or complements the passenger compartment.
In addition, air in the air flow passage 3 on the upstream side of the auxiliary heater 23 flows into the air flow passage 3 and assists air (inside air or outside air) in the air flow passage 3 after passing through the heat absorber 9. An air mix damper 28 is provided for adjusting the ratio of ventilation through the heater 23 and the radiator 4. Further, FOOT (foot), VENT (vent), and DEF (def) outlets (represented by the outlet 29 as a representative in FIG. 1) are formed in the air flow passage 3 on the air downstream side of the radiator 4. The air outlet 29 is provided with an air outlet switching damper 31 that performs switching control of air blowing from the air outlets.
Next, in FIG. 2, reference numeral 32 denotes a controller (ECU) as a control device composed of a microcomputer which is an example of a computer provided with a processor. The controller 32 detects the outside air temperature (Tam) of the vehicle. The outside air temperature sensor 33 for detecting the outside air humidity, the HVAC suction temperature sensor 36 for detecting the temperature of the air sucked into the air flow passage 3 from the suction port 25, and the air (inside air) in the passenger compartment. An inside air temperature sensor 37 that detects the temperature, an inside air humidity sensor 38 that detects the humidity of the air in the vehicle interior, an indoor CO 2 concentration sensor 39 that detects the carbon dioxide concentration in the vehicle interior, and an air outlet from the air outlet 29 And a discharge pressure sensor 41 for detecting the discharge refrigerant pressure (discharge pressure Pd) of the compressor 2. , A discharge temperature sensor 43 that detects the discharge refrigerant temperature of the compressor 2, a suction pressure sensor 44 that detects the suction refrigerant pressure of the compressor 2, and a suction temperature sensor 55 that detects the suction refrigerant temperature of the compressor 2. And a radiator temperature sensor 46 that detects the temperature of the radiator 4 (the temperature of the air that has passed through the radiator 4 or the temperature of the radiator 4 itself: the radiator temperature TH), and the refrigerant pressure (the radiator of the radiator 4). 4 or a radiator pressure sensor 47 that detects the pressure of the refrigerant immediately after exiting the radiator 4: the radiator pressure PCI, and the temperature of the heat absorber 9 (the temperature of the air passing through the heat absorber 9 or the heat absorption). The temperature of the heat exchanger 9 itself: a heat absorber temperature sensor 48 that detects the heat absorber temperature Te) and the refrigerant pressure of the heat absorber 9 (the pressure of the refrigerant in the heat absorber 9 or immediately after leaving the heat absorber 9). A heat absorber pressure sensor 49 for detecting the amount of solar radiation into the passenger compartment For example, a photosensor-type solar radiation sensor 51, a vehicle speed sensor 52 for detecting the moving speed (vehicle speed) of the vehicle, an air conditioning (air conditioner) operation unit 53 for setting a set temperature and an operation mode, and outdoor heat An outdoor heat exchanger temperature sensor 54 for detecting the temperature of the exchanger 7 (the temperature of the refrigerant immediately after leaving the outdoor heat exchanger 7 or the temperature of the outdoor heat exchanger 7 itself: the outdoor heat exchanger temperature TXO); The pressure of the outdoor heat exchanger pressure sensor 56 that detects the refrigerant pressure of the outdoor heat exchanger 7 (the pressure of the refrigerant in the outdoor heat exchanger 7 or immediately after exiting the outdoor heat exchanger 7: outdoor heat exchanger pressure PXO). Each output is connected. Further, the input of the controller 32 further includes an auxiliary heater temperature sensor for detecting the temperature of the auxiliary heater 23 (the temperature of the air immediately after being heated by the auxiliary heater 23 or the temperature of the auxiliary heater 23 itself: the auxiliary heater temperature Tptc). 50 outputs are also connected.
On the other hand, the output of the controller 32 includes the compressor 2, the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, the outlet switching damper 31, and the outdoor expansion. Solenoid valve 6, indoor expansion valve 8, auxiliary heater 23, solenoid valve 30 (for dehumidification), solenoid valve 17 (for cooling), solenoid valve 21 (for heating), solenoid valve 40 (also for dehumidification) Is connected. And the controller 32 controls these based on the output of each sensor, and the setting input in the air-conditioning operation part 53. FIG.
Next, the operation of the vehicle air conditioner 1 having the above-described configuration will be described. In the embodiment, the controller 32 switches between the operation modes of the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, and the MAX cooling mode (maximum cooling mode). First, an outline of refrigerant flow and control in each operation mode will be described.
(1) Heating mode When the heating mode is selected by the controller 32 (auto mode) or by the manual operation (manual mode) to the air conditioning operation unit 53, the controller 32 opens the solenoid valve 21 (for heating) and opens the solenoid valve. Close 17 (for cooling). Further, the electromagnetic valve 30 (for dehumidification) is opened, and the electromagnetic valve 40 (for dehumidification) is closed.
Then, the compressor 2 and each of the blowers 15 and 27 are operated, and the air mix damper 28 is blown out from the indoor blower 27 and passes through the heat absorber 9 as shown by a broken line in FIG. It is assumed that air is passed through the auxiliary heater 23 and the radiator 4. As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30. Since the air in the airflow passage 3 is passed through the radiator 4, the air in the airflow passage 3 is converted into the high-temperature refrigerant in the radiator 4 (when the auxiliary heater 23 operates, the auxiliary heater 23 and the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air, and is condensed and liquefied.
The refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E. The refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15. That is, the refrigerant circuit R becomes a heat pump. Then, the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 from the refrigerant pipe 13C through the refrigerant pipe 13A, the electromagnetic valve 21 and the refrigerant pipe 13D, and is separated into gas and liquid there. Repeated circulation inhaled. Since the air heated by the radiator 4 (when the auxiliary heater 23 is operated, the auxiliary heater 23 and the radiator 4) is blown out from the outlet 29, the vehicle interior is thereby heated.
The controller 32 calculates a target radiator pressure PCO (target value of the radiator pressure PCI) from a target radiator temperature TCO (target value of the radiator temperature TH) calculated from a target outlet temperature TAO described later, and this target heat dissipation. The number of revolutions of the compressor 2 is controlled based on the compressor pressure PCO and the refrigerant pressure of the radiator 4 detected by the radiator pressure sensor 47 (radiator pressure PCI; high pressure of the refrigerant circuit R). Further, the controller 32 determines the valve opening degree of the outdoor expansion valve 6 based on the temperature of the radiator 4 (the radiator temperature TH) detected by the radiator temperature sensor 46 and the radiator pressure PCI detected by the radiator pressure sensor 47. And the supercooling degree SC of the refrigerant at the outlet of the radiator 4 is controlled. The target radiator temperature TCO is basically set to TCO = TAO, but a predetermined restriction on control is provided.
Further, in this heating mode, when the heating capacity by the radiator 4 is insufficient with respect to the heating capacity required for the vehicle interior air conditioning, the controller 32 assists so that the shortage is supplemented by the heat generated by the auxiliary heater 23. The energization of the heater 23 is controlled. Thereby, comfortable vehicle interior heating is realized and frost formation of the outdoor heat exchanger 7 is also suppressed. At this time, since the auxiliary heater 23 is disposed on the air upstream side of the radiator 4, the air flowing through the air flow passage 3 is vented to the auxiliary heater 23 before the radiator 4.
Here, when the auxiliary heater 23 is disposed on the air downstream side of the radiator 4, when the auxiliary heater 23 is configured by a PCT heater as in the embodiment, the temperature of the air flowing into the auxiliary heater 23 is determined by the radiator. 4, the resistance value of the PTC heater increases, the current value also decreases, and the heat generation amount decreases. However, by arranging the auxiliary heater 23 on the air upstream side of the radiator 4, Thus, the capacity of the auxiliary heater 23 composed of the PTC heater can be sufficiently exhibited.
(2) Dehumidification heating mode Next, in the dehumidification heating mode, the controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is closed, the electromagnetic valve 40 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 and each of the blowers 15 and 27 are operated, and the air mix damper 28 is blown out from the indoor blower 27 and passes through the heat absorber 9 as shown by a broken line in FIG. It is assumed that air is passed through the auxiliary heater 23 and the radiator 4.
Accordingly, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the electromagnetic valve 40, and is connected to the refrigerant pipe on the downstream side of the outdoor expansion valve 6. 13E. At this time, since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 </ b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
The refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 by the heat absorption action at this time is cooled, and moisture in the air condenses and adheres to the heat absorber 9, so that the air in the air flow passage 3 is cooled, and Dehumidified. The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through.
At this time, since the valve opening degree of the outdoor expansion valve 6 is fully closed, it is possible to suppress or prevent inconvenience that the refrigerant discharged from the compressor 2 flows backward from the outdoor expansion valve 6 into the radiator 4. It becomes. Thereby, the fall of a refrigerant | coolant circulation amount can be suppressed or eliminated and air-conditioning capability can be ensured now. Further, in this dehumidifying and heating mode, the controller 32 energizes the auxiliary heater 23 to generate heat. As a result, the air cooled and dehumidified by the heat absorber 9 is further heated in the process of passing through the auxiliary heater 23 and the temperature rises, so that the dehumidifying heating in the passenger compartment is performed.
The controller 32 controls the rotational speed of the compressor 2 on the basis of the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO that is the target value, and the auxiliary heater temperature. By controlling the energization (heat generation) of the auxiliary heater 23 based on the auxiliary heater temperature Tptc detected by the sensor 50 and the target radiator temperature TCO described above, while appropriately cooling and dehumidifying the air in the heat absorber 9, A decrease in the temperature of the air blown from the outlet 29 into the passenger compartment by heating by the auxiliary heater 23 is accurately prevented.
As a result, it is possible to control the temperature to an appropriate heating temperature while dehumidifying the air blown into the vehicle interior, and it is possible to realize comfortable and efficient dehumidification heating in the vehicle interior. Further, as described above, in the dehumidifying heating mode, the air mix damper 28 is in a state where all the air in the air flow passage 3 is passed through the auxiliary heater 23 and the radiator 4, so that the air passing through the heat absorber 9 is efficiently assisted. Heating by the heater 23 can improve the energy saving performance, and the controllability of the dehumidifying heating air conditioning can also be improved.
In addition, since the auxiliary heater 23 is disposed on the air upstream side of the radiator 4, the air heated by the auxiliary heater 23 passes through the radiator 4. In this dehumidifying heating mode, the refrigerant is supplied to the radiator 4. Therefore, the disadvantage that the radiator 4 absorbs heat from the air heated by the auxiliary heater 23 is also eliminated. That is, the temperature of the air blown out into the vehicle compartment by the radiator 4 is suppressed, and the COP is improved.
(3) Dehumidifying and Cooling Mode Next, in the dehumidifying and cooling mode, the controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is opened and the electromagnetic valve 40 is closed. Then, the compressor 2 and each of the blowers 15 and 27 are operated, and the air mix damper 28 is blown out from the indoor blower 27 and passes through the heat absorber 9 as shown by a broken line in FIG. It is assumed that air is passed through the auxiliary heater 23 and the radiator 4. As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived and cooled, and condensates.
The refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 that is controlled to open. The refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 </ b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
The refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through. In this dehumidifying and cooling mode, the controller 32 does not energize the auxiliary heater 23, so the air cooled by the heat absorber 9 is reheated in the process of passing through the radiator 4 (the heat dissipation capability is lower than that during heating). The As a result, dehumidifying and cooling in the passenger compartment is performed.
The controller 32 controls the rotational speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48, and also uses the outdoor expansion valve based on the high pressure of the refrigerant circuit R described above. 6 is controlled to control the refrigerant pressure of the radiator 4 (radiator pressure PCI).
(4) Cooling Mode Next, in the cooling mode, the controller 32 fully opens the valve opening degree of the outdoor expansion valve 6 in the dehumidifying and cooling mode. The controller 32 controls the air mix damper 28, and the air in the air flow passage 3 after being blown out from the indoor blower 27 and passing through the heat absorber 9 as shown by a solid line in FIG. The rate of ventilation through the vessel 4 is adjusted. Further, the controller 32 does not energize the auxiliary heater 23.
As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30, and the refrigerant exiting the radiator 4 passes through the refrigerant pipe 13E and the outdoor expansion valve 6. To. At this time, since the outdoor expansion valve 6 is fully opened, the refrigerant passes through it and flows into the outdoor heat exchanger 7 as it is, where it is cooled by air or by outside air that is ventilated by the outdoor blower 15 and condensed. Liquefaction. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 </ b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
The refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 by the heat absorption action at this time is cooled. Further, moisture in the air condenses and adheres to the heat absorber 9.
The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through. Since the air cooled and dehumidified by the heat absorber 9 is blown into the vehicle interior from the air outlet 29 (partly passes through the radiator 4 to exchange heat), the vehicle interior is thereby cooled. become. In this cooling mode, the controller 32 rotates the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO that is the target value. To control.
(5) MAX cooling mode (maximum cooling mode)
Next, in the MAX cooling mode as the maximum cooling mode, the controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is closed, the electromagnetic valve 40 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 keeps the air in the air flow passage 3 from passing through the auxiliary heater 23 and the radiator 4 as shown in FIG. However, there is no problem even if it is ventilated somewhat. Further, the controller 32 does not energize the auxiliary heater 23.
Accordingly, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the electromagnetic valve 40, and is connected to the refrigerant pipe on the downstream side of the outdoor expansion valve 6. 13E. At this time, since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 </ b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
The refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 by the heat absorption action at this time is cooled. In addition, since moisture in the air condenses and adheres to the heat absorber 9, the air in the air flow passage 3 is dehumidified. The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through. At this time, since the outdoor expansion valve 6 is fully closed, similarly, it is possible to suppress or prevent the disadvantage that the refrigerant discharged from the compressor 2 flows backward from the outdoor expansion valve 6 into the radiator 4. . Thereby, the fall of a refrigerant | coolant circulation amount can be suppressed or eliminated and air-conditioning capability can be ensured now.
Here, since the high-temperature refrigerant flows through the radiator 4 in the cooling mode described above, direct heat conduction from the radiator 4 to the HVAC unit 10 occurs not a little, but in this MAX cooling mode, the refrigerant flows into the radiator 4. Therefore, the air in the air flow passage 3 from the heat absorber 9 is not heated by the heat transmitted from the radiator 4 to the HVAC unit 10. Therefore, powerful cooling of the passenger compartment is performed, and particularly in an environment where the outside air temperature Tam is high, the passenger compartment can be quickly cooled to realize comfortable air conditioning in the passenger compartment. Also in this MAX cooling mode, the controller 32 rotates the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO that is the target value. Control the number.
(6) Switching of operation mode The air flowing through the air flow passage 3 is cooled by the heat absorber 9 and heated by the heat radiator 4 (and the auxiliary heater 23) in each of the operation modes (adjusted by the air mix damper 28). ) And is blown out from the air outlet 29 into the passenger compartment. The controller 32 is set by the air-conditioning operation unit 53, the outside air temperature Tam detected by the outside air temperature sensor 33, the temperature in the vehicle interior detected by the inside air temperature sensor 37, the blower voltage, the amount of solar radiation detected by the solar radiation sensor 51, and the like. The target blowout temperature TAO is calculated based on the target passenger compartment temperature (set temperature) in the passenger compartment, and the temperature of the air blown from the blowout port 29 is controlled to this target blowout temperature TAO by switching each operation mode.
In this case, the controller 32 determines whether the outside air temperature Tam, the humidity in the vehicle interior, the target outlet temperature TAO, the radiator temperature TH, the target radiator temperature TCO, the heat absorber temperature Te, the target heat absorber temperature TEO, or the dehumidification request in the vehicle interior. By switching each operation mode based on parameters such as, etc., it switches between heating mode, dehumidifying heating mode, dehumidifying cooling mode, cooling mode and MAX cooling mode accurately according to the environmental conditions and necessity of dehumidification. In addition, efficient cabin air conditioning is realized.
(7) Noise improvement control at the time of switching from the cooling mode to the MAX cooling mode Next, referring to FIG. 4, the operation mode of the vehicle air conditioner 1 is changed from the cooling mode to the MAX cooling mode (maximum cooling mode). An example of the noise improvement control executed by the controller 32 when switching to) will be described. The timing chart of FIG. 4 shows the pressure difference ΔPdx before and after the electromagnetic valve 40 (second opening / closing valve of the present invention) when switching from the cooling mode to the MAX cooling mode, and the electromagnetic valve 30 (first opening / closing of the present invention). The pressure difference ΔPix before and after the valve), the rotational speed NC of the compressor 2, and the states of the outdoor expansion valve 6, the electromagnetic valve 40, and the electromagnetic valve 30 are shown.
The pressure difference ΔPdx before and after the solenoid valve 40 is equal to the pressure Pd on the refrigerant upstream side (front) of the solenoid valve 40 detected by the discharge pressure sensor 42 and the outdoor heat exchanger 7 detected by the outdoor heat exchanger temperature sensor 54. The outdoor heat exchanger pressure PXO on the refrigerant downstream side (rear) of the solenoid valve 40 converted from the refrigerant temperature (outdoor heat exchanger temperature TXO) immediately after coming out of the refrigerant (outdoor heat exchanger pressure sensor 56 as in the embodiment) If it is provided, it is the difference (ΔPdx = Pd−PXO) from the outdoor heat exchanger pressure PCO detected by the outdoor heat exchanger pressure sensor 56, and is calculated by the controller 32.
Further, the pressure difference ΔPix before and after the solenoid valve 30 is the refrigerant upstream side (front) pressure Pd of the solenoid valve 30 detected by the discharge pressure sensor 42 and the coolant downstream side of the solenoid valve 30 detected by the radiator pressure sensor 47. This is the difference (ΔPix = Pd−PCI) from the radiator pressure PCI, which is the (rear) pressure, and this is also calculated by the controller 32 (the same applies to the following noise improvement control).
(7-1) Noise improvement control at the time of switching from the cooling mode to the MAX cooling mode (part 1)
When the operation mode is switched from the cooling mode to the MAX cooling mode, the pressure difference ΔPdx before and after the electromagnetic valve 40 is a large value as shown in FIG. 4 in the cooling mode. Therefore, when the electromagnetic valve 40 that is closed in the cooling mode is opened to enter the MAX cooling mode with such a pressure difference, the direction from the discharge side of the compressor 2 through the electromagnetic valve 40 to the inlet side of the outdoor heat exchanger 7 Then, the refrigerant suddenly flows through the bypass pipe 35, and a large noise (noise) is generated in the solenoid valve 40.
Therefore, the controller 32 executes noise improvement control described below when switching the operation mode from the cooling mode to the MAX cooling mode. That is, when the controller 32 switches from the cooling mode to the MAX cooling mode, before the operation mode is switched, in the embodiment, the pressure difference Pdx before and after the electromagnetic valve 40 is less than or equal to a predetermined value A (for example, 0.2 MPa). Then, the rotational speed NC of the compressor 2 is adjusted (controlled in a decreasing direction). By controlling the rotation speed NC of the compressor 2 to decrease, the discharge pressure Pd decreases, so the pressure difference Pdx before and after the electromagnetic valve 40 decreases.
When the pressure difference ΔPdx is reduced below the predetermined value A in FIG. 4, the controller 32 opens the electromagnetic valve 40, closes the electromagnetic valve 30, and fully closes the outdoor expansion valve 6. Transition to mode air conditioning operation.
(7-2) Noise improvement control at the time of switching from the cooling mode to the MAX cooling mode (part 2)
Here, in the noise improvement control of the above embodiment, the controller 32 controls the rotational speed NC of the compressor 2 so that the pressure difference ΔPdx before and after the solenoid valve 40 is equal to or less than the predetermined value A. Instead, the rotation speed NC of the compressor 2 may be set to a predetermined rotation speed NC1 (FIG. 4, for example, 800 rpm to 3000 rpm) which is a predetermined low value. By controlling the rotational speed NC of the compressor 2 to a low predetermined rotational speed NC1, the discharge pressure Pd decreases, so the pressure difference Pdx before and after the electromagnetic valve 40 decreases. In this case as well, when the pressure difference ΔPdx is reduced to the predetermined value A or less, the controller 32 opens the electromagnetic valve 40, closes the electromagnetic valve 30, and fully closes the outdoor expansion valve 6, thereby increasing the MAX. Transition to air conditioning operation in cooling mode.
(7-3) Noise improvement control at the time of switching from the cooling mode to the MAX cooling mode (part 3)
Further, the compressor 2 may be stopped by the controller 32 in the noise improvement control. When the compressor 2 stops, the pressure in the refrigerant circuit R approaches an equilibrium state (the high-pressure side pressure decreases and the low-pressure side pressure increases), so the pressure difference ΔPdx before and after the electromagnetic valve 40 also decreases. Also in this case, when the pressure difference ΔPdx is reduced to the predetermined value A or less, the controller 32 opens the electromagnetic valve 40, closes the electromagnetic valve 30, closes the outdoor expansion valve 6 and closes the compressor 2. By starting, the air conditioning operation in the MAX cooling mode is started.
As described above, when switching from the cooling mode to the MAX cooling mode, the controller 32 reduces the pressure difference ΔPdx before and after the solenoid valve 40, then opens the solenoid valve 40, closes the solenoid valve 30, and opens the outdoor expansion valve 6. Since the noise improvement control for fully closing is executed, when switching from the cooling mode to the MAX cooling mode, when the solenoid valve 40 is opened, the refrigerant suddenly flows through the bypass pipe 35 toward the outdoor heat exchanger 7 side. Can be significantly suppressed or eliminated. As a result, when switching from the cooling mode to the MAX cooling mode, noise generated when the electromagnetic valve 40 is opened can be eliminated or reduced.
In particular, in each of the above noise improvement controls (noise improvement control at the time of switching from the cooling mode to the MAX cooling mode (part 1) to (part 3)), the controller 32 controls the rotational speed NC of the compressor 2 or When the compressor 2 is stopped, the pressure difference ΔPdx before and after the electromagnetic valve 40 is reduced, and when the pressure difference ΔPdx becomes a predetermined value A or less, the electromagnetic valve 40 is opened, the electromagnetic valve 30 is closed, and the outdoor Since the expansion valve 6 is fully closed, in the noise improvement control when the operation mode is switched, the pressure difference ΔPdx before and after the solenoid valve 40 is reduced by reducing the pressure (Pd) on the refrigerant upstream side of the solenoid valve 40. Can be effectively reduced, the mode can be quickly switched to the MAX cooling mode, and noise generated at the time of switching can be eliminated or reduced accurately.
Further, before switching from the cooling mode to the MAX cooling mode, that is, before the electromagnetic valve 30 is closed and the outdoor expansion valve 6 is fully closed, the rotational speed NC of the compressor 2 is reduced or stopped. It is also possible to reduce the amount of refrigerant that has fallen into the radiator 4 at the time of switching to the MAX cooling mode. As a result, it is possible to secure the refrigerant circulation amount in the refrigerant circuit R during execution of the MAX cooling mode, and to suppress or prevent a decrease in capacity.
(7-4) Noise improvement control at the time of switching from the cooling mode to the MAX cooling mode (part 4)
In the noise improvement control (noise improvement control at the time of switching from the cooling mode to the MAX cooling mode (part 3)), the pressure difference ΔPdx before and after the solenoid valve 40 after the compressor 2 is stopped is equal to or less than a predetermined value A. In this case, the solenoid valve 40 is opened. However, the present invention is not limited to this, and after the compressor 2 is stopped, the solenoid valve 40 is opened after a predetermined time (for example, 10 seconds) has elapsed. 30 may be closed and the outdoor expansion valve 6 may be fully closed, and the compressor 2 may be activated to start the air conditioning operation in the MAX cooling mode.
Thus, even if the controller 32 stops the compressor 2 in the noise improvement control, the electromagnetic valve 40 is opened after the predetermined time has elapsed, the electromagnetic valve 30 is closed, and the outdoor expansion valve 6 is fully closed. In noise improvement control when switching modes, the pressure Pd upstream of the refrigerant of the solenoid valve 40 is reduced to effectively reduce the pressure difference Pdx before and after the solenoid valve 40, and noise generated at the time of switching is eliminated accurately, or Can be reduced.
(8) Noise improvement control at the time of switching from the MAX cooling mode to the cooling mode Next, referring to FIG. 5, the operation mode of the vehicle air conditioner 1 is changed from the above-described MAX cooling mode (maximum cooling mode) to cooling. An example of the noise improvement control executed by the controller 32 when switching to the mode will be described. The timing chart of FIG. 5 shows the pressure difference ΔPdx before and after the electromagnetic valve 40 (second opening / closing valve of the present invention) when switching from the MAX cooling mode to the cooling mode, and the electromagnetic valve 30 (first opening / closing of the present invention). The pressure difference ΔPix before and after the valve), the rotational speed NC of the compressor 2, and the states of the outdoor expansion valve 6, the electromagnetic valve 40, and the electromagnetic valve 30 are shown. The controller 32 calculates the pressure difference ΔPdx before and after the solenoid valve 40 and the pressure difference ΔPix before and after the solenoid valve 30 in the same manner as described above (in the case of FIG. 4).
(8-1) Noise improvement control at the time of switching from the MAX cooling mode to the cooling mode (part 1)
When the operation mode is switched from the MAX cooling mode to the cooling mode, in the MAX cooling mode, the pressure difference ΔPix before and after the electromagnetic valve 30 has a large value as shown in FIG. Therefore, when the electromagnetic valve 30 that is closed in the MAX cooling mode is opened to enter the cooling mode with such a pressure difference, the refrigerant flows from the discharge side of the compressor 2 to the inlet side of the radiator 4 via the electromagnetic valve 30. The refrigerant rapidly flows in the pipe 13G, and a large noise (noise) is generated in the solenoid valve 30.
Therefore, the controller 32 executes the noise improvement control described below also when switching the operation mode from the MAX cooling mode to the cooling mode. That is, when the controller 32 switches from the MAX cooling mode to the cooling mode, before the operation mode is switched, in the embodiment, the pressure difference Pix before and after the solenoid valve 30 is equal to or less than a predetermined value A (for example, 0.2 MPa). The valve opening of the outdoor expansion valve 6 is opened from the fully closed state toward the fully open state. When the outdoor expansion valve 6 is opened, the discharge side of the compressor 2 and the outlet side of the radiator 4 are communicated with each other via the electromagnetic valve 40 and the outdoor expansion valve 6, and the radiator pressure PCI is increased and the discharge pressure Pd is increased. The pressure difference ΔPix before and after the solenoid valve 30 that is the difference (ΔPix = Pd−PCI) from the above becomes smaller.
When the pressure difference ΔPix is reduced below the predetermined value A in FIG. 5, the controller 32 opens the electromagnetic valve 30 and closes the electromagnetic valve 40. The outdoor expansion valve 6 is fully opened before the pressure difference ΔPix becomes equal to or less than the predetermined value A, or when the pressure difference ΔPix becomes equal to or less than the predetermined value A, but is fully opened at the same time or thereafter. Become. Thereby, it transfers to the air-conditioning driving | operation of air_conditioning | cooling mode.
(8-2) Noise improvement control at the time of switching from the MAX cooling mode to the cooling mode (part 2)
Here, when the pressure difference ΔPix is difficult to decrease in the noise improvement control of the above embodiment (noise improvement control at the time of switching from the MAX cooling mode to the cooling mode (1)), the control of the outdoor expansion valve 6 according to need is performed. In addition to this, the controller 32 may control (adjust) the rotational speed NC of the compressor 2 to decrease, or the compressor 2 may be stopped. When stopping, the compressor 2 is started at the time of shifting to the cooling mode.
(8-3) Noise improvement control at the time of switching from the MAX cooling mode to the cooling mode (part 3)
In addition, before switching from the MAX cooling mode to the cooling mode by the controller 32 in the noise improvement control, the valve opening degree of the outdoor expansion valve 6 is changed from the fully closed state to the fully opened state, and when the electromagnetic valve 30 is fully opened, It may be determined whether the pressure difference Pix before and after is equal to or less than a predetermined value A.
In that case, if the pressure difference Pix before and after the solenoid valve 30 is less than or equal to the predetermined value A when the valve opening degree of the outdoor expansion valve 6 is fully opened, the solenoid valve 30 is opened and the solenoid valve 40 is turned on. Close and enter cooling mode. On the other hand, when the pressure difference Pix before and after the electromagnetic valve 30 is still higher than the predetermined value A when the outdoor expansion valve 6 is fully opened, the controller 32 controls the rotational speed NC of the compressor 2 to decrease ( Adjustment). Also in this case, when the pressure difference ΔPix becomes equal to or less than the predetermined value A, the solenoid valve 30 is opened, the solenoid valve 40 is closed, and the cooling mode is entered.
As described above, when the controller 32 switches from the MAX cooling mode to the cooling mode, the controller 32 executes the noise improvement control that opens the solenoid valve 30 and closes the solenoid valve 40 after reducing the pressure difference ΔPix before and after the solenoid valve 30. Therefore, when switching from the MAX cooling mode to the cooling mode, when the electromagnetic valve 30 is opened, it is possible to greatly suppress or eliminate the sudden flow of the refrigerant toward the radiator 4 side. As a result, it is possible to eliminate or reduce noise generated when the electromagnetic valve 30 is opened when switching from the MAX cooling mode to the cooling mode.
In particular, in the noise improvement control at the time of switching from the MAX cooling mode to the cooling mode (part 1), the controller 32 opens the outdoor expansion valve 6 to reduce the pressure difference ΔPix before and after the electromagnetic valve 30 and to reduce the pressure difference. When ΔPix becomes a predetermined value A or less (as in noise improvement control at the time of switching from the MAX cooling mode to the cooling mode (part 3)), the pressure difference ΔPix is changed when the outdoor expansion valve 6 is fully opened. Since the electromagnetic valve 30 is opened and the electromagnetic valve 40 is closed, the refrigerant of the electromagnetic valve 30 is used in the noise improvement control when the operation mode is switched. By increasing the pressure on the downstream side (heatsink pressure PCI), the pressure difference ΔPix before and after the solenoid valve 30 is effectively reduced, and the cooling mode is quickly switched to. Accurately eliminate the noise produced in, or made so that it is possible to reduce.
Furthermore, in the noise improvement control (No. 2) and (No. 3) at the time of switching from the MAX cooling mode to the cooling mode, the controller 32 controls the rotational speed NC of the compressor 2 as necessary, or When the pressure difference ΔPix before and after the solenoid valve 30 is reduced by stopping the compressor 2, or when the pressure difference ΔPix before and after the solenoid valve 30 is higher than the predetermined value A when the outdoor expansion valve 6 is fully opened. In addition, since the pressure difference ΔPix before and after the electromagnetic valve 30 is reduced by controlling the rotational speed of the compressor 2, the pressure difference ΔPix before and after the electromagnetic valve 30 can be reduced more quickly and effectively. Will be able to.
(9) Noise improvement control when operation is stopped from the MAX cooling mode Next, referring to FIG. 6, when the operation of the vehicle air conditioner 1 is stopped from the above-described MAX cooling mode (maximum cooling mode). Next, an example of noise improvement control executed by the controller 32 will be described. The timing chart of FIG. 6 shows the pressure difference ΔPdx before and after the solenoid valve 40 (second on-off valve of the present invention) when the operation is stopped from the MAX cooling mode, and the solenoid valve 30 (first on-off valve of the present invention). ), The rotational speed NC of the compressor 2, the state of the outdoor expansion valve 6, the electromagnetic valve 40, and the electromagnetic valve 30.
The controller 32 calculates the pressure difference ΔPdx before and after the solenoid valve 40 and the pressure difference ΔPix before and after the solenoid valve 30 in the same manner as described above (in the case of FIG. 4). The solenoid valve 30 (the first on-off valve of the present invention) is a so-called normally open solenoid valve that closes when energized and opens in a non-energized state, and the solenoid valve 40 (the second on-off valve of the present invention) It is a so-called normally closed solenoid valve that opens when energized and closes when not energized.
(9-1) Noise improvement control when stopping operation from MAX cooling mode (part 1)
When the operation is stopped from the MAX cooling mode, the pressure difference ΔPix before and after the solenoid valve 30 is a large value as shown in FIG. 6 in the MAX cooling mode. Further, the solenoid valve 30 is opened in a non-energized state (operation stop). Therefore, when the solenoid valve 30 that is closed in the MAX cooling mode is opened without being energized (operation stopped) with such a pressure difference, from the discharge side of the compressor 2 through the solenoid valve 30 to the inlet side of the radiator 4. Thus, the refrigerant suddenly flows in the refrigerant pipe 13G in the direction of, and similarly, a large noise (noise) is generated in the electromagnetic valve 30.
Therefore, the controller 32 executes the noise improvement control described below even when the operation is stopped from the MAX cooling mode. That is, when stopping the operation from the MAX cooling mode, the controller 32 first stops the compressor 2 and stops the outdoor expansion valve 6 from the fully closed state to the fully opened state before stopping the operation. Go. Since the compressor 2 is stopped and the outdoor expansion valve 6 is opened, the pressure in the refrigerant circuit R approaches an equilibrium state (the high-pressure side pressure is lowered and the low-pressure side pressure is raised), so that the pressure difference ΔPix before and after the electromagnetic valve 30 Also getting smaller.
In the embodiment, when the pressure difference ΔPix becomes equal to or less than a predetermined value A (for example, 0.2 MPa), the controller 32 stops the operation by deenergizing the solenoid valve 30 and the solenoid valve 40. The solenoid valve 30 is opened by de-energization, and the solenoid valve 40 is closed. Thus, when the solenoid valve 30 is closed in the energized state and opened in the non-energized state, the controller 32 reduces the pressure difference ΔPix before and after the solenoid valve 30 when stopping the operation from the MAX cooling mode. Since the noise improvement control for deenergizing the solenoid valve 30 is executed, when the operation is stopped from the MAX cooling mode, when the solenoid valve 30 is deenergized and the solenoid valve 30 is opened, the radiator 4 is moved toward the radiator 4 side. It is possible to greatly suppress or eliminate the rapid flow of the refrigerant. As a result, when the operation is stopped from the MAX cooling mode, it is possible to eliminate or reduce the noise generated by the opening of the electromagnetic valve 30.
In particular, in the above embodiment, the controller 32 stops the compressor 2 and opens the outdoor expansion valve 6 to reduce the pressure difference ΔPix before and after the electromagnetic valve 30, and the pressure difference ΔPix becomes a predetermined value A or less. In this case, the solenoid valve 30 is deenergized. Therefore, in the noise improvement control when the operation is stopped from the MAX cooling mode, the pressure difference ΔPix before and after the solenoid valve 30 is effectively reduced, and the solenoid valve is quickly 30 can be de-energized, and noise generated at the time of stopping can be accurately eliminated or reduced.
(9-2) Noise improvement control when operation is stopped from the MAX cooling mode (part 2)
Here, in addition to the above embodiment (noise improvement control when stopping operation from the MAX cooling mode (part 1)), for example, in the noise improvement control when the controller 32 stops operation from the MAX cooling mode, The compressor 2 is stopped, the outdoor expansion valve 6 is fully opened, and it is determined whether or not the pressure difference ΔPix before and after the electromagnetic valve 30 is equal to or less than a predetermined value A when the outdoor expansion valve 6 is fully opened. You may do it. In that case, when the pressure difference ΔPix is equal to or smaller than the predetermined value A, the solenoid valve 30 is deenergized. On the other hand, when the pressure difference Pix is higher than the predetermined value A, the electromagnetic valve 30 is de-energized when the pressure difference Pix drops below the predetermined value A.
(9-3) Noise improvement control when operation is stopped from the MAX cooling mode (part 3)
Alternatively, when the outdoor expansion valve 6 is fully opened, it is determined whether or not the pressure difference ΔPix before and after the electromagnetic valve 30 is equal to or less than a predetermined value A. If the pressure difference ΔPix is equal to or less than the predetermined value A, the electromagnetic valve 30 When the pressure difference Pix is higher than the predetermined value A, the solenoid valve 30 may be deenergized after a predetermined time has elapsed.
With these (noise improvement control when the operation is stopped from the MAX cooling mode (part 2), (part 3)), the pressure before and after the solenoid valve 30 in the noise improvement control when the operation is stopped from the MAX cooling mode. The difference ΔPix can be effectively reduced, the solenoid valve 30 can be quickly de-energized, and the noise generated when stopped can be eliminated or reduced accurately.
In the embodiment, the present invention is applied to the vehicle air conditioner 1 that switches and executes each operation mode of the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, and the MAX cooling mode. The present invention is also effective for a vehicle air conditioner that performs switching between the cooling mode and the MAX cooling mode.
Further, the switching control of each operation mode shown in the embodiment is not limited thereto, and the outside air temperature Tam, the humidity in the vehicle interior, the target blowing temperature TAO, depending on the capability and usage environment of the vehicle air conditioner, Adopt any one of parameters such as radiator temperature TH, target radiator temperature TCO, heat absorber temperature Te, target heat absorber temperature TEO, presence / absence of dehumidification request in vehicle interior, or a combination thereof, or all of them. Appropriate conditions should be set.
Further, the auxiliary heating device is not limited to the auxiliary heater 23 shown in the embodiment, and a heat medium circulation circuit that heats the air in the air flow passage by circulating the heat medium heated by the heater or an engine. You may utilize the heater core etc. which circulate through the heated radiator water. Further, the configuration of the refrigerant circuit R described in each of the above embodiments is not limited thereto, and it is needless to say that the refrigerant circuit R can be changed without departing from the gist of the present invention.
 1 車両用空気調和装置
 2 圧縮機
 3 空気流通路
 4 放熱器
 6 室外膨張弁
 7 室外熱交換器
 8 室内膨張弁
 9 吸熱器
 23 補助ヒータ(補助加熱装置)
 27 室内送風機(ブロワファン)
 28 エアミックスダンパ
 30 電磁弁(第1の開閉弁)
 40 電磁弁(第2の開閉弁)
 31 吹出口切換ダンパ
 32 コントローラ(制御装置)
 35 バイパス配管
 45 バイパス装置
 R 冷媒回路
DESCRIPTION OF SYMBOLS 1 Vehicle air conditioner 2 Compressor 3 Air flow path 4 Radiator 6 Outdoor expansion valve 7 Outdoor heat exchanger 8 Indoor expansion valve 9 Heat absorber 23 Auxiliary heater (auxiliary heating device)
27 Indoor blower
28 Air mix damper 30 Solenoid valve (first on-off valve)
40 Solenoid valve (second on-off valve)
31 Outlet switching damper 32 Controller (control device)
35 Bypass piping 45 Bypass device R Refrigerant circuit

Claims (9)

  1.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
     冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための吸熱器と、
     前記車室外に設けられた室外熱交換器と、
     前記放熱器を出て前記室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、
     前記圧縮機の吐出側と前記放熱器の入口側の間に設けられた第1の開閉弁と、
     該第1の開閉弁の上流側で分岐し、前記放熱器及び前記室外膨張弁をバイパスして前記圧縮機から吐出された冷媒を前記室外熱交換器に流すためのバイパス配管と、
     該バイパス配管に設けられた第2の開閉弁と、
     制御装置を備え、
     該制御装置により、前記第1の開閉弁を開き、前記第2の開閉弁を閉じることで、前記圧縮機から吐出された冷媒を前記放熱器から前記室外熱交換器に流して当該室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる冷房モードと、
     前記室外膨張弁を全閉とし、前記第1の開閉弁を閉じ、前記第2の開閉弁を開くことで、前記圧縮機から吐出された冷媒を前記バイパス配管により前記室外熱交換器に流して放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる最大冷房モードを切り換えて実行する車両用空気調和装置において、
     前記制御装置は、前記冷房モードから前記最大冷房モードに切り換える際、前記第2の開閉弁前後の圧力差を縮小した後、当該第2の開閉弁を開き、前記第1の開閉弁を閉じ、前記室外膨張弁を全閉とする騒音改善制御を実行することを特徴とする車両用空気調和装置。
    A compressor for compressing the refrigerant;
    An air flow passage through which air to be supplied into the passenger compartment flows;
    A radiator for radiating the refrigerant to heat the air supplied from the air flow passage to the vehicle interior;
    A heat absorber for absorbing the refrigerant and cooling the air supplied from the air flow passage to the vehicle interior;
    An outdoor heat exchanger provided outside the vehicle compartment;
    An outdoor expansion valve for decompressing the refrigerant flowing out of the radiator and flowing into the outdoor heat exchanger;
    A first on-off valve provided between the discharge side of the compressor and the inlet side of the radiator;
    A bypass pipe for branching upstream of the first on-off valve, bypassing the radiator and the outdoor expansion valve, and allowing the refrigerant discharged from the compressor to flow to the outdoor heat exchanger;
    A second on-off valve provided in the bypass pipe;
    Equipped with a control device,
    The control device opens the first on-off valve and closes the second on-off valve, thereby allowing the refrigerant discharged from the compressor to flow from the radiator to the outdoor heat exchanger so that the outdoor heat exchange is performed. A cooling mode in which heat is dissipated in the cooler, and after the decompressed refrigerant is depressurized, the heat absorber absorbs heat; and
    The outdoor expansion valve is fully closed, the first on-off valve is closed, and the second on-off valve is opened, so that the refrigerant discharged from the compressor flows to the outdoor heat exchanger through the bypass pipe. In a vehicle air conditioner that performs heat dissipation and switches and executes a maximum cooling mode in which heat is absorbed by the heat absorber after decompressing the radiated refrigerant.
    When the control device switches from the cooling mode to the maximum cooling mode, after reducing the pressure difference before and after the second on-off valve, the control device opens the second on-off valve, closes the first on-off valve, A vehicle air conditioner that performs noise improvement control for fully closing the outdoor expansion valve.
  2.  前記制御装置は、前記騒音改善制御において、前記圧縮機の回転数を制御し、又は、当該圧縮機を停止することで前記第2の開閉弁前後の圧力差を縮小させ、当該圧力差が所定値以下となった場合に、当該第2の開閉弁を開き、前記第1の開閉弁を閉じ、前記室外膨張弁を全閉とすることを特徴とする請求項1に記載の車両用空気調和装置。 In the noise improvement control, the control device controls the rotation speed of the compressor or stops the compressor to reduce the pressure difference before and after the second on-off valve, so that the pressure difference is predetermined. 2. The vehicle air conditioner according to claim 1, wherein when the value is equal to or lower than the value, the second on-off valve is opened, the first on-off valve is closed, and the outdoor expansion valve is fully closed. apparatus.
  3.  前記制御装置は、前記騒音改善制御において、前記圧縮機を停止し、所定時間経過後に前記第2の開閉弁を開き、前記第1の開閉弁を閉じ、前記室外膨張弁を全閉とすることを特徴とする請求項1に記載の車両用空気調和装置。 In the noise improvement control, the control device stops the compressor, opens the second on-off valve after a predetermined time, closes the first on-off valve, and fully closes the outdoor expansion valve. The vehicle air conditioner according to claim 1.
  4.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
     冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための吸熱器と、
     前記車室外に設けられた室外熱交換器と、
     前記放熱器を出て前記室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、
     前記圧縮機の吐出側と前記放熱器の入口側の間に設けられた第1の開閉弁と、
     該第1の開閉弁の上流側で分岐し、前記放熱器及び前記室外膨張弁をバイパスして前記圧縮機から吐出された冷媒を前記室外熱交換器に流すためのバイパス配管と、
     該バイパス配管に設けられた第2の開閉弁と、
     制御装置を備え、
     該制御装置により、前記第1の開閉弁を開き、前記第2の開閉弁を閉じることで、前記圧縮機から吐出された冷媒を前記放熱器から前記室外熱交換器に流して当該室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる冷房モードと、
     前記室外膨張弁を全閉とし、前記第1の開閉弁を閉じ、前記第2の開閉弁を開くことで、前記圧縮機から吐出された冷媒を前記バイパス配管により前記室外熱交換器に流して放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる最大冷房モードを切り換えて実行する車両用空気調和装置において、
     前記制御装置は、前記最大冷房モードから前記冷房モードに切り換える際、前記第1の開閉弁前後の圧力差を縮小した後、当該第1の開閉弁を開き、前記第2の開閉弁を閉じる騒音改善制御を実行することを特徴とする車両用空気調和装置。
    A compressor for compressing the refrigerant;
    An air flow passage through which air to be supplied into the passenger compartment flows;
    A radiator for radiating the refrigerant to heat the air supplied from the air flow passage to the vehicle interior;
    A heat absorber for absorbing the refrigerant and cooling the air supplied from the air flow passage to the vehicle interior;
    An outdoor heat exchanger provided outside the vehicle compartment;
    An outdoor expansion valve for decompressing the refrigerant flowing out of the radiator and flowing into the outdoor heat exchanger;
    A first on-off valve provided between the discharge side of the compressor and the inlet side of the radiator;
    A bypass pipe for branching upstream of the first on-off valve, bypassing the radiator and the outdoor expansion valve, and allowing the refrigerant discharged from the compressor to flow to the outdoor heat exchanger;
    A second on-off valve provided in the bypass pipe;
    Equipped with a control device,
    The control device opens the first on-off valve and closes the second on-off valve, thereby allowing the refrigerant discharged from the compressor to flow from the radiator to the outdoor heat exchanger so that the outdoor heat exchange is performed. A cooling mode in which heat is dissipated in the cooler, and after the decompressed refrigerant is depressurized, the heat absorber absorbs heat; and
    The outdoor expansion valve is fully closed, the first on-off valve is closed, and the second on-off valve is opened, so that the refrigerant discharged from the compressor flows to the outdoor heat exchanger through the bypass pipe. In a vehicle air conditioner that performs heat dissipation and switches and executes a maximum cooling mode in which heat is absorbed by the heat absorber after decompressing the radiated refrigerant.
    When the control device switches from the maximum cooling mode to the cooling mode, after reducing the pressure difference before and after the first on-off valve, the control device opens the first on-off valve and closes the second on-off valve. An air conditioner for a vehicle that performs improvement control.
  5.  前記制御装置は、前記騒音改善制御において、前記室外膨張弁を開くことで前記第1の開閉弁前後の圧力差を縮小させ、当該圧力差が所定値以下となった場合に、当該第1の開閉弁を開き、前記第2の開閉弁を閉じることを特徴とする請求項4に記載の車両用空気調和装置。 In the noise improvement control, the control device reduces the pressure difference before and after the first on-off valve by opening the outdoor expansion valve, and when the pressure difference becomes a predetermined value or less, The vehicle air conditioner according to claim 4, wherein an on-off valve is opened and the second on-off valve is closed.
  6.  前記制御装置は、前記騒音改善制御において、前記圧縮機の回転数を制御し、又は、当該圧縮機を停止することで前記第1の開閉弁前後の圧力差を縮小させ、若しくは、前記室外膨張弁が全開となった時点で前記第1の開閉弁前後の圧力差が前記所定値より高い場合に、前記圧縮機の回転数を制御することで前記第1の開閉弁前後の圧力差を縮小させることを特徴とする請求項5に記載の車両用空気調和装置。 In the noise improvement control, the control device controls the rotational speed of the compressor, or reduces the pressure difference before and after the first on-off valve by stopping the compressor, or the outdoor expansion When the pressure difference before and after the first on-off valve is higher than the predetermined value when the valve is fully opened, the pressure difference before and after the first on-off valve is reduced by controlling the rotation speed of the compressor. The vehicle air conditioner according to claim 5, wherein
  7.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
     冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための吸熱器と、
     前記車室外に設けられた室外熱交換器と、
     前記放熱器を出て前記室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、
     前記圧縮機の吐出側と前記放熱器の入口側の間に設けられた第1の開閉弁と、
     該第1の開閉弁の上流側で分岐し、前記放熱器及び前記室外膨張弁をバイパスして前記圧縮機から吐出された冷媒を前記室外熱交換器に流すためのバイパス配管と、
     該バイパス配管に設けられた第2の開閉弁と、
     制御装置を備え、
     該制御装置により少なくとも、前記室外膨張弁を全閉とし、前記第1の開閉弁を閉じ、前記第2の開閉弁を開くことで、前記圧縮機から吐出された冷媒を前記バイパス配管により前記室外熱交換器に流して放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる最大冷房モードを実行する車両用空気調和装置において、
     前記第1の開閉弁は通電状態で閉じ、非通電状態で開く電磁弁であると共に、
     前記制御装置は、前記最大冷房モードから停止する際、前記第1の開閉弁前後の圧力差を縮小した後、当該第1の開閉弁を非通電とする騒音改善制御を実行することを特徴とする車両用空気調和装置。
    A compressor for compressing the refrigerant;
    An air flow passage through which air to be supplied into the passenger compartment flows;
    A radiator for radiating the refrigerant to heat the air supplied from the air flow passage to the vehicle interior;
    A heat absorber for absorbing the refrigerant and cooling the air supplied from the air flow passage to the vehicle interior;
    An outdoor heat exchanger provided outside the vehicle compartment;
    An outdoor expansion valve for decompressing the refrigerant flowing out of the radiator and flowing into the outdoor heat exchanger;
    A first on-off valve provided between the discharge side of the compressor and the inlet side of the radiator;
    A bypass pipe for branching upstream of the first on-off valve, bypassing the radiator and the outdoor expansion valve, and allowing the refrigerant discharged from the compressor to flow to the outdoor heat exchanger;
    A second on-off valve provided in the bypass pipe;
    Equipped with a control device,
    By the control device, at least the outdoor expansion valve is fully closed, the first on-off valve is closed, and the second on-off valve is opened, so that the refrigerant discharged from the compressor is passed through the bypass pipe by the bypass pipe. In a vehicle air conditioner that executes a maximum cooling mode in which the refrigerant is radiated by flowing it through a heat exchanger and the radiated refrigerant is decompressed and then absorbed by the heat absorber.
    The first on-off valve is a solenoid valve that closes in an energized state and opens in a non-energized state,
    When the control device stops from the maximum cooling mode, the control device performs noise improvement control for de-energizing the first on-off valve after reducing the pressure difference before and after the first on-off valve. A vehicle air conditioner.
  8.  前記制御装置は、前記騒音改善制御において、前記圧縮機を停止し、前記室外膨張弁を開くことで前記第1の開閉弁前後の圧力差を縮小させ、当該圧力差が所定値以下となった場合に、当該第1の開閉弁を非通電とすることを特徴とする請求項7に記載の車両用空気調和装置。 In the noise improvement control, the control device stops the compressor and opens the outdoor expansion valve to reduce the pressure difference before and after the first on-off valve, and the pressure difference becomes a predetermined value or less. In this case, the vehicle air conditioner according to claim 7, wherein the first on-off valve is deenergized.
  9.  前記制御装置は、前記騒音改善制御において、前記圧縮機を停止し、前記室外膨張弁を全開とすると共に、当該室外膨張弁が全開となった時点で前記第1の開閉弁前後の圧力差が所定値以下である場合、前記第1の開閉弁を非通電とし、前記所定値より高い場合は、当該所定値以下に低下したとき、又は、所定時間経過後に前記第1の開閉弁を非通電とすることを特徴とする請求項7に記載の車両用空気調和装置。 In the noise improvement control, the control device stops the compressor, fully opens the outdoor expansion valve, and when the outdoor expansion valve is fully opened, a pressure difference before and after the first on-off valve is increased. When it is less than a predetermined value, the first on-off valve is de-energized. When it is higher than the predetermined value, the first on-off valve is de-energized when it falls below the predetermined value or after a predetermined time has elapsed. The vehicle air conditioner according to claim 7.
PCT/JP2017/008039 2016-02-26 2017-02-21 Air-conditioning device for vehicle WO2017146266A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016035824A JP2017149370A (en) 2016-02-26 2016-02-26 Air conditioner for vehicle
JP2016-035824 2016-02-26

Publications (1)

Publication Number Publication Date
WO2017146266A1 true WO2017146266A1 (en) 2017-08-31

Family

ID=59686276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008039 WO2017146266A1 (en) 2016-02-26 2017-02-21 Air-conditioning device for vehicle

Country Status (2)

Country Link
JP (1) JP2017149370A (en)
WO (1) WO2017146266A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020129495A1 (en) * 2018-12-19 2020-06-25 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioning device
WO2020211184A1 (en) * 2019-04-18 2020-10-22 青岛海尔空调电子有限公司 Refrigeration system
CN114523815A (en) * 2022-03-01 2022-05-24 珠海格力电器股份有限公司 Air duct assembly, inner fan assembly and vehicle-mounted air conditioner

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019064325A (en) * 2017-09-28 2019-04-25 株式会社ヴァレオジャパン Vehicular air conditioner
CN117063030A (en) * 2021-04-08 2023-11-14 三菱电机株式会社 On-off valve unit and refrigerating device using the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08258544A (en) * 1995-03-22 1996-10-08 Matsushita Electric Ind Co Ltd Heat pump air-conditioning and heating dehumidifier device for electric vehicle
JP2004216934A (en) * 2003-01-09 2004-08-05 Denso Corp Heater for air conditioner
JP2005514253A (en) * 2002-01-14 2005-05-19 ベール ゲーエムベーハー ウント コー カーゲー Automotive air conditioner heating / cooling cycle, air conditioner, and method for controlling the air conditioner
JP2012006514A (en) * 2010-06-25 2012-01-12 Japan Climate Systems Corp Air conditioner for vehicle
JP2012250708A (en) * 2012-09-19 2012-12-20 Denso Corp Vehicle air conditioning apparatus
JP2013023210A (en) * 2011-07-21 2013-02-04 Hyundai Motor Co Ltd Vehicular heat pump system, and method of controlling the same
JP2014088151A (en) * 2012-10-31 2014-05-15 Mitsubishi Motors Corp Vehicle air conditioner
JP2014088154A (en) * 2012-10-31 2014-05-15 Mitsubishi Motors Corp Vehicle air conditioner
JP2015223880A (en) * 2014-05-26 2015-12-14 サンデンホールディングス株式会社 Air conditioner for vehicle

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08258544A (en) * 1995-03-22 1996-10-08 Matsushita Electric Ind Co Ltd Heat pump air-conditioning and heating dehumidifier device for electric vehicle
JP2005514253A (en) * 2002-01-14 2005-05-19 ベール ゲーエムベーハー ウント コー カーゲー Automotive air conditioner heating / cooling cycle, air conditioner, and method for controlling the air conditioner
JP2004216934A (en) * 2003-01-09 2004-08-05 Denso Corp Heater for air conditioner
JP2012006514A (en) * 2010-06-25 2012-01-12 Japan Climate Systems Corp Air conditioner for vehicle
JP2013023210A (en) * 2011-07-21 2013-02-04 Hyundai Motor Co Ltd Vehicular heat pump system, and method of controlling the same
JP2012250708A (en) * 2012-09-19 2012-12-20 Denso Corp Vehicle air conditioning apparatus
JP2014088151A (en) * 2012-10-31 2014-05-15 Mitsubishi Motors Corp Vehicle air conditioner
JP2014088154A (en) * 2012-10-31 2014-05-15 Mitsubishi Motors Corp Vehicle air conditioner
JP2015223880A (en) * 2014-05-26 2015-12-14 サンデンホールディングス株式会社 Air conditioner for vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020129495A1 (en) * 2018-12-19 2020-06-25 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioning device
WO2020211184A1 (en) * 2019-04-18 2020-10-22 青岛海尔空调电子有限公司 Refrigeration system
US11578896B2 (en) 2019-04-18 2023-02-14 Qingdao Haier Air-Conditioning Electronic Co., Ltd Refrigeration system
CN114523815A (en) * 2022-03-01 2022-05-24 珠海格力电器股份有限公司 Air duct assembly, inner fan assembly and vehicle-mounted air conditioner
CN114523815B (en) * 2022-03-01 2023-09-22 珠海格力电器股份有限公司 Air duct assembly, inner fan assembly and vehicle-mounted air conditioner

Also Published As

Publication number Publication date
JP2017149370A (en) 2017-08-31

Similar Documents

Publication Publication Date Title
JP6418787B2 (en) Air conditioner for vehicles
WO2017146270A1 (en) Vehicle air conditioning device
WO2018193770A1 (en) Vehicular air conditioning device
WO2017146268A1 (en) Vehicle air conditioner
JP6590558B2 (en) Air conditioner for vehicles
WO2014192741A1 (en) Vehicular air-conditioning device
JP6496958B2 (en) Air conditioner for vehicles
WO2016203943A1 (en) Vehicular air-conditioning device
WO2017146266A1 (en) Air-conditioning device for vehicle
JP6680600B2 (en) Vehicle air conditioner
JP6571430B2 (en) Air conditioner for vehicles
WO2017179594A1 (en) Vehicle air conditioning device
WO2018211958A1 (en) Vehicle air-conditioning device
WO2017179597A1 (en) Vehicle air conditioner
WO2018116962A1 (en) Air conditioning device for vehicle
WO2017146267A1 (en) Air-conditioning device for vehicle
WO2018043152A1 (en) Vehicle air-conditioning apparatus
WO2017146269A1 (en) Vehicular air-conditioning device
WO2018079121A1 (en) Vehicle air-conditioning device
WO2018159141A1 (en) Vehicle air conditioning apparatus
JP2019055648A (en) Air conditioner for vehicle
JP6948179B2 (en) Vehicle air conditioner
WO2017179595A1 (en) Vehicle air conditioning device
WO2018123635A1 (en) Vehicle air-conditioning apparatus

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756700

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756700

Country of ref document: EP

Kind code of ref document: A1