JP4336619B2 - Engine heat pump - Google Patents

Engine heat pump Download PDF

Info

Publication number
JP4336619B2
JP4336619B2 JP2004150371A JP2004150371A JP4336619B2 JP 4336619 B2 JP4336619 B2 JP 4336619B2 JP 2004150371 A JP2004150371 A JP 2004150371A JP 2004150371 A JP2004150371 A JP 2004150371A JP 4336619 B2 JP4336619 B2 JP 4336619B2
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
compressor
liquid refrigerant
auxiliary compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004150371A
Other languages
Japanese (ja)
Other versions
JP2005331177A (en
Inventor
健一 南
二朗 福留
洋志 東
圭史 山中
栄太 呉服
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2004150371A priority Critical patent/JP4336619B2/en
Priority to PCT/JP2005/007411 priority patent/WO2005114064A1/en
Priority to US11/569,429 priority patent/US20070295025A1/en
Priority to CNB200580016138XA priority patent/CN100470165C/en
Priority to EP05730684A priority patent/EP1762792A4/en
Publication of JP2005331177A publication Critical patent/JP2005331177A/en
Application granted granted Critical
Publication of JP4336619B2 publication Critical patent/JP4336619B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • F25B2400/0751Details of compressors or related parts with parallel compressors the compressors having different capacities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明は、エンジンヒートポンプの装置構成に関し、より詳しくは、電力の利用量を新たに増加することなく、全圧縮仕事の低減を図る技術に関する。   The present invention relates to an apparatus configuration of an engine heat pump, and more particularly to a technique for reducing the total compression work without newly increasing the amount of electric power used.

エンジンにて圧縮機を駆動する構成のエンジンヒートポンプに関しては、特許文献1に示される構成のものが公知となっている。特許文献1においては、エンジンヒートポンプの圧縮仕事を主圧縮機による圧縮仕事及び補助圧縮機による圧縮仕事の二系統に分け、一方の側(補助圧縮機側)の蒸発圧を他方の側(主圧縮機側)の蒸発圧よりも高圧に保つことで、その一方の側での圧縮仕事を低減することにより、エンジンヒートポンプにおける全圧縮仕事の低減を図る発明が開示されている。   Regarding an engine heat pump having a configuration in which a compressor is driven by an engine, a configuration shown in Patent Document 1 is known. In Patent Document 1, the compression work of the engine heat pump is divided into two systems: compression work by the main compressor and compression work by the auxiliary compressor, and the evaporation pressure on one side (auxiliary compressor side) is set on the other side (main compression). An invention is disclosed in which the total compression work in the engine heat pump is reduced by reducing the compression work on one side by keeping the pressure higher than the evaporation pressure on the machine side.

特開2004−20153号公報JP 2004-20153 A

前記特許文献1では、蒸発圧が高圧となる側(補助圧縮機側)の圧縮仕事を電気駆動式の圧縮機(電動圧縮機)で行う構成が開示されているが、本構成では、新たに電力を必要とする機器(前記電動圧縮機)がエンジンヒートポンプに追加装備されることとなる。この場合、圧縮仕事の低減は図れるものの、電力の利用量が増加し、「電力利用量の低減」というエンジンヒートポンプ本来のメリットを十分に生かせないという結果を招来していた。そこで、本発明は、エンジンヒートポンプにおいて、電力の利用量を増加することなく、圧縮仕事の低減を図り、運転効率(エネルギー効率)を向上することを課題とする。   Patent Document 1 discloses a configuration in which the compression work on the side where the evaporation pressure becomes high (auxiliary compressor side) is performed by an electrically driven compressor (electric compressor). A device that requires electric power (the electric compressor) is additionally provided in the engine heat pump. In this case, although the compression work can be reduced, the amount of power used is increased, resulting in the fact that the original merit of the engine heat pump called “reduction of power usage” cannot be fully utilized. Therefore, an object of the present invention is to reduce the compression work and improve the operation efficiency (energy efficiency) without increasing the amount of power used in an engine heat pump.

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。   The problems to be solved by the present invention are as described above. Next, means for solving the problems will be described.

即ち、請求項1においては、エンジンで駆動される主圧縮機及び補助圧縮機、室内熱交換器、室外熱交換器、室内熱交換器用膨張弁、室外熱交換器用膨張弁、並びに室内熱交換器と室外熱交換器の接続経路のうち液冷媒通過経路に設けられ分岐経路に分岐される過冷却用液冷媒により分岐前の液冷媒を過冷却する過冷却熱交換器を有し、前記補助圧縮機より吐出される冷媒を前記主圧縮機より吐出される冷媒と合流させる構成としたエンジンヒートポンプにおいて、前記過冷却用液冷媒は、前記過冷却熱交換器の通過後に、補助圧縮で圧縮する構成とすると共に、補助圧縮機の、主圧縮機と補助圧縮機の合計容量に対する容量比を20%から29%に構成し、主圧縮機及び補助圧縮機にエンジンの駆動力を断接する主圧縮機用クラッチ及び補助圧縮機用クラッチを設けたものである。 That is, in claim 1, a main compressor and an auxiliary compressor driven by an engine, an indoor heat exchanger, an outdoor heat exchanger, an expansion valve for an indoor heat exchanger, an expansion valve for an outdoor heat exchanger, and an indoor heat exchanger And a subcooling heat exchanger that supercools the liquid refrigerant before branching by the subcooling liquid refrigerant that is provided in the liquid refrigerant passage path of the connection path between the outdoor heat exchanger and the branch path. the refrigerant discharged from the machine in a configuration with the engine heat pump is merged with the refrigerant discharged from said main compressor, the supercooling liquid refrigerant, said after passage of the supercooling heat exchanger is compressed by the auxiliary compressor The main compression is configured such that the capacity ratio of the auxiliary compressor to the total capacity of the main compressor and the auxiliary compressor is 20% to 29%, and the driving force of the engine is connected to the main compressor and the auxiliary compressor. Machine clutch and It is provided with a clutch auxiliaries compressor.

請求項2においては、請求項1記載のエンジンヒートポンプにおいて、室外熱交換器と並列にエンジン廃熱回収器を設け、前記過冷却用液冷媒を前記エンジン廃熱回収器で蒸発させると共に補助圧縮機で圧縮する構成としたものである。   According to a second aspect of the present invention, in the engine heat pump according to the first aspect, an engine waste heat recovery unit is provided in parallel with the outdoor heat exchanger, and the supercooling liquid refrigerant is evaporated by the engine waste heat recovery unit and an auxiliary compressor is provided. It is set as the structure compressed by.

本発明の効果として、以下に示すような効果を奏する。   As effects of the present invention, the following effects can be obtained.

請求項1においては、主圧縮機で圧縮される冷媒よりも蒸発圧(冷媒吸入圧力)が高い過冷却用の冷媒を、エンジンで駆動される補助圧縮機によって圧縮する構成とすることにより、従来は電気駆動式としていた補助圧縮機分の電力の利用量を新たに増加することなく、冷媒サイクルにおける全圧縮仕事の低減が図れると共に、過冷却熱交換器による過冷却作用により、冷房能力の維持又は向上も図れる。
また、補助圧縮機の、主圧縮機と補助圧縮機の合計容量に対する容量比が所定の数値範囲となるように構成することにより、冷房時において冷房能力の維持又は向上が図れると共に、暖房時において過冷却熱交換器の性能を確保することができる。つまり、共通のエンジンで主圧縮機及び補助圧縮機を駆動する本発明の構成において、冷房時及び暖房時における運転効率(エネルギー効率)の良い運転が可能となる。
また、主圧縮機及び補助圧縮機にエンジンの駆動力を断接する主圧縮機用クラッチ及び補助圧縮機用クラッチを設けたので、所要の空調負荷の高低に応じて、主圧縮機2及び補助圧縮機3の運転を切り替えることができることにより、エンジン4の燃焼効率が低下する部分負荷での運転状態を低減することができるので、運転効率(エネルギー効率)の向上を図ることができるのである。
According to the first aspect of the present invention, a supercooling refrigerant having an evaporation pressure (refrigerant suction pressure) higher than that of the refrigerant compressed by the main compressor is compressed by an auxiliary compressor driven by the engine. Can reduce the total compression work in the refrigerant cycle without newly increasing the amount of electric power used for the auxiliary compressor that had been electrically driven, and maintain the cooling capacity by the supercooling action of the supercooling heat exchanger Or improvement can be achieved.
In addition, by configuring the auxiliary compressor so that the capacity ratio with respect to the total capacity of the main compressor and the auxiliary compressor is within a predetermined numerical range, it is possible to maintain or improve the cooling capacity during cooling and at the time of heating. The performance of the supercooling heat exchanger can be ensured. That is, in the configuration of the present invention in which the main compressor and the auxiliary compressor are driven by a common engine, it is possible to operate with good operation efficiency (energy efficiency) during cooling and heating.
In addition, since the main compressor clutch and auxiliary compressor clutch for connecting / disconnecting the driving force of the engine to and from the main compressor and auxiliary compressor are provided, the main compressor 2 and the auxiliary compression according to the level of the required air conditioning load. Since the operation of the machine 3 can be switched, the operation state at the partial load where the combustion efficiency of the engine 4 is reduced can be reduced, so that the operation efficiency (energy efficiency) can be improved.

請求項2においては、補助圧縮機の、主圧縮機と補助圧縮機の合計容量に対する容量比が所定の数値範囲となるように構成することによる冷房時の全圧縮仕事の低減が図れると共に、暖房時においても、電力の利用量を新たに増加することなく、全圧縮仕事の低減を図ることができる。
また、暖房時においても液冷媒の過冷却を行うことにより、過冷却作用によって冷媒の単位質量流量当たりの外気からの吸熱能力が向上するので、冷媒サイクルを流れる冷媒の全量を低減することができる。この結果、全圧縮仕事を低減させることが可能となり、運転効率(エネルギー効率)を向上することができる。
According to the second aspect of the present invention, it is possible to reduce the total compression work during cooling by configuring the auxiliary compressor so that the capacity ratio with respect to the total capacity of the main compressor and the auxiliary compressor falls within a predetermined numerical range, and heating. Even at times, it is possible to reduce the total compression work without newly increasing the amount of power used.
Further, by supercooling the liquid refrigerant even during heating, the heat absorption capacity from the outside air per unit mass flow rate of the refrigerant is improved by the supercooling action, so that the total amount of refrigerant flowing through the refrigerant cycle can be reduced. . As a result, the total compression work can be reduced, and the operation efficiency (energy efficiency) can be improved.

次に、発明の実施の形態を図面に基づいて説明する。図1は本発明に係るエンジンヒートポンプの冷媒回路図、図2は同じく制御機器類のブロック図、図3は同じく冷媒回路構成によるモリエル線図、図4は補助圧縮機容量比とCOPの関係を示すグラフ、図5は補助圧縮機容量比と過冷却熱交換器冷媒温度の関係を示すグラフである。   Next, embodiments of the invention will be described with reference to the drawings. FIG. 1 is a refrigerant circuit diagram of an engine heat pump according to the present invention, FIG. 2 is a block diagram of control devices, FIG. 3 is a Mollier diagram based on the refrigerant circuit configuration, and FIG. 4 is a relationship between auxiliary compressor capacity ratio and COP. FIG. 5 is a graph showing the relationship between the auxiliary compressor capacity ratio and the supercooling heat exchanger refrigerant temperature.

まず、本発明に係るエンジンヒートポンプの冷媒回路構成、及び冷媒サイクルについて図1を用いて説明する。本発明に係るエンジンヒートポンプは、エンジン4で駆動される主圧縮機2及び補助圧縮機3、室内熱交換器8、室外熱交換器5、室内熱交換器用膨張弁23、室外熱交換器用膨張弁21、並びに室内熱交換器8と室外熱交換器5の接続経路のうち液冷媒通過経路である主経路26に設けられ分岐経路27(27a、27b)に分岐される過冷却用液冷媒により、分岐前の液冷媒を過冷却する過冷却熱交換器15を有しており、これらで構成される冷媒サイクルを用いるものである。そして、過冷却熱交換器15は、主経路26との接続点15a、15b、及び分岐経路27との接続点15c、15dを有する。なお、本構成において、室内熱交換器8は複数設ける構成としてもよい。   First, a refrigerant circuit configuration and a refrigerant cycle of an engine heat pump according to the present invention will be described with reference to FIG. The engine heat pump according to the present invention includes a main compressor 2 and an auxiliary compressor 3 driven by the engine 4, an indoor heat exchanger 8, an outdoor heat exchanger 5, an indoor heat exchanger expansion valve 23, and an outdoor heat exchanger expansion valve. 21 and the supercooled liquid refrigerant that is provided in the main path 26 that is the liquid refrigerant passage path among the connection paths between the indoor heat exchanger 8 and the outdoor heat exchanger 5 and is branched to the branch path 27 (27a, 27b), It has a supercooling heat exchanger 15 that supercools the liquid refrigerant before branching, and uses a refrigerant cycle composed of these. The supercooling heat exchanger 15 has connection points 15 a and 15 b with the main path 26 and connection points 15 c and 15 d with the branch path 27. In this configuration, a plurality of indoor heat exchangers 8 may be provided.

主圧縮機2は、エンジン4により駆動され、図示せぬアキュムレータにて液冷媒が分離されたガス冷媒を吸引・圧縮し、高温高圧のガス冷媒を吐出する。主圧縮機2から吐出されるガス冷媒は、四方弁24にて所定の方向に導かれる。また、主圧縮機2に吸引されるガス冷媒も四方弁24にて導かれるため、主圧縮機2の冷媒入口と四方弁24とは主圧縮機2の吸入ラインを構成する経路32にて連通されている。補助圧縮機3は、同じくエンジン4により駆動され、前記分岐経路27に分岐され前記過冷却熱交換器15を通過する過冷却用液冷媒のうち、図示せぬアキュムレータにて液冷媒が分離されたガス冷媒を吸引・圧縮し、高温高圧のガス冷媒を吐出する。   The main compressor 2 is driven by the engine 4, sucks and compresses the gas refrigerant from which the liquid refrigerant has been separated by an accumulator (not shown), and discharges the high-temperature and high-pressure gas refrigerant. The gas refrigerant discharged from the main compressor 2 is guided in a predetermined direction by the four-way valve 24. Further, since the gas refrigerant sucked into the main compressor 2 is also guided by the four-way valve 24, the refrigerant inlet of the main compressor 2 and the four-way valve 24 communicate with each other through a path 32 that constitutes a suction line of the main compressor 2. Has been. The auxiliary compressor 3 is also driven by the engine 4, and the liquid refrigerant is separated by an accumulator (not shown) out of the supercooling liquid refrigerant that is branched to the branch path 27 and passes through the supercooling heat exchanger 15. Gas refrigerant is sucked and compressed, and high-temperature and high-pressure gas refrigerant is discharged.

過冷却熱交換器15は、分岐経路27に設けられる過冷却熱交換器用膨張弁22にて温度低下した過冷却用液冷媒によって分岐前の液冷媒を過冷却するものであり、この過冷却熱交換器15にて熱交換した後の過冷却用液冷媒が、前記補助圧縮機3に吸引される。このため、過冷却熱交換器15と補助圧縮機3の冷媒入口とは、補助圧縮機3の吸入ラインを構成する経路33にて連通されている。   The subcooling heat exchanger 15 supercools the liquid refrigerant before branching by the subcooling liquid refrigerant whose temperature has been lowered by the subcooling heat exchanger expansion valve 22 provided in the branch path 27, and this supercooling heat. The supercooled liquid refrigerant after heat exchange in the exchanger 15 is sucked into the auxiliary compressor 3. For this reason, the supercooling heat exchanger 15 and the refrigerant inlet of the auxiliary compressor 3 are communicated with each other through a path 33 constituting a suction line of the auxiliary compressor 3.

また、主経路26において設けられる分岐経路27は、室内熱交換器8と過冷却熱交換器15との間に分岐経路27aを構成すると共に、室外熱交換器5と過冷却熱交換器15との間に分岐経路27bを構成しており、各分岐経路27a、27bと過冷却熱交換器用膨張弁22との間には、それぞれ開閉弁28a、28bが設けられている。これら各開閉弁28a・28bは、後述する冷房サイクル又は暖房サイクルにおいて主経路26の分岐前の液冷媒が過冷却されるようにその開閉が切り替えられる。   The branch path 27 provided in the main path 26 constitutes a branch path 27 a between the indoor heat exchanger 8 and the supercooling heat exchanger 15, and the outdoor heat exchanger 5 and the supercooling heat exchanger 15. A branch path 27b is formed between them, and on-off valves 28a and 28b are provided between the branch paths 27a and 27b and the subcooling heat exchanger expansion valve 22, respectively. These on-off valves 28a and 28b are switched between open and closed so that the liquid refrigerant before branching of the main path 26 is supercooled in a cooling cycle or heating cycle to be described later.

そして、補助圧縮機3より吐出される冷媒を、各圧縮機2、3から四方弁24に至るまでの経路に設けられる合流点65にて主圧縮機2より吐出される冷媒と合流させる構成としている。ここで合流した冷媒が四方弁24にて流れる方向を変更され、後述する冷房サイクル又は暖房サイクルが行われる。なお、前記合流点65と四方弁24との間にはオイルセパレータ(図示略)が設けられ、高温高圧のガス冷媒中に含まれる冷凍機油を分離して主圧縮機2及び補助圧縮機3の吸入側に還流させ、両圧縮機2、3の潤滑が良好に行われるようにしている。   The refrigerant discharged from the auxiliary compressor 3 is merged with the refrigerant discharged from the main compressor 2 at a junction 65 provided in the path from the compressors 2 and 3 to the four-way valve 24. Yes. The direction in which the merged refrigerant flows in the four-way valve 24 is changed, and a cooling cycle or a heating cycle described later is performed. An oil separator (not shown) is provided between the junction 65 and the four-way valve 24 to separate the refrigeration oil contained in the high-temperature and high-pressure gas refrigerant so that the main compressor 2 and the auxiliary compressor 3 The refrigerant is refluxed to the suction side so that both the compressors 2 and 3 are lubricated satisfactorily.

以上のように構成される冷媒サイクルを用い、四方弁24による冷媒の流れる方向の切替えにより冷房サイクル又は暖房サイクルが行われる。冷房サイクルでは、主圧縮機2及び補助圧縮機3にて圧縮された冷媒は、合流点65にて合流し、四方弁24を介して室外熱交換器5に送られ、この室外熱交換器5で放熱して凝縮した後、過冷却熱交換器15へと送られ、接続点15bより流入して接続点15aより流出する。過冷却熱交換器15にて過冷却された液冷媒は、室内熱交換器用膨張弁23にて膨張し、室内熱交換器8で吸熱して蒸発した後、四方弁24を介して主圧縮機2に吸引される。そして、この吸引された冷媒が主圧縮機2にて圧縮された後、再び吐出される。   Using the refrigerant cycle configured as described above, the cooling cycle or the heating cycle is performed by switching the direction in which the refrigerant flows by the four-way valve 24. In the cooling cycle, the refrigerant compressed by the main compressor 2 and the auxiliary compressor 3 merges at the merge point 65 and is sent to the outdoor heat exchanger 5 via the four-way valve 24. The outdoor heat exchanger 5 After being dissipated and condensed, it is sent to the supercooling heat exchanger 15 and flows in from the connection point 15b and flows out from the connection point 15a. The liquid refrigerant supercooled in the supercooling heat exchanger 15 expands in the indoor heat exchanger expansion valve 23, absorbs heat in the indoor heat exchanger 8 and evaporates, and then passes through the four-way valve 24 to the main compressor. 2 is aspirated. The sucked refrigerant is compressed by the main compressor 2 and then discharged again.

また、室外熱交換器5から送り出され主経路26を通過する液冷媒の一部は、過冷却用液冷媒として分岐経路27aに分流され、過冷却熱交換器用膨張弁22にて膨張・温度低下して低温の湿り冷媒となり、過冷却熱交換器15へ接続点15cより流入して接続点15dへ流出する過程で、主経路26を流れる液冷媒を過冷却する。このとき、開閉弁28aは開いた状態、開閉弁28bは閉じた状態となっており、主経路26を通過する液冷媒は分岐経路27b側へは分流されることなく、分岐経路27aに分岐される過冷却用液冷媒によって分岐前の全量の液冷媒が過冷却されるようにしている。このようにして主経路26を通過する液冷媒の過冷却を行うことで、冷凍サイクル効率の向上が図られている。そして、前記過冷却用液冷媒は補助圧縮機3に吸引され、この補助圧縮機3にて圧縮された後に再び吐出される。   Further, a part of the liquid refrigerant sent out from the outdoor heat exchanger 5 and passing through the main path 26 is diverted to the branch path 27a as the supercooling liquid refrigerant, and is expanded and the temperature is lowered by the expansion valve 22 for the supercooling heat exchanger. Thus, the liquid refrigerant flowing through the main path 26 is supercooled in the process of becoming a low-temperature wet refrigerant and flowing into the supercooling heat exchanger 15 from the connection point 15c and flowing out to the connection point 15d. At this time, the on-off valve 28a is open and the on-off valve 28b is closed, and the liquid refrigerant passing through the main path 26 is branched to the branch path 27a without being diverted to the branch path 27b side. The total amount of liquid refrigerant before branching is supercooled by the supercooling liquid refrigerant. Thus, the refrigeration cycle efficiency is improved by supercooling the liquid refrigerant passing through the main path 26. The supercooled liquid refrigerant is sucked into the auxiliary compressor 3, compressed by the auxiliary compressor 3, and then discharged again.

一方、暖房サイクルでは、主圧縮機2及び補助圧縮機3にて圧縮された冷媒は、合流点65にて合流し、四方弁24を介して室内熱交換器8に送られ、この室内熱交換器8で放熱して凝縮した後、過冷却熱交換器15へと送られ、接続点15aより流入して接続点15bより流出する。過冷却熱交換器15にて過冷却された液冷媒は、室外熱交換器用膨張弁21にて膨張し、室外熱交換器5で吸熱して蒸発した後、四方弁24を介して主圧縮機2に吸引される。そして、この吸引された冷媒が主圧縮機2にて圧縮された後、再び吐出される。   On the other hand, in the heating cycle, the refrigerant compressed by the main compressor 2 and the auxiliary compressor 3 merges at the junction 65, and is sent to the indoor heat exchanger 8 via the four-way valve 24. After the heat is dissipated and condensed in the vessel 8, it is sent to the supercooling heat exchanger 15, and flows in from the connection point 15a and flows out from the connection point 15b. The liquid refrigerant supercooled in the supercooling heat exchanger 15 expands in the outdoor heat exchanger expansion valve 21, absorbs heat in the outdoor heat exchanger 5 and evaporates, and then passes through the four-way valve 24 to the main compressor. 2 is aspirated. The sucked refrigerant is compressed by the main compressor 2 and then discharged again.

また、室内熱交換器8から送り出され主経路26を通過する液冷媒の一部は、過冷却用液冷媒として分岐経路27bに分流され、過冷却熱交換器用膨張弁22にて膨張・温度低下して低温の湿り冷媒となり、過冷却熱交換器15へ接続点15cより流入して接続点15dへ流出する過程で、主経路26を流れる液冷媒を過冷却する。このとき、開閉弁28aは閉じた状態、開閉弁28bは開いた状態となっており、主経路26を通過する液冷媒は分岐経路27a側へは分流されることなく、分岐経路27bに分岐される過冷却用液冷媒によって分岐前の全量の液冷媒が過冷却されるようにしている。そして、過冷却熱交換器15を通過した過冷却用液冷媒は、エンジン廃熱回収器6にて吸熱して蒸発し、補助圧縮機3に吸引され、この補助圧縮機3にて圧縮された後に再び吐出される。   Further, a part of the liquid refrigerant sent out from the indoor heat exchanger 8 and passing through the main path 26 is diverted to the branch path 27b as the supercooling liquid refrigerant, and is expanded and the temperature is lowered by the expansion valve 22 for the supercooling heat exchanger. Thus, the liquid refrigerant flowing through the main path 26 is supercooled in the process of becoming a low-temperature wet refrigerant and flowing into the supercooling heat exchanger 15 from the connection point 15c and flowing out to the connection point 15d. At this time, the on-off valve 28a is in a closed state and the on-off valve 28b is in an open state, and the liquid refrigerant passing through the main path 26 is branched to the branch path 27b without being diverted to the branch path 27a side. The total amount of liquid refrigerant before branching is supercooled by the supercooling liquid refrigerant. The supercooled liquid refrigerant that has passed through the supercooling heat exchanger 15 absorbs heat and evaporates in the engine waste heat recovery unit 6, is sucked into the auxiliary compressor 3, and is compressed in the auxiliary compressor 3. It is discharged again later.

次に、本発明に係るエンジンヒートポンプの運転制御に関する装置構成について図2を用いて説明する。本発明に係るエンジンヒートポンプに具備される制御装置であるコントローラ25は、室外熱交換器用膨張弁21、過冷却熱交換器用膨張弁22、及び室内熱交換器用膨張弁23と接続されており、コントローラ25は各膨張弁の開度を制御する。   Next, an apparatus configuration relating to operation control of the engine heat pump according to the present invention will be described with reference to FIG. The controller 25 which is a control device provided in the engine heat pump according to the present invention is connected to the expansion valve 21 for the outdoor heat exchanger, the expansion valve 22 for the supercooling heat exchanger, and the expansion valve 23 for the indoor heat exchanger. 25 controls the opening of each expansion valve.

また、同じくコントローラ25は、前記分岐経路27a、27bにそれぞれ設けられる開閉弁28a、28bと接続されており、それらの開閉を制御する。ここで、各開閉弁28a、28bは具体的に次のように制御される。すなわち、開閉弁28aは、前述した冷房サイクルにおける液冷媒の過冷却を行うときは開かれ、それ以外のときは閉じられる。また、開閉弁28bは、前述した暖房サイクルにおける液冷媒の過冷却を行うときは開かれ、それ以外のときは閉じられる。このように各開閉弁28a、28bを制御することにより、冷房サイクル及び暖房サイクルそれぞれにおいて、液冷媒が過冷却熱交換器15の下流側にて分岐されることとなり、分岐経路27に分岐される前の全量の液冷媒が過冷却熱交換器15にて過冷却されることとなる。さらに、コントローラ25は、エンジン4(の制御回路)と接続されており、エンジン4の発停・制御を行うことにより主圧縮機2及び補助圧縮機3の運転を制御する。   Similarly, the controller 25 is connected to the on-off valves 28a and 28b provided on the branch paths 27a and 27b, respectively, and controls the opening and closing thereof. Here, each on-off valve 28a, 28b is specifically controlled as follows. That is, the on-off valve 28a is opened when the liquid refrigerant is supercooled in the above-described cooling cycle, and is closed otherwise. The on-off valve 28b is opened when the liquid refrigerant is supercooled in the heating cycle described above, and is closed otherwise. By controlling the on-off valves 28a and 28b as described above, the liquid refrigerant is branched on the downstream side of the supercooling heat exchanger 15 in each of the cooling cycle and the heating cycle, and is branched to the branch path 27. The previous total amount of liquid refrigerant is supercooled by the supercooling heat exchanger 15. Further, the controller 25 is connected to the engine 4 (control circuit thereof), and controls the operation of the main compressor 2 and the auxiliary compressor 3 by performing start / stop / control of the engine 4.

以上の構成において、コントローラ25は、過冷却熱交換器用膨張弁22で膨張された湿り冷媒が補助圧縮機3の吸入ラインである経路33で過熱度がつくように過冷却熱交換器用膨張弁22の開度を制御する。そして、後述の如く、補助圧縮機3を選定(構成)することで、補助圧縮機3の冷媒吸入圧力が、主圧縮機2の冷媒吸入圧力よりも高くなり、図3のモリエル線図で示す如く、補助圧縮機3による圧縮仕事ΔWsを、主圧縮機2による圧縮仕事ΔWmと比較して小さくできるようにしている。こうして、全量の冷媒を単一の圧縮仕事ΔWmにて圧縮する場合と比較して、全圧縮仕事の低減を図っている。   In the above configuration, the controller 25 has the supercooling heat exchanger expansion valve 22 so that the wet refrigerant expanded by the supercooling heat exchanger expansion valve 22 is superheated in the path 33 that is the suction line of the auxiliary compressor 3. To control the opening degree. Then, as will be described later, by selecting (constructing) the auxiliary compressor 3, the refrigerant suction pressure of the auxiliary compressor 3 becomes higher than the refrigerant suction pressure of the main compressor 2, and is shown by the Mollier diagram of FIG. Thus, the compression work ΔWs by the auxiliary compressor 3 can be made smaller than the compression work ΔWm by the main compressor 2. In this way, the total compression work is reduced compared to the case where the entire amount of refrigerant is compressed with a single compression work ΔWm.

続いて、以上のような冷媒回路構成における冷凍サイクルのモリエル線図(図3)について、冷媒回路構成における冷媒の流れに従って説明する。なお、このモリエル線図においては、単位質量流量当たりの冷媒の状態変化を表しており、横軸は冷媒の質量1kg当たりの持っているエネルギーである比エンタルピー(kJ/kg)を示し、縦軸は(絶対)圧力(MPa abs)を示す。   Next, the Mollier diagram (FIG. 3) of the refrigeration cycle in the refrigerant circuit configuration as described above will be described according to the refrigerant flow in the refrigerant circuit configuration. In this Mollier diagram, the state change of the refrigerant per unit mass flow rate is represented, the horizontal axis indicates the specific enthalpy (kJ / kg) which is the energy per kg of the refrigerant mass, and the vertical axis Indicates (absolute) pressure (MPa abs).

このモリエル線図上の冷凍サイクルに関し、冷房サイクルの場合について説明する。このモリエル線図における点Amは、冷媒が主圧縮機2の吸入ラインを構成する経路32を流れている状態を示し、この状態での比エンタルピー及び圧力値をそれぞれh2(kJ/kg)、p2(MPa abs)とする。そして、ここでの冷媒回路における冷媒の流量をGmとする。また、点Asは、冷媒が補助圧縮機3の吸入ラインを構成する経路33を流れている状態を示し、この状態での比エンタルピー及び圧力値をそれぞれh1(kJ/kg)、p1(MPa abs)とする。そして、ここでの冷媒回路における冷媒の流量をGsとする。これらの状態の冷媒が、それぞれにおける吸入ラインから各圧縮機2、3に吸入され、各圧縮機2、3において圧縮仕事が行われる。この際、主圧縮機2においては単位質量流量当たりの冷媒に対して圧縮仕事ΔWmが行われ(圧縮区間AmB)、補助圧縮機3においては単位質量流量当たりの冷媒に対して圧縮仕事ΔWsが行われる(圧縮区間AsB)。   Regarding the refrigeration cycle on the Mollier diagram, the case of the cooling cycle will be described. A point Am in the Mollier diagram indicates a state in which the refrigerant flows through the path 32 constituting the suction line of the main compressor 2, and the specific enthalpy and the pressure value in this state are h2 (kJ / kg) and p2, respectively. (MPa abs). The flow rate of the refrigerant in the refrigerant circuit here is Gm. Point As indicates the state in which the refrigerant flows through the path 33 constituting the suction line of the auxiliary compressor 3, and the specific enthalpy and the pressure value in this state are h1 (kJ / kg) and p1 (MPa abs), respectively. ). And let Gs be the flow rate of the refrigerant in the refrigerant circuit here. The refrigerant in these states is sucked into the compressors 2 and 3 from the respective suction lines, and compression work is performed in the compressors 2 and 3. At this time, the main compressor 2 performs compression work ΔWm on the refrigerant per unit mass flow rate (compression section AmB), and the auxiliary compressor 3 performs compression work ΔWs on the refrigerant per unit mass flow rate. (Compression section AsB).

各圧縮機2、3にて圧縮され高圧となった冷媒(ガス冷媒)は、合流点65にて合流する。ここで冷媒回路における合流した冷媒の流量を全量Go(=Gm+Gs)とする。この合流した冷媒は室外熱交換器5に送られる。室外熱交換器5においては、高圧ガスとなった冷媒の凝縮による放熱が行われ、冷却されて液冷媒となる(凝縮区間BC)。つまり、点Bの状態は、冷媒が合流点65から室外熱交換器5までの経路にある状態を示し、この状態での比エンタルピーの値をh0(kJ/kg)とする。   The refrigerant (gas refrigerant) compressed to high pressure by the compressors 2 and 3 joins at a junction 65. Here, the flow rate of the combined refrigerant in the refrigerant circuit is defined as the total amount Go (= Gm + Gs). The merged refrigerant is sent to the outdoor heat exchanger 5. In the outdoor heat exchanger 5, heat is dissipated by condensing the refrigerant that has become high-pressure gas, and the refrigerant is cooled to become a liquid refrigerant (condensing section BC). That is, the state at point B indicates a state in which the refrigerant is in the path from the junction 65 to the outdoor heat exchanger 5, and the specific enthalpy value in this state is h0 (kJ / kg).

室外熱交換器5から液冷媒として送り出された冷媒は、過冷却熱交換器15にて、過冷却熱交換器15の下流側にて分岐経路27aに分岐された過冷却用液冷媒によって過冷却される(過冷却区間CD)。ここで、図中T1、T2及びT3は、それぞれ温度t1(℃)、t2(℃)及びt3(℃)の等温線(t1>t2>t3)を示しており、主経路26を流れる液冷媒が過冷却熱交換器15にてt1(℃)からt2(℃)に過冷却されることを示している。この過冷却後の液冷媒の点Dでの状態における圧力値をp0(MPa abs)とする。   The refrigerant sent out as the liquid refrigerant from the outdoor heat exchanger 5 is supercooled by the supercooling heat exchanger 15 by the supercooling liquid refrigerant branched into the branch path 27 a on the downstream side of the supercooling heat exchanger 15. (Supercooling section CD). Here, T1, T2, and T3 in the figure indicate isotherms (t1> t2> t3) of temperatures t1 (° C.), t2 (° C.), and t3 (° C.), respectively, and the liquid refrigerant flowing through the main path 26 Indicates that the supercooling heat exchanger 15 is supercooled from t1 (° C.) to t2 (° C.). Let the pressure value in the state at the point D of the liquid refrigerant after this supercooling be p0 (MPa abs).

そして、過冷却された後の液冷媒は、主経路26においてその一部が分岐された後、室内熱交換器用膨張弁23により膨張され、冷房を行う室内空気よりも低温・低圧の液冷媒となる(膨張区間DEm)。この低温・低圧となった液冷媒の点Emでの状態における圧力値をp2(MPa abs)とする。点Emの状態となった液冷媒は室内熱交換器8へと送られ、室内熱交換器8にて室内空気からの吸熱による冷媒の蒸発が行われる(蒸発区間EmAm)。そして、ガス冷媒となった冷媒が主圧縮機2の吸入ラインを構成する経路32を流れて主圧縮機2へと再び吸入される。つまり、ここで蒸発区間EmAmにおける冷媒圧力(値p2)は、前述した主圧縮機2の冷媒の冷媒吸入圧力Pmと同等となり、冷媒回路において主圧縮機2に吸入される冷媒の流量がGmとなる。   Then, the liquid refrigerant after being supercooled is partly branched in the main path 26 and then expanded by the indoor heat exchanger expansion valve 23, and the liquid refrigerant having a lower temperature and lower pressure than the indoor air for cooling. (Expansion section DEm). The pressure value at the point Em of the liquid refrigerant that has become low temperature and low pressure is defined as p2 (MPa abs). The liquid refrigerant in the state of point Em is sent to the indoor heat exchanger 8, where the refrigerant is evaporated by heat absorption from the indoor air (evaporation section EmAm). Then, the refrigerant that has become the gas refrigerant flows through the path 32 constituting the suction line of the main compressor 2 and is sucked into the main compressor 2 again. That is, here, the refrigerant pressure (value p2) in the evaporation section EmAm is equal to the refrigerant suction pressure Pm of the refrigerant of the main compressor 2 described above, and the flow rate of refrigerant sucked into the main compressor 2 in the refrigerant circuit is Gm. Become.

一方、分岐経路27aに分岐される過冷却用液冷媒は、過冷却熱交換器用膨張弁22にて膨張されて点Cでの状態における液冷媒よりも圧力・温度が低下する(膨張区間DEs)。このとき、過冷却用液冷媒は、過冷却熱交換器用膨張弁22によって前述した過冷却された後の液冷媒の温度t2(℃)からt3(℃)まで低下する。このように、過冷却熱交換器15にて過冷却された液冷媒のうち、分岐経路27aに分岐される液冷媒が過冷却用液冷媒となる。そして、分岐経路27aに分岐される液冷媒の冷媒回路における流量がGsとなる。ここで、過冷却熱交換器用膨張弁22による分岐した液冷媒の膨張(膨張区間DEs)が、室内熱交換器用膨張弁23による液冷媒の膨張(膨張区間DEm)よりも抑えたものとなっているのは、次のような理由からである。すなわち、分岐経路27aに分岐される過冷却用液冷媒によって主経路26を流れる液冷媒を過冷却するには、過冷却用液冷媒が過冷却熱交換器15に送り込まれる前の液冷媒(点Cの状態)よりも低温となればよく、過冷却熱交換器用膨張弁22における過冷却用液冷媒の膨張を、点Dの状態での冷媒の圧力値p0が圧力値p1に降下するまでにとどめても過冷却を行うことができるからである。   On the other hand, the supercooled liquid refrigerant branched into the branch path 27a is expanded by the expansion valve 22 for the supercooling heat exchanger and has a lower pressure and temperature than the liquid refrigerant in the state at point C (expansion section DEs). . At this time, the supercooled liquid refrigerant is decreased from the temperature t2 (° C.) to t3 (° C.) of the liquid refrigerant after being supercooled by the expansion valve 22 for the supercooling heat exchanger. In this way, among the liquid refrigerant supercooled by the supercooling heat exchanger 15, the liquid refrigerant branched to the branch path 27a becomes the supercooling liquid refrigerant. And the flow volume in the refrigerant circuit of the liquid refrigerant branched to the branch path 27a becomes Gs. Here, the expansion of the branched liquid refrigerant (expansion section DEs) by the expansion valve 22 for the supercooling heat exchanger is suppressed more than the expansion of the liquid refrigerant (expansion section DEm) by the expansion valve 23 for the indoor heat exchanger. The reason is as follows. That is, in order to supercool the liquid refrigerant flowing through the main path 26 by the supercooling liquid refrigerant branched into the branch path 27a, the liquid refrigerant before the supercooling liquid refrigerant is sent to the supercooling heat exchanger 15 (point) C state), and the expansion of the supercooling liquid refrigerant in the supercooling heat exchanger expansion valve 22 is caused until the refrigerant pressure value p0 in the state of point D drops to the pressure value p1. This is because supercooling can be performed even if it is limited.

そして、点Esの状態となった過冷却用液冷媒は、過冷却熱交換器15にて主経路26を流れる液冷媒から吸熱することにより、主経路26を流れる液冷媒を過冷却する(蒸発区間EsAs)。この過冷却を終えた冷媒は、補助圧縮機3の吸入ラインを構成する経路33を流れて補助圧縮機3へと再び吸入される。ここで、冷媒回路において、主経路26を流れる液冷媒は分岐経路27aに一部(流量Gs)分岐され、室内熱交換器8に送り込まれる液冷媒の流量Gmが全量Goと比較して減少することとなるが、分岐される前の液冷媒が過冷却熱交換器15において過冷却されることにより、液冷媒の単位質量流量当たりの吸熱能力(冷房能力)(kJ/kg)が高まるので、室内熱交換器8における冷房能力は維持又は向上される。   Then, the supercooled liquid refrigerant in the state of point Es absorbs heat from the liquid refrigerant flowing through the main path 26 in the supercooling heat exchanger 15, thereby supercooling the liquid refrigerant flowing through the main path 26 (evaporation). Section EsAs). The refrigerant that has been supercooled flows through the path 33 that forms the suction line of the auxiliary compressor 3 and is sucked into the auxiliary compressor 3 again. Here, in the refrigerant circuit, the liquid refrigerant flowing through the main path 26 is partially branched (flow rate Gs) into the branch path 27a, and the flow rate Gm of the liquid refrigerant sent to the indoor heat exchanger 8 is reduced compared to the total amount Go. However, since the liquid refrigerant before branching is supercooled in the supercooling heat exchanger 15, the heat absorption capacity (cooling capacity) per unit mass flow rate (kJ / kg) of the liquid refrigerant is increased. The cooling capacity in the indoor heat exchanger 8 is maintained or improved.

このように、分岐経路27aに分岐される流量Gsの過冷却用液冷媒の過冷却熱交換器用膨張弁22による膨張を、分岐後の流量Gmの液冷媒の室内熱交換器用膨張弁23による膨張よりも抑え、過冷却用液冷媒の圧力降下を圧力値p0から圧力値p1にとどめることで、蒸発区間EsAsにおける蒸発圧を高圧とすることができる。つまり、分岐される流量Gsの過冷却用冷媒の蒸発圧を、分岐後の残りの流量Gmの冷媒の蒸発圧と比較して高めることができるので、圧縮区間AsBにおいて必要な圧縮仕事ΔWsを、圧縮区間AmBにおいて必要な圧縮仕事ΔWmと比較して大幅に低減することができる。これにより、補助圧縮機3における圧縮仕事を主圧縮機2における圧縮仕事と比較して大幅に低減することができ、エンジンヒートポンプにおける全圧縮仕事の低減を図ることができる。   In this way, the expansion of the subcooled liquid refrigerant at the flow rate Gs branched into the branch path 27a by the subcooling heat exchanger expansion valve 22 is expanded by the expansion of the branch flow rate Gm of the liquid refrigerant by the indoor heat exchanger expansion valve 23. By suppressing the pressure drop of the supercooled liquid refrigerant from the pressure value p0 to the pressure value p1, the evaporation pressure in the evaporation section EsAs can be increased. That is, since the evaporation pressure of the refrigerant for subcooling at the flow rate Gs to be branched can be increased compared with the evaporation pressure of the refrigerant at the remaining flow rate Gm after the branching, the compression work ΔWs required in the compression section AsB is Compared with the required compression work ΔWm in the compression section AmB, it can be greatly reduced. Thereby, the compression work in the auxiliary compressor 3 can be significantly reduced as compared with the compression work in the main compressor 2, and the total compression work in the engine heat pump can be reduced.

具体的な圧縮仕事の低減量としては、次のように表される。なお、ここでの比較対象は、全量Goの冷媒を単一の圧縮仕事ΔWmにて圧縮する場合の全圧縮仕事である。言い換えると、補助圧縮機を具備せずに単一の圧縮機を備える冷媒回路において、全量Goの冷媒を圧縮仕事ΔWmにて圧縮する場合の全圧縮仕事である。これは、分岐経路27aに分岐される流量Gsの過冷却用液冷媒の、膨張区間DEsにおける圧力降下を圧力値p0から圧力値p2とした場合の全圧縮仕事と同等となる。まず、ここでの比較対象である全量Goの冷媒を単一の圧縮仕事ΔWmにて圧縮する場合の全圧縮仕事は、Go×ΔWm=Go×(h0−h2) (Go:Gm+Gs)・・・(1)で表される。一方、本発明におけるエンジンヒートポンプ全体としての圧縮仕事は、前述したように、分岐経路27aに分岐される流量Gsの過冷却用液冷媒の圧力降下をp0からp1にとどめているため、全圧縮仕事は、(Gm×ΔWm)+(Gs×ΔWs)={Gm×(h0−h2)}+{Gs×(h0−h1)}・・・(2)で表される。つまり、分岐経路27aに分岐される流量Gsの過冷却用液冷媒の圧力降下をp0からp1にとどめ、この流量Gsの冷媒の蒸発圧を高めることによる圧縮仕事の低減量は、前記式(1)と式(2)の差分、即ち、Gs×(ΔWm−ΔWs)=(Gs×(h1−h2)分の圧縮仕事が低減されることとなる。   The specific amount of reduction in compression work is expressed as follows. The comparison target here is the total compression work in the case where the entire amount of refrigerant is compressed with a single compression work ΔWm. In other words, it is the total compression work in the case where the refrigerant of the total amount Go is compressed with the compression work ΔWm in the refrigerant circuit including the single compressor without including the auxiliary compressor. This is equivalent to the total compression work when the pressure drop in the expansion section DEs of the supercooled liquid refrigerant with the flow rate Gs branched to the branch path 27a is changed from the pressure value p0 to the pressure value p2. First, the total compression work in the case of compressing the refrigerant of the total amount Go, which is the comparison target here, with a single compression work ΔWm is Go × ΔWm = Go × (h0−h2) (Go: Gm + Gs). It is represented by (1). On the other hand, as described above, the compression work of the engine heat pump as a whole in the present invention keeps the pressure drop of the supercooled liquid refrigerant at the flow rate Gs branched to the branch path 27a from p0 to p1, so (Gm × ΔWm) + (Gs × ΔWs) = {Gm × (h0−h2)} + {Gs × (h0−h1)} (2) That is, the pressure drop of the supercooled liquid refrigerant at the flow rate Gs branched into the branch path 27a is kept from p0 to p1, and the amount of reduction in compression work by increasing the evaporation pressure of the refrigerant at the flow rate Gs is expressed by the above formula (1 ) And the expression (2), that is, compression work corresponding to Gs × (ΔWm−ΔWs) = (Gs × (h1−h2)) is reduced.

このように、主圧縮機2で圧縮される冷媒よりも蒸発圧(前記冷媒吸入圧力)が高い過冷却用の冷媒を、エンジン4で駆動される補助圧縮機3によって圧縮する構成とすることにより、従来は電気駆動式としていた補助圧縮機分の電力の利用量を新たに増加することなく、冷媒サイクルにおける全圧縮仕事の低減が図れると共に、過冷却熱交換器15による過冷却作用により、冷房能力の維持又は向上も図れる。   As described above, the subcooling refrigerant having a higher evaporation pressure (the refrigerant suction pressure) than the refrigerant compressed by the main compressor 2 is compressed by the auxiliary compressor 3 driven by the engine 4. In addition, it is possible to reduce the total compression work in the refrigerant cycle without newly increasing the amount of electric power used for the auxiliary compressor, which was conventionally electrically driven, and to reduce the cooling by the supercooling action of the supercooling heat exchanger 15. Capability can be maintained or improved.

次に、本発明に係るエンジンヒートポンプにおける主圧縮機2と補助圧縮機3の容量比について説明する。ここでいう主圧縮機2と補助圧縮機3の容量比とは、各圧縮機2、3の吐出容量の比であり、各圧縮機2、3の吐出容量は、それぞれについての体積容量及び回転数から導かれる。体積容量とは、各圧縮機2、3が備える回転体の1サイクル(1回転)当たりの冷媒の吸入体積(cc/サイクル)である。また、各圧縮機2、3の回転数は、主圧縮機2及び補助圧縮機3は前述したように共通のエンジン4によって駆動されるため、主圧縮機2及び補助圧縮機3それぞれのエンジン4のエンジンプーリに対するプーリ比(変速比)によってそれぞれ決まる。これらのことから、各圧縮機2、3の吐出容量は、体積容量とプーリ比との積から求められ、主圧縮機2の体積容量、プーリ比をそれぞれVm、Umとし、補助圧縮機3の体積容量、プーリ比をそれぞれVs、Usとすると、主圧縮機2の吐出容量はVm×Umとなり、補助圧縮機3の吐出容量はVs×Usとなる。すなわち、補助圧縮機3の、主圧縮機2と補助圧縮機3の合計容量(合計吐出容量)に対する容量比(以下「補助圧縮機容量比R(%)」という。)は、次式、R=(Vs×Us)/{(Vm×Um)+(Vs×Us)}で表される。このことから、補助圧縮機容量比Rは、各圧縮機2、3の体積容量Vm、Vsが同等の場合はそれぞれのエンジン4に対するプーリ比Um、Usによって決まり、各圧縮機2、3のエンジン4に対するプーリ比Um、Usが同等のときは、それぞれの体積容量Vm、Vsによって決まる。なお、本発明においては、補助圧縮機3の吐出容量は主圧縮機2の吐出容量よりも小さい構成としている。そして、本発明に係るエンジンヒートポンプにおいては、この補助圧縮機容量比R(%)を20%から29%に構成している。以下、補助圧縮機容量比Rを前記数値範囲に構成することについて説明する。   Next, the capacity ratio between the main compressor 2 and the auxiliary compressor 3 in the engine heat pump according to the present invention will be described. The capacity ratio of the main compressor 2 and the auxiliary compressor 3 here is the ratio of the discharge capacities of the compressors 2 and 3, and the discharge capacities of the compressors 2 and 3 are the volume capacity and rotation of the compressors 2 and 3, respectively. Derived from the number. The volume capacity is the refrigerant suction volume (cc / cycle) per one cycle (one rotation) of the rotating body included in each of the compressors 2 and 3. The rotation speeds of the compressors 2 and 3 are such that the main compressor 2 and the auxiliary compressor 3 are driven by the common engine 4 as described above. It depends on the pulley ratio (transmission ratio) with respect to the engine pulley. From these things, the discharge capacity of each compressor 2 and 3 is calculated | required from the product of volume capacity | capacitance and pulley ratio, the volume capacity and pulley ratio of the main compressor 2 are set to Vm and Um, respectively, and auxiliary compressor 3's When the volume capacity and the pulley ratio are Vs and Us, respectively, the discharge capacity of the main compressor 2 is Vm × Um, and the discharge capacity of the auxiliary compressor 3 is Vs × Us. That is, the capacity ratio of the auxiliary compressor 3 to the total capacity (total discharge capacity) of the main compressor 2 and the auxiliary compressor 3 (hereinafter referred to as “auxiliary compressor capacity ratio R (%)”) is expressed by the following equation: R = (Vs × Us) / {(Vm × Um) + (Vs × Us)}. From this, the auxiliary compressor capacity ratio R is determined by the pulley ratios Um and Us for the respective engines 4 when the volume capacities Vm and Vs of the respective compressors 2 and 3 are equal, and the engine of each compressor 2 and 3 is determined. When the pulley ratios Um and Us with respect to 4 are equal, they are determined by the respective volume capacities Vm and Vs. In the present invention, the discharge capacity of the auxiliary compressor 3 is smaller than the discharge capacity of the main compressor 2. In the engine heat pump according to the present invention, the auxiliary compressor capacity ratio R (%) is configured from 20% to 29%. Hereinafter, the configuration of the auxiliary compressor capacity ratio R in the numerical range will be described.

エンジンヒートポンプの冷媒回路において、補助圧縮機容量比Rが変わることによる影響は、主経路26において分岐経路27a(冷房サイクル時)又は27b(暖房サイクル時)に分岐される流量Gsの過冷却用液冷媒の全量Goに対する割合が変化することである。つまり、補助圧縮機容量比Rが大きくなると分岐される流量Gsの液冷媒の全量Goに対する割合が増加し、補助圧縮機容量比Rが小さくなると分岐される流量Gsの液冷媒の全量Goに対する割合が減少する。こうしたことを踏まえ、本発明における補助圧縮機容量比Rの数値範囲20%〜29%について説明する。なお、以下の説明においては、主経路26において分岐経路27a又は27bに分岐される過冷却用の液冷媒(流量Gs)を「分岐液冷媒」、分岐後に主経路26を流れる液冷媒(流量Gm)を「主液冷媒」と定義して説明する。   In the refrigerant circuit of the engine heat pump, the effect of the change in the auxiliary compressor capacity ratio R is that the supercooling liquid with the flow rate Gs branched in the main path 26 into the branch path 27a (during the cooling cycle) or 27b (during the heating cycle). That is, the ratio of the refrigerant to the total amount Go changes. That is, the ratio of the branched flow rate Gs to the total amount of liquid refrigerant Go increases as the auxiliary compressor capacity ratio R increases, and the ratio of the branched flow rate Gs to the total amount of liquid refrigerant Go decreases as the auxiliary compressor capacity ratio R decreases. Decrease. Based on this, the numerical range 20% to 29% of the auxiliary compressor capacity ratio R in the present invention will be described. In the following description, the supercooled liquid refrigerant (flow rate Gs) branched into the branch path 27a or 27b in the main path 26 is “branched liquid refrigerant”, and the liquid refrigerant (flow rate Gm) that flows through the main path 26 after branching. ) Is defined as “main liquid refrigerant”.

まず、補助圧縮機容量比Rの数値範囲20%〜29%に関し、上限値を29%とすることについて説明する。補助圧縮機容量比Rの上限値29%は、冷房サイクル時(冷房時)における運転効率(エネルギー効率)の変化から導かれる。つまり、冷房時において、補助圧縮機容量比Rを大きくすることにより、分岐経路27aへの分岐液冷媒の流量Gs、即ち主経路26を流れる全量Goの液冷媒を過冷却する過冷却用液冷媒の量が多くなるので、過冷却熱交換器15における過冷却作用が高まり、主液冷媒の単位質量流量当たりの冷房能力も高まることとなる。しかし、分岐液冷媒の流量Gsが多くなる分、主液冷媒の流量Gmが少なくなり、室内熱交換器8においての十分な冷房能力を得ることができなくなる。こうした現象に基づく運転効率(エネルギー効率)の変化から補助圧縮機容量比Rの上限値が定められる。   First, regarding the numerical range 20% to 29% of the auxiliary compressor capacity ratio R, an explanation will be given of setting the upper limit value to 29%. The upper limit 29% of the auxiliary compressor capacity ratio R is derived from a change in operating efficiency (energy efficiency) during the cooling cycle (cooling). That is, at the time of cooling, by increasing the auxiliary compressor capacity ratio R, the flow rate Gs of the branch liquid refrigerant to the branch path 27a, that is, the supercooled liquid refrigerant that supercools the total amount of liquid refrigerant flowing through the main path 26. Therefore, the supercooling effect in the supercooling heat exchanger 15 is increased, and the cooling capacity per unit mass flow rate of the main liquid refrigerant is also increased. However, as the flow rate Gs of the branch liquid refrigerant increases, the flow rate Gm of the main liquid refrigerant decreases, and sufficient cooling capacity in the indoor heat exchanger 8 cannot be obtained. The upper limit value of the auxiliary compressor capacity ratio R is determined from a change in operating efficiency (energy efficiency) based on such a phenomenon.

そして、本発明において、補助圧縮機容量比Rの上限値を29%とすることにつき、その根拠となる具体的な測定データを示すのが図4に示すグラフである。図4に示すグラフにおいて、横軸は補助圧縮機容量比R(%)、縦軸は冷媒サイクルにおける成績係数(Coefficient of Performance:COP)である。このCOPは、冷・暖房能力/燃料消費量で表され、COPの値が大きいほど運転効率(エネルギー効率)が良いことを示す。また、破線で表すグラフは、補助圧縮機を具備せずに単一の圧縮機を備える場合の冷媒回路構成におけるCOPを示す。このグラフからわかるように、冷房時におけるCOPは、補助圧縮機容量比Rが10%付近では単一圧縮機の場合より高い値で横ばいとなっているが、補助圧縮機容量比Rが15%に近付く辺りから補助圧縮機容量比Rが増加するにつれてCOPは減少している。そして、補助圧縮機容量比Rが約30%となる時点から冷房時におけるCOPが単一圧縮機の場合のCOPを下回っている。つまり、この時点での補助圧縮機容量比Rの値(約30%)が、前述した本発明における冷房時の全圧縮仕事の低減を図ることによる運転効率(COP)の向上を図れる臨界値(上限値)であり、補助圧縮機容量比Rが約30%未満であれば、冷房時におけるCOPは、従来と比較して高い値を保つことができる。このことから、本発明における補助圧縮機容量比Rの上限値を29%としている。なお、グラフからわかるように、暖房サイクル時におけるCOPは、補助圧縮機容量比Rの値に関わらず常に従来よりも高い値を示す。   And in this invention, it is the graph shown in FIG. 4 which shows the specific measurement data used as the foundation about setting the upper limit of the auxiliary compressor capacity ratio R to 29%. In the graph shown in FIG. 4, the horizontal axis represents the auxiliary compressor capacity ratio R (%), and the vertical axis represents the coefficient of performance (COP) in the refrigerant cycle. The COP is expressed by cooling / heating capacity / fuel consumption, and the larger the COP value, the better the operation efficiency (energy efficiency). Moreover, the graph shown with a broken line shows COP in a refrigerant circuit structure in the case of providing a single compressor without providing an auxiliary compressor. As can be seen from this graph, the COP during cooling is flat at a higher value than in the case of a single compressor when the auxiliary compressor capacity ratio R is around 10%, but the auxiliary compressor capacity ratio R is 15%. As the auxiliary compressor capacity ratio R increases, the COP decreases. The COP at the time of cooling is lower than the COP in the case of a single compressor from the time when the auxiliary compressor capacity ratio R becomes about 30%. In other words, the value (about 30%) of the auxiliary compressor capacity ratio R at this point is a critical value (COP) that can improve the operating efficiency (COP) by reducing the total compression work during cooling in the present invention described above. If the auxiliary compressor capacity ratio R is less than about 30%, the COP at the time of cooling can maintain a high value as compared with the conventional case. Therefore, the upper limit value of the auxiliary compressor capacity ratio R in the present invention is set to 29%. As can be seen from the graph, the COP during the heating cycle always shows a higher value than before, regardless of the value of the auxiliary compressor capacity ratio R.

次に、補助圧縮機容量比Rの数値範囲20%〜29%に関し、下限値を20%とすることについて説明する。補助圧縮機容量比Rの下限値20%は、暖房サイクル時(暖房時)における過冷却熱交換器15の主経路26側の冷媒入口となる接続点15aの冷媒温度(以下単に「入口温度」という。)と、過冷却熱交換器15の主経路26側の冷媒出口となる接続点15bの冷媒温度(以下単に「出口温度」という。)との関係から導かれる。つまり、暖房時において、補助圧縮機容量比Rを小さくすることにより、分岐経路27bに分岐する分岐液冷媒の流量Gs、即ち主経路26を流れる全量Goの液冷媒を過冷却する過冷却用液冷媒の量が少なくなるので、過冷却熱交換器15における過冷却作用が低下し、分岐液冷媒は蒸発し易くなる。しかし、分岐液冷媒の流量Gsが少なくなる分、主液冷媒の流量Gmが多くなり、全量Goの液冷媒が過冷却熱交換器15で十分に過冷却されない状態となって、過冷却熱交換器15において略一定となる入口温度に対して出口温度が上昇してしまう。こうした過冷却熱交換器15における入口温度に対する出口温度の上昇は、暖房時において過冷却熱交換器15で十分な過冷却度を得ることの妨げとなる。つまり、暖房時に過冷却熱交換器15の性能を確保するためには、過冷却される液冷媒の入口温度と、過冷却後の出口温度との間に一定以上の温度差(例えば、5℃以上)、つまり、過冷却度が生じるよう、補助圧縮機3の容量を選定(構成)する必要がある。このようなことから、補助圧縮機容量比Rの下限値が定められる。   Next, regarding the numerical range 20% to 29% of the auxiliary compressor capacity ratio R, setting the lower limit to 20% will be described. The lower limit value 20% of the auxiliary compressor capacity ratio R is the refrigerant temperature (hereinafter simply referred to as “inlet temperature”) at the connection point 15a serving as the refrigerant inlet on the main path 26 side of the supercooling heat exchanger 15 during the heating cycle (heating). And the refrigerant temperature at the connection point 15b serving as the refrigerant outlet on the main path 26 side of the supercooling heat exchanger 15 (hereinafter simply referred to as “outlet temperature”). That is, during heating, by reducing the auxiliary compressor capacity ratio R, the subcooling liquid that supercools the flow rate Gs of the branch liquid refrigerant that branches into the branch path 27b, that is, the total amount of liquid refrigerant that flows through the main path 26. Since the amount of the refrigerant is reduced, the supercooling action in the supercooling heat exchanger 15 is reduced, and the branch liquid refrigerant is easily evaporated. However, as the flow rate Gs of the branch liquid refrigerant decreases, the flow rate Gm of the main liquid refrigerant increases, so that the total amount of liquid refrigerant is not sufficiently subcooled by the subcooling heat exchanger 15 and the subcooling heat exchange is performed. In the vessel 15, the outlet temperature rises with respect to the substantially constant inlet temperature. Such an increase in the outlet temperature with respect to the inlet temperature in the supercooling heat exchanger 15 hinders obtaining a sufficient degree of supercooling in the supercooling heat exchanger 15 during heating. That is, in order to ensure the performance of the supercooling heat exchanger 15 during heating, a temperature difference of a certain level (for example, 5 ° C.) between the inlet temperature of the supercooled liquid refrigerant and the outlet temperature after supercooling. In other words, it is necessary to select (configure) the capacity of the auxiliary compressor 3 so that the degree of supercooling occurs. For this reason, the lower limit value of the auxiliary compressor capacity ratio R is determined.

そして、本発明において、補助圧縮機容量比Rの下限値を20%とすることにつき、その根拠となる具体的な測定データを示すのが図5に示すグラフである。図5に示すグラフにおいて、横軸は補助圧縮機容量比R(%)、縦軸は過冷却熱交換器15の入口温度又は出口温度(℃)であり、暖房時におけるそれぞれの値を示している。 このグラフからわかるように、過冷却熱交換器15の入口温度は、補助圧縮機容量比Rの値に関わらず略一定の温度(32〜33℃)となっている。一方、過冷却熱交換器15の出口温度は、補助圧縮機容量比Rの減少にともなって入口温度よりも低い温度から高い温度へと上昇している。つまり、補助圧縮機容量比Rがある値となる時点から出口温度の方が入口温度よりも高くなる。そして、本発明において、暖房時において過冷却熱交換器15の性能を確保することができる入口温度と出口温度との関係は、出口温度が入口温度に対して約5℃以上低いことが好ましく、出口温度が入口温度よりも約5℃以上低くなる補助圧縮機容量比Rの臨界値(下限値)が20%となっている。このことから、本発明における補助圧縮機容量比Rの下限値を20%としている。   And in this invention, it is the graph shown in FIG. 5 which shows the specific measurement data used as the basis about setting the lower limit of auxiliary compressor capacity ratio R to 20%. In the graph shown in FIG. 5, the horizontal axis is the auxiliary compressor capacity ratio R (%), and the vertical axis is the inlet temperature or outlet temperature (° C.) of the supercooling heat exchanger 15. Yes. As can be seen from this graph, the inlet temperature of the subcooling heat exchanger 15 is substantially constant (32 to 33 ° C.) regardless of the value of the auxiliary compressor capacity ratio R. On the other hand, the outlet temperature of the supercooling heat exchanger 15 increases from a temperature lower than the inlet temperature to a higher temperature as the auxiliary compressor capacity ratio R decreases. That is, the outlet temperature becomes higher than the inlet temperature from the time when the auxiliary compressor capacity ratio R becomes a certain value. In the present invention, the relationship between the inlet temperature and the outlet temperature that can ensure the performance of the supercooling heat exchanger 15 during heating is preferably such that the outlet temperature is lower by about 5 ° C. or more than the inlet temperature. The critical value (lower limit value) of the auxiliary compressor capacity ratio R at which the outlet temperature is about 5 ° C. lower than the inlet temperature is 20%. For this reason, the lower limit value of the auxiliary compressor capacity ratio R in the present invention is set to 20%.

以上説明したように、本発明に係るエンジンヒートポンプにおける補助圧縮機容量比Rについて、冷房時から定まる上限値及び暖房時から定まる下限値から、その数値範囲を20%から29%となるように構成することにより、冷房時において冷房能力の維持又は向上が図れると共に、暖房時において過冷却熱交換器15の性能を確保することができる。つまり、共通のエンジン4で主圧縮機2及び補助圧縮機3を駆動する本発明の構成において、補助圧縮機容量比Rを20%から29%の範囲内に構成することにより、冷房時及び暖房時における運転効率(エネルギー効率)の良い運転が可能となる。   As described above, the auxiliary compressor capacity ratio R in the engine heat pump according to the present invention is configured such that the numerical range is 20% to 29% from the upper limit value determined from the cooling time and the lower limit value determined from the heating time. As a result, the cooling capacity can be maintained or improved during cooling, and the performance of the supercooling heat exchanger 15 can be ensured during heating. In other words, in the configuration of the present invention in which the main compressor 2 and the auxiliary compressor 3 are driven by the common engine 4, the auxiliary compressor capacity ratio R is configured in the range of 20% to 29%, so that the cooling and heating can be performed. Operation with good operation efficiency (energy efficiency) at the time is possible.

なお、本発明に係るエンジンヒートポンプの冷媒回路構成において、エンジン4から主圧縮機2及び補助圧縮機3への駆動力の伝達に無段変速機(Continuously Variable Transmission:CVT)を採用する構成とすることもできる。この場合、前述したような冷房時及び暖房時それぞれにおける補助圧縮機容量比Rの臨界値を考慮して、CVTにより主圧縮機2及び補助圧縮機3の変速比を変える。   In the refrigerant circuit configuration of the engine heat pump according to the present invention, a continuously variable transmission (CVT) is adopted to transmit driving force from the engine 4 to the main compressor 2 and the auxiliary compressor 3. You can also. In this case, the gear ratios of the main compressor 2 and the auxiliary compressor 3 are changed by CVT in consideration of the critical value of the auxiliary compressor capacity ratio R during cooling and heating as described above.

具体的に本発明に係るエンジンヒートポンプにおいては、冷房時では補助圧縮機容量比Rの値が前述した上限値よりも小さければよく、また、暖房時では補助圧縮機容量比Rの値が前述した下限値よりも大きければよい。すなわち、冷房時においては、補助圧縮機容量比Rが約30%未満、暖房時においては、補助圧縮機容量比Rが20%以上となるようにCVTを制御し、冷房時及び暖房時において変速比を変える構成とする。このように、CVTを用いる構成とすることにより、主圧縮機2の体積容量Vm及びプーリ比Umに対して設定される補助圧縮機3の体積容量Vs及びプーリ比Usの自由度を向上させることができる。また、冷房サイクルにおいては上限値だけを定めればよく、暖房サイクルにおいては上限値だけを定めればよいこととなるので、冷房時及び暖房時それぞれにおいて、補助圧縮機容量比Rをより好適な値とすることが可能となり、各サイクルにおける運転効率(エネルギー効率)の向上が図れる。   Specifically, in the engine heat pump according to the present invention, it is sufficient that the value of the auxiliary compressor capacity ratio R is smaller than the above-described upper limit value during cooling, and the value of the auxiliary compressor capacity ratio R is described above during heating. It only needs to be larger than the lower limit. That is, the CVT is controlled so that the auxiliary compressor capacity ratio R is less than about 30% during cooling, and the auxiliary compressor capacity ratio R is 20% or more during heating, and the speed is changed during cooling and heating. The ratio is changed. As described above, by using the CVT, the degree of freedom of the volume capacity Vs and the pulley ratio Us of the auxiliary compressor 3 set with respect to the volume capacity Vm and the pulley ratio Um of the main compressor 2 is improved. Can do. Further, only the upper limit value needs to be determined in the cooling cycle, and only the upper limit value needs to be determined in the heating cycle. Therefore, the auxiliary compressor capacity ratio R is more suitable for each of the cooling time and the heating time. The value can be set, and the operation efficiency (energy efficiency) in each cycle can be improved.

ところで、本発明に係るエンジンヒートポンプにおいては、室外熱交換器5と並列にエンジン廃熱回収器6を設けている。そして、主経路26において分岐される過冷却用液冷媒をこのエンジン廃熱回収器6で蒸発すると共に補助圧縮機3で圧縮する構成としている。   Incidentally, in the engine heat pump according to the present invention, an engine waste heat recovery unit 6 is provided in parallel with the outdoor heat exchanger 5. The supercooled liquid refrigerant branched in the main path 26 is evaporated by the engine waste heat recovery unit 6 and compressed by the auxiliary compressor 3.

エンジン廃熱回収器6は、前述したように、暖房時において過冷却熱交換器15を通過した分岐液冷媒が吸熱して蒸発するためのものであり、このエンジン廃熱回収器6においては、分岐液冷媒と、この分岐液冷媒と比較して高温となるエンジン冷却水CWとの熱交換が行われることにより分岐液冷媒が吸熱して蒸発する。   As described above, the engine waste heat recovery unit 6 is for absorbing and evaporating the branched liquid refrigerant that has passed through the supercooling heat exchanger 15 during heating. In the engine waste heat recovery unit 6, The branch liquid refrigerant absorbs heat and evaporates by heat exchange between the branch liquid refrigerant and the engine coolant CW, which is higher in temperature than the branch liquid refrigerant.

次に、モリエル線図(図3)上の冷凍サイクルに関し、暖房サイクルの場合について説明する。なお、前述した冷房サイクルの場合と重複する部分については、その説明を省略する。まず、主圧縮機2及び補助圧縮機3にて圧縮され高圧となった冷媒(ガス冷媒)は、合流点65にて合流する。この合流した冷媒は室内熱交換器8に送られる。室内熱交換器8においては、高圧ガスとなった冷媒の凝縮による放熱が行われ、暖房を行う室内に放熱すると共に冷却されて液冷媒となる(凝縮区間BC)。つまり、点Bの状態は、冷媒が合流点65から室内熱交換器8までの経路にある状態を示す。   Next, regarding the refrigeration cycle on the Mollier diagram (FIG. 3), the case of the heating cycle will be described. In addition, the description which overlaps with the case of the cooling cycle mentioned above is abbreviate | omitted. First, the refrigerant (gas refrigerant) compressed to high pressure by the main compressor 2 and the auxiliary compressor 3 joins at a junction 65. The merged refrigerant is sent to the indoor heat exchanger 8. In the indoor heat exchanger 8, heat is dissipated by condensing the refrigerant that has become high-pressure gas, and the heat is dissipated into the room to be heated and cooled to become a liquid refrigerant (condensing section BC). That is, the state at the point B indicates a state where the refrigerant is on the path from the junction 65 to the indoor heat exchanger 8.

室内熱交換器8から液冷媒として送り出された冷媒は、過冷却熱交換器15にて、過冷却熱交換器15の下流側にて分岐経路27bに分岐された過冷却用液冷媒によって過冷却される(過冷却区間CD)。   The refrigerant sent out from the indoor heat exchanger 8 as the liquid refrigerant is supercooled by the supercooling heat exchanger 15 by the supercooling liquid refrigerant branched into the branch path 27 b on the downstream side of the supercooling heat exchanger 15. (Supercooling section CD).

そして、過冷却された後の液冷媒は、主経路26においてその一部が分岐された後、室外熱交換器用膨張弁21により膨張され、低温・低圧の液冷媒となる(膨張区間DEm)。点Emの状態となった液冷媒は室外熱交換器5へと送られ、室外熱交換器5にて外気からの吸熱による冷媒の蒸発が行われる(蒸発区間EmAm)。そして、ガス冷媒となった冷媒が主圧縮機2の吸入ラインを構成する経路32を流れて主圧縮機2へと再び吸入される。   Then, after the liquid refrigerant after being supercooled is partially branched in the main path 26, the liquid refrigerant is expanded by the outdoor heat exchanger expansion valve 21 to become a low-temperature / low-pressure liquid refrigerant (expansion section DEm). The liquid refrigerant in the state of point Em is sent to the outdoor heat exchanger 5 where the refrigerant is evaporated by heat absorption from the outside air (evaporation section EmAm). Then, the refrigerant that has become the gas refrigerant flows through the path 32 constituting the suction line of the main compressor 2 and is sucked into the main compressor 2 again.

一方、分岐経路27bに分岐される過冷却用液冷媒は、過冷却熱交換器用膨張弁22にて膨張されて点Cの状態における液冷媒よりも圧力・温度が低下する(膨張区間DEs)。このように、過冷却熱交換器15にて過冷却された液冷媒のうち、分岐経路27bに分岐される液冷媒が過冷却用液冷媒となる。そして、分岐経路27bに分岐される液冷媒の冷媒回路における流量がGsとなる。   On the other hand, the supercooled liquid refrigerant branched to the branch path 27b is expanded by the expansion valve 22 for the supercooling heat exchanger, and the pressure and temperature are lower than the liquid refrigerant in the state of point C (expansion section DEs). In this way, among the liquid refrigerant supercooled by the supercooling heat exchanger 15, the liquid refrigerant branched to the branch path 27b becomes the supercooling liquid refrigerant. And the flow volume in the refrigerant circuit of the liquid refrigerant branched to the branch path 27b becomes Gs.

そして、点Esの状態となった過冷却用液冷媒は、過冷却熱交換器15にて主経路26を流れる液冷媒から吸熱することにより、主経路26を流れる液冷媒を過冷却する。過冷却熱交換器15を通過した過冷却用液冷媒は、エンジン廃熱回収器6に送り込まれる。このエンジン廃熱回収器6において、過冷却用液冷媒とエンジン冷却水CWとの熱交換が行われ、過冷却用液冷媒が吸熱して蒸発する(蒸発区間EsAs)。この蒸発した冷媒が、補助圧縮機3の吸入ラインを構成する経路33を流れて補助圧縮機3へと再び吸入される。   The supercooled liquid refrigerant in the state of point Es absorbs heat from the liquid refrigerant flowing through the main path 26 by the supercooling heat exchanger 15, thereby supercooling the liquid refrigerant flowing through the main path 26. The supercooled liquid refrigerant that has passed through the supercooling heat exchanger 15 is sent to the engine waste heat recovery unit 6. In the engine waste heat recovery unit 6, heat exchange between the supercooling liquid refrigerant and the engine cooling water CW is performed, and the supercooling liquid refrigerant absorbs heat and evaporates (evaporation section EsAs). The evaporated refrigerant flows through the path 33 constituting the suction line of the auxiliary compressor 3 and is sucked again into the auxiliary compressor 3.

このようにして暖房時においても過冷却を行うことで、次のような作用により運転効率(エネルギー効率)の向上が図られている。主経路26を流れる全量Goの液冷媒は、前述したように過冷却熱交換器15にて過冷却される。ここで液冷媒が過冷却されることにより、冷媒の単位質量流量当たりの吸熱能力(kJ/kg)が高まる。すなわち、過冷却された後の室外熱交換器5においての、液冷媒の単位質量流量当たりの外気からの吸熱能力が高まることとなり、過冷却されない場合の液冷媒と比較して少量の液冷媒で同等の熱量を吸熱することが可能となる。これにより、暖房時において室外熱交換器5に送り込まれる主液冷媒の流量Gmを減少させることができ、冷媒サイクルを循環する冷媒の全量Goを減少させることができる。この結果、冷媒サイクルにおける全圧縮仕事を低減することが可能となり、運転効率(エネルギー効率)の向上が図れる。   Thus, by performing supercooling even during heating, the operation efficiency (energy efficiency) is improved by the following action. The total amount of the liquid refrigerant flowing through the main path 26 is supercooled by the supercooling heat exchanger 15 as described above. Here, when the liquid refrigerant is supercooled, the heat absorption capacity (kJ / kg) per unit mass flow rate of the refrigerant is increased. That is, in the outdoor heat exchanger 5 after being supercooled, the heat absorption capacity from the outside air per unit mass flow rate of the liquid refrigerant is increased, and a small amount of liquid refrigerant is used as compared with the liquid refrigerant in the case of not being supercooled. It is possible to absorb the same amount of heat. Thereby, the flow rate Gm of the main liquid refrigerant sent to the outdoor heat exchanger 5 during heating can be reduced, and the total amount Go of the refrigerant circulating in the refrigerant cycle can be reduced. As a result, the total compression work in the refrigerant cycle can be reduced, and the operation efficiency (energy efficiency) can be improved.

このように、室外熱交換器5と並列にエンジン廃熱回収器6を設け、過冷却用の分岐液冷媒をエンジン廃熱回収器6で蒸発させると共に補助圧縮機3で圧縮する構成とすることにより、補助圧縮機容量比Rを前述した範囲内とすることによる冷房時の全圧縮仕事の低減が図れると共に、暖房時においても、電力の利用量を新たに増加することなく、全圧縮仕事の低減を図ることができる。さらに、暖房時においても液冷媒の過冷却を行うことにより、過冷却作用によって冷媒の単位質量流量当たりの外気からの吸熱能力が向上するので、冷媒サイクルを流れる冷媒の全量を低減することができる。この結果、全圧縮仕事を低減させることが可能となり、運転効率(エネルギー効率)を向上することができる。   As described above, the engine waste heat recovery unit 6 is provided in parallel with the outdoor heat exchanger 5, and the supercooled branch liquid refrigerant is evaporated by the engine waste heat recovery unit 6 and compressed by the auxiliary compressor 3. As a result, the total compression work during cooling can be reduced by setting the auxiliary compressor capacity ratio R within the above-described range, and the total compression work can be reduced without increasing the amount of power used even during heating. Reduction can be achieved. Further, by supercooling the liquid refrigerant even during heating, the heat absorption capacity from the outside air per unit mass flow rate of the refrigerant is improved by the supercooling action, so that the total amount of refrigerant flowing through the refrigerant cycle can be reduced. . As a result, the total compression work can be reduced, and the operation efficiency (energy efficiency) can be improved.

ところで、以上説明したエンジンヒートポンプにおいては、エンジン4で駆動される主圧縮機2及び補助圧縮機3を、それぞれ単独で駆動する構成とすることもできる。このような構成とすることによって、空調負荷の大小に応じた主圧縮機2及び補助圧縮機3の運転・停止を行うことが可能となり、運転効率(エネルギー効率)の向上を図ることができる。   By the way, in the engine heat pump demonstrated above, it can also be set as the structure which drives independently the main compressor 2 and the auxiliary compressor 3 which are driven with the engine 4, respectively. By adopting such a configuration, it becomes possible to operate / stop the main compressor 2 and the auxiliary compressor 3 according to the magnitude of the air conditioning load, and it is possible to improve the operation efficiency (energy efficiency).

この場合、具体的な構成としては、図1に示すように、エンジン4と主圧縮機2及び補助圧縮機3との間に、それぞれエンジン4の駆動力の断接(連結・非連結の切替え)を行う主圧縮機用クラッチ42及び補助圧縮機用クラッチ43を設ける。そして、主圧縮機2の吸入ラインを構成する経路32と、補助圧縮機3の吸入ラインを構成する経路33とを連絡経路34により連通すると共に、この連絡経路34に開閉弁35を設ける。つまり、開閉弁35を開閉することで連絡経路34の開通・非開通を切り替えることにより、経路32と経路33との連通・非連通を切り替えることができる構成とし、冷媒回路を空調負荷の低・中・高負荷状態に対応させて各負荷状態での運転を行う。ここで、図2に示すように、前述したコントローラ25は、主圧縮機用クラッチ42及び補助圧縮機用クラッチ43と接続されており、コントローラ25は、各負荷状態に応じてエンジン4から各クラッチへの駆動力の断接を制御する。また、同じくコントローラ25は開閉弁35と接続されており、開閉弁35の開閉を制御する。   In this case, as a specific configuration, as shown in FIG. 1, the driving force of the engine 4 is connected or disconnected between the engine 4 and the main compressor 2 and the auxiliary compressor 3 (switching between connected and unconnected). The main compressor clutch 42 and the auxiliary compressor clutch 43 are provided. The passage 32 constituting the suction line of the main compressor 2 and the passage 33 constituting the suction line of the auxiliary compressor 3 are communicated with each other by a communication route 34, and an opening / closing valve 35 is provided in the communication route 34. That is, by switching the opening / closing of the communication path 34 by opening / closing the opening / closing valve 35, the communication circuit 34 can be switched between communication / non-communication between the path 32 and the path 33, and the refrigerant circuit is reduced in air conditioning load. Operate in each load state corresponding to medium and high load state. Here, as shown in FIG. 2, the controller 25 described above is connected to the main compressor clutch 42 and the auxiliary compressor clutch 43, and the controller 25 receives each clutch from the engine 4 according to each load state. Controls connection / disconnection of driving force to / from. Similarly, the controller 25 is connected to the opening / closing valve 35 and controls the opening / closing of the opening / closing valve 35.

このような構成により、各負荷状態に応じた制御を冷房時及び暖房時それぞれにおいて例えば次のように行う。すなわち、冷房時においては、空調負荷が低負荷の場合は補助圧縮機3の単独運転とし、中負荷の場合は主圧縮機2の単独運転とする。そして、高負荷の場合は、前述したように主圧縮機2及び補助圧縮機3双方による運転とすると共に、過冷却熱交換器15にて過冷却を行う。一方、暖房時においては、空調負荷が低負荷の場合は補助圧縮機3の単独運転とし、中負荷の場合は主圧縮機2の単独運転とすると共にエンジン廃熱回収器6にて熱交換を行う。そして、高負荷の場合は、前述したように主圧縮機2及び補助圧縮機3双方による運転とすると共に、過冷却熱交換器15における過冷却及びエンジン廃熱回収器6における熱交換を行う。なお、ここでいう空調負荷の高低は、エンジンヒートポンプの空調負荷(%)が、概ね、0%〜15%となる範囲を低負荷、15%〜60%となる範囲を中負荷、60%〜100%となる範囲を高負荷とする。   With such a configuration, control according to each load state is performed as follows, for example, at the time of both cooling and heating. That is, during cooling, the auxiliary compressor 3 is operated alone when the air conditioning load is low, and the main compressor 2 is operated independently when the load is medium. When the load is high, the operation is performed by both the main compressor 2 and the auxiliary compressor 3 as described above, and the supercooling heat exchanger 15 performs supercooling. On the other hand, during heating, when the air conditioning load is low, the auxiliary compressor 3 is operated alone, and when the load is medium, the main compressor 2 is operated alone and the engine waste heat recovery unit 6 performs heat exchange. Do. In the case of a high load, the operation is performed by both the main compressor 2 and the auxiliary compressor 3 as described above, and the supercooling in the supercooling heat exchanger 15 and the heat exchange in the engine waste heat recovery unit 6 are performed. In addition, the level of the air-conditioning load referred to here is such that the range in which the air-conditioning load (%) of the engine heat pump is 0% to 15% is low, the range in which 15% to 60% is medium, and 60% to 60%. The range of 100% is a high load.

まず、冷房時の運転について説明する。空調負荷が低負荷の場合は、補助圧縮機3の単独運転とする。この場合、コントローラ25は、主圧縮機用クラッチ42を切状態とすると共に開閉弁35を開く。つまり、エンジン4の駆動力を補助圧縮機3のみに伝達させると共に、主圧縮機2の吸入ラインである経路32を補助圧縮機3の吸入ラインである経路33と連通させることにより、全量Goの冷媒を補助圧縮機3にて圧縮する。また、この場合、過冷却熱交換器用膨張弁22の開閉を制御することによって、過冷却熱交換器15による過冷却を行うか否かを制御する。そして、過冷却熱交換器15による過冷却を行う際は、合流点64(図1)での圧力損失などを低減するため圧力関係を考慮し、コントローラ25は、経路32からの冷媒圧力と経路33から冷媒圧力とが略同一となるように過冷却熱交換器用膨張弁22及び室内熱交換器用膨張弁23の開度を制御する。   First, the operation during cooling will be described. When the air conditioning load is low, the auxiliary compressor 3 is operated alone. In this case, the controller 25 disengages the main compressor clutch 42 and opens the on-off valve 35. That is, the driving force of the engine 4 is transmitted only to the auxiliary compressor 3 and the passage 32 that is the suction line of the main compressor 2 is connected to the passage 33 that is the suction line of the auxiliary compressor 3, so that the total amount of Go The refrigerant is compressed by the auxiliary compressor 3. In this case, whether or not the supercooling heat exchanger 15 performs supercooling is controlled by controlling the opening and closing of the supercooling heat exchanger expansion valve 22. When the supercooling by the supercooling heat exchanger 15 is performed, the controller 25 considers the pressure relationship in order to reduce the pressure loss at the junction 64 (FIG. 1), and the controller 25 determines the refrigerant pressure from the path 32 and the path. From 33, the opening degree of the expansion valve 22 for the supercooling heat exchanger and the expansion valve 23 for the indoor heat exchanger is controlled so that the refrigerant pressure becomes substantially the same.

また、空調負荷が中負荷の場合は、主圧縮機2の単独運転とする。この場合、コントローラ25は、補助圧縮機用クラッチ43を切状態とし、エンジン4の駆動力を主圧縮機2のみに伝達させて全量Goの冷媒を主圧縮機2にて圧縮する。また、この場合、過冷却熱交換器15による過冷却を行う際は、コントローラ25は、開閉弁35を開くと共に、合流点63(図1)において経路32からの冷媒圧力と経路33から冷媒圧力とが略同一となるように過冷却熱交換器用膨張弁22及び室内熱交換器用膨張弁23の開度を制御する。   When the air conditioning load is medium load, the main compressor 2 is operated alone. In this case, the controller 25 turns off the auxiliary compressor clutch 43, transmits the driving force of the engine 4 only to the main compressor 2, and compresses the entire amount of refrigerant by the main compressor 2. In this case, when the supercooling by the supercooling heat exchanger 15 is performed, the controller 25 opens the on-off valve 35 and the refrigerant pressure from the path 32 and the refrigerant pressure from the path 33 at the junction 63 (FIG. 1). Are controlled so that the opening degree of the expansion valve 22 for the supercooling heat exchanger and the expansion valve 23 for the indoor heat exchanger is controlled to be substantially the same.

また、空調負荷が高負荷の場合は、主圧縮機2及び補助圧縮機3双方による運転とすると共に、過冷却熱交換器15にて過冷却を行う。この場合、コントローラ25は、主圧縮機用クラッチ42及び補助圧縮機用クラッチ43を双方とも入状態とすると共に開閉弁35を閉じる。つまり、エンジン4の駆動力を各圧縮機2、3に伝達させると共に経路32と経路33との連通を断ち、流量Gmの冷媒を主圧縮機2にて圧縮させ、流量Gsの過冷却用の冷媒を補助圧縮機3にて圧縮させる。   When the air conditioning load is high, the operation is performed by both the main compressor 2 and the auxiliary compressor 3 and the supercooling heat exchanger 15 performs supercooling. In this case, the controller 25 turns on both the main compressor clutch 42 and the auxiliary compressor clutch 43 and closes the on-off valve 35. That is, the driving force of the engine 4 is transmitted to each of the compressors 2 and 3, and the communication between the passage 32 and the passage 33 is cut off, and the refrigerant of the flow rate Gm is compressed by the main compressor 2, and the supercooling of the flow rate Gs is performed. The refrigerant is compressed by the auxiliary compressor 3.

次に、暖房時の運転について説明する。空調負荷が低負荷の場合は、補助圧縮機3の単独運転とする。つまりこの場合、コントローラ25による制御態様は、前述した冷房時の運転における低負荷の場合と同様となる。   Next, operation during heating will be described. When the air conditioning load is low, the auxiliary compressor 3 is operated alone. That is, in this case, the control mode by the controller 25 is the same as in the case of the low load in the cooling operation described above.

また、空調負荷が中負荷の場合は、主圧縮機2の単独運転とすると共にエンジン廃熱回収器6にて熱交換を行う。この場合、コントローラ25は、補助圧縮機用クラッチ43を切状態とすると共に開閉弁35を開く。つまり、エンジン4の駆動力を主圧縮機2のみに伝達させると共にエンジン廃熱回収器6にて熱交換を行い、合流点63にて合流する全量Goの冷媒を主圧縮機2にて圧縮する。この場合、過冷却熱交換器15による過冷却を行う際は、コントローラ25は、開閉弁35を開くと共に、合流点63において経路32からの冷媒圧力と経路33から冷媒圧力とが略同一となるように過冷却熱交換器用膨張弁22及び室外熱交換器用膨張弁21の開度を制御する。   When the air conditioning load is a medium load, the main compressor 2 is operated alone and the engine waste heat recovery unit 6 performs heat exchange. In this case, the controller 25 disengages the auxiliary compressor clutch 43 and opens the on-off valve 35. That is, the driving force of the engine 4 is transmitted only to the main compressor 2, and heat exchange is performed by the engine waste heat recovery unit 6, and the total amount of Go refrigerant that merges at the junction 63 is compressed by the main compressor 2. . In this case, when performing the supercooling by the supercooling heat exchanger 15, the controller 25 opens the on-off valve 35 and the refrigerant pressure from the path 32 and the refrigerant pressure from the path 33 become substantially the same at the junction 63. Thus, the opening degree of the expansion valve 22 for the supercooling heat exchanger and the expansion valve 21 for the outdoor heat exchanger is controlled.

また、空調負荷が高負荷の場合は、主圧縮機2及び補助圧縮機3双方による運転とすると共に、過冷却熱交換器15における過冷却及びエンジン廃熱回収器6における熱交換を行う。この場合、コントローラ25は、主圧縮機用クラッチ42及び補助圧縮機用クラッチ43を双方とも入状態とすると共に開閉弁35を閉じる。つまり、エンジン4の駆動力を各圧縮機2、3に伝達させると共に経路32と経路33との連通を断ち、流量Gmの冷媒を主圧縮機2にて圧縮させ、エンジン廃熱回収器6にて熱交換される流量Gsの過冷却用の冷媒を補助圧縮機3にて圧縮させる。   When the air conditioning load is high, the operation is performed by both the main compressor 2 and the auxiliary compressor 3, and the supercooling in the supercooling heat exchanger 15 and the heat exchange in the engine waste heat recovery unit 6 are performed. In this case, the controller 25 turns on both the main compressor clutch 42 and the auxiliary compressor clutch 43 and closes the on-off valve 35. That is, the driving force of the engine 4 is transmitted to each of the compressors 2 and 3, the communication between the path 32 and the path 33 is cut off, the refrigerant having a flow rate Gm is compressed by the main compressor 2, and the engine waste heat recovery unit 6 The sub-cooling refrigerant with the flow rate Gs to be heat-exchanged is compressed by the auxiliary compressor 3.

このように、所要の空調負荷の高低に応じて、主圧縮機2及び補助圧縮機3の運転を切り替えることができる構成とすることにより、エンジン4の燃焼効率が低下する部分負荷での運転状態を低減することができるので、運転効率(エネルギー効率)の向上を図ることができる。   Thus, the operation state at the partial load in which the combustion efficiency of the engine 4 is reduced by adopting a configuration in which the operation of the main compressor 2 and the auxiliary compressor 3 can be switched according to the level of the required air conditioning load. Therefore, it is possible to improve the operation efficiency (energy efficiency).

本発明に係るエンジンヒートポンプの冷媒回路図。The refrigerant circuit figure of the engine heat pump which concerns on this invention. 同じく制御機器類のブロック図。The block diagram of control equipments similarly. 同じく冷媒回路構成によるモリエル線図。The Mollier diagram by a refrigerant circuit structure similarly. 補助圧縮機容量比とCOPの関係を示すグラフ。The graph which shows the relationship between auxiliary compressor capacity ratio and COP. 補助圧縮機容量比と過冷却熱交換器冷媒温度の関係を示すグラフ。The graph which shows the relationship between auxiliary compressor capacity ratio and a supercooling heat exchanger refrigerant temperature.

2 主圧縮機
3 補助圧縮機
4 エンジン
5 室外熱交換器
6 エンジン廃熱回収器
8 室内熱交換器
15 過冷却熱交換器
21 室外熱交換器用膨張弁
22 過冷却熱交換器用膨張弁
23 室内熱交換器用膨張弁
26 主経路
27a 分岐経路
27b 分岐経路
2 Main Compressor 3 Auxiliary Compressor 4 Engine 5 Outdoor Heat Exchanger 6 Engine Waste Heat Recovery Unit 8 Indoor Heat Exchanger 15 Supercooling Heat Exchanger 21 Outdoor Heat Exchanger Expansion Valve 22 Supercooling Heat Exchanger Expansion Valve 23 Indoor Heat Exchange expansion valve 26 Main path 27a Branch path 27b Branch path

Claims (2)

エンジンで駆動される主圧縮機及び補助圧縮機、室内熱交換器、室外熱交換器、室内熱交換器用膨張弁、室外熱交換器用膨張弁、並びに室内熱交換器と室外熱交換器の接続経路のうち液冷媒通過経路に設けられ分岐経路に分岐される過冷却用液冷媒により分岐前の液冷媒を過冷却する過冷却熱交換器を有し、前記補助圧縮機より吐出される冷媒を前記主圧縮機より吐出される冷媒と合流させる構成としたエンジンヒートポンプにおいて、前記過冷却用液冷媒は、前記過冷却熱交換器の通過後に、補助圧縮で圧縮する構成とすると共に、補助圧縮機の、主圧縮機と補助圧縮機の合計容量に対する容量比を20%から29%に構成し、主圧縮機及び補助圧縮機にエンジンの駆動力を断接する主圧縮機用クラッチ及び補助圧縮機用クラッチを設けたことを特徴とするエンジンヒートポンプ。 Main compressor and auxiliary compressor driven by engine, indoor heat exchanger, outdoor heat exchanger, expansion valve for indoor heat exchanger, expansion valve for outdoor heat exchanger, and connection path between indoor heat exchanger and outdoor heat exchanger A subcooling heat exchanger that supercools the liquid refrigerant before branching by the subcooling liquid refrigerant that is provided in the liquid refrigerant passage path and branches into the branch path, and the refrigerant discharged from the auxiliary compressor is in the configuration and the engine heat pump is merged with the refrigerant discharged from the main compressor, the supercooling liquid refrigerant, said after passage of the supercooling heat exchanger, with a configuration that is compressed by the auxiliary compressor, an auxiliary compressor The main compressor and auxiliary compressor have a capacity ratio of 20% to 29% with respect to the total capacity of the main compressor and the auxiliary compressor, and the main compressor clutch and the auxiliary compressor are connected to the main compressor and the auxiliary compressor. Provide a clutch Engine heat pump, characterized in that. 請求項1記載のエンジンヒートポンプにおいて、室外熱交換器と並列に、エンジン廃熱回収器を設け、前記過冷却用液冷媒を前記エンジン廃熱回収器で蒸発させると共に補助圧縮機で圧縮する構成としたことを特徴とするエンジンヒートポンプ。   The engine heat pump according to claim 1, wherein an engine waste heat recovery unit is provided in parallel with the outdoor heat exchanger, and the supercooled liquid refrigerant is evaporated by the engine waste heat recovery unit and compressed by an auxiliary compressor; An engine heat pump characterized by
JP2004150371A 2004-05-20 2004-05-20 Engine heat pump Expired - Fee Related JP4336619B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004150371A JP4336619B2 (en) 2004-05-20 2004-05-20 Engine heat pump
PCT/JP2005/007411 WO2005114064A1 (en) 2004-05-20 2005-04-18 Engine heat pump
US11/569,429 US20070295025A1 (en) 2004-05-20 2005-04-18 Engine Heat Pump
CNB200580016138XA CN100470165C (en) 2004-05-20 2005-04-18 Engine heat pump
EP05730684A EP1762792A4 (en) 2004-05-20 2005-04-18 Engine heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004150371A JP4336619B2 (en) 2004-05-20 2004-05-20 Engine heat pump

Publications (2)

Publication Number Publication Date
JP2005331177A JP2005331177A (en) 2005-12-02
JP4336619B2 true JP4336619B2 (en) 2009-09-30

Family

ID=35428465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004150371A Expired - Fee Related JP4336619B2 (en) 2004-05-20 2004-05-20 Engine heat pump

Country Status (5)

Country Link
US (1) US20070295025A1 (en)
EP (1) EP1762792A4 (en)
JP (1) JP4336619B2 (en)
CN (1) CN100470165C (en)
WO (1) WO2005114064A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110173912A (en) * 2019-04-29 2019-08-27 同济大学 A kind of the mixed working fluid compression circulatory system and working method of the recuperation of heat of band machinery

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145002A (en) * 2006-12-07 2008-06-26 Sanyo Electric Co Ltd Air conditioning device
JP5163161B2 (en) * 2008-02-01 2013-03-13 ダイキン工業株式会社 Auxiliary heating unit and air conditioner
JP5149663B2 (en) * 2008-03-24 2013-02-20 ヤンマー株式会社 Engine driven heat pump
FR2956190B1 (en) * 2010-02-08 2012-04-13 Muller & Cie Soc HEAT PUMP WITH POWER STAGES
KR101212681B1 (en) * 2010-11-08 2012-12-17 엘지전자 주식회사 air conditioner
JP6134477B2 (en) * 2012-01-10 2017-05-24 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Refrigeration equipment and refrigerator unit
KR101497813B1 (en) * 2013-06-27 2015-03-04 한국교통대학교산학협력단 Vapor injection heat pump system
EP3080527B1 (en) * 2013-12-12 2022-05-04 Johnson Controls Tyco IP Holdings LLP Steam turbine driven centrifugal heat pump
CN105466063A (en) * 2015-12-16 2016-04-06 珠海格力电器股份有限公司 Heat pump system
CN105588357B (en) * 2015-12-16 2019-04-16 珠海格力电器股份有限公司 A kind of heat pump system
CN106766327A (en) * 2016-11-29 2017-05-31 珠海格力电器股份有限公司 Air-conditioner
CN106801953A (en) * 2016-11-29 2017-06-06 珠海格力电器股份有限公司 Air-conditioner
KR102105706B1 (en) * 2017-12-12 2020-04-28 브이피케이 주식회사 Heat pump system, bidiectional injection operation method of the heat pump
EP3781883A1 (en) * 2018-04-16 2021-02-24 Carrier Corporation Dual compressor heat pump

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2242588A (en) * 1938-02-07 1941-05-20 Honeywell Regulator Co Heating system
US2273281A (en) * 1938-07-11 1942-02-17 Honeywell Regulator Co Control system
JPS60226669A (en) * 1984-04-24 1985-11-11 三洋電機株式会社 Refrigerator
JPS62293066A (en) * 1986-06-12 1987-12-19 ヤンマーディーゼル株式会社 Engine drive type heat pump type air conditioner
JPH0618121A (en) * 1992-06-30 1994-01-25 Nippondenso Co Ltd Engine driven heat pump type air conditioner
CN1205073A (en) * 1996-08-14 1999-01-13 大金工业株式会社 Air conditioner
JPH11193966A (en) * 1997-12-28 1999-07-21 Tokyo Gas Co Ltd Gas heat pump apparatus
JPH11248264A (en) * 1998-03-04 1999-09-14 Hitachi Ltd Refrigerating machine
JP4214021B2 (en) * 2003-08-20 2009-01-28 ヤンマー株式会社 Engine heat pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110173912A (en) * 2019-04-29 2019-08-27 同济大学 A kind of the mixed working fluid compression circulatory system and working method of the recuperation of heat of band machinery
CN110173912B (en) * 2019-04-29 2020-10-02 同济大学 Mixed working medium compression circulation system with mechanical heat recovery function and working method

Also Published As

Publication number Publication date
EP1762792A4 (en) 2008-05-07
WO2005114064A1 (en) 2005-12-01
JP2005331177A (en) 2005-12-02
CN1957211A (en) 2007-05-02
US20070295025A1 (en) 2007-12-27
CN100470165C (en) 2009-03-18
EP1762792A1 (en) 2007-03-14

Similar Documents

Publication Publication Date Title
WO2005114064A1 (en) Engine heat pump
JP6678332B2 (en) Outdoor unit and control method for air conditioner
WO2009147826A1 (en) Refrigeration cycle device
JPWO2014068967A1 (en) Refrigeration equipment
WO2006025530A1 (en) Refrigerating apparatus
JP3861913B1 (en) Refrigeration equipment
JP4479828B2 (en) Refrigeration equipment
JP2006071137A (en) Refrigeration unit
WO2018097154A1 (en) Refrigeration device
JP2015148406A (en) Refrigeration device
EP2034255B1 (en) Refrigeration device
WO2007097311A1 (en) Refrigerating system
JP6653443B2 (en) Outdoor unit of air conditioner
JP4367579B1 (en) Refrigeration equipment
JP2009293887A (en) Refrigerating device
JP4888583B2 (en) Refrigeration equipment
JP2018105588A (en) heat pump
JP2006234321A (en) Outdoor unit and air conditioner
CN209165862U (en) The idle call circulatory system and air-conditioning
JP6662753B2 (en) Refrigeration equipment
JP4585422B2 (en) Gas heat pump type air conditioner
CN218764046U (en) Refrigerating system and refrigerating unit
KR20070017177A (en) Engine heat pump
EP3217122B1 (en) Outdoor unit for air conditioner
JP2024045940A (en) Heat source units, heat source systems, and refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees