JP2014016079A - Heat pump - Google Patents

Heat pump Download PDF

Info

Publication number
JP2014016079A
JP2014016079A JP2012152936A JP2012152936A JP2014016079A JP 2014016079 A JP2014016079 A JP 2014016079A JP 2012152936 A JP2012152936 A JP 2012152936A JP 2012152936 A JP2012152936 A JP 2012152936A JP 2014016079 A JP2014016079 A JP 2014016079A
Authority
JP
Japan
Prior art keywords
refrigerant
flow rate
branch
low
compression mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012152936A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kawano
泰大 河野
Michio Moriwaki
道雄 森脇
Masakazu Okamoto
昌和 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2012152936A priority Critical patent/JP2014016079A/en
Publication of JP2014016079A publication Critical patent/JP2014016079A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To construct an injection passage that can control both a discharge temperature of a high stage side compression mechanism and an intermediate pressure of a refrigeration cycle.SOLUTION: A heat pump (1) includes a refrigerant circuit (10) in which a low stage side compression mechanism (11) and a high stage side compression mechanism (12), a radiator (13), and a vaporizer (15) are connected in turn, and which performs a two-stage compression type refrigeration cycle. The refrigerant circuit (10) includes: an overcooling heat exchanger (21) that provides heat exchange between an output refrigerant of the radiator (13) and a first branch refrigerant of the output refrigerant to turn the first branch refrigerant to an overheat gas refrigerant; and an injection passage (22) that mixes the first branch refrigerant turned to the overheat gas refrigerant with a second branch refrigerant of the output refrigerant of the radiator (13) to supply it to a part between both of the compression mechanisms (11 and 12). On the injection passage (22), two flow regulating valves (25 and 26) are provided which regulate the sum of flow rates and flow ratios of the first branch refrigerant and the second branch refrigerant.

Description

本発明は、二段圧縮式の冷凍サイクルを行うヒートポンプに関するものである。     The present invention relates to a heat pump that performs a two-stage compression refrigeration cycle.

従来より、例えば特許文献1に開示されているように、二段圧縮式の冷凍サイクルを行うヒートポンプが知られている。特許文献1のヒートポンプは、二段圧縮機(低段側圧縮機構および高段側圧縮機構)と放熱器と膨張機構と蒸発器とが接続されて冷凍サイクルを行う冷媒回路を備えている。冷媒回路には、放熱器で凝縮した液冷媒の一部を減圧して低段側圧縮機構と高段側圧縮機構の間に供給するインジェクション回路が設けられている。特許文献1のヒートポンプでは、インジェクション回路に設けられた膨張弁を開度調整して、低段側圧縮機構と高段側圧縮機構の間に供給される中間圧冷媒の温度を調整することで、二段圧縮機の吐出温度を上限値以下に抑えるようにしている。     Conventionally, as disclosed in Patent Document 1, for example, a heat pump that performs a two-stage compression refrigeration cycle is known. The heat pump of Patent Document 1 includes a refrigerant circuit that performs a refrigeration cycle by connecting a two-stage compressor (a low-stage compression mechanism and a high-stage compression mechanism), a radiator, an expansion mechanism, and an evaporator. The refrigerant circuit is provided with an injection circuit that decompresses a part of the liquid refrigerant condensed by the radiator and supplies it between the low-stage compression mechanism and the high-stage compression mechanism. In the heat pump of Patent Document 1, by adjusting the opening of the expansion valve provided in the injection circuit and adjusting the temperature of the intermediate pressure refrigerant supplied between the low-stage compression mechanism and the high-stage compression mechanism, The discharge temperature of the two-stage compressor is kept below the upper limit value.

特開2007−278686号公報JP 2007-278686 A

ところで、上述したヒートポンプでは、インジェクション回路の膨張弁を開度調整することで、冷媒の温度だけでなく冷媒の流量まで変化するため、冷凍サイクルの中間圧(即ち、低段側圧縮機構と高段側圧縮機構の間の圧力)が変動してしまい、各圧縮機構の圧縮比を適切な値にすることが困難になるという問題があった。二段圧縮式の冷凍サイクルを行うヒートポンプでは、低段側圧縮機構および高段側圧縮機構にはそれぞれ最適な圧縮比がある。この圧縮比が最適な値から外れると、圧縮機構の運転効率が低下し、ひいては、ヒートポンプのCOP(成績係数)が低下する。     By the way, in the heat pump described above, the expansion valve of the injection circuit is adjusted to change not only the temperature of the refrigerant but also the flow rate of the refrigerant, so that the intermediate pressure of the refrigeration cycle (that is, the low-stage compression mechanism and the high-stage compression mechanism). (Pressure between the side compression mechanisms) fluctuates and there is a problem that it is difficult to set the compression ratio of each compression mechanism to an appropriate value. In a heat pump that performs a two-stage compression refrigeration cycle, each of the low-stage compression mechanism and the high-stage compression mechanism has an optimum compression ratio. If this compression ratio deviates from the optimum value, the operating efficiency of the compression mechanism decreases, and as a result, the COP (coefficient of performance) of the heat pump decreases.

本発明は、かかる点に鑑みてなされたものであり、その目的は、低段側圧縮機構と高段側圧縮機構の間に中間圧冷媒をインジェクションする通路を備えたヒートポンプにおいて、高段側圧縮機構の吐出温度と冷凍サイクルの中間圧の両方を制御し得るインジェクション通路を構築することにある。     The present invention has been made in view of the above points, and an object of the present invention is to provide a high-stage compression in a heat pump including a passage for injecting intermediate pressure refrigerant between a low-stage compression mechanism and a high-stage compression mechanism. The object is to construct an injection passage that can control both the discharge temperature of the mechanism and the intermediate pressure of the refrigeration cycle.

第1の発明は、低段側圧縮機構(11)および高段側圧縮機構(12)と、放熱器(13)と、蒸発器(15)とが順に接続されて二段圧縮式の冷凍サイクルを行う冷媒回路(10)を備えたヒートポンプを対象としている。そして、前記冷媒回路(10)は、前記放熱器(13)よりも下流を流れる液冷媒とガス冷媒とを前記低段側圧縮機構(11)と前記高段側圧縮機構(12)の間に供給するインジェクション通路(22,32)と、前記インジェクション通路(22,32)から前記両圧縮機構(11,12)の間に供給される前記液冷媒およびガス冷媒の状態と合計流量を調整するインジェクション調整機構とを備えているものである。     The first invention is a two-stage compression refrigeration cycle in which a low-stage compression mechanism (11), a high-stage compression mechanism (12), a radiator (13), and an evaporator (15) are sequentially connected. It is intended for heat pumps equipped with a refrigerant circuit (10) that performs the above. The refrigerant circuit (10) allows liquid refrigerant and gas refrigerant flowing downstream from the radiator (13) to pass between the low-stage compression mechanism (11) and the high-stage compression mechanism (12). Injection passage (22, 32) to be supplied, and injection for adjusting the state and total flow rate of the liquid refrigerant and gas refrigerant supplied between the compression passages (11, 12) from the injection passage (22, 32) And an adjustment mechanism.

前記第1の発明では、インジェクション通路(22,32)から両圧縮機構(11,12)の間に供給される液冷媒およびガス冷媒の状態(乾き度、過熱度)が調整されることで高段側圧縮機構(12)の吐出温度が調整される。また、インジェクション通路(22,32)から両圧縮機構(11,12)の間に供給される液冷媒およびガス冷媒の合計流量が調整されることで低段側圧縮機構(11)の吐出圧力(高段側圧縮機構(12)の吸入圧力)が調整される。     In the first aspect of the invention, the state (dryness, superheat degree) of the liquid refrigerant and gas refrigerant supplied between the compression mechanisms (11, 12) from the injection passage (22, 32) is adjusted. The discharge temperature of the stage side compression mechanism (12) is adjusted. Further, the discharge flow rate of the low-stage compression mechanism (11) (by adjusting the total flow rate of liquid refrigerant and gas refrigerant supplied between the compression mechanisms (11, 12) from the injection passage (22, 32) ( The suction pressure of the high stage compression mechanism (12) is adjusted.

第2の発明は、前記第1の発明において、前記冷媒回路(10)が、前記放熱器(13)の出口液冷媒と該出口液冷媒の第1分岐冷媒とが熱交換して該第1分岐冷媒が過熱ガス冷媒となる前記出口液冷媒の過冷却熱交換器(21)を備えている。また、前記インジェクション通路(22)は、前記過冷却熱交換器(21)で過熱ガス冷媒となった前記第1分岐冷媒と前記放熱器(13)の出口液冷媒の第2分岐冷媒とを前記低段側圧縮機構(11)と前記高段側圧縮機構(12)の間に供給するように構成されている。また、前記インジェクション調整機構は、前記インジェクション通路(22)を流れる前記第1分岐冷媒と前記第2分岐冷媒の合計流量を調整し且つ前記第1分岐冷媒と前記第2分岐冷媒の流量比を調整する流量調整機構(25,26)とを備えている。     In a second aspect based on the first aspect, the refrigerant circuit (10) exchanges heat between the outlet liquid refrigerant of the radiator (13) and the first branch refrigerant of the outlet liquid refrigerant. A subcooling heat exchanger (21) for the outlet liquid refrigerant in which the branch refrigerant becomes a superheated gas refrigerant is provided. Further, the injection passage (22) passes the first branch refrigerant that has become superheated gas refrigerant in the supercooling heat exchanger (21) and the second branch refrigerant that is the outlet liquid refrigerant of the radiator (13). It is configured to supply between the low-stage compression mechanism (11) and the high-stage compression mechanism (12). The injection adjusting mechanism adjusts a total flow rate of the first branch refrigerant and the second branch refrigerant flowing through the injection passage (22) and adjusts a flow rate ratio between the first branch refrigerant and the second branch refrigerant. And a flow rate adjusting mechanism (25, 26).

前記第2の発明では、過冷却熱交換器(21)において放熱器(13)の出口液冷媒とその第1分岐冷媒とが熱交換し、出口液冷媒が過冷却される一方、第1分岐冷媒が蒸発して過熱ガス冷媒となる。インジェクション通路(22)では、過熱ガス冷媒である第1分岐冷媒と液冷媒である第2分岐冷媒とが低段側圧縮機構(11)と高段側圧縮機構(12)の間に供給される。     In the second aspect of the invention, in the supercooling heat exchanger (21), the outlet liquid refrigerant of the radiator (13) and its first branch refrigerant exchange heat, and the outlet liquid refrigerant is supercooled, while the first branch The refrigerant evaporates and becomes a superheated gas refrigerant. In the injection passage (22), the first branch refrigerant that is a superheated gas refrigerant and the second branch refrigerant that is a liquid refrigerant are supplied between the low-stage compression mechanism (11) and the high-stage compression mechanism (12). .

そして、両圧縮機構(11,12)の間に供給される第1分岐冷媒と第2分岐冷媒の流量比が調整されることで、高段側圧縮機構(12)の吸入冷媒の状態(乾き度、過熱度)が調整され、これによって、高段側圧縮機構(12)の吐出温度が調整される。また、両圧縮機構(11,12)の間に供給される第1分岐冷媒と第2分岐冷媒の合計流量が調整されることで、低段側圧縮機構(11)の吐出圧力(高段側圧縮機構(12)の吸入圧力)が調整される。     Then, by adjusting the flow rate ratio between the first branch refrigerant and the second branch refrigerant supplied between the two compression mechanisms (11, 12), the state of the suction refrigerant (dry) of the high-stage compression mechanism (12) And the degree of superheat) are adjusted, whereby the discharge temperature of the high-stage compression mechanism (12) is adjusted. Further, the total flow rate of the first branch refrigerant and the second branch refrigerant supplied between the compression mechanisms (11, 12) is adjusted, so that the discharge pressure (high stage side) of the low stage side compression mechanism (11) is adjusted. The suction pressure of the compression mechanism (12) is adjusted.

第3の発明は、前記第2の発明において、前記流量調整機構(25,26)は、前記高段側圧縮機構(12)の吐出温度がその目標値よりも低い場合は前記第1分岐冷媒の流量割合が増加するように、前記高段側圧縮機構(12)の吐出温度がその目標値よりも高い場合は前記2分岐冷媒の流量割合が増加するように前記第1分岐冷媒と前記第2分岐冷媒の流量比を調整する一方、前記低段側圧縮機構(11)の吐出圧力がその目標値よりも低い場合は前記第1分岐冷媒と前記第2分岐冷媒の合計流量を増加させ、前記低段側圧縮機構(11)の吐出圧力がその目標値よりも高い場合は前記第1分岐冷媒と前記第2分岐冷媒の合計流量を減少させる。     In a third aspect based on the second aspect, the flow rate adjusting mechanism (25, 26) is configured such that the first branch refrigerant is discharged when a discharge temperature of the high-stage compression mechanism (12) is lower than a target value. When the discharge temperature of the high-stage compression mechanism (12) is higher than its target value, the first branch refrigerant and the second branch refrigerant are increased so that the flow ratio of the two branch refrigerants increases. While adjusting the flow ratio of the two-branch refrigerant, when the discharge pressure of the low-stage compression mechanism (11) is lower than its target value, increase the total flow of the first branch refrigerant and the second branch refrigerant, When the discharge pressure of the low stage side compression mechanism (11) is higher than the target value, the total flow rate of the first branch refrigerant and the second branch refrigerant is decreased.

前記第3の発明では、第1分岐冷媒の流量割合が増加すると、高段側圧縮機構(12)の吸入冷媒の乾き度ないし過熱度が高くなる。その結果、高段側圧縮機構(12)の吐出温度が上昇する。第2分岐冷媒の流量割合が増加すると、高段側圧縮機構(12)の吸入冷媒の乾き度ないし過熱度も低くなる。その結果、高段側圧縮機構(12)の吐出温度が低下する。     In the third aspect of the present invention, when the flow rate ratio of the first branch refrigerant increases, the dryness or superheat degree of the suction refrigerant of the high stage compression mechanism (12) increases. As a result, the discharge temperature of the high stage compression mechanism (12) increases. When the flow rate ratio of the second branch refrigerant increases, the dryness or superheat degree of the suction refrigerant of the high-stage compression mechanism (12) also decreases. As a result, the discharge temperature of the high stage compression mechanism (12) decreases.

また、第1分岐冷媒と第2分岐冷媒の合計流量が増加すると、低段側圧縮機構(11)の吐出圧力(高段側圧縮機構(12)の吸入圧力)が上昇し、第1分岐冷媒と第2分岐冷媒の合計流量が減少すると、低段側圧縮機構(11)の吐出圧力(高段側圧縮機構(12)の吸入圧力)が低下する。     Further, when the total flow rate of the first branch refrigerant and the second branch refrigerant increases, the discharge pressure of the low-stage compression mechanism (11) (the suction pressure of the high-stage compression mechanism (12)) increases, and the first branch refrigerant When the total flow rate of the second branch refrigerant decreases, the discharge pressure of the low-stage compression mechanism (11) (the suction pressure of the high-stage compression mechanism (12)) decreases.

第4の発明は、前記第2の発明において、前記インジェクション通路(22)は、前記放熱器(13)の出口側通路から分岐し前記過冷却熱交換器(21)を介して前記低段側圧縮機構(11)と高段側圧縮機構(12)の間に接続される主通路(23)と、該主通路(23)に設けられる前記過冷却熱交換器(21)のバイパス通路(24)とを備えている。前記流量調整機構は、前記主通路(23)における前記過冷却熱交換器(21)の入口側と前記バイパス通路(24)との間に設けられる前記第1分岐冷媒の第1流量調整弁(25)と、前記バイパス通路(24)に設けられる前記第2分岐冷媒の第2流量調整弁(26)とを備えている。     According to a fourth aspect of the present invention based on the second aspect, the injection passage (22) branches off from an outlet side passage of the radiator (13) and passes through the supercooling heat exchanger (21). A main passage (23) connected between the compression mechanism (11) and the high stage compression mechanism (12), and a bypass passage (24 of the supercooling heat exchanger (21) provided in the main passage (23) ). The flow rate adjustment mechanism includes a first flow rate adjustment valve (1) for the first branch refrigerant provided between the inlet side of the supercooling heat exchanger (21) in the main passage (23) and the bypass passage (24). 25) and a second flow rate adjustment valve (26) for the second branch refrigerant provided in the bypass passage (24).

前記第4の発明では、インジェクション通路(22)において、第1流量調整弁(25)の開度調整を行うことにより第1分岐冷媒の流量が調整され、第2流量調整弁(26)の開度調整を行うことにより第2分岐冷媒の流量が調整される。したがって、2つの流量調整弁(25,26)の一方または両方を開度調整することにより、第1分岐冷媒と第2分岐冷媒の合計流量と、第1分岐冷媒と第2分岐冷媒の流量比が調整される。     In the fourth aspect of the invention, the flow rate of the first branch refrigerant is adjusted by adjusting the opening of the first flow rate adjustment valve (25) in the injection passage (22), and the second flow rate adjustment valve (26) is opened. The flow rate of the second branch refrigerant is adjusted by adjusting the degree. Therefore, by adjusting the opening degree of one or both of the two flow rate adjustment valves (25, 26), the total flow rate of the first branch refrigerant and the second branch refrigerant and the flow rate ratio of the first branch refrigerant and the second branch refrigerant. Is adjusted.

第5の発明は、前記第1の発明において、前記冷媒回路(10)は、前記放熱器(13)と前記蒸発器(15)の間に設けられた中間圧の気液分離器(31)を備えている。前記インジェクション通路(32)は、前記気液分離器(31)の液冷媒とガス冷媒とを前記低段側圧縮機構(11)と前記高段側圧縮機構(12)の間に供給するように構成されている。前記インジェクション調整機構は、前記インジェクション通路(32)を流れる前記液冷媒とガス冷媒の合計流量を調整する流量調整機構(36,37)と、前記インジェクション通路(32)を流れる前記液冷媒とガス冷媒を前記放熱器(13)の出口冷媒によって加熱する加熱熱交換器(38)とを備えている。     In a fifth aspect based on the first aspect, the refrigerant circuit (10) includes an intermediate-pressure gas-liquid separator (31) provided between the radiator (13) and the evaporator (15). It has. The injection passage (32) supplies the liquid refrigerant and gas refrigerant of the gas-liquid separator (31) between the low-stage compression mechanism (11) and the high-stage compression mechanism (12). It is configured. The injection adjusting mechanism includes a flow rate adjusting mechanism (36, 37) for adjusting a total flow rate of the liquid refrigerant and gas refrigerant flowing through the injection passage (32), and the liquid refrigerant and gas refrigerant flowing through the injection passage (32). And a heating heat exchanger (38) for heating the refrigerant by the outlet refrigerant of the radiator (13).

前記第5の発明では、気液分離器(31)の液冷媒とガス冷媒とが両圧縮機構(11,12)の間に供給される。そして、両圧縮機構(11,12)の間に供給される第1分岐冷媒と第2分岐冷媒の合計流量が調整されることで、低段側圧縮機構(11)の吐出圧力(高段側圧縮機構(12)の吸入圧力)が調整される。また、加熱熱交換器(38)の加熱能力を調整することで、高段側圧縮機構(12)の吸入冷媒の状態(乾き度、過熱度)が調整され、これによって、高段側圧縮機構(12)の吐出温度が調整される。     In the fifth aspect, the liquid refrigerant and gas refrigerant of the gas-liquid separator (31) are supplied between the compression mechanisms (11, 12). Then, by adjusting the total flow rate of the first branch refrigerant and the second branch refrigerant supplied between the compression mechanisms (11, 12), the discharge pressure (high stage side) of the low stage compression mechanism (11) is adjusted. The suction pressure of the compression mechanism (12) is adjusted. In addition, by adjusting the heating capacity of the heating heat exchanger (38), the state (dryness, superheat degree) of the suction refrigerant of the high stage compression mechanism (12) is adjusted, and thereby, the high stage compression mechanism The discharge temperature of (12) is adjusted.

第6の発明は、前記第5の発明において、前記流量調整機構(36,37)は、前記低段側圧縮機構(11)の吐出圧力がその目標値よりも低い場合は前記液冷媒とガス冷媒の合計流量を増加させ、前記低段側圧縮機構(11)の吐出圧力がその目標値よりも高い場合は前記液冷媒とガス冷媒の合計流量を減少させる。一方、前記加熱熱交換器(38)は、前記高段側圧縮機構(12)の吐出温度がその目標値よりも低い場合は前記液冷媒およびガス冷媒の温度が上昇するように、前記高段側圧縮機構(12)の吐出温度がその目標値よりも高い場合は前記液冷媒およびガス冷媒の温度が低下するように加熱能力が調整される。     In a sixth aspect based on the fifth aspect, the flow rate adjusting mechanism (36, 37) is configured such that the liquid refrigerant and the gas are discharged when the discharge pressure of the low-stage compression mechanism (11) is lower than the target value. The total flow rate of the refrigerant is increased, and when the discharge pressure of the low-stage compression mechanism (11) is higher than the target value, the total flow rate of the liquid refrigerant and the gas refrigerant is decreased. On the other hand, the heating heat exchanger (38) is configured so that the temperature of the liquid refrigerant and the gas refrigerant rises when the discharge temperature of the high-stage compression mechanism (12) is lower than the target value. When the discharge temperature of the side compression mechanism (12) is higher than the target value, the heating capacity is adjusted so that the temperatures of the liquid refrigerant and the gas refrigerant are lowered.

前記第6の発明では、両圧縮機構(11,12)の間に供給される液冷媒とガス冷媒の合計流量が増加すると、低段側圧縮機構(11)の吐出圧力(高段側圧縮機構(12)の吸入圧力)が上昇し、両圧縮機構(11,12)の間に供給される液冷媒とガス冷媒の合計流量が減少すると、低段側圧縮機構(11)の吐出圧力(高段側圧縮機構(12)の吸入圧力)が低下する。また、加熱熱交換器(38)の加熱能力が増大すると、両圧縮機構(11,12)の間に供給される液冷媒とガス冷媒のエンタルピーが上昇し、これに伴って、高段側圧縮機構(12)の吸入冷媒の乾き度ないし過熱度が高くなり、その結果、高段側圧縮機構(12)の吐出温度が上昇する。加熱熱交換器(38)の加熱能力が減少すると、両圧縮機構(11,12)の間に供給される液冷媒とガス冷媒のエンタルピーが低下し、これに伴って、高段側圧縮機構(12)の吸入冷媒の乾き度ないし過熱度が低くなり、その結果、高段側圧縮機構(12)の吐出温度が低下する。     In the sixth aspect of the invention, when the total flow rate of the liquid refrigerant and the gas refrigerant supplied between the both compression mechanisms (11, 12) increases, the discharge pressure (high-stage compression mechanism) of the low-stage compression mechanism (11) When the suction pressure of (12) rises and the total flow rate of the liquid refrigerant and gas refrigerant supplied between both compression mechanisms (11, 12) decreases, the discharge pressure (high) of the low-stage compression mechanism (11) The suction pressure of the stage side compression mechanism (12) decreases. In addition, when the heating capacity of the heating heat exchanger (38) increases, the enthalpy of liquid refrigerant and gas refrigerant supplied between both compression mechanisms (11, 12) increases, and as a result, high-stage compression The degree of dryness or superheat of the suction refrigerant in the mechanism (12) increases, and as a result, the discharge temperature of the high-stage compression mechanism (12) increases. When the heating capacity of the heating heat exchanger (38) decreases, the enthalpy of the liquid refrigerant and gas refrigerant supplied between the two compression mechanisms (11, 12) decreases, and accordingly, the high-stage compression mechanism ( The dryness or superheat of the suction refrigerant in 12) is lowered, and as a result, the discharge temperature of the high-stage compression mechanism (12) is lowered.

第7の発明は、前記第2または第5の発明において、前記冷媒回路(10)において前記蒸発器(15)の出口冷媒が乾き度1未満となるように冷凍サイクルを行わせる乾き度調整部(52)を備えている。     According to a seventh invention, in the second or fifth invention, a dryness adjustment unit that performs a refrigeration cycle so that an outlet refrigerant of the evaporator (15) is less than 1 in the refrigerant circuit (10). (52).

前記第7の発明では、蒸発器(15)の出口冷媒が乾き度1未満(湿り冷媒)となるため、蒸発器(15)の出口冷媒が過熱状態となる場合に比べて、蒸発器(15)における冷媒の偏流が抑制される。過熱ガス冷媒は湿り冷媒と比べて比体積が大きく流速が高くなることから、複数のパスを有する蒸発器では、一部のパスに過熱ガス冷媒が発生すると、そのパスは他のパスよりも圧力損失が増大する。そのため、過熱ガス冷媒が発生したパスには冷媒が流入しにくくなり、他のパスに偏って冷媒が流入するという偏流が生じてしまう。ところが、本実施形態では、蒸発器(15)の出口冷媒が乾き度1未満(湿り冷媒)となるようにしているため、蒸発器(15)では過熱ガス冷媒は発生しない。したがって、蒸発器(15)における冷媒の偏流が抑制される。     In the seventh aspect of the invention, since the outlet refrigerant of the evaporator (15) has a dryness of less than 1 (wet refrigerant), the evaporator (15) is compared with the case where the outlet refrigerant of the evaporator (15) is overheated. ) Is suppressed. Superheated gas refrigerant has a larger specific volume and higher flow rate than wet refrigerant, so in an evaporator with multiple passes, if superheated gas refrigerant is generated in some passes, that pass is more pressure than other passes. Loss increases. Therefore, it becomes difficult for the refrigerant to flow into the path where the superheated gas refrigerant is generated, and a drift occurs in which the refrigerant flows in the other path. However, in this embodiment, since the outlet refrigerant of the evaporator (15) has a dryness of less than 1 (wet refrigerant), no superheated gas refrigerant is generated in the evaporator (15). Therefore, the refrigerant drift in the evaporator (15) is suppressed.

以上説明したように、本発明によれば、放熱器(13)よりも下流を流れる液冷媒とガス冷媒とを前記低段側圧縮機構(11)と前記高段側圧縮機構(12)の間に供給するインジェクション通路(22,32)と、前記インジェクション通路(22,32)から前記両圧縮機構(11,12)の間に供給される前記液冷媒およびガス冷媒の状態(乾き度、過熱度)と合計流量を調整するインジェクション調整機構とを備えるようにした。したがって、高段側圧縮機構(12)の吐出温度と、低段側圧縮機構(11)の吐出圧力(即ち、冷凍サイクルにおける中間圧)との両方を調整することが可能となる。高段側圧縮機構(12)の吐出温度を制御できることにより、ヒートポンプ(1)において所要の加熱能力を発揮させることができる。また、中間圧を制御できることにより、各圧縮機構(11,12)の圧縮比を最適な値にすることができ、これによって、圧縮機構(11,12)の運転効率が向上する。以上により、加熱能力を十分に満足しつつ、COP(成績係数)の高い運転が可能となる。     As described above, according to the present invention, the liquid refrigerant and the gas refrigerant that flow downstream from the radiator (13) are placed between the low-stage compression mechanism (11) and the high-stage compression mechanism (12). And the state of the liquid refrigerant and gas refrigerant (dryness, superheat degree) supplied between the compression passages (11, 12) from the injection passage (22, 32) and the injection passage (22, 32) ) And an injection adjustment mechanism for adjusting the total flow rate. Therefore, it is possible to adjust both the discharge temperature of the high-stage compression mechanism (12) and the discharge pressure of the low-stage compression mechanism (11) (that is, the intermediate pressure in the refrigeration cycle). Since the discharge temperature of the high-stage compression mechanism (12) can be controlled, the required heating capacity can be exhibited in the heat pump (1). In addition, since the intermediate pressure can be controlled, the compression ratio of each compression mechanism (11, 12) can be set to an optimum value, thereby improving the operation efficiency of the compression mechanism (11, 12). As described above, it is possible to operate with a high COP (coefficient of performance) while sufficiently satisfying the heating capacity.

第2の発明によれば、インジェクション調整機構として、インジェクション通路(22)を流れる過熱ガス冷媒(第1分岐冷媒)と液冷媒(第2分岐冷媒)の合計流量および流量比を調整する流量調整機構(25,26)を備えるようにしたので、簡易な構成で高段側圧縮機構(12)の吐出温度と冷凍サイクルの中間圧の両方を制御することができる。     According to the second invention, as the injection adjusting mechanism, a flow rate adjusting mechanism that adjusts the total flow rate and flow rate ratio of the superheated gas refrigerant (first branch refrigerant) and the liquid refrigerant (second branch refrigerant) flowing through the injection passage (22). Since (25, 26) is provided, both the discharge temperature of the high-stage compression mechanism (12) and the intermediate pressure of the refrigeration cycle can be controlled with a simple configuration.

第4の発明によれば、インジェクション通路(22)として、放熱器(13)の出口側通路から分岐し過冷却熱交換器(21)を介して低段側圧縮機構(11)と高段側圧縮機構(12)の間に接続される主通路(23)と、該主通路(23)に設けられる過冷却熱交換器(21)のバイパス通路(24)とを備えるようにし、主通路(23)における過冷却熱交換器(21)の入口側とバイパス通路(24)との間に第1流量調整弁(25)を設け、バイパス通路(24)に第2流量調整弁(26)を設けるようにした。このため、2つの流量調整弁(25,26)を開度調整するだけで、容易に過熱ガス冷媒と液冷媒の合計流量および流量比を調整することが可能となる。     According to the fourth invention, the injection passage (22) branches off from the outlet side passage of the radiator (13) and is connected to the low stage compression mechanism (11) and the high stage side via the supercooling heat exchanger (21). A main passage (23) connected between the compression mechanisms (12), and a bypass passage (24) of the supercooling heat exchanger (21) provided in the main passage (23). The first flow rate adjustment valve (25) is provided between the inlet side of the supercooling heat exchanger (21) and the bypass passage (24) in 23), and the second flow rate adjustment valve (26) is provided in the bypass passage (24). I tried to provide it. For this reason, it is possible to easily adjust the total flow rate and flow rate ratio of the superheated gas refrigerant and the liquid refrigerant only by adjusting the opening degree of the two flow rate adjustment valves (25, 26).

第5の発明によれば、気液分離器(31)の液冷媒とガス冷媒とを両圧縮機構(11,12)の間に供給するインジェクション通路(32)と、インジェクション通路(32)を流れる液冷媒とガス冷媒の合計流量を調整する流量調整機構(36,37)と、インジェクション通路(32)を流れる液冷媒とガス冷媒を加熱する加熱熱交換器(38)とを備えるようにした。一般に、二段圧縮式の冷凍サイクルを行うヒートポンプ(1)では中間圧の気液分離器(31)が設けられるので、本発明では、その気液分離器(31)を利用して、高段側圧縮機構(12)の吐出温度と冷凍サイクルの中間圧の両方を制御することができる。     According to the fifth aspect of the invention, the injection passage (32) for supplying the liquid refrigerant and the gas refrigerant of the gas-liquid separator (31) between the compression mechanisms (11, 12) and the injection passage (32) flow. A flow rate adjusting mechanism (36, 37) for adjusting the total flow rate of the liquid refrigerant and the gas refrigerant, and a heating heat exchanger (38) for heating the liquid refrigerant and the gas refrigerant flowing through the injection passage (32) are provided. Generally, in a heat pump (1) that performs a two-stage compression refrigeration cycle, an intermediate-pressure gas-liquid separator (31) is provided. Therefore, in the present invention, the gas-liquid separator (31) is used to Both the discharge temperature of the side compression mechanism (12) and the intermediate pressure of the refrigeration cycle can be controlled.

第7の発明によれば、蒸発器(15)の出口冷媒が乾き度1未満(湿り冷媒)となるため、蒸発器(15)の出口冷媒が過熱状態となる場合に比べて、蒸発器(15)における冷媒の偏流を抑制することができる。過熱ガス冷媒は湿り冷媒と比べて比体積が大きく流速が高くなることから、複数のパスを有する蒸発器では、一部のパスに過熱ガス冷媒が発生すると、そのパスは他のパスよりも圧力損失が増大する。そのため、過熱ガス冷媒が発生したパスには冷媒が流入しにくくなり、他のパスに偏って冷媒が流入するという偏流が生じてしまう。ところが、本実施形態では、蒸発器(15)の出口冷媒が乾き度1未満(湿り冷媒)となるようにしているため、蒸発器(15)では過熱ガス冷媒は発生しない。したがって、蒸発器(15)における冷媒の偏流を抑制することが可能である。     According to the seventh invention, since the outlet refrigerant of the evaporator (15) has a dryness of less than 1 (wet refrigerant), the evaporator (15) has an evaporator (15) as compared with the case where the outlet refrigerant is overheated. The drift of the refrigerant in 15) can be suppressed. Superheated gas refrigerant has a larger specific volume and higher flow rate than wet refrigerant, so in an evaporator with multiple passes, if superheated gas refrigerant is generated in some passes, that pass is more pressure than other passes. Loss increases. Therefore, it becomes difficult for the refrigerant to flow into the path where the superheated gas refrigerant is generated, and a drift occurs in which the refrigerant flows in the other path. However, in this embodiment, since the outlet refrigerant of the evaporator (15) has a dryness of less than 1 (wet refrigerant), no superheated gas refrigerant is generated in the evaporator (15). Therefore, the refrigerant drift in the evaporator (15) can be suppressed.

図1は、実施形態1に係るヒートポンプの構成を示す配管系統図である。FIG. 1 is a piping diagram illustrating a configuration of a heat pump according to the first embodiment. 図2は、実施形態2に係るヒートポンプの構成を示す配管系統図である。FIG. 2 is a piping diagram illustrating the configuration of the heat pump according to the second embodiment.

以下、本発明の実施形態について図面を参照しながら説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。     Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use.

《発明の実施形態1》
本発明の実施形態1について説明する。本実施形態のヒートポンプ(1)は、産業用として用いられるものであり、被加熱流体(対象流体)を100℃以上に加熱するものである。図1に示すように、ヒートポンプ(1)は、冷媒回路(10)とコントローラ(50)を備えている。
Embodiment 1 of the Invention
A first embodiment of the present invention will be described. The heat pump (1) of the present embodiment is used for industrial purposes, and heats a fluid to be heated (target fluid) to 100 ° C. or higher. As shown in FIG. 1, the heat pump (1) includes a refrigerant circuit (10) and a controller (50).

冷媒回路(10)は、冷媒が循環して二段圧縮式の冷凍サイクルを行うものである。冷媒回路(10)は、低段側圧縮機(11)および高段側圧縮機(12)と、放熱器(13)と、膨張弁(膨張機構)(14)と、蒸発器(15)とが順に冷媒配管によって接続されている。本実施形態では、冷媒として、R245fa(臨界温度は154℃)の単一冷媒が用いられている。     The refrigerant circuit (10) performs a two-stage compression refrigeration cycle by circulating the refrigerant. The refrigerant circuit (10) includes a low-stage compressor (11) and a high-stage compressor (12), a radiator (13), an expansion valve (expansion mechanism) (14), and an evaporator (15). Are sequentially connected by refrigerant piping. In the present embodiment, a single refrigerant of R245fa (critical temperature is 154 ° C.) is used as the refrigerant.

低段側圧縮機(11)および高段側圧縮機(12)は、図示しないが、全密閉型で構成され、圧縮部とその圧縮部を回転駆動するモータとを収容したケーシング内が吸入圧力の雰囲気になる、いわゆる低圧ドーム型に構成されている。つまり、各圧縮機(11,12)では吸入冷媒がケーシング内に流入し、圧縮部で圧縮された冷媒がケーシング内に流出することなくケーシング外へ直接吐出される。各圧縮機(11,12)は、運転回転数が可変に構成されている。両圧縮機(11,12)は、互いに直列に接続されて両圧縮機(11,12)によって冷媒を二段圧縮するものであり、冷媒の圧縮機構を構成している。     Although not shown, the low-stage compressor (11) and the high-stage compressor (12) are configured in a completely sealed manner, and the inside of the casing that houses the compression section and the motor that rotationally drives the compression section is the suction pressure. It has a so-called low-pressure dome shape. That is, in each compressor (11, 12), the suction refrigerant flows into the casing, and the refrigerant compressed by the compression unit is directly discharged out of the casing without flowing into the casing. Each of the compressors (11, 12) is configured to have a variable operating rotational speed. Both compressors (11, 12) are connected in series with each other and compress the refrigerant in two stages by both compressors (11, 12), and constitute a refrigerant compression mechanism.

放熱器(13)は、低温流路(13a)および高温流路(13b)を有している。高温流路(13b)は、流入端が高段側圧縮機(12)の吐出側と接続され、流出端が後述する過冷却熱交換器(21)と接続されている。一方、放熱器(13)の低温流路(13a)は熱媒体回路(100)に接続されている。放熱器(13)では、高温流路(13b)を流れる高圧冷媒と低温流路(13a)を流れる熱媒体回路(100)の熱媒体(本実施形態では、油)とが熱交換し、熱媒体が加熱される。つまり、本実施形態では熱媒体回路(100)の熱媒体が放熱器(13)の被加熱流体(対象流体)となる。熱媒体回路(100)は、温水の恒温槽(103)内に設けられる加熱熱交換器(102)を有し、ポンプ(101)によって熱媒体が循環する閉回路である。ポンプ(101)は、恒温槽(103)の出口側と放熱器(13)の低温流路(13a)との間に設けられている。熱媒体回路(100)では、放熱器(13)で加熱された熱媒体が加熱熱交換器(102)で恒温槽(103)内の水と熱交換し、恒温槽(103)内の水が一定温度に加熱される。熱媒体回路(100)には、恒温槽(103)内の水温を測定する水温度センサ(104)が設けられている。     The radiator (13) has a low temperature channel (13a) and a high temperature channel (13b). The high temperature flow path (13b) has an inflow end connected to the discharge side of the high stage compressor (12) and an outflow end connected to a subcooling heat exchanger (21) described later. On the other hand, the low-temperature flow path (13a) of the radiator (13) is connected to the heat medium circuit (100). In the radiator (13), the high-pressure refrigerant flowing through the high-temperature channel (13b) and the heat medium (oil in this embodiment) of the heat medium circuit (100) flowing through the low-temperature channel (13a) exchange heat to The medium is heated. That is, in the present embodiment, the heat medium of the heat medium circuit (100) is the fluid to be heated (target fluid) of the radiator (13). The heat medium circuit (100) has a heating heat exchanger (102) provided in a constant temperature bath (103) of hot water, and is a closed circuit in which the heat medium is circulated by a pump (101). The pump (101) is provided between the outlet side of the constant temperature bath (103) and the low temperature flow path (13a) of the radiator (13). In the heat medium circuit (100), the heat medium heated by the radiator (13) exchanges heat with the water in the thermostat (103) by the heating heat exchanger (102), and the water in the thermostat (103) is exchanged. Heated to a constant temperature. The heat medium circuit (100) is provided with a water temperature sensor (104) for measuring the water temperature in the constant temperature bath (103).

膨張弁(14)は、開度が調節可能な電子膨張弁で構成されている。     The expansion valve (14) is an electronic expansion valve whose opening degree can be adjusted.

蒸発器(15)は、低温流路(15a)および高温流路(15b)を有している。低温流路(15a)は、流入端が膨張弁(14)と接続され、流出端が低段側圧縮機(11)の吸入側と接続されている。一方、蒸発器(15)の高温流路(15b)は熱源回路(110)に接続されている。蒸発器(15)では、低温流路(15a)を流れる低圧冷媒と高温流路(15b)を流れる熱源回路(110)の熱源媒体とが熱交換し、低圧冷媒が熱源媒体によって加熱される。熱源回路(110)の熱源媒体としては、工場の排熱(例えば、排水)、別途設けられた空調機の熱源冷媒等が挙げられる。     The evaporator (15) has a low temperature channel (15a) and a high temperature channel (15b). The low temperature flow path (15a) has an inflow end connected to the expansion valve (14) and an outflow end connected to the suction side of the low stage compressor (11). On the other hand, the high-temperature channel (15b) of the evaporator (15) is connected to the heat source circuit (110). In the evaporator (15), the low pressure refrigerant flowing through the low temperature flow path (15a) and the heat source medium of the heat source circuit (110) flowing through the high temperature flow path (15b) exchange heat, and the low pressure refrigerant is heated by the heat source medium. Examples of the heat source medium of the heat source circuit (110) include factory waste heat (for example, waste water), a heat source refrigerant of an air conditioner provided separately, and the like.

また、冷媒回路(10)には、過冷却熱交換器(21)とインジェクション通路(22)が設けられている。過冷却熱交換器(21)は、放熱器(13)と膨張弁(14)との間に接続されており、高温流路(21a)および低温流路(21b)を有している。インジェクション通路(22)は、主通路(23)を有している。主通路(23)は、放熱器(13)の出口側通路から分岐し過冷却熱交換器(21)を介して低段側圧縮機(11)と高段側圧縮機(12)の間に接続されている。つまり、インジェクション通路(22)の流出端は両圧縮機(11,12)の間に接続されている。主通路(23)には、過冷却熱交換器(21)をバイパスするバイパス通路(24)が設けられている。また、主通路(23)には、過冷却熱交換器(21)の入口側とバイパス通路(24)との間に第1流量調整弁(25)が設けられ、バイパス通路(24)には、第2流量調整弁(26)が設けられている。     The refrigerant circuit (10) is provided with a supercooling heat exchanger (21) and an injection passage (22). The supercooling heat exchanger (21) is connected between the radiator (13) and the expansion valve (14), and has a high temperature channel (21a) and a low temperature channel (21b). The injection passage (22) has a main passage (23). The main passage (23) branches off from the outlet side passage of the radiator (13) and passes between the low-stage compressor (11) and the high-stage compressor (12) via the supercooling heat exchanger (21). It is connected. That is, the outflow end of the injection passage (22) is connected between the compressors (11, 12). The main passage (23) is provided with a bypass passage (24) that bypasses the supercooling heat exchanger (21). The main passage (23) is provided with a first flow control valve (25) between the inlet side of the supercooling heat exchanger (21) and the bypass passage (24), and the bypass passage (24) A second flow rate adjustment valve (26) is provided.

過冷却熱交換器(21)の高温流路(21a)は、流入端が放熱器(13)と接続され、流出端が膨張弁(14)と接続されている。過冷却熱交換器(21)の低温流路(21b)は、インジェクション通路(22)の主通路(23)に接続されている。インジェクション通路(22)では、放熱器(13)の出口冷媒の一部が主通路(23)に流入し、その主通路(23)に流入した冷媒の一部がバイパス通路(24)に流入する。つまり、インジェクション通路(22)では、放熱器(13)の出口冷媒の第1分岐冷媒が過冷却熱交換器(21)の低温流路(21b)に流れ、放熱器(13)の出口冷媒の第2分岐冷媒がバイパス通路(24)に流れる。過冷却熱交換器(21)では、高温流路(21a)を流れる放熱器(13)の出口冷媒と低温流路(21b)を流れる前記出口冷媒の第1分岐冷媒とが熱交換し、高温流路(21a)の出口冷媒が過冷却される一方、低温流路(21b)の第1分岐冷媒が蒸発して過熱ガス冷媒(過熱状態のガス冷媒)となる。そして、インジェクション通路(22)は、過冷却熱交換器(21)で過熱ガス冷媒となった主通路(23)の第1分岐冷媒とバイパス通路(24)の第2分岐冷媒(液冷媒)とを混合して低段側圧縮機(11)と高段側圧縮機(12)の間に供給するものである。     The high-temperature channel (21a) of the supercooling heat exchanger (21) has an inflow end connected to the radiator (13) and an outflow end connected to the expansion valve (14). The low-temperature channel (21b) of the supercooling heat exchanger (21) is connected to the main channel (23) of the injection channel (22). In the injection passage (22), a part of the outlet refrigerant of the radiator (13) flows into the main passage (23), and a part of the refrigerant that flows into the main passage (23) flows into the bypass passage (24). . That is, in the injection passage (22), the first branch refrigerant of the outlet refrigerant of the radiator (13) flows into the low-temperature channel (21b) of the supercooling heat exchanger (21), and the outlet refrigerant of the radiator (13) The second branch refrigerant flows into the bypass passage (24). In the supercooling heat exchanger (21), heat is exchanged between the outlet refrigerant of the radiator (13) flowing through the high-temperature channel (21a) and the first branch refrigerant of the outlet refrigerant flowing through the low-temperature channel (21b). While the outlet refrigerant of the channel (21a) is supercooled, the first branch refrigerant of the low temperature channel (21b) evaporates to become superheated gas refrigerant (superheated gas refrigerant). The injection passage (22) includes a first branch refrigerant in the main passage (23) that has become superheated gas refrigerant in the supercooling heat exchanger (21) and a second branch refrigerant (liquid refrigerant) in the bypass passage (24). Are mixed and supplied between the low-stage compressor (11) and the high-stage compressor (12).

第1流量調整弁(25)は過熱ガス冷媒である第1分岐冷媒の流量を調整し、第2流量調整弁(26)は液冷媒である第2分岐冷媒の流量を調整するものである。そして、この2つの流量調整弁(25,26)は、インジェクション通路(22)における第1分岐冷媒と第2分岐冷媒の混合冷媒の流量(即ち、第1分岐冷媒と第2分岐冷媒の合計流量)を調整し、且つ、混合冷媒における第1分岐冷媒と第2分岐冷媒の流量比(混合冷媒における各分岐冷媒の流量割合)を調整する流量調整機構であり、本発明に係るインジェクション調整機構を構成する。     The first flow rate adjustment valve (25) adjusts the flow rate of the first branch refrigerant that is a superheated gas refrigerant, and the second flow rate adjustment valve (26) adjusts the flow rate of the second branch refrigerant that is a liquid refrigerant. Then, the two flow rate adjusting valves (25, 26) are arranged so that the flow rate of the mixed refrigerant of the first branch refrigerant and the second branch refrigerant in the injection passage (22) (that is, the total flow rate of the first branch refrigerant and the second branch refrigerant). ) And a flow rate adjustment mechanism for adjusting the flow ratio of the first branching refrigerant to the second branching refrigerant in the mixed refrigerant (the flow rate ratio of each branching refrigerant in the mixed refrigerant), and the injection adjusting mechanism according to the present invention. Configure.

また、本実施形態の過冷却熱交換器(21)は、空調機等に設けられる一般的な過冷却熱交換器よりも、非常に高い熱交換能力を有するものである。一般の過冷却熱交換器では、設計点で低温流路の冷媒が所定流量で3℃程度の低い過熱度がつくように熱交換能力が設計されており、低温流路の冷媒流量が設計流量よりも増えるとすぐに低温流路の冷媒は過熱度がつかず湿り状態で流出してしまう。これに対し、本実施形態の過冷却熱交換器(21)では、低温流路(21b)を流れる第1分岐冷媒の流量がある程度変化しても(多くなっても)、第1分岐冷媒は過熱度がついた状態で(過熱ガス冷媒となって)流出するように設計されている。つまり、本実施形態の過冷却熱交換器(21)は、第1分岐冷媒を過熱ガス冷媒とするのに許容される第1分岐冷媒の最大流量が高く設定されている。     Further, the supercooling heat exchanger (21) of the present embodiment has a much higher heat exchange capability than a general supercooling heat exchanger provided in an air conditioner or the like. In general supercooling heat exchangers, the heat exchange capacity is designed so that the refrigerant in the low-temperature channel has a low superheat degree of about 3 ° C at a specified flow rate at the design point, and the refrigerant flow rate in the low-temperature channel is the design flow rate. As soon as it increases, the refrigerant in the low-temperature channel flows out in a wet state without being superheated. On the other hand, in the supercooling heat exchanger (21) of the present embodiment, even if the flow rate of the first branch refrigerant flowing through the low temperature flow path (21b) changes to some extent (even if it increases), the first branch refrigerant is It is designed to flow out with a degree of superheat (as a superheated gas refrigerant). That is, in the supercooling heat exchanger (21) of the present embodiment, the maximum flow rate of the first branch refrigerant allowed to use the first branch refrigerant as the superheated gas refrigerant is set high.

また、冷媒回路(10)には、各種センサが設けられている。具体的に、冷媒回路(10)には、低段側圧縮機(11)の吸入冷媒の圧力を測定する吸入圧力センサ(P1)と、高段側圧縮機(12)の吐出冷媒の圧力を測定する吐出圧力センサ(P2)と、両圧縮機(11,12)の間に設けられて低段側圧縮機(11)の吐出冷媒(高段側圧縮機(12)の吸入冷媒)の圧力を測定する中間圧力センサ(P3)とが設けられている。中間圧力センサ(P3)の測定値は、インジェクション通路(22)において過冷却熱交換器(21)の低温流路(21b)から流出した第1分岐冷媒の圧力に相当する。また、冷媒回路(10)には、高段側圧縮機(12)の吐出冷媒の温度を測定する高段側吐出温度センサ(T1)と、低段側圧縮機(11)の吐出冷媒の温度を測定する低段側吐出温度センサ(T2)と、主通路(23)における過冷却熱交換器(21)の低温流路(21b)の出口側に設けられて該低温流路(21b)から流出した第1分岐冷媒の温度を測定する出口温度センサ(T3)とが設けられている。     The refrigerant circuit (10) is provided with various sensors. Specifically, the refrigerant circuit (10) includes a suction pressure sensor (P1) that measures the pressure of the suction refrigerant of the low-stage compressor (11), and the pressure of the discharge refrigerant of the high-stage compressor (12). Pressure of the refrigerant discharged from the low-stage compressor (11) (intake refrigerant of the high-stage compressor (12)) provided between the discharge pressure sensor (P2) to be measured and both compressors (11, 12) And an intermediate pressure sensor (P3) is provided. The measured value of the intermediate pressure sensor (P3) corresponds to the pressure of the first branch refrigerant that has flowed out of the low-temperature flow path (21b) of the supercooling heat exchanger (21) in the injection passage (22). The refrigerant circuit (10) includes a high-stage discharge temperature sensor (T1) that measures the temperature of refrigerant discharged from the high-stage compressor (12), and the temperature of the refrigerant discharged from the low-stage compressor (11). A low-stage discharge temperature sensor (T2) that measures the temperature of the subcooling heat exchanger (21) in the main passage (23), and is provided on the outlet side of the low-temperature passage (21b). An outlet temperature sensor (T3) that measures the temperature of the first branched refrigerant that has flowed out is provided.

コントローラ(50)には、マップ(51)と乾き度調整部(52)とインジェクション調整部(53)が設けられている。     The controller (50) is provided with a map (51), a dryness adjusting unit (52), and an injection adjusting unit (53).

マップ(51)は、低段側圧縮機(11)の吸入冷媒の圧力、低段側圧縮機(11)の吐出冷媒の圧力および温度の3つのパラメータと、蒸発器(15)の出口冷媒の乾き度との対応関係を表したデータベースである。低段側圧縮機(11)の吸入冷媒の圧力は冷凍サイクルの低圧圧力に相当し、低段側圧縮機(11)の吐出冷媒の圧力は冷凍サイクルの低圧圧力と高圧圧力の間の中間圧力に相当する。     The map (51) shows the three parameters of the refrigerant pressure of the low-stage compressor (11), the discharge refrigerant pressure and temperature of the low-stage compressor (11), and the outlet refrigerant of the evaporator (15). It is a database showing the correspondence with dryness. The suction refrigerant pressure of the low stage compressor (11) corresponds to the low pressure of the refrigeration cycle, and the discharge refrigerant pressure of the low stage compressor (11) is an intermediate pressure between the low pressure and high pressure of the refrigeration cycle. It corresponds to.

乾き度調整部(52)は、冷媒回路(10)において蒸発器(15)の出口冷媒が乾き度1未満となるように冷凍サイクルを行わせるものである。インジェクション調整部(53)は、高段側圧縮機(12)の吐出冷媒の温度(吐出温度)が目標値となるように、且つ、冷凍サイクルの中間圧力が目標値となるように、第1流量調整弁(25)および第2流量調整弁(26)の開度を調整するものである。乾き度調整部(52)およびインジェクション調整部(53)の動作の詳細については後述する。     The dryness adjustment unit (52) is configured to perform a refrigeration cycle so that the refrigerant at the outlet of the evaporator (15) is less than 1 in the refrigerant circuit (10). The injection adjusting unit (53) is configured to adjust the temperature of the refrigerant discharged from the high-stage compressor (12) (discharge temperature) to a target value and the intermediate pressure of the refrigeration cycle to a target value. The opening degree of the flow rate adjusting valve (25) and the second flow rate adjusting valve (26) is adjusted. Details of operations of the dryness adjusting unit (52) and the injection adjusting unit (53) will be described later.

〈ヒートポンプの運転動作〉
両圧縮機(11,12)が駆動されると、低段側圧縮機(11)で圧縮された冷媒は高段側圧縮機(12)で更に圧縮されて高圧冷媒となる。高段側圧縮機(12)から吐出された高圧冷媒(130℃)は、放熱器(13)で熱媒体回路(100)の熱媒体(油)と熱交換して凝縮し液冷媒(113℃)となる。これにより、熱媒体回路(100)の熱媒体は例えば110℃から120℃まで加熱される。放熱器(13)で凝縮した高圧の液冷媒は、一部がインジェクション通路(22)の主通路(23)に流れ、残りが過冷却熱交換器(21)の高温流路(21a)に流れる。
<Operation of heat pump>
When both compressors (11, 12) are driven, the refrigerant compressed by the low-stage compressor (11) is further compressed by the high-stage compressor (12) to become a high-pressure refrigerant. The high-pressure refrigerant (130 ° C.) discharged from the high-stage compressor (12) is heat-exchanged with the heat medium (oil) of the heat medium circuit (100) by the radiator (13) to be condensed and liquid refrigerant (113 ° C. ) Thereby, the heat medium of the heat medium circuit (100) is heated from 110 ° C. to 120 ° C., for example. Part of the high-pressure liquid refrigerant condensed in the radiator (13) flows to the main passage (23) of the injection passage (22), and the rest flows to the high-temperature passage (21a) of the supercooling heat exchanger (21). .

主通路(23)に流れた液冷媒の一部(第1分岐冷媒)は、第1流量調整弁(25)で減圧された後、過冷却熱交換器(21)の低温流路(21b)に流れて高温流路(21a)の高圧冷媒と熱交換する。これによって、高温流路(21a)の高圧冷媒は過冷却される一方、低温流路(21b)の第1分岐冷媒(80℃)は蒸発して中間圧の過熱ガス冷媒(90℃)となる。高温流路(21a)の高圧冷媒は、過冷却されたことによって冷媒のエンタルピーが減少する。     A part of the liquid refrigerant (first branch refrigerant) flowing into the main passage (23) is depressurized by the first flow control valve (25), and then the low-temperature flow path (21b) of the supercooling heat exchanger (21). To exchange heat with the high-pressure refrigerant in the high-temperature channel (21a). As a result, the high-pressure refrigerant in the high-temperature channel (21a) is supercooled, while the first branch refrigerant (80 ° C) in the low-temperature channel (21b) evaporates to become an intermediate-pressure superheated gas refrigerant (90 ° C). . The high-pressure refrigerant in the high-temperature flow path (21a) is reduced in enthalpy of the refrigerant by being supercooled.

一方、主通路(23)に流れた液冷媒の残り(第2分岐冷媒)は、バイパス通路(24)に流れて第2流量調整弁(26)を通過した後、再び主通路(23)に流れて過熱ガス冷媒の第1分岐冷媒と混合する。そして、第1分岐冷媒と第2分岐冷媒の混合冷媒(中間圧の冷媒、87℃)は、低段側圧縮機(11)と高段側圧縮機(12)の間に流れる。     On the other hand, the remaining liquid refrigerant (second branch refrigerant) flowing in the main passage (23) flows into the bypass passage (24) and passes through the second flow rate adjusting valve (26), and then returns to the main passage (23). It flows and mixes with the 1st branch refrigerant of superheated gas refrigerant. The mixed refrigerant of the first branch refrigerant and the second branch refrigerant (intermediate pressure refrigerant, 87 ° C.) flows between the low-stage compressor (11) and the high-stage compressor (12).

過冷却熱交換器(21)で過冷却された高圧冷媒(90℃)は、膨張弁(14)で減圧されて低圧冷媒となる。低圧冷媒は、蒸発器(15)に流れて、熱源回路(110)の熱源媒体と熱交換して蒸発し、熱源媒体が冷却される。蒸発器(15)に流れる低圧冷媒は上述したように過冷却された分だけエンタルピーが減少しているので、蒸発器(15)の蒸発能力(冷却能力)が増大する。蒸発器(15)から流出した冷媒(40℃)は、低段側圧縮機(11)に吸入されて再び圧縮される。低段側圧縮機(11)から吐出された冷媒(82℃)は、インジェクション通路(22)からの中間圧の冷媒(第1分岐冷媒および第2分岐冷媒)と合流し、その合流冷媒(85℃)が高段側圧縮機(12)に吸入される。     The high-pressure refrigerant (90 ° C.) supercooled by the supercooling heat exchanger (21) is decompressed by the expansion valve (14) to become a low-pressure refrigerant. The low-pressure refrigerant flows into the evaporator (15), exchanges heat with the heat source medium of the heat source circuit (110), evaporates, and the heat source medium is cooled. Since the enthalpy of the low-pressure refrigerant flowing through the evaporator (15) is reduced by the amount of supercooling as described above, the evaporation capacity (cooling capacity) of the evaporator (15) increases. The refrigerant (40 ° C.) flowing out from the evaporator (15) is sucked into the low stage compressor (11) and compressed again. The refrigerant (82 ° C.) discharged from the low-stage compressor (11) merges with the intermediate-pressure refrigerant (first branch refrigerant and second branch refrigerant) from the injection passage (22), and the combined refrigerant (85 ° C) is sucked into the high stage compressor (12).

熱媒体回路(100)では、放熱器(13)で加熱された熱媒体(120℃)が加熱熱交換器(102)に流れて恒温槽(103)の水と熱交換し、水が加熱されて温水(80℃)となる。なお、上述した温度の数値は一例に過ぎない。     In the heat medium circuit (100), the heat medium (120 ° C.) heated by the radiator (13) flows to the heating heat exchanger (102) to exchange heat with the water in the thermostatic chamber (103), and the water is heated. To warm water (80 ° C.). In addition, the numerical value of the temperature mentioned above is only an example.

〈乾き度調整部の動作〉
乾き度調整部(52)は、上述した運転時に、蒸発器(15)の出口冷媒が乾き度1未満(いわゆる湿り冷媒)となるように冷媒回路(10)を制御する。本実施形態では、蒸発器(15)の出口冷媒の乾き度が目標値(例えば、0.8)となるように調整される。なお、本実施形態において、前記乾き度の目標値は、1未満の値に設定すればよいが、ヒートポンプ(1)のCOPが最適となる0.7から0.9の範囲内で設定するのが好ましい。
<Operation of dryness adjustment unit>
The dryness adjusting unit (52) controls the refrigerant circuit (10) so that the outlet refrigerant of the evaporator (15) becomes less than 1 (so-called wet refrigerant) during the above-described operation. In the present embodiment, the degree of dryness of the outlet refrigerant of the evaporator (15) is adjusted to a target value (for example, 0.8). In the present embodiment, the target value of the dryness may be set to a value less than 1, but is set within a range of 0.7 to 0.9 where the COP of the heat pump (1) is optimal. Is preferred.

具体的に、乾き度調整部(52)は、低段側圧縮機(11)の吸入冷媒の圧力(吸入圧力)、低段側圧縮機(11)の吐出冷媒の圧力(吐出圧力)および温度(吐出温度)の3つの測定値から、予め用意されたマップ(51)を用いて、蒸発器(15)の出口冷媒の乾き度を導出する。導出した乾き度が目標値でないとき、乾き度調整部(52)は、前記導出した乾き度と前記3つの測定値から、蒸発器(15)の出口冷媒の乾き度を目標値とするための制御量あるいは設定値を決定する。     Specifically, the dryness adjusting unit (52) is configured to determine the suction refrigerant pressure (suction pressure) of the low-stage compressor (11), the discharge refrigerant pressure (discharge pressure) and the temperature of the low-stage compressor (11). The dryness of the outlet refrigerant of the evaporator (15) is derived from the three measured values of (discharge temperature) using a map (51) prepared in advance. When the derived dryness is not the target value, the dryness adjusting unit (52) uses the derived dryness and the three measured values to set the dryness of the outlet refrigerant of the evaporator (15) as the target value. Determine the controlled variable or set value.

具体的には、膨張弁(14)の開度などが制御される。例えば、膨張弁(14)の開度が増大すると、低段側圧縮機(11)の吸入圧力は上昇し、蒸発器(15)の出口冷媒の乾き度は低下する。膨張弁(14)の開度が減少すると、低段側圧縮機(11)の吸入圧力は低下し、蒸発器(15)の出口冷媒の乾き度は上昇する。     Specifically, the opening degree of the expansion valve (14) and the like are controlled. For example, when the opening degree of the expansion valve (14) increases, the suction pressure of the low-stage compressor (11) increases, and the dryness of the outlet refrigerant of the evaporator (15) decreases. When the opening degree of the expansion valve (14) decreases, the suction pressure of the low-stage compressor (11) decreases, and the dryness of the outlet refrigerant of the evaporator (15) increases.

このように蒸発器(15)の出口冷媒が乾き度1未満(湿り冷媒)となると、蒸発器(15)における冷媒の偏流が抑制される。過熱ガス冷媒は湿り冷媒と比べて比体積が大きく流速が高くなることから、複数のパスを有する蒸発器では、一部のパスにのみ過熱ガス冷媒が発生すると、そのパスは他のパスよりも圧力損失が増大する。そのため、過熱ガス冷媒が発生したパスには冷媒が流入しにくくなり、他のパスに偏って冷媒が流入するという偏流が生じてしまう。ところが、本実施形態では、蒸発器(15)の出口冷媒が乾き度1未満(湿り冷媒)となるようにしているため、蒸発器(15)では冷媒の過熱領域がなくなり過熱ガス冷媒は発生しない。したがって、蒸発器(15)における冷媒の偏流が抑制される。     As described above, when the outlet refrigerant of the evaporator (15) has a dryness of less than 1 (wet refrigerant), the refrigerant drift in the evaporator (15) is suppressed. Since the superheated gas refrigerant has a larger specific volume and a higher flow rate than the wet refrigerant, in an evaporator having a plurality of passes, if superheated gas refrigerant is generated only in some passes, that pass is more than the other passes. Pressure loss increases. Therefore, it becomes difficult for the refrigerant to flow into the path where the superheated gas refrigerant is generated, and a drift occurs in which the refrigerant flows in the other path. However, in this embodiment, since the outlet refrigerant of the evaporator (15) has a dryness of less than 1 (wet refrigerant), the evaporator (15) has no superheated area of the refrigerant and no superheated gas refrigerant is generated. . Therefore, the refrigerant drift in the evaporator (15) is suppressed.

〈インジェクション調整部の動作〉
インジェクション調整部(53)は、上述した運転時に、高段側圧縮機(12)の吐出冷媒の温度(吐出温度)が目標値(130℃)となるように、且つ、低段側圧縮機(11)の吐出圧力(高段側圧縮機(12)の吸入圧力)が目標値となるように、第1流量調整弁(25)および第2流量調整弁(26)の開度を調整する。高段側圧縮機(12)の吐出温度の目標値は、放熱器(13)で熱媒体回路(100)の熱媒体を所定温度(120℃)に加熱するために必要な高段側圧縮機(12)の吐出冷媒の温度に設定される。低段側圧縮機(11)の吐出圧力の目標値は、低段側圧縮機(11)の吸入圧力と高段側圧縮機(12)の吐出圧力とから各圧縮機(11,12)の圧縮比が最適となる値に設定される。ここで、最適な圧縮比とは、各圧縮比に対する各圧縮機(11,12)の圧縮機効率(運転効率)の組み合わせとして、冷凍サイクル全体の効率が最も良くなる値である。
<Operation of injection adjustment unit>
The injection adjusting unit (53) is configured so that the temperature (discharge temperature) of the refrigerant discharged from the high stage compressor (12) becomes a target value (130 ° C.) during the operation described above, and the low stage compressor ( The opening degree of the first flow rate adjustment valve (25) and the second flow rate adjustment valve (26) is adjusted so that the discharge pressure of 11) (the suction pressure of the high-stage compressor (12)) becomes the target value. The target value of the discharge temperature of the high stage compressor (12) is the high stage compressor required to heat the heat medium of the heat medium circuit (100) to a predetermined temperature (120 ° C) with the radiator (13). The temperature of the discharged refrigerant in (12) is set. The target value of the discharge pressure of the low-stage compressor (11) is determined from the suction pressure of the low-stage compressor (11) and the discharge pressure of the high-stage compressor (12) for each compressor (11, 12). The compression ratio is set to an optimum value. Here, the optimum compression ratio is a value at which the efficiency of the entire refrigeration cycle becomes the best as a combination of the compressor efficiency (operating efficiency) of each compressor (11, 12) with respect to each compression ratio.

例えば、低段側圧縮機(11)の吐出圧力が目標値となっており、高段側圧縮機(12)の吐出温度が目標値よりも低い場合、インジェクション通路(22)における第1分岐冷媒(過熱ガス冷媒)と第2分岐冷媒(液冷媒)の混合冷媒(以下、単に混合冷媒という。)の流量は維持しつつ、混合冷媒における第1分岐冷媒の流量割合(流量)が増加するように、第1流量調整弁(25)の開度が増加され、第2流量調整弁(26)の開度が減少される。そうすると、インジェクション通路(22)の混合冷媒の状態(乾き度、過熱度)が変化する。具体的に、混合冷媒の乾き度若しくは過熱度が高くなり、または、混合冷媒が湿り状態から過熱状態になる。つまり、混合冷媒のエンタルピーが増加する。インジェクション通路(22)の混合冷媒のエンタルピーが増加すると、高段側圧縮機(12)の吸入冷媒のエンタルピーも増加し、その結果、低段側圧縮機(11)の吐出圧力は維持したまま、高段側圧縮機(12)の吐出温度が上昇して目標値となる。     For example, when the discharge pressure of the low-stage compressor (11) is a target value and the discharge temperature of the high-stage compressor (12) is lower than the target value, the first branch refrigerant in the injection passage (22) The flow rate ratio (flow rate) of the first branch refrigerant in the mixed refrigerant increases while maintaining the flow rate of the mixed refrigerant (hereinafter referred to simply as mixed refrigerant) of (superheated gas refrigerant) and the second branched refrigerant (liquid refrigerant). Furthermore, the opening degree of the first flow rate adjusting valve (25) is increased, and the opening degree of the second flow rate adjusting valve (26) is decreased. Then, the state (dryness, superheat degree) of the mixed refrigerant in the injection passage (22) changes. Specifically, the dryness or superheat of the mixed refrigerant increases, or the mixed refrigerant changes from a wet state to an overheated state. That is, the enthalpy of the mixed refrigerant increases. When the enthalpy of the mixed refrigerant in the injection passage (22) increases, the enthalpy of the suction refrigerant of the high stage compressor (12) also increases. As a result, the discharge pressure of the low stage compressor (11) is maintained, The discharge temperature of the high-stage compressor (12) rises to the target value.

また、低段側圧縮機(11)の吐出圧力が目標値となっており、高段側圧縮機(12)の吐出温度が目標値よりも高い場合、インジェクション通路(22)における混合冷媒の流量は維持しつつ、混合冷媒における第2分岐冷媒の流量割合(流量)が増加するように、第1流量調整弁(25)の開度が減少され、第2流量調整弁(26)の開度が増加される。そうすると、インジェクション通路(22)の混合冷媒の状態(乾き度、過熱度)が変化する。具体的に、混合冷媒の乾き度若しくは過熱度が低くなり、または、混合冷媒が過熱状態から湿り状態になる。つまり、混合冷媒のエンタルピーが減少する。インジェクション通路(22)の混合冷媒のエンタルピーが減少すると、高段側圧縮機(12)の吸入冷媒のエンタルピーも減少し、その結果、低段側圧縮機(11)の吐出圧力は維持したまま、高段側圧縮機(12)の吐出温度が低下して目標値となる。     When the discharge pressure of the low stage compressor (11) is the target value and the discharge temperature of the high stage compressor (12) is higher than the target value, the flow rate of the mixed refrigerant in the injection passage (22) Is maintained, while the opening degree of the first flow rate adjustment valve (25) is decreased so that the flow rate ratio (flow rate) of the second branched refrigerant in the mixed refrigerant increases, and the opening degree of the second flow rate adjustment valve (26). Is increased. Then, the state (dryness, superheat degree) of the mixed refrigerant in the injection passage (22) changes. Specifically, the dryness or superheat of the mixed refrigerant is lowered, or the mixed refrigerant is changed from an overheated state to a wet state. That is, the enthalpy of the mixed refrigerant is reduced. When the enthalpy of the mixed refrigerant in the injection passage (22) decreases, the enthalpy of the suction refrigerant of the high-stage compressor (12) also decreases. As a result, the discharge pressure of the low-stage compressor (11) is maintained, The discharge temperature of the high stage compressor (12) is lowered to the target value.

また、高段側圧縮機(12)の吐出温度が目標値となっており、低段側圧縮機(11)の吐出圧力が目標値よりも高い場合、インジェクション通路(22)の混合冷媒における第1分岐冷媒と第2分岐冷媒の流量比は維持しつつ、混合冷媒の流量が減少するように、第1流量調整弁(25)および第2流量調整弁(26)の両方の開度が減少される。そうすると、混合冷媒のエンタルピーは維持されたまま、混合冷媒の流量のみが減少する。その結果、高段側圧縮機(12)の吐出温度は維持されたまま、低段側圧縮機(11)の吐出圧力が低下して目標値となる。なお、低段側圧縮機(11)の吐出圧力が目標値よりも高い場合、低段側圧縮機(11)の圧縮比が最適値よりも高くなり、高段側圧縮機(12)の圧縮比は最適値よりも低くなる。     Further, when the discharge temperature of the high-stage compressor (12) is the target value and the discharge pressure of the low-stage compressor (11) is higher than the target value, the second refrigerant refrigerant in the injection passage (22) The opening degree of both the first flow rate adjustment valve (25) and the second flow rate adjustment valve (26) is decreased so that the flow rate of the mixed refrigerant decreases while maintaining the flow ratio of the first branch refrigerant and the second branch refrigerant. Is done. Then, only the flow rate of the mixed refrigerant decreases while maintaining the enthalpy of the mixed refrigerant. As a result, the discharge pressure of the low-stage compressor (11) decreases to the target value while the discharge temperature of the high-stage compressor (12) is maintained. If the discharge pressure of the low-stage compressor (11) is higher than the target value, the compression ratio of the low-stage compressor (11) becomes higher than the optimum value, and the compression of the high-stage compressor (12) The ratio will be lower than the optimum value.

また、高段側圧縮機(12)の吐出温度が目標値となっており、低段側圧縮機(11)の吐出圧力が目標値よりも低い場合、インジェクション通路(22)の混合冷媒における第1分岐冷媒と第2分岐冷媒の流量比は維持しつつ、混合冷媒の流量が増加するように、第1流量調整弁(25)および第2流量調整弁(26)の両方の開度が増加される。そうすると、混合冷媒のエンタルピーは維持されたまま、混合冷媒の流量のみが増加する。その結果、高段側圧縮機(12)の吐出温度は維持されたまま、低段側圧縮機(11)の吐出圧力が上昇して目標値となる。なお、低段側圧縮機(11)の吐出圧力が目標値よりも低い場合、低段側圧縮機(11)の圧縮比が最適値よりも低くなり、高段側圧縮機(12)の圧縮比は最適値よりも高くなる。     Further, when the discharge temperature of the high stage compressor (12) is the target value and the discharge pressure of the low stage compressor (11) is lower than the target value, the second refrigerant in the mixed refrigerant in the injection passage (22). The opening degree of both the first flow rate adjustment valve (25) and the second flow rate adjustment valve (26) is increased so that the flow rate of the mixed refrigerant increases while maintaining the flow rate ratio of the first branch refrigerant and the second branch refrigerant. Is done. Then, only the flow rate of the mixed refrigerant increases while the enthalpy of the mixed refrigerant is maintained. As a result, while the discharge temperature of the high stage compressor (12) is maintained, the discharge pressure of the low stage compressor (11) rises to the target value. If the discharge pressure of the low-stage compressor (11) is lower than the target value, the compression ratio of the low-stage compressor (11) will be lower than the optimum value, and the compression of the high-stage compressor (12) The ratio will be higher than the optimum value.

また、高段側圧縮機(12)の吐出温度および低段側圧縮機(11)の吐出圧力の両方が目標値からずれている場合、混合冷媒の流量および混合冷媒における第1分岐冷媒と第2分岐冷媒の流量比の両方を調整するために、第1流量調整弁(25)および第2流量調整弁(26)の両方の開度が調整される。     Further, when both the discharge temperature of the high-stage compressor (12) and the discharge pressure of the low-stage compressor (11) deviate from the target values, the flow rate of the mixed refrigerant and the first branch refrigerant and the first refrigerant in the mixed refrigerant In order to adjust both the flow ratios of the two-branch refrigerants, the opening degrees of both the first flow rate adjustment valve (25) and the second flow rate adjustment valve (26) are adjusted.

以上のように、インジェクション調整部(53)は、高段側圧縮機(12)の吐出温度が目標値よりも低い場合はインジェクション通路(22)における混合冷媒の第1分岐冷媒の流量割合を増加させ、目標値よりも高い場合は混合冷媒の第2分岐冷媒の流量割合を増加させる。また、インジェクション調整部(53)は、低段側圧縮機(11)の吐出圧力(高段側圧縮機(12)の吸入圧力)が目標値よりも低い場合はインジェクション通路(22)における混合冷媒の流量(第1分岐冷媒と第2分岐冷媒の合計流量)を増加させ、目標値よりも高い場合は混合冷媒の流量を減少させる。これによって、高段側圧縮機(12)の吐出温度と両圧縮機(11,12)の間の冷媒圧力(即ち、冷凍サイクルの中間圧)の両方を目標値に調整することができる。     As described above, the injection adjustment unit (53) increases the flow rate ratio of the first branch refrigerant of the mixed refrigerant in the injection passage (22) when the discharge temperature of the high stage compressor (12) is lower than the target value. If it is higher than the target value, the flow rate ratio of the second branch refrigerant of the mixed refrigerant is increased. In addition, the injection adjustment unit (53) is a refrigerant mixture in the injection passage (22) when the discharge pressure of the low-stage compressor (11) (the suction pressure of the high-stage compressor (12)) is lower than the target value. (The total flow rate of the first branch refrigerant and the second branch refrigerant) is increased, and if higher than the target value, the flow rate of the mixed refrigerant is decreased. As a result, both the discharge temperature of the high-stage compressor (12) and the refrigerant pressure between the compressors (11, 12) (that is, the intermediate pressure of the refrigeration cycle) can be adjusted to the target value.

また、インジェクション調整部(53)は、過冷却熱交換器(21)から流出した第1分岐冷媒(過熱ガス冷媒)の過熱度が低下(例えば、3℃)してきた場合、低段側圧縮機(11)の吐出圧力の調整よりも高段側圧縮機(12)の吐出温度の調整を優先して行う。具体的に、インジェクション調整部(53)は、第1分岐冷媒の過熱度が低下してくると、第1流量調整弁(25)の開度を減少させて、第1分岐冷媒の流量を減少させることで、過冷却熱交換器(21)から流出した第1分岐冷媒の過熱度を確保すると共に、高段側圧縮機(12)の吐出温度を目標値に保持するように第2流量調整弁(26)の開度を調整する。なお、第1分岐冷媒の過熱度は出口温度センサ(T3)の測定値と中間圧力センサ(P3)の測定値)から導出される。     In addition, the injection adjusting unit (53) is a low-stage compressor when the degree of superheat of the first branch refrigerant (superheated gas refrigerant) flowing out from the supercooling heat exchanger (21) has decreased (for example, 3 ° C). The adjustment of the discharge temperature of the higher stage compressor (12) is prioritized over the adjustment of the discharge pressure of (11). Specifically, when the degree of superheat of the first branch refrigerant decreases, the injection adjustment unit (53) decreases the flow rate of the first branch refrigerant by reducing the opening of the first flow rate adjustment valve (25). As a result, the degree of superheat of the first branch refrigerant flowing out of the supercooling heat exchanger (21) is secured, and the second flow rate adjustment is performed so that the discharge temperature of the high-stage compressor (12) is maintained at the target value. Adjust the opening of the valve (26). Note that the degree of superheat of the first branch refrigerant is derived from the measured value of the outlet temperature sensor (T3) and the measured value of the intermediate pressure sensor (P3).

そして、上述した乾き度調整部(52)の動作とインジェクション調整部(53)の動作は、所定時間(例えば、1分)おきに交互に行われる。     And the operation | movement of the dryness adjustment part (52) mentioned above and the operation | movement of the injection adjustment part (53) are performed alternately every predetermined time (for example, 1 minute).

−実施形態1の効果−
本実施形態によれば、第1分岐冷媒(過熱ガス冷媒)と第2分岐冷媒(液冷媒)とを混合させて低段側圧縮機(11)と高段側圧縮機(12)の間に供給するインジェクション通路(22)を備え、第1分岐冷媒と第2分岐冷媒の合計流量および流量比を調整する2つの流量調整弁(25,26)を備えるようにした。したがって、高段側圧縮機(12)の吐出温度と冷凍サイクルの中間圧の両方を制御することができる。高段側圧縮機(12)の吐出温度を制御できることにより、放熱器(13)において所要の加熱能力を発揮させることができる。また、中間圧を制御できることにより、各圧縮機(11,12)の圧縮比を最適な値にすることができ、これによって、圧縮機(11,12)の運転効率を向上させることができる。この結果、加熱能力を十分に満足しつつ、COP(成績係数)の高い運転が可能となる。
-Effect of Embodiment 1-
According to the present embodiment, the first branch refrigerant (superheated gas refrigerant) and the second branch refrigerant (liquid refrigerant) are mixed and placed between the low-stage compressor (11) and the high-stage compressor (12). The injection passage (22) to be supplied was provided, and two flow rate adjustment valves (25, 26) for adjusting the total flow rate and flow rate ratio of the first branch refrigerant and the second branch refrigerant were provided. Therefore, both the discharge temperature of the high stage compressor (12) and the intermediate pressure of the refrigeration cycle can be controlled. Since the discharge temperature of the high-stage compressor (12) can be controlled, the required heating capacity can be exhibited in the radiator (13). Further, since the intermediate pressure can be controlled, the compression ratio of each compressor (11, 12) can be set to an optimum value, and thereby the operation efficiency of the compressor (11, 12) can be improved. As a result, it is possible to operate with a high COP (coefficient of performance) while sufficiently satisfying the heating capacity.

また、本実施形態によれば、インジェクション通路(22)として、放熱器(13)の出口側通路から分岐し過冷却熱交換器(21)を介して低段側圧縮機(11)と高段側圧縮機(12)の間に接続される主通路(23)と、該主通路(23)に設けられる過冷却熱交換器(21)のバイパス通路(24)とを備えるようにし、主通路(23)における過冷却熱交換器(21)の入口側とバイパス通路(24)との間に第1流量調整弁(25)を設け、バイパス通路(24)に第2流量調整弁(26)を設けるようにした。このため、2つの流量調整弁(25,26)を開度調整するだけで、容易にインジェクション通路(22)を流れる第1分岐冷媒(過熱ガス冷媒)と第2分岐冷媒(液冷媒)の合計流量および流量比を確実に調整することか可能となる。     Further, according to the present embodiment, the injection passage (22) is branched from the outlet side passage of the radiator (13) and is connected to the low stage compressor (11) and the high stage via the supercooling heat exchanger (21). A main passage (23) connected between the side compressors (12) and a bypass passage (24) of a supercooling heat exchanger (21) provided in the main passage (23). A first flow rate adjustment valve (25) is provided between the inlet side of the supercooling heat exchanger (21) and the bypass passage (24) in (23), and a second flow rate adjustment valve (26) is provided in the bypass passage (24). It was made to provide. For this reason, the sum of the first branch refrigerant (superheated gas refrigerant) and the second branch refrigerant (liquid refrigerant) easily flowing through the injection passage (22) simply by adjusting the opening of the two flow rate adjustment valves (25, 26). It is possible to reliably adjust the flow rate and the flow rate ratio.

また、蒸発器(15)の出口冷媒が乾き度1未満(湿り冷媒)となるようにしたことから、蒸発器(15)では冷媒の過熱領域がなくなり過熱ガス冷媒は発生しないので、蒸発器(15)における冷媒の偏流を抑制することができる。このように、蒸発器(15)において過熱領域をなくすことにより、また偏流を抑制することにより、蒸発器(15)全体を有効活用できるので、蒸発器(15)の熱交換の能力を向上させることができる。その結果、ヒートポンプ(1)のCOPを一層向上させることが可能である。     In addition, since the outlet refrigerant of the evaporator (15) has a dryness of less than 1 (wet refrigerant), the evaporator (15) has no overheated area of refrigerant and no superheated gas refrigerant is generated. The drift of the refrigerant in 15) can be suppressed. As described above, the entire evaporator (15) can be effectively utilized by eliminating the overheating region in the evaporator (15) and suppressing the drift, thereby improving the heat exchange capability of the evaporator (15). be able to. As a result, the COP of the heat pump (1) can be further improved.

特に、本実施形態では、蒸発器(15)の出口冷媒の乾き度を0.7から0.9に設定したので、乾き度に対する熱伝達率がピークとなるので、ヒートポンプ(1)のCOPを最適な値にすることができる。     In particular, in this embodiment, since the dryness of the outlet refrigerant of the evaporator (15) is set to 0.7 to 0.9, the heat transfer coefficient with respect to the dryness peaks, so the COP of the heat pump (1) is An optimal value can be obtained.

また、蒸発器(15)の出口冷媒が乾き度1未満(湿り冷媒)となることで、高段側圧縮機(12)の吐出温度が低下し、必要な吐出温度を確保し難くなるおそれがある。この場合でも、本実施形態では、2つの流量調整弁(25,26)を開度調整してインジェクション通路(22)における第1分岐冷媒(過熱ガス冷媒)と第2分岐冷媒(液冷媒)の流量比を調整することで高段側圧縮機(12)の吐出温度を目標値(必要温度)にすることができる。これにより、放熱器(13)の加熱能力を十分に確保することができる。     Moreover, when the outlet refrigerant of the evaporator (15) has a dryness of less than 1 (wet refrigerant), the discharge temperature of the high-stage compressor (12) is lowered, and it may be difficult to ensure the required discharge temperature. is there. Even in this case, in the present embodiment, the opening amounts of the two flow rate adjustment valves (25, 26) are adjusted, and the first branch refrigerant (superheated gas refrigerant) and the second branch refrigerant (liquid refrigerant) in the injection passage (22) are adjusted. By adjusting the flow rate ratio, the discharge temperature of the high stage compressor (12) can be set to the target value (required temperature). Thereby, sufficient heating capability of the radiator (13) can be ensured.

また、本実施形態では、放熱器(13)において対象流体を100℃以上に加熱するが、冷媒として臨界温度が対象流体の加熱温度(熱媒体回路(100)の熱媒体の加熱温度120℃)を大きく超えるR245faの冷媒を用いているので、冷凍サイクルにおいて超臨界域ではなく凝縮域をとることができる。また、臨界温度が100℃を超える冷媒は、低圧で密度が非常に小さいことから、蒸発器(15)において必要流量を稼ぐためには冷媒の流速を高くする必要があり、これによって蒸発器(15)で圧力損失の増大を招いてしまうが、本実施形態では、蒸発器(15)の出口冷媒が乾き度1未満(湿り冷媒)となるようにしたため、蒸発器(15)において冷媒の流速を高くしなくても必要流量(必要能力)を確保することができる。これにより、冷凍サイクルにおいて超臨界域ではなく凝縮域を確実にとりつつも、蒸発器(15)における圧力損失を低減することができる。その結果、ヒートポンプ(1)のCOPを向上させることが可能である。     In the present embodiment, the target fluid is heated to 100 ° C. or higher in the radiator (13), but the critical temperature as the refrigerant is the heating temperature of the target fluid (the heating temperature of the heating medium of the heating medium circuit (100) is 120 ° C.). Since the refrigerant of R245fa that greatly exceeds is used, it is possible to take a condensing region instead of a supercritical region in the refrigeration cycle. Moreover, since the refrigerant | coolant with a critical temperature exceeding 100 degreeC has a very low density at low pressure, in order to earn a required flow volume in an evaporator (15), it is necessary to make the flow velocity of a refrigerant | coolant high, and thereby an evaporator ( In this embodiment, the outlet refrigerant of the evaporator (15) is made to have a dryness of less than 1 (wet refrigerant), so that the flow rate of the refrigerant in the evaporator (15) is increased. The required flow rate (required capacity) can be secured without increasing the flow rate. As a result, the pressure loss in the evaporator (15) can be reduced while ensuring the condensing region instead of the supercritical region in the refrigeration cycle. As a result, it is possible to improve the COP of the heat pump (1).

また、本実施形態では、低段側圧縮機(11)に湿り冷媒が吸入されるが、低段側圧縮機(11)の冷凍機油が冷媒によって希釈されたり、圧縮部がいわゆる液圧縮によって損傷するおそれはない。特に、本実施形態では、低段側圧縮機(11)が低圧ドーム型の圧縮機であるため、低段側圧縮機(11)のケーシングに流入した湿り冷媒は圧縮部に流入する前にモータ等によって加熱されて乾き度が幾分か高くなる。そのため、冷凍機油の希釈化や液圧縮による損傷を十分に防止できる。また、低段側圧縮機(11)の冷凍機油として、R245faの冷媒との相溶性が低いPAG系のものを用いることで、冷凍機油の希釈化をより一層防止することができる。これによって、ヒートポンプ(1)の信頼性を向上させることが可能である。     In this embodiment, wet refrigerant is sucked into the low-stage compressor (11), but the refrigeration oil of the low-stage compressor (11) is diluted by the refrigerant, or the compression section is damaged by so-called liquid compression. There is no risk. In particular, in the present embodiment, since the low-stage compressor (11) is a low-pressure dome type compressor, the moist refrigerant flowing into the casing of the low-stage compressor (11) is motorized before flowing into the compressor. The degree of dryness is increased somewhat by heating. Therefore, it is possible to sufficiently prevent damage due to dilution of the refrigerator oil and liquid compression. Moreover, as a refrigerating machine oil of a low stage side compressor (11), the dilution of refrigerating machine oil can be prevented further by using the thing of a PAG type | system | group with low compatibility with the refrigerant | coolant of R245fa. As a result, the reliability of the heat pump (1) can be improved.

また、本実施形態では、高段側圧縮機(12)が低圧ドーム型の圧縮機であるため、高段側圧縮機(12)の構成部材に要求される耐熱性を抑えることができる。高圧ドーム型の圧縮機では、圧縮部で圧縮された冷媒がケーシング内に吐出された後モータによってさらに加熱されるため、ケーシング内の温度が非常に高くなる。そのため、高圧ドーム型の圧縮機の場合、その構成部材に高い耐熱性が要求される。低圧ドーム型の圧縮機では、ケーシング内には比較的低温の冷媒が流入する一方、圧縮部で圧縮された冷媒はケーシング内に流出することなく直接ケーシング外に流出する。したがって、低圧ドーム型の圧縮機の場合、ケーシング内の温度を低く抑えることができ、これによって、構成部材に要求される耐熱性を抑えることが可能となる。     Moreover, in this embodiment, since the high stage side compressor (12) is a low pressure dome type compressor, the heat resistance requested | required of the structural member of a high stage side compressor (12) can be suppressed. In the high-pressure dome type compressor, since the refrigerant compressed in the compression section is further heated by the motor after being discharged into the casing, the temperature in the casing becomes very high. Therefore, in the case of a high-pressure dome type compressor, high heat resistance is required for its constituent members. In a low-pressure dome type compressor, a relatively low temperature refrigerant flows into the casing, while the refrigerant compressed by the compression section flows out of the casing directly without flowing out of the casing. Therefore, in the case of a low-pressure dome type compressor, the temperature in the casing can be kept low, thereby making it possible to suppress the heat resistance required for the constituent members.

《発明の実施形態2》
本発明の実施形態2について説明する。本実施形態のヒートポンプ(1)は、図2に示すように、前記実施形態1において中間圧の気液分離器(31)を設けると共にインジェクション通路の構成を変更したものである。ここでは、前記実施形態1と異なる部分について説明する。
<< Embodiment 2 of the Invention >>
A second embodiment of the present invention will be described. As shown in FIG. 2, the heat pump (1) of this embodiment is provided with an intermediate-pressure gas-liquid separator (31) in the first embodiment and the configuration of the injection passage is changed. Here, a different part from the said Embodiment 1 is demonstrated.

本実施形態の冷媒回路(10)は、放熱器(13)と蒸発器(15)との間に、放熱器(13)側から順に、高段側膨張弁(16)、気液分離器(31)および低段側膨張弁(17)が設けられている。冷媒回路(10)では、放熱器(13)の出口冷媒が高段側膨張弁(16)および低段側膨張弁(17)によって二段階で減圧される。つまり、冷媒回路(10)は、二段圧縮二段膨張式の冷凍サイクルを行うように構成されている。したがって、気液分離器(31)では中間圧の冷媒が流入してガス冷媒と液冷媒とに分離される。     The refrigerant circuit (10) of the present embodiment includes a high-stage expansion valve (16), a gas-liquid separator (in the order from the radiator (13) side, between the radiator (13) and the evaporator (15). 31) and a low stage side expansion valve (17). In the refrigerant circuit (10), the outlet refrigerant of the radiator (13) is depressurized in two stages by the high stage expansion valve (16) and the low stage side expansion valve (17). That is, the refrigerant circuit (10) is configured to perform a two-stage compression / two-stage expansion refrigeration cycle. Accordingly, the intermediate-pressure refrigerant flows into the gas-liquid separator (31) and is separated into the gas refrigerant and the liquid refrigerant.

冷媒回路(10)には、インジェクション通路(32)が設けられている。なお、冷媒回路(10)には、前記実施形態1と異なり、過冷却熱交換器は設けられていない。インジェクション通路(32)は、液通路(33)とガス通路(34)と合流通路(35)を有している。液通路(33)の流入端は気液分離器(31)の液層に連通し、ガス通路(34)の流入端は気液分離器(31)のガス層に連通している。合流通路(35)は、流入端が液通路(33)およびガス通路(34)の流出端と接続され、流出端が低段側圧縮機(11)と高段側圧縮機(12)の間に接続されている。インジェクション通路(32)では、気液分離器(31)から液通路(33)に流入した中間圧の液冷媒と、気液分離器(31)からガス通路(34)に流入した中間圧のガス冷媒とが、合流通路(35)で混合して低段側圧縮機(11)と高段側圧縮機(12)の間に供給される。液通路(33)には第1流量調整弁(36)が設けられ、ガス通路(34)には第2流量調整弁(37)が設けられている。この2つの流量調整弁(36,37)は、インジェクション通路(32)を流れる液冷媒とガス冷媒の合計流量(混合冷媒の流量)を調整する流量調整機構である。     The refrigerant circuit (10) is provided with an injection passage (32). In addition, unlike the said Embodiment 1, the supercooling heat exchanger is not provided in the refrigerant circuit (10). The injection passage (32) has a liquid passage (33), a gas passage (34), and a merging passage (35). The inflow end of the liquid passage (33) communicates with the liquid layer of the gas-liquid separator (31), and the inflow end of the gas passage (34) communicates with the gas layer of the gas-liquid separator (31). The confluence passage (35) has an inflow end connected to the outflow end of the liquid passage (33) and the gas passage (34), and an outflow end between the low-stage compressor (11) and the high-stage compressor (12). It is connected to the. In the injection passage (32), the intermediate-pressure liquid refrigerant flowing from the gas-liquid separator (31) into the liquid passage (33) and the intermediate-pressure gas flowing from the gas-liquid separator (31) into the gas passage (34). The refrigerant is mixed in the merge passage (35) and supplied between the low-stage compressor (11) and the high-stage compressor (12). The liquid passage (33) is provided with a first flow rate adjustment valve (36), and the gas passage (34) is provided with a second flow rate adjustment valve (37). The two flow rate adjustment valves (36, 37) are flow rate adjustment mechanisms that adjust the total flow rate of the liquid refrigerant and gas refrigerant (flow rate of the mixed refrigerant) flowing through the injection passage (32).

また、冷媒回路(10)には、インジェクション通路(32)を流れる液冷媒とガス冷媒を放熱器(13)の出口冷媒によって加熱する加熱熱交換器(38)が設けられている。加熱熱交換器(38)は、低温流路(38a)および高温流路(38b)を有している。加熱熱交換器(38)の低温流路(38a)はインジェクション通路(32)の合流通路(35)に接続されている。冷媒回路(10)には、加熱用液管(39)が設けられている。加熱用液管(39)は、流入端が放熱器(13)の出口側と高段側膨張弁(16)との間に接続され、流出端が高段側膨張弁(16)と気液分離器(31)との間に接続されている。加熱用液管(39)の途中には、加熱熱交換器(38)の高温流路(38b)が接続されている。加熱用液管(39)には、加熱熱交換器(38)よりも流出端側に第3流量調整弁(40)が設けられている。     The refrigerant circuit (10) is provided with a heating heat exchanger (38) for heating the liquid refrigerant and gas refrigerant flowing through the injection passage (32) by the outlet refrigerant of the radiator (13). The heating heat exchanger (38) has a low temperature channel (38a) and a high temperature channel (38b). The low-temperature flow path (38a) of the heating heat exchanger (38) is connected to the junction path (35) of the injection path (32). The refrigerant circuit (10) is provided with a heating liquid pipe (39). The heating liquid pipe (39) has an inflow end connected between the outlet side of the radiator (13) and the high stage expansion valve (16), and an outflow end connected to the high stage expansion valve (16) It is connected between the separator (31). In the middle of the heating liquid pipe (39), a high-temperature channel (38b) of the heating heat exchanger (38) is connected. The heating liquid pipe (39) is provided with a third flow rate adjustment valve (40) on the outflow end side of the heating heat exchanger (38).

加熱用液管(39)には、放熱器(13)の出口冷媒の一部が流入する。加熱熱交換器(38)では、低温流路(38a)を流れるインジェクション通路(32)の混合冷媒が、高温流路(38b)を流れる冷媒と熱交換し、加熱される。つまり、インジェクション通路(32)の混合冷媒は加熱熱交換器(38)によって加温される。そして、第3流量調整弁(40)の開度が調整されることで、加熱熱交換器(38)の高温流路(38b)を流れる冷媒の流量が調整され、加熱熱交換器(38)の加熱能力が調整される。     Part of the outlet refrigerant of the radiator (13) flows into the heating liquid pipe (39). In the heating heat exchanger (38), the mixed refrigerant in the injection passage (32) flowing through the low temperature flow path (38a) exchanges heat with the refrigerant flowing through the high temperature flow path (38b) and is heated. That is, the mixed refrigerant in the injection passage (32) is heated by the heating heat exchanger (38). And the flow volume of the refrigerant | coolant which flows through the high temperature flow path (38b) of a heating heat exchanger (38) is adjusted by adjusting the opening degree of a 3rd flow regulating valve (40), and a heating heat exchanger (38) The heating capacity is adjusted.

なお、本実施形態では、第1流量調整弁(36)および第2流量調整弁(37)と、加熱熱交換器(38)とが、本発明に係るインジェクション調整機構を構成する。     In the present embodiment, the first flow rate adjustment valve (36), the second flow rate adjustment valve (37), and the heating heat exchanger (38) constitute an injection adjustment mechanism according to the present invention.

本実施形態のインジェクション調整部(53)は、高段側圧縮機(12)の吐出温度が目標値となるように、且つ、低段側圧縮機(11)の吐出圧力が目標値となるように、3つの流量調整弁(36,37,40)の開度を調整する。つまり、インジェクション調整部(53)は、第1流量調整弁(36)および第2流量調整弁(37)の開度を調整することでインジェクション通路(32)の混合冷媒の流量(液冷媒とガス冷媒の合計流量)を調整し、第3流量調整弁(40)の開度を調整することで加熱熱交換器(38)の加熱能力を調整してインジェクション通路(32)の混合冷媒の状態(乾き度、過熱度)を調整する。     The injection adjusting unit (53) of the present embodiment is configured so that the discharge temperature of the high-stage compressor (12) becomes a target value and the discharge pressure of the low-stage compressor (11) becomes a target value. In addition, the opening degree of the three flow rate adjusting valves (36, 37, 40) is adjusted. That is, the injection adjusting unit (53) adjusts the opening degree of the first flow rate adjusting valve (36) and the second flow rate adjusting valve (37), thereby adjusting the flow rate of the mixed refrigerant (liquid refrigerant and gas) in the injection passage (32). Adjusting the heating capacity of the heating heat exchanger (38) by adjusting the opening of the third flow rate adjustment valve (40) and adjusting the state of the mixed refrigerant in the injection passage (32) ( Adjust the degree of dryness and superheat.

例えば、低段側圧縮機(11)の吐出圧力が目標値よりも低い場合、インジェクション通路(32)における混合冷媒(液冷媒とガス冷媒の混合冷媒)の流量が増加するように、2つの流量調整弁(36,37)の開度が調整される。混合冷媒の流量が増加すると、低段側圧縮機(11)の吐出圧力が上昇して目標値となる。また、低段側圧縮機(11)の吐出圧力が目標値よりも高い場合、インジェクション通路(32)における混合冷媒(液冷媒とガス冷媒の混合冷媒)の流量が減少するように、2つの流量調整弁(36,37)の開度が調整される。混合冷媒の流量が減少すると、低段側圧縮機(11)の吐出圧力が低下して目標値となる。このように、両圧縮機(11,12)の間の冷媒圧力(即ち、冷凍サイクルの中間圧)を目標値に調整することができる。     For example, when the discharge pressure of the low-stage compressor (11) is lower than the target value, the two flow rates are set so that the flow rate of the mixed refrigerant (liquid refrigerant and gas refrigerant mixed refrigerant) in the injection passage (32) increases. The opening degree of the regulating valve (36, 37) is adjusted. When the flow rate of the mixed refrigerant increases, the discharge pressure of the low-stage compressor (11) increases and becomes the target value. Further, when the discharge pressure of the low-stage compressor (11) is higher than the target value, the two flow rates are set so that the flow rate of the mixed refrigerant (the mixed refrigerant of the liquid refrigerant and the gas refrigerant) in the injection passage (32) decreases. The opening degree of the regulating valve (36, 37) is adjusted. When the flow rate of the mixed refrigerant decreases, the discharge pressure of the low-stage compressor (11) decreases to the target value. Thus, the refrigerant pressure (that is, the intermediate pressure of the refrigeration cycle) between the two compressors (11, 12) can be adjusted to the target value.

また、高段側圧縮機(12)の吐出温度が目標値よりも低い場合は、加熱熱交換器(38)の加熱能力が増大するように、第3流量調整弁(40)の開度が増加される。そうすると、インジェクション通路(32)から両圧縮機(11,12)の間に供給される混合冷媒の乾き度ないし過熱度(温度)が高くなるので、高段側圧縮機(12)の吸入冷媒の乾き度ないし過熱度も高くなり、その結果、高段側圧縮機(12)の吐出温度が上昇して目標値となる。また、高段側圧縮機(12)の吐出温度が目標値よりも高い場合は、加熱熱交換器(38)の加熱能力が低下するように、第3流量調整弁(40)の開度が減少される。そうすると、インジェクション通路(32)から両圧縮機(11,12)の間に供給される混合冷媒の乾き度ないし過熱度(温度)が低下するので、高段側圧縮機(12)の吸入冷媒の乾き度ないし過熱度が低くなり、その結果、高段側圧縮機(12)の吐出温度が低下して目標値となる。     When the discharge temperature of the high stage compressor (12) is lower than the target value, the opening of the third flow rate adjustment valve (40) is set so that the heating capacity of the heating heat exchanger (38) is increased. Will be increased. As a result, the dryness or superheat (temperature) of the mixed refrigerant supplied between the compressors (11, 12) from the injection passage (32) increases, so that the intake refrigerant of the high-stage compressor (12) As a result, the degree of dryness or superheat increases, and as a result, the discharge temperature of the high-stage compressor (12) rises to the target value. When the discharge temperature of the high stage compressor (12) is higher than the target value, the opening of the third flow rate adjustment valve (40) is set so that the heating capacity of the heating heat exchanger (38) is reduced. Will be reduced. As a result, the dryness or superheat (temperature) of the mixed refrigerant supplied between the compressors (11, 12) from the injection passage (32) decreases, so that the intake refrigerant of the high stage compressor (12) As a result, the degree of dryness or superheat is lowered, and as a result, the discharge temperature of the high stage compressor (12) is lowered to the target value.

このように、本実施形態のインジェクション調整部(53)は、加熱熱交換器(38)の加熱能力を調整することで高段側圧縮機(12)の吐出温度を調整し、インジェクション通路(32)における混合冷媒の流量を調整することで両圧縮機(11,12)の間の冷媒圧力(即ち、冷凍サイクルの中間圧)を調整する。これによって、高段側圧縮機(12)の吐出温度と両圧縮機(11,12)の間の冷媒圧力の両方を目標値に調整することができる。その他の作用効果については前記実施形態1と同様である。     Thus, the injection adjustment part (53) of this embodiment adjusts the discharge temperature of the high stage side compressor (12) by adjusting the heating capability of the heating heat exchanger (38), and the injection passage (32 The refrigerant pressure between the compressors (11, 12) (that is, the intermediate pressure of the refrigeration cycle) is adjusted by adjusting the flow rate of the mixed refrigerant in (2). Thereby, both the discharge temperature of the high-stage compressor (12) and the refrigerant pressure between the compressors (11, 12) can be adjusted to the target value. Other functions and effects are the same as those of the first embodiment.

《その他の実施形態》
例えば、前記各実施形態では、必ずしも乾き度調整部(52)を設ける必要はない。つまり、前記各実施形態では、蒸発器(15)の出口冷媒を乾き度1未満としなくてもよい。
<< Other Embodiments >>
For example, in each of the above embodiments, it is not always necessary to provide the dryness adjusting unit (52). That is, in each said embodiment, the exit refrigerant | coolant of an evaporator (15) does not need to make it dryness less than one.

また、前記実施形態1のインジェクション通路(22)では、図示しないが、バイパス通路(24)に代えて、流入端が放熱器(13)の出口側通路に接続され流出端が主通路(23)における過冷却熱交換器(37)の出口側に接続される分岐管を備えるようにしてもよい。つまり、インジェクション通路(22)では、第1分岐冷媒および第2分岐冷媒として、それぞれ放熱器(13)の出口冷媒から別々に分流させるようにしてもよい。この場合、前記分岐管に第2流量調整弁(26)が設けられる。     Further, in the injection passage (22) of the first embodiment, although not shown, the inflow end is connected to the outlet side passage of the radiator (13) and the outflow end is the main passage (23) instead of the bypass passage (24). A branch pipe connected to the outlet side of the supercooling heat exchanger (37) may be provided. That is, in the injection passage (22), the first branch refrigerant and the second branch refrigerant may be separately branched from the outlet refrigerant of the radiator (13). In this case, a second flow rate adjustment valve (26) is provided in the branch pipe.

例えば、前記各実施形態の乾き度調整部(52)では、マップ(51)を用いて蒸発器(15)の出口冷媒の乾き度を調整するようにしたが、本発明はこれに限らない。例えば、低段側圧縮機(11)の吸入冷媒に関する物理量(温度や圧力)を状態量とする状態方程式および出力方程式からなる推定モデルを用いて低段側圧縮機(11)の吸入冷媒のエンタルピーを検出し(特開2007−278618号公報に開示されている技術)、その検出した吸入冷媒のエンタルピーに基づいて、蒸発器(15)の出口冷媒の乾き度を調整するようにしてもよい。     For example, in the dryness adjusting unit (52) of each of the embodiments, the dryness of the outlet refrigerant of the evaporator (15) is adjusted using the map (51), but the present invention is not limited to this. For example, the enthalpy of the refrigerant sucked in the low-stage compressor (11) using an estimation model consisting of a state equation and an output equation with physical quantities (temperature and pressure) related to the refrigerant sucked in the low-stage compressor (11) as state quantities. (A technique disclosed in Japanese Patent Application Laid-Open No. 2007-278618), and the dryness of the outlet refrigerant of the evaporator (15) may be adjusted based on the detected enthalpy of the suction refrigerant.

また、前記各実施形態では、冷媒としてR245faの単一冷媒を用いるようにしたが、R245faを主成分として含む混合冷媒を用いてもよい。例えば、R245faとR134aの混合冷媒を用いることができる。R134aを混合させることで、冷媒の伝熱性能が向上すると共に冷媒の密度が上がる。     Moreover, in each said embodiment, although the single refrigerant | coolant of R245fa was used as a refrigerant | coolant, you may use the mixed refrigerant | coolant which contains R245fa as a main component. For example, a mixed refrigerant of R245fa and R134a can be used. By mixing R134a, the heat transfer performance of the refrigerant is improved and the density of the refrigerant is increased.

また、前記各実施形態では、R245faの単一冷媒に代えて、ペンタン(C5H12)等の臨界温度が120℃以上の冷媒を用いてもよい。     In each of the above embodiments, a refrigerant having a critical temperature of 120 ° C. or higher, such as pentane (C 5 H 12), may be used instead of the single refrigerant of R245fa.

また、前記各実施形態において、熱媒体回路(100)の熱媒体は油に限らず水や冷媒であってもよい。その場合、熱媒体回路(100)では、気液二相状態の水や冷媒がポンプ(101)に吸入されてポンプ(101)が損傷するおそれがあるため、恒温槽(103)の出口側とポンプ(101)との間に気液分離器を設けて確実に液単相の水や冷媒をポンプ(101)に吸入させるようにしてもよい。     In each of the above embodiments, the heat medium of the heat medium circuit (100) is not limited to oil but may be water or a refrigerant. In that case, in the heat medium circuit (100), water or refrigerant in a gas-liquid two-phase state is sucked into the pump (101) and may damage the pump (101). A gas-liquid separator may be provided between the pump (101) and the liquid (single-phase) water or refrigerant may be reliably sucked into the pump (101).

また、前記実施形態のインジェクション通路(22)では、第1分岐冷媒(過熱ガス冷媒)と第2分岐冷媒(液冷媒)とを混合して両圧縮機(11,12)の間に供給するようにしたが、第1分岐冷媒および第2分岐冷媒を混合せずに個別に両圧縮機(11,12)の間に供給するように構成してもよい。つまり、第1分岐冷媒用のインジェクション通路と、第2分岐冷媒用のインジェクション通路とを設けるようにしてもよい。     In the injection passage (22) of the above embodiment, the first branch refrigerant (superheated gas refrigerant) and the second branch refrigerant (liquid refrigerant) are mixed and supplied between the compressors (11, 12). However, you may comprise so that a 1st branch refrigerant | coolant and a 2nd branch refrigerant | coolant may be separately supplied between both compressors (11, 12), without mixing. That is, an injection passage for the first branch refrigerant and an injection passage for the second branch refrigerant may be provided.

また、前記実施形態2のインジェクション通路(32)も同様、液冷媒用のインジェクション通路と、ガス冷媒用のインジェクション通路とを設けて、液冷媒とガス冷媒を混合せずに個別に両圧縮機(11,12)の間に供給するようにしてもよい。この場合、それぞれのインジェクション通路に加熱熱交換器が設けられる。     Similarly, the injection passage (32) of the second embodiment is provided with an injection passage for liquid refrigerant and an injection passage for gas refrigerant, so that both compressors ( 11 and 12). In this case, a heating heat exchanger is provided in each injection passage.

また、前記各実施形態において、各圧縮機(11,12)はいわゆる高圧ドーム型の圧縮機を用いるようにしてもよい。     In each of the above embodiments, each compressor (11, 12) may be a so-called high pressure dome type compressor.

本発明は、二段圧縮式の冷凍サイクルを行うヒートポンプについて有用である。     The present invention is useful for a heat pump that performs a two-stage compression refrigeration cycle.

1 ヒートポンプ
10 冷媒回路
11 低段側圧縮機(低段側圧縮機構)
12 高段側圧縮機(高段側圧縮機構)
13 放熱器
14 膨張弁(膨張機構)
15 蒸発器
21 過冷却熱交換器
22 インジェクション通路
23 主通路
24 バイパス通路
25 第1流量調整弁(流量調整機構)
26 第2流量調整弁(流量調整機構)
52 乾き度調整部
DESCRIPTION OF SYMBOLS 1 Heat pump 10 Refrigerant circuit 11 Low stage side compressor (low stage side compression mechanism)
12 High stage compressor (High stage compression mechanism)
13 Radiator 14 Expansion Valve (Expansion Mechanism)
15 Evaporator 21 Supercooling Heat Exchanger 22 Injection Passage 23 Main Passage 24 Bypass Passage 25 First Flow Control Valve (Flow Control Mechanism)
26 Second flow rate adjustment valve (flow rate adjustment mechanism)
52 Dryness adjuster

Claims (7)

低段側圧縮機構(11)および高段側圧縮機構(12)と、放熱器(13)と、蒸発器(15)とが順に接続されて二段圧縮式の冷凍サイクルを行う冷媒回路(10)を備えたヒートポンプであって、
前記冷媒回路(10)は、
前記放熱器(13)よりも下流を流れる液冷媒とガス冷媒とを前記低段側圧縮機構(11)と前記高段側圧縮機構(12)の間に供給するインジェクション通路(22,32)と、
前記インジェクション通路(22,32)から前記両圧縮機構(11,12)の間に供給される前記液冷媒およびガス冷媒の状態と合計流量を調整するインジェクション調整機構とを備えている
ことを特徴とするヒートポンプ。
A refrigerant circuit (10) in which a low-stage compression mechanism (11) and a high-stage compression mechanism (12), a radiator (13), and an evaporator (15) are connected in order to perform a two-stage compression refrigeration cycle. ) With a heat pump,
The refrigerant circuit (10)
An injection passage (22, 32) for supplying liquid refrigerant and gas refrigerant flowing downstream from the radiator (13) between the low-stage compression mechanism (11) and the high-stage compression mechanism (12); ,
An injection adjusting mechanism for adjusting a state and a total flow rate of the liquid refrigerant and gas refrigerant supplied between the compression mechanisms (11, 12) from the injection passage (22, 32); Heat pump.
請求項1において、
前記冷媒回路(10)は、前記放熱器(13)の出口液冷媒と該出口液冷媒の第1分岐冷媒とが熱交換して該第1分岐冷媒が過熱ガス冷媒となる前記出口液冷媒の過冷却熱交換器(21)を備え、
前記インジェクション通路(22)は、前記過冷却熱交換器(21)で過熱ガス冷媒となった前記第1分岐冷媒と前記放熱器(13)の出口液冷媒の第2分岐冷媒とを前記低段側圧縮機構(11)と前記高段側圧縮機構(12)の間に供給するように構成され、
前記インジェクション調整機構は、前記インジェクション通路(22)を流れる前記第1分岐冷媒と前記第2分岐冷媒の合計流量を調整し且つ前記第1分岐冷媒と前記第2分岐冷媒の流量比を調整する流量調整機構(25,26)とを備えている
ことを特徴とするヒートポンプ。
In claim 1,
In the refrigerant circuit (10), the outlet liquid refrigerant of the radiator (13) and the first branch refrigerant of the outlet liquid refrigerant exchange heat so that the first branch refrigerant becomes superheated gas refrigerant. With supercooling heat exchanger (21),
The injection passage (22) passes the first branch refrigerant that has become superheated gas refrigerant in the supercooling heat exchanger (21) and the second branch refrigerant that is the outlet liquid refrigerant of the radiator (13) to the low stage. Configured to be supplied between the side compression mechanism (11) and the high stage compression mechanism (12),
The injection adjusting mechanism adjusts a total flow rate of the first branch refrigerant and the second branch refrigerant flowing through the injection passage (22) and adjusts a flow rate ratio between the first branch refrigerant and the second branch refrigerant. A heat pump comprising an adjustment mechanism (25, 26).
請求項2において、
前記流量調整機構(25,26)は、前記高段側圧縮機構(12)の吐出温度がその目標値よりも低い場合は前記第1分岐冷媒の流量割合が増加するように、前記高段側圧縮機構(12)の吐出温度がその目標値よりも高い場合は前記第2分岐冷媒の流量割合が増加するように前記第1分岐冷媒と前記第2分岐冷媒の流量比を調整する一方、前記低段側圧縮機構(11)の吐出圧力がその目標値よりも低い場合は前記第1分岐冷媒と前記第2分岐冷媒の合計流量を増加させ、前記低段側圧縮機構(11)の吐出圧力がその目標値よりも高い場合は前記第1分岐冷媒と前記第2分岐冷媒の合計流量を減少させる
ことを特徴とするヒートポンプ。
In claim 2,
The flow rate adjusting mechanism (25, 26) is configured so that the flow rate ratio of the first branch refrigerant increases when the discharge temperature of the high-stage compression mechanism (12) is lower than the target value. When the discharge temperature of the compression mechanism (12) is higher than the target value, the flow rate ratio between the first branch refrigerant and the second branch refrigerant is adjusted so that the flow rate ratio of the second branch refrigerant increases, When the discharge pressure of the low-stage compression mechanism (11) is lower than the target value, the total flow rate of the first branch refrigerant and the second branch refrigerant is increased, and the discharge pressure of the low-stage compression mechanism (11) Is higher than the target value, the total flow rate of the first branch refrigerant and the second branch refrigerant is reduced.
請求項2において、
前記インジェクション通路(22)は、前記放熱器(13)の出口側通路から分岐し前記過冷却熱交換器(21)を介して前記低段側圧縮機構(11)と高段側圧縮機構(12)の間に接続される主通路(23)と、該主通路(23)に設けられる前記過冷却熱交換器(21)のバイパス通路(24)とを備え、
前記流量調整機構は、前記主通路(23)における前記過冷却熱交換器(21)の入口側と前記バイパス通路(24)との間に設けられる前記第1分岐冷媒の第1流量調整弁(25)と、前記バイパス通路(24)に設けられる前記第2分岐冷媒の第2流量調整弁(26)とを備えている
ことを特徴とするヒートポンプ。
In claim 2,
The injection passage (22) branches from the outlet side passage of the radiator (13), and passes through the supercooling heat exchanger (21) to connect the low-stage compression mechanism (11) and the high-stage compression mechanism (12 And a bypass passage (24) of the supercooling heat exchanger (21) provided in the main passage (23),
The flow rate adjustment mechanism includes a first flow rate adjustment valve (1) for the first branch refrigerant provided between the inlet side of the supercooling heat exchanger (21) in the main passage (23) and the bypass passage (24). 25) and a second flow rate regulating valve (26) for the second branch refrigerant provided in the bypass passage (24).
請求項1において、
前記冷媒回路(10)は、前記放熱器(13)と前記蒸発器(15)の間に設けられた中間圧の気液分離器(31)を備え、
前記インジェクション通路(32)は、前記気液分離器(31)の液冷媒とガス冷媒とを前記低段側圧縮機構(11)と前記高段側圧縮機構(12)の間に供給するように構成され、
前記インジェクション調整機構は、前記インジェクション通路(32)を流れる前記液冷媒とガス冷媒の合計流量を調整する流量調整機構(36,37)と、前記インジェクション通路(32)を流れる前記液冷媒とガス冷媒を前記放熱器(13)の出口冷媒によって加熱する加熱熱交換器(38)とを備えている
ことを特徴とするヒートポンプ。
In claim 1,
The refrigerant circuit (10) includes an intermediate-pressure gas-liquid separator (31) provided between the radiator (13) and the evaporator (15),
The injection passage (32) supplies the liquid refrigerant and gas refrigerant of the gas-liquid separator (31) between the low-stage compression mechanism (11) and the high-stage compression mechanism (12). Configured,
The injection adjusting mechanism includes a flow rate adjusting mechanism (36, 37) for adjusting a total flow rate of the liquid refrigerant and gas refrigerant flowing through the injection passage (32), and the liquid refrigerant and gas refrigerant flowing through the injection passage (32). And a heating heat exchanger (38) that heats the radiator (13) by the outlet refrigerant of the radiator (13).
請求項5において、
前記流量調整機構(36,37)は、前記低段側圧縮機構(11)の吐出圧力がその目標値よりも低い場合は前記液冷媒とガス冷媒の合計流量を増加させ、前記低段側圧縮機構(11)の吐出圧力がその目標値よりも高い場合は前記液冷媒とガス冷媒の合計流量を減少させる一方、
前記加熱熱交換器(38)は、前記高段側圧縮機構(12)の吐出温度がその目標値よりも低い場合は前記液冷媒およびガス冷媒の温度が上昇するように、前記高段側圧縮機構(12)の吐出温度がその目標値よりも高い場合は前記液冷媒およびガス冷媒の温度が低下するように加熱能力が調整される
ことを特徴とするヒートポンプ。
In claim 5,
The flow rate adjusting mechanism (36, 37) increases the total flow rate of the liquid refrigerant and the gas refrigerant when the discharge pressure of the low stage side compression mechanism (11) is lower than the target value, thereby reducing the low stage side compression. When the discharge pressure of the mechanism (11) is higher than the target value, the total flow rate of the liquid refrigerant and the gas refrigerant is reduced,
The heating heat exchanger (38) is configured to compress the high-stage compression so that the temperatures of the liquid refrigerant and gas refrigerant rise when the discharge temperature of the high-stage compression mechanism (12) is lower than the target value. A heat pump characterized in that when the discharge temperature of the mechanism (12) is higher than the target value, the heating capacity is adjusted so that the temperatures of the liquid refrigerant and the gas refrigerant are lowered.
請求項2または5において、
前記冷媒回路(10)において前記蒸発器(15)の出口冷媒が乾き度1未満となるように冷凍サイクルを行わせる乾き度調整部(52)を備えている
ことを特徴とするヒートポンプ。
In claim 2 or 5,
A heat pump comprising: a dryness adjusting unit (52) for performing a refrigeration cycle so that an outlet refrigerant of the evaporator (15) in the refrigerant circuit (10) has a dryness of less than 1.
JP2012152936A 2012-07-06 2012-07-06 Heat pump Pending JP2014016079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012152936A JP2014016079A (en) 2012-07-06 2012-07-06 Heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012152936A JP2014016079A (en) 2012-07-06 2012-07-06 Heat pump

Publications (1)

Publication Number Publication Date
JP2014016079A true JP2014016079A (en) 2014-01-30

Family

ID=50110933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012152936A Pending JP2014016079A (en) 2012-07-06 2012-07-06 Heat pump

Country Status (1)

Country Link
JP (1) JP2014016079A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015148407A (en) * 2014-02-07 2015-08-20 パナソニックIpマネジメント株式会社 Refrigeration device
JP2015148406A (en) * 2014-02-07 2015-08-20 パナソニックIpマネジメント株式会社 Refrigeration device
EP3018351A2 (en) 2014-11-05 2016-05-11 Mitsubishi Heavy Industries, Ltd. Two-stage-compression refrigerating cycle apparatus, and device and method for controlling the apparatus
JP5971377B1 (en) * 2015-04-28 2016-08-17 ダイキン工業株式会社 Refrigeration equipment
JPWO2014068967A1 (en) * 2012-10-31 2016-09-08 パナソニックIpマネジメント株式会社 Refrigeration equipment
WO2017081781A1 (en) * 2015-11-11 2017-05-18 富士電機株式会社 Exhaust heat recovery heat pump device
JP2017198445A (en) * 2017-06-29 2017-11-02 パナソニックIpマネジメント株式会社 refrigerator
JP2018028405A (en) * 2016-08-18 2018-02-22 富士電機株式会社 Refrigerant circuit device
KR20200009765A (en) * 2018-07-20 2020-01-30 엘지전자 주식회사 An air conditioning system and a method for controlling the same
KR20200009767A (en) * 2018-07-20 2020-01-30 엘지전자 주식회사 An air conditioning system and a method for controlling the same
JP2020024046A (en) * 2018-08-06 2020-02-13 富士電機株式会社 Heat pump device
EP3617617A4 (en) * 2017-04-28 2020-12-09 LG Electronics Inc. -1- Outdoor unit and method for controlling same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014068967A1 (en) * 2012-10-31 2016-09-08 パナソニックIpマネジメント株式会社 Refrigeration equipment
JP2015148406A (en) * 2014-02-07 2015-08-20 パナソニックIpマネジメント株式会社 Refrigeration device
JP2015148407A (en) * 2014-02-07 2015-08-20 パナソニックIpマネジメント株式会社 Refrigeration device
EP3018351A2 (en) 2014-11-05 2016-05-11 Mitsubishi Heavy Industries, Ltd. Two-stage-compression refrigerating cycle apparatus, and device and method for controlling the apparatus
JP2016090143A (en) * 2014-11-05 2016-05-23 三菱重工業株式会社 Two-stage compression type refrigeration cycle, and its control device and control method
JP5971377B1 (en) * 2015-04-28 2016-08-17 ダイキン工業株式会社 Refrigeration equipment
WO2016174822A1 (en) * 2015-04-28 2016-11-03 ダイキン工業株式会社 Refrigeration apparatus
WO2017081781A1 (en) * 2015-11-11 2017-05-18 富士電機株式会社 Exhaust heat recovery heat pump device
JPWO2017081781A1 (en) * 2015-11-11 2018-07-26 富士電機株式会社 Waste heat recovery heat pump device
JP2018028405A (en) * 2016-08-18 2018-02-22 富士電機株式会社 Refrigerant circuit device
EP3617617A4 (en) * 2017-04-28 2020-12-09 LG Electronics Inc. -1- Outdoor unit and method for controlling same
US11402134B2 (en) 2017-04-28 2022-08-02 Lg Electronics Inc. Outdoor unit and control method thereof
JP2017198445A (en) * 2017-06-29 2017-11-02 パナソニックIpマネジメント株式会社 refrigerator
KR102136416B1 (en) * 2018-07-20 2020-07-21 엘지전자 주식회사 An air conditioning system and a method for controlling the same
KR102165354B1 (en) * 2018-07-20 2020-10-13 엘지전자 주식회사 An air conditioning system and a method for controlling the same
KR20200009767A (en) * 2018-07-20 2020-01-30 엘지전자 주식회사 An air conditioning system and a method for controlling the same
KR20200009765A (en) * 2018-07-20 2020-01-30 엘지전자 주식회사 An air conditioning system and a method for controlling the same
JP2020024046A (en) * 2018-08-06 2020-02-13 富士電機株式会社 Heat pump device

Similar Documents

Publication Publication Date Title
JP2014016079A (en) Heat pump
JP5991989B2 (en) Refrigeration air conditioner
JP4651627B2 (en) Refrigeration air conditioner
US9822994B2 (en) Refrigeration cycle system with internal heat exchanger
JP4781390B2 (en) Refrigeration cycle equipment
JP5533491B2 (en) Refrigeration cycle apparatus and hot water heater
JP5411643B2 (en) Refrigeration cycle apparatus and hot water heater
JP6019837B2 (en) Heat pump system
JP4375171B2 (en) Refrigeration equipment
JP5637053B2 (en) Refrigeration cycle apparatus and hot water heating apparatus including the same
JP5132708B2 (en) Refrigeration air conditioner
JP5264874B2 (en) Refrigeration equipment
JP2011080633A (en) Refrigerating cycle device and hot-water heating device
JP2013002744A (en) Refrigerating cycle device and hot water heating device having the same
JP2013076541A (en) Heat pump
JP2007225140A (en) Turbo refrigerating machine, and control device and method of turbo refrigerating machine
JP6341326B2 (en) Refrigeration unit heat source unit
JP4888256B2 (en) Refrigeration equipment
JP2017155944A (en) Refrigeration cycle device and hot water heating device including the same
JP2013257072A (en) Refrigeration cycle device
JP5233960B2 (en) Refrigeration cycle apparatus and hot water heater using the same
JP7375167B2 (en) heat pump
JP2009293887A (en) Refrigerating device
JP6024241B2 (en) Heat pump system
JP2014016078A (en) Heat pump