JPH051866A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPH051866A
JPH051866A JP3152069A JP15206991A JPH051866A JP H051866 A JPH051866 A JP H051866A JP 3152069 A JP3152069 A JP 3152069A JP 15206991 A JP15206991 A JP 15206991A JP H051866 A JPH051866 A JP H051866A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
compressor
valve
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3152069A
Other languages
Japanese (ja)
Inventor
Masakazu Oshima
正和 大嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3152069A priority Critical patent/JPH051866A/en
Publication of JPH051866A publication Critical patent/JPH051866A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/15Hunting, i.e. oscillation of controlled refrigeration variables reaching undesirable values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PURPOSE:To carry out high accuracy temperature control of cooling liquid constantly by improving operation control-related structure. CONSTITUTION:A refrigerant drain pot 11 or a container which stores refrigerant 1a and a capillary tube 12 or a resistant means against the refrigerant which flows in a pressure pipeline 10 connected with the refrigerant drain pot 11 in series are installed to the pressure pipeline 10 which communicates the pressure of the refrigerant 1a on the suction side of a compressor 1 with the pressure of the refrigerant 1a of a manipulation section of a refrigerant bypass valve 9. Since the refrigerant valve 9 can be opened and closed slowly as a result, it is possible to prevent the generation of hunting motion between the refrigerant valve 9 and a vaporization pressure control valve 5 at a point around a setting pressure on the suction side of a compressor 1 for which the refrigerant valve 9 starts its opening motion.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば水を冷却媒体と
して半導体素子の冷却を行う水冷式冷却装置,工作機械
用の切削油の冷却を行う冷却装置あるいは血液冷蔵庫な
どの、被冷却体の精密な温度制御が必要な装置に用いら
れる冷凍機に係わり、特にその運転制御に関連する構成
の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an object to be cooled such as a water cooling type cooling device for cooling semiconductor elements using water as a cooling medium, a cooling device for cooling cutting oil for machine tools or a blood refrigerator. The present invention relates to a refrigerator used in a device that requires precise temperature control, and particularly relates to improvement of a configuration related to its operation control.

【0002】[0002]

【従来の技術】半導体素子の冷却装置では、半導体素子
の使用温度が厳しく規制されていることから、半導体素
子の発熱量の変動に対応して冷却液体である冷却水や冷
却油の精密な温度制御が要求される。図2はこのような
冷却装置に使用されている従来技術による冷凍機の冷媒
回路図である。図2において、1は、冷媒1aを吸入口
から吸い込み加圧圧縮して吐出口から吐出する圧縮機、
2は圧縮機1で圧縮されて高温となった冷媒1aを冷却
する凝縮器、3は前記圧縮機1で圧縮され高圧となった
冷媒1aを膨張させる膨張弁、4は冷媒1aが蒸発する
ことで冷熱を発生し、被冷却体である冷却液体を冷却す
る蒸発器、4aは冷却液体が通流する管路、5は蒸発器
4と前記圧縮機1の吸入口の間に挿入された温度制御式
蒸発圧力調整弁、6は冷却液体管路4aに配設され冷却
液体の温度を検出する温度センサ、7は温度センサ6の
出力を入力信号として温度制御式蒸発圧力調整弁5に弁
開度信号を出力する温度制御器、8は前記圧縮機1の吐
出口と前記蒸発器4の入口側とを結ぶ冷媒バイパス管、
9はこの冷媒バイパス管8に挿入されて圧縮機1の吸入
側の冷媒圧力があらかじめ設定された設定圧力になった
時に開弁動作を開始する冷媒バイパス弁、10は圧縮機
1の吸入口側と冷媒バイパス弁8の操作部とを接続し冷
媒バイパス弁8の操作部の冷媒圧力と圧縮機1の吸入側
の冷媒圧力を連通しあう導圧管である。
2. Description of the Related Art In a semiconductor device cooling device, since the operating temperature of the semiconductor device is strictly regulated, the precise temperature of the cooling water or the cooling oil, which is the cooling liquid, is adjusted according to the fluctuation of the heat generation amount of the semiconductor device. Control is required. FIG. 2 is a refrigerant circuit diagram of a conventional refrigerator used in such a cooling device. In FIG. 2, reference numeral 1 denotes a compressor for sucking the refrigerant 1a from the suction port, compressing it under pressure, and discharging it from the discharge port.
Reference numeral 2 is a condenser for cooling the refrigerant 1a which is compressed by the compressor 1 and has a high temperature. Reference numeral 3 is an expansion valve for expanding the refrigerant 1a which is compressed by the compressor 1 and has a high pressure. An evaporator that cools the cooling liquid that is the object to be cooled by 4a is a pipe line through which the cooling liquid flows, and 5 is a temperature inserted between the evaporator 4 and the suction port of the compressor 1. Controllable evaporation pressure adjusting valve, 6 is a temperature sensor arranged in the cooling liquid pipe 4a for detecting the temperature of the cooling liquid, and 7 is an opening of the temperature controlling evaporation pressure adjusting valve 5 using the output of the temperature sensor 6 as an input signal. Temperature controller that outputs a temperature signal, 8 is a refrigerant bypass pipe that connects the discharge port of the compressor 1 and the inlet side of the evaporator 4,
Reference numeral 9 is a refrigerant bypass valve that is inserted into the refrigerant bypass pipe 8 and starts a valve opening operation when the refrigerant pressure on the suction side of the compressor 1 reaches a preset set pressure. 10 is a suction port side of the compressor 1. Is a pressure guiding pipe that connects the refrigerant bypass valve 8 and the operation part of the refrigerant bypass valve 8 to communicate the refrigerant pressure of the operation part of the refrigerant bypass valve 8 with the refrigerant pressure of the suction side of the compressor 1.

【0003】上記の構成において、まず、温度制御器7
と温度制御式蒸発圧力調整弁5との制御系により、蒸発
器4における冷却液体の温度を温度センサ6で検出し
て、蒸発圧力調整弁5の弁開度を加減し、これにより冷
却液体の温度制御が行われる。すなわち、半導体素子が
発生する損失が減少することで熱負荷が減少し、冷却液
体の温度が低下し始めると、温度センサ6がこの温度変
化を検知して蒸発圧力調整弁5の弁開度を絞り、冷凍機
の冷凍能力を熱負荷とバランスさせるように低減させ
る。この冷凍能力の低減に伴って圧縮機1の吸入側の圧
力が低下する。一方、冷媒バイパス弁9は常時は閉じて
おり、圧縮機1の吸入側圧力を入力信号として、この圧
力が図示されていない低圧スイッチの動作圧力よりも僅
かに大きい値に定めた所定の設定圧力以下に低下すると
開弁動作するよう設定されている。このため吸入側圧力
がこの設定圧力まで低下すると、冷媒バイパス弁9は開
弁動作を開始し、圧縮機1が吐出する高温の冷媒ガスの
一部を冷媒バイパス管8を通して直接蒸発器4にバイパ
スさせて蒸発器4に模擬負荷を与え、この状態で冷凍能
力と冷凍負荷をバランスさせるようにする。これにより
幅広い容量制御が可能となり、熱負荷のいかんにかかわ
らず、冷却液体の温度を精密な温度制御を行うことがで
きる。
In the above structure, first, the temperature controller 7
The temperature sensor 6 detects the temperature of the cooling liquid in the evaporator 4 by the control system of the temperature control type evaporation pressure adjusting valve 5 and adjusts the valve opening degree of the evaporation pressure adjusting valve 5 to control the cooling liquid. Temperature control is performed. That is, when the heat load decreases due to the decrease in the loss generated by the semiconductor element and the temperature of the cooling liquid starts to decrease, the temperature sensor 6 detects this temperature change and changes the valve opening degree of the evaporation pressure adjusting valve 5. Throttle, reduce the refrigeration capacity of the refrigerator to balance with the heat load. The pressure on the suction side of the compressor 1 decreases as the refrigerating capacity decreases. On the other hand, the refrigerant bypass valve 9 is normally closed, and the suction side pressure of the compressor 1 is used as an input signal, and this pressure is set to a predetermined set pressure slightly higher than the operating pressure of a low pressure switch (not shown). It is set to open when the temperature drops below the value. Therefore, when the suction side pressure decreases to this set pressure, the refrigerant bypass valve 9 starts the opening operation, and a part of the high temperature refrigerant gas discharged from the compressor 1 is bypassed directly to the evaporator 4 through the refrigerant bypass pipe 8. Then, a simulated load is applied to the evaporator 4, and the refrigerating capacity and the refrigerating load are balanced in this state. As a result, a wide range of capacity can be controlled, and the temperature of the cooling liquid can be precisely controlled regardless of the heat load.

【0004】[0004]

【発明が解決しようとする課題】前述した従来技術によ
る冷凍機では、冷媒バイパス弁が弁を閉じた状態で運転
されている場合には高精度な冷却液体温度が得られれの
であるが、しかしながら、冷媒バイパス弁の操作部が導
圧管により圧縮機の吸入側と接続されているので、冷媒
バイパス弁が吸入側圧力に応じて鋭敏に動作し、前述し
た冷媒バイパス弁が開弁動作を開始する圧縮機の吸入側
の設定圧力付近において、冷媒バイパス弁の開弁→冷却
液体温度の上昇→温度制御式蒸発圧力調整弁の弁開度が
開く→圧縮機吸入側圧力の上昇→冷媒バイパス弁の閉塞
→冷却液体温度の降下→蒸発圧力調整弁の弁開度が絞ら
れる→圧縮機吸入側圧力の降下、とたいした負荷変動が
ないにもかかわらず、冷媒バイパス弁と蒸発圧力調整弁
が交互にハンチング動作を行うことで、この条件下では
高精度な冷却液体温度を得られないという問題があっ
た。
In the refrigerating machine according to the above-mentioned prior art, a highly accurate cooling liquid temperature can be obtained when the refrigerant bypass valve is operated with the valve closed, however, Since the operation part of the refrigerant bypass valve is connected to the suction side of the compressor by the pressure guiding pipe, the refrigerant bypass valve operates sensitively according to the suction side pressure, and the above-mentioned refrigerant bypass valve starts the opening operation. Near the set pressure on the suction side of the compressor, open the refrigerant bypass valve → increase the temperature of the cooling liquid → open the valve opening of the temperature-controlled evaporative pressure adjusting valve → increase the pressure on the suction side of the compressor → close the refrigerant bypass valve → Cooling liquid temperature drop → Evaporation pressure adjustment valve opening is reduced → Compressor suction side pressure drop, even though there is no significant load fluctuation, refrigerant bypass valve and evaporation pressure adjustment valve alternate By performing the operation, there is a problem that can not be obtained a highly accurate cooling liquid temperature in this condition.

【0005】本発明は、前述の従来技術の問題点に鑑み
なされたものであり、その目的は運転制御に関連する構
成を改良することにより、常に冷却液体温度の高精度な
温度制御を行うことのできる冷凍機を提供することにあ
る。
The present invention has been made in view of the above-mentioned problems of the prior art, and its object is to always perform highly accurate temperature control of the cooling liquid temperature by improving the configuration related to the operation control. It is to provide a refrigerator capable of performing.

【0006】[0006]

【課題を解決するための手段】本発明では前述の目的
は、 1)冷媒を蒸発させることで冷熱を発生する蒸発器と、
この蒸発器で蒸発して低圧となった冷媒を吸入口から吸
い込み加圧圧縮して吐出口から吐出する圧縮機と、この
圧縮機で圧縮されて高温となった冷媒を冷却する凝縮器
と、この凝縮器の下流に接続され前記圧縮機で圧縮され
高圧となった冷媒を膨張させる膨張弁と、前記蒸発器と
前記圧縮機の吸入口の間に挿入された温度制御式蒸発圧
力調整弁と、前記圧縮機の吐出口と前記蒸発器の入口側
とを結ぶ冷媒バイパス管と、この冷媒バイパス管に挿入
されて前記圧縮機の吸入側の冷媒圧力があらかじめ設定
された設定圧力になった時に開弁動作する冷媒バイパス
弁と、前記圧縮機吸入口側と前記冷媒バイパス弁の操作
部とを接続し冷媒バイパス弁の操作部の冷媒圧力と圧縮
機の吸入側の冷媒圧力を連通しあうようにする導圧管と
を備えた冷凍機において、導圧管路に冷媒に対する抵抗
手段と冷媒溜とを直列に配設したこと、また 2)前記1項記載の冷凍機において、抵抗手段はキャピ
ラリーチューブであること、さらに 3)前記1項記載の冷凍機において、抵抗手段は調節弁
であることにより達成される。
In the present invention, the above-mentioned objects are as follows: 1) an evaporator for generating cold heat by evaporating a refrigerant;
A compressor that sucks in a low-pressure refrigerant that has been evaporated by this evaporator from a suction port, pressurizes and compresses it, and discharges it from a discharge port; and a condenser that cools the high-temperature refrigerant compressed by this compressor, An expansion valve connected downstream of the condenser for expanding the high-pressure refrigerant compressed by the compressor, and a temperature control type evaporation pressure adjusting valve inserted between the evaporator and the suction port of the compressor. , A refrigerant bypass pipe connecting the discharge port of the compressor and the inlet side of the evaporator, and when the refrigerant pressure on the suction side of the compressor inserted into the refrigerant bypass pipe reaches a preset set pressure A refrigerant bypass valve that operates to open the valve, the compressor suction port side and the operation section of the refrigerant bypass valve are connected so that the refrigerant pressure of the operation section of the refrigerant bypass valve and the refrigerant pressure of the suction side of the compressor communicate with each other. In a refrigerator equipped with And a resistance means for the refrigerant and a refrigerant reservoir are arranged in series in the pressure guiding line, and 2) in the refrigerator of the above-mentioned item 1, the resistance means is a capillary tube, and further 3) in the item 1. In the refrigerator, the resistance means is achieved by being a control valve.

【0007】[0007]

【作用】本発明においては前述の構成として、圧縮機の
吸入口側と冷媒バイパス弁の操作部とを接続し冷媒バイ
パス弁の操作部の冷媒圧力と圧縮機の吸入側の冷媒圧力
を連通しあう導圧管に、抵抗手段と冷媒溜とを配設した
ことにより、冷媒バイパス弁の操作部の圧力は冷媒溜に
蓄積された冷媒の圧力であり、この冷媒溜の圧力は、圧
縮機吸入側圧力の降下時には、冷媒溜中の冷媒が抵抗手
段を介して徐々に圧縮機の吸入側に流れ出ることで、ま
た、圧縮機吸入側圧力の上昇時には、圧縮機の吸入側の
冷媒が抵抗手段を介して徐々に冷媒溜に流れ込むこと
で、緩慢に変化するので、冷媒バイパス弁の吸入側圧力
に応じての開閉動作を緩慢にし、冷媒バイパス弁が開弁
動作を開始する圧縮機の吸入側の設定圧力付近において
の冷媒バイパス弁と蒸発圧力調整弁のハンチング動作の
発生を防止する。
In the present invention, as the above-mentioned structure, the suction port side of the compressor and the operation part of the refrigerant bypass valve are connected to communicate the refrigerant pressure of the operation part of the refrigerant bypass valve with the refrigerant pressure of the suction side of the compressor. By disposing the resistance means and the refrigerant reservoir in the corresponding pressure guiding pipe, the pressure of the operating portion of the refrigerant bypass valve is the pressure of the refrigerant accumulated in the refrigerant reservoir, and the pressure of the refrigerant reservoir is the suction side of the compressor. When the pressure drops, the refrigerant in the refrigerant reservoir gradually flows out to the suction side of the compressor through the resistance means, and when the pressure on the suction side of the compressor rises, the refrigerant on the suction side of the compressor acts as the resistance means. Since it gradually changes into the refrigerant reservoir through the refrigerant, it slows the opening / closing operation according to the suction side pressure of the refrigerant bypass valve, and the refrigerant bypass valve starts the opening operation. With the refrigerant bypass valve near the set pressure To prevent the occurrence of hunting operation of the origination pressure regulating valve.

【0008】[0008]

【実施例】以下本発明の実施例を図面を参照して詳細に
説明する。図1は本発明の一実施例による冷凍機の冷媒
回路図である。図2の従来例と同一部分には同じ符号を
付し、その説明を省略する。図1において、11は導圧
管10の管路に配設された冷媒1aを貯留させる容器で
ある冷媒溜であり、12は冷媒溜11に直列に接続され
た、導圧管10中を通流する冷媒1aに対する抵抗手段
としての、キャピラリチューブである。本発明ではこの
ような構成としたので、熱負荷が減少し、蒸発圧力調整
弁5の弁開度が絞られ、圧縮機1の吸入側圧力が所定の
設定圧力以下に低下すると冷媒バイパス弁9が開弁動作
を開始することになるが、圧縮機1の吸入側圧力が低下
しても、冷媒溜11中の冷媒1aはキャピラリチューブ
12を介して徐々にしか圧縮機1の吸入口側に流れ出な
いため、冷媒溜11中の冷媒1aの圧力、従って冷媒バ
イパス弁9の操作部の圧力値の変化は緩慢となる。その
結果、例えばたいした負荷変動がない運転条件において
は、冷媒バイパス弁9はその弁を緩慢にしか開弁しない
ので、冷却液体温度の上昇も緩慢となり、温度制御式蒸
発圧力調整弁5の弁開度の絞られかたを緩慢にすること
ができ、冷媒バイパス弁9が開弁動作を開始する圧縮機
1の吸入側の設定圧力付近においての、冷媒バイパス弁
9と蒸発圧力調整弁5とのハンチング動作の発生を防止
することができる。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a refrigerant circuit diagram of a refrigerator according to an embodiment of the present invention. The same parts as those in the conventional example of FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted. In FIG. 1, reference numeral 11 denotes a refrigerant reservoir which is a container for storing the refrigerant 1a arranged in the conduit of the pressure guiding tube 10, and 12 flows through the pressure guiding tube 10 which is connected to the refrigerant reservoir 11 in series. It is a capillary tube as a resistance means for the refrigerant 1a. Since the present invention has such a configuration, when the heat load is reduced, the valve opening of the evaporation pressure adjusting valve 5 is reduced, and the suction side pressure of the compressor 1 drops below a predetermined set pressure, the refrigerant bypass valve 9 However, even if the suction side pressure of the compressor 1 is reduced, the refrigerant 1a in the refrigerant reservoir 11 is gradually transferred to the suction port side of the compressor 1 via the capillary tube 12. Since it does not flow out, the change of the pressure of the refrigerant 1a in the refrigerant reservoir 11 and hence the pressure value of the operating portion of the refrigerant bypass valve 9 becomes slow. As a result, for example, under operating conditions where there is not much load fluctuation, the refrigerant bypass valve 9 opens its valve only slowly, so that the temperature of the cooling liquid rises slowly and the temperature control type evaporation pressure adjusting valve 5 opens. The degree of throttle can be slowed down, and the refrigerant bypass valve 9 and the evaporation pressure adjusting valve 5 are close to each other in the vicinity of the set pressure on the suction side of the compressor 1 where the refrigerant bypass valve 9 starts the opening operation. Occurrence of hunting operation can be prevented.

【0009】いままでの説明では、導圧管10の管路に
配設された冷媒1aに対する抵抗手段は、キャピラリチ
ューブであるとしてきたが、調節弁であってもよく、こ
の場合も、抵抗手段がキャピラリチューブである前述の
場合と同様の作用を得ることができとともに、調節弁の
弁開度を適切に調整することで、一層好ましい効果を得
ることが出来る。
In the above description, the resistance means for the refrigerant 1a arranged in the conduit of the pressure guiding tube 10 is a capillary tube, but it may be a control valve, and in this case, the resistance means is also used. It is possible to obtain the same effect as that of the capillary tube described above, and it is possible to obtain a more preferable effect by appropriately adjusting the valve opening degree of the control valve.

【0010】[0010]

【発明の効果】本発明においては、圧縮機の吸入口側と
冷媒バイパス弁の操作部とを接続し冷媒バイパス弁の操
作部の冷媒圧力と圧縮機の吸入側の冷媒圧力を連通しあ
う導圧管に、抵抗手段と冷媒溜とを配設したことによ
り、冷媒バイパス弁が開弁動作を開始する圧縮機の吸入
側の設定圧力付近において、冷媒バイパス弁と蒸発圧力
調整弁とのハンチング動作の発生を防止することがで
き、常に冷却液体温度の高精度な温度制御を行うことが
できるという効果を奏する。
According to the present invention, the suction port side of the compressor and the operating portion of the refrigerant bypass valve are connected to communicate the refrigerant pressure of the operating portion of the refrigerant bypass valve with the refrigerant pressure of the suction side of the compressor. By disposing the resistance means and the refrigerant reservoir in the pressure pipe, the hunting operation between the refrigerant bypass valve and the evaporation pressure adjusting valve is performed near the set pressure on the suction side of the compressor where the refrigerant bypass valve starts the opening operation. It is possible to prevent the occurrence, and it is possible to always perform highly accurate temperature control of the cooling liquid temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による冷凍機の冷媒回路図FIG. 1 is a refrigerant circuit diagram of a refrigerator according to an embodiment of the present invention.

【図2】従来技術による冷凍機の冷媒回路図FIG. 2 is a refrigerant circuit diagram of a refrigerator according to the related art.

【符号の説明】[Explanation of symbols]

1 圧縮機 1a 冷媒 2 凝縮器 3 膨張弁 4 蒸発器 5 温度制御式蒸発圧力調整弁 9 冷媒バイパス弁 10 導圧管 11 冷媒溜 12 抵抗手段 1 compressor 1a Refrigerant 2 condenser 3 expansion valve 4 evaporator 5 Temperature control evaporation pressure control valve 9 Refrigerant bypass valve 10 Pressure guide tube 11 Refrigerant reservoir 12 Resistance means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】冷媒を蒸発させることで冷熱を発生する蒸
発器と、この蒸発器で蒸発して低圧となった冷媒を吸入
口から吸い込み加圧圧縮して吐出口から吐出する圧縮機
と、この圧縮機で圧縮されて高温となった冷媒を冷却す
る凝縮器と、この凝縮器の下流に接続され前記圧縮機で
圧縮され高圧となった冷媒を膨張させる膨張弁と、前記
蒸発器と前記圧縮機の吸入口の間に挿入された温度制御
式蒸発圧力調整弁と、前記圧縮機の吐出口と前記蒸発器
の入口側とを結ぶ冷媒バイパス管と、この冷媒バイパス
管に挿入されて前記圧縮機の吸入側の冷媒圧力があらか
じめ設定された設定圧力になった時に開弁動作する冷媒
バイパス弁と、前記圧縮機吸入口側と前記冷媒バイパス
弁の操作部とを接続し冷媒バイパス弁の操作部の冷媒圧
力と圧縮機の吸入側の冷媒圧力とを連通しあうようにす
る導圧管とを備えた冷凍機において、導圧管路に冷媒に
対する抵抗手段と冷媒溜とを直列に配設したことを特徴
とする冷凍機。
1. An evaporator that produces cold heat by evaporating a refrigerant, and a compressor that sucks in and compresses the refrigerant, which has a low pressure by evaporating by the evaporator, from a suction port and discharges it from a discharge port. A condenser that cools the high-temperature refrigerant that is compressed by the compressor, an expansion valve that is connected downstream of the condenser and that expands the high-pressure refrigerant that is compressed by the compressor, the evaporator and the A temperature control type evaporative pressure adjusting valve inserted between the suction ports of the compressor, a refrigerant bypass pipe connecting the discharge port of the compressor and the inlet side of the evaporator, and the refrigerant bypass pipe inserted into the refrigerant bypass pipe. A refrigerant bypass valve that opens when the refrigerant pressure on the suction side of the compressor reaches a preset set pressure, and a refrigerant bypass valve that connects the compressor suction port side and the operation section of the refrigerant bypass valve Refrigerant pressure in operating part and suction of compressor In the refrigerator having a connecting pipe to allow mutually communicates the refrigerant pressure of the refrigeration machine, characterized in that arranged a resistor means and coolant reservoir for the refrigerant in series electrical pressure line.
【請求項2】請求項1に記載の冷凍機において、抵抗手
段はキャピラリーチューブであることを特徴とする冷凍
機。
2. The refrigerator according to claim 1, wherein the resistance means is a capillary tube.
【請求項3】請求項1に記載の冷凍機において、抵抗手
段は調節弁であることを特徴とする冷凍機。
3. The refrigerator according to claim 1, wherein the resistance means is a control valve.
JP3152069A 1991-06-25 1991-06-25 Refrigerator Pending JPH051866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3152069A JPH051866A (en) 1991-06-25 1991-06-25 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3152069A JPH051866A (en) 1991-06-25 1991-06-25 Refrigerator

Publications (1)

Publication Number Publication Date
JPH051866A true JPH051866A (en) 1993-01-08

Family

ID=15532378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3152069A Pending JPH051866A (en) 1991-06-25 1991-06-25 Refrigerator

Country Status (1)

Country Link
JP (1) JPH051866A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100438272B1 (en) * 2001-08-06 2004-07-03 엘지전자 주식회사 Control system of Air conditioner
JP2012102919A (en) * 2010-11-09 2012-05-31 Toyo Eng Works Ltd Refrigerating system
CN104236185A (en) * 2013-06-19 2014-12-24 珠海格力电器股份有限公司 Air conditioning system
CN105698424A (en) * 2016-04-18 2016-06-22 迪邦仕冷却技术(苏州)有限公司 Ultralow-temperature refrigeration type single-cooling split air conditioner and ultralow-temperature refrigeration method thereof
JP2019500586A (en) * 2015-10-27 2019-01-10 リンデ アクチエンゲゼルシャフトLinde Aktiengesellschaft Test bypass for cooling systems with liquid containers with variable pressure values
JP2020180708A (en) * 2019-03-14 2020-11-05 株式会社光商事 Heat pump for rapid refrigeration equipment and liquid rapid freezing device using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100438272B1 (en) * 2001-08-06 2004-07-03 엘지전자 주식회사 Control system of Air conditioner
JP2012102919A (en) * 2010-11-09 2012-05-31 Toyo Eng Works Ltd Refrigerating system
CN104236185A (en) * 2013-06-19 2014-12-24 珠海格力电器股份有限公司 Air conditioning system
JP2019500586A (en) * 2015-10-27 2019-01-10 リンデ アクチエンゲゼルシャフトLinde Aktiengesellschaft Test bypass for cooling systems with liquid containers with variable pressure values
CN105698424A (en) * 2016-04-18 2016-06-22 迪邦仕冷却技术(苏州)有限公司 Ultralow-temperature refrigeration type single-cooling split air conditioner and ultralow-temperature refrigeration method thereof
CN105698424B (en) * 2016-04-18 2018-03-13 迪邦仕冷却技术(苏州)有限公司 A kind of super low temperature refrigeration method
JP2020180708A (en) * 2019-03-14 2020-11-05 株式会社光商事 Heat pump for rapid refrigeration equipment and liquid rapid freezing device using the same

Similar Documents

Publication Publication Date Title
KR950005386B1 (en) Refrigeration cycle system
US6047556A (en) Pulsed flow for capacity control
JP2604882B2 (en) Motor cooling device
US6032472A (en) Motor cooling in a refrigeration system
US20070095097A1 (en) Thermal control system and method
JPH0237253A (en) Sealed refrigeration circuit
US3939668A (en) Balanced liquid level head pressure control systems
JPH051866A (en) Refrigerator
US5941086A (en) Expansion valve unit
JP2001311567A (en) Freezer device and environmental test device using the same
JPS62196555A (en) Refrigerator
JPH0552430A (en) Refrigerating machine
US6499307B1 (en) Refrigeration system incorporating simplified valve arrangement
JPH08313074A (en) Refrigerating apparatus
JP2760221B2 (en) Discharge gas temperature control mechanism of screw compressor
JPH09210480A (en) Two-stage compression type refrigerating apparatus
JP2001091064A (en) Refrigeration system
JPH07259778A (en) Capacity control device for screw compressor
JP2646917B2 (en) Refrigeration equipment
JPS62106261A (en) Refrigerator
JP2769423B2 (en) Refrigeration device temperature control method and device
JPH06229631A (en) Screw type freezer
JPS6162758A (en) Controller for hot gas from turbo-refrigerator
JPS6051022B2 (en) Refrigeration equipment
JPS62108965A (en) Refrigerator