JP4250320B2 - Operation method of oil-cooled compression refrigerator - Google Patents

Operation method of oil-cooled compression refrigerator Download PDF

Info

Publication number
JP4250320B2
JP4250320B2 JP2000307532A JP2000307532A JP4250320B2 JP 4250320 B2 JP4250320 B2 JP 4250320B2 JP 2000307532 A JP2000307532 A JP 2000307532A JP 2000307532 A JP2000307532 A JP 2000307532A JP 4250320 B2 JP4250320 B2 JP 4250320B2
Authority
JP
Japan
Prior art keywords
oil
rotational speed
evaporator
compressor
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000307532A
Other languages
Japanese (ja)
Other versions
JP2002115925A (en
Inventor
昇 壷井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000307532A priority Critical patent/JP4250320B2/en
Publication of JP2002115925A publication Critical patent/JP2002115925A/en
Application granted granted Critical
Publication of JP4250320B2 publication Critical patent/JP4250320B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、油注入下で冷媒ガスの圧縮がなされる油冷圧縮形冷凍機の運転方法に関するものである。
【0002】
【従来の技術】
従来、特開平1-312361号公報に油冷圧縮タイプの冷凍機が開示されている。この冷凍機は、油冷式圧縮機、油分離器、凝縮器、膨張弁、蒸発器およびアキュムレータを含む冷媒の循環流路と上記油分離器の一次側における上記循環流路の部分から分岐し、蒸発器の一次側における上記循環流路の部分に合流するバイパス流路とからなっている。このバイパス流路には第一バイパス電磁弁、高圧タンクおよび第二バイパス電磁弁が設けられている。そして、この冷凍機では、第二バイパス電磁弁を開とし、高圧タンクからのガスの流れを蒸発器に導くことにより、蒸発器内に溜まった油の圧縮機への還流が図られている。
【0003】
【発明が解決しようとする課題】
上述した従来の冷凍機の場合、油冷式圧縮機の駆動部であるモータをインバータ制御することにより、その回転数を増減させることができ、例えば0rpmから7000rpmの間で回転数を自由に変えることが可能となる。しかしながら、この回転数を下げ過ぎた場合には、上述した油の流れが意図された通りにはならない。即ち、上記バイパス流路は油分離器の一次側で分岐しており、このバイパス流路には多量の油が含まれている。
【0004】
このため、上述したように第二バイパス電磁弁を開とすると、蒸発器内に油を送り込み、滞留させることになり、必ずしも圧縮機に油を還流させることにはならないという問題がある。そして、蒸発器に多量の油が滞留すると、圧縮機に液体の油が戻り、いわゆる液圧縮による圧縮機の損傷という重大な不具合を招くことになり、冷凍機の運転ができなくなるという問題が生じる。
本発明は、斯る従来の問題をなくすことを課題としてなされたもので、油を適正に循環させ、油の不必要な滞留をなくすことを可能とした油冷圧縮形冷凍機の運転方法を提供しようとするものである。
【0005】
【課題を解決するための手段】
発明は、油冷式圧縮機、油分離回収器、凝縮器、膨張弁および蒸発器を含む冷媒の循環流路を備え、冷却熱負荷の大小を判断するための検出手段を備え、上記検出手段からの信号に基づいて上記圧縮機の駆動部の回転数を下限回転数と上限回転数の間で上記蒸発器での冷却熱負荷に適合した値に保つための通常運転制御が行われる油冷圧縮形冷凍機の運転方法において、上記駆動部の回転数が、上記下限回転数より高く、上記蒸発器内に油を滞留させることのないよう上記循環流路の配管系および上記圧縮機の仕様により予め定めた許容最小回転数よりも下がり、上記油分離回収器内の油面が、上記蒸発器内における油の滞留の許容限界時に到達すると見なされる予め定めた下限レベルよりも低くなった場合には、上記油面が上記下限レベルよりも高い予め定めた上限レベルに達するまで、上記回転数を上記許容最小回転数にまで上げて運転させる油戻し制御を優先的に行うようにした。
【0006】
また、第発明は、油冷式圧縮機、油分離回収器、凝縮器、膨張弁および蒸発器を含む冷媒の循環流路を備え、冷却熱負荷の大小を判断するための検出手段を備え、上記検出手段からの信号に基づいて上記圧縮機の駆動部の回転数を下限回転数と上限回転数の間で上記蒸発器での冷却熱負荷に適合した値に保つための通常運転制御が行われる油冷圧縮形冷凍機の運転方法において、上記駆動部の回転数が、上記下限回転数より高く、上記蒸発器内に油を滞留させることのないよう上記循環流路の配管系および上記圧縮機の仕様により予め定めた許容最小回転数よりも下がり、上記膨張弁と上記蒸発器との間における冷媒の圧力と上記油冷式圧縮機の吸込圧力との差圧が、上記蒸発器内における油の滞留の許容限界時に達すると見なされる予め定めた許容上限圧力以上になった場合には、上記駆動部の回転数を上記許容最小回転数にまで上げて、上記差圧が上記許容上限圧力よりも小さくなるまで運転させる油戻し制御を優先的に行うようにした。
【0007】
さらに、第発明は、油冷式圧縮機、油分離回収器、凝縮器、膨張弁および蒸発器を含む冷媒の循環流路を備え、冷却熱負荷の大小を判断するための検出手段を備え、上記検出手段からの信号に基づいて上記圧縮機の駆動部の回転数を下限回転数と上限回転数の間で上記蒸発器での冷却熱負荷に適合した値に保つための通常運転制御が行われる油冷圧縮形冷凍機の運転方法において、上記駆動部の回転数が、上記下限回転数より高く、上記蒸発器内に油を滞留させることのないよう上記循環流路の配管系および上記圧縮機の仕様により予め定めた許容最小回転数よりも下がり、上記蒸発器の出口部における冷媒の圧力と上記油冷式圧縮機の吸込圧力との差圧が、上記蒸発器内における油の滞留の許容限界時に達すると見なされる予め定めた許容上限圧力以上になった場合には、上記駆動部の回転数を上記許容最小回転数にまで上げて、上記差圧が上記許容上限圧力よりも小さくなるまで運転させる油戻し制御を優先的に行うようにした。
【0008】
【発明の実施の形態】
次に、本発明の実施形態を図面にしたがって説明する。
図1は、参考例に係る冷凍機1Aを示し、油冷式圧縮機11、例えば油冷式スクリュ圧縮機、油分離回収器12、凝縮器13、膨張弁14および蒸発器15を含む冷媒循環流路Iが形成されている。また、油分離回収器12から油冷却器16を経て、圧縮機11内のロータ室、軸受・軸封部等の給油箇所に油を導く油供給流路IIが形成されている。
【0009】
圧縮機11の駆動部であるモータ21は、その回転数に対応する制御信号を制御装置22から入力されるインバータ23を介して電源24に接続されている。また、被冷却液の流路25の蒸発器15を出た部分には、被冷却液の温度を検出する温度検出器31が設けられており、温度検出器31による検出温度を示す温度信号が制御装置22に入力されている。
そして、斯かる構成により、以下に詳述するように、蒸発器15での冷却熱負荷に適正に対応して圧縮機11を作動させるように、インバータ23を介して上記温度信号に基づき制御装置22によりモータ21の回転数制御する通常運転制御と、制御装置22により蒸発器15での油の滞留状況を監視し、必要に応じて優先的にこの油を除去するための油戻し制御とが行われる。
【0010】
次に、上述した冷凍機1Aに適用される本発明に係る運転方法について説明する。
制御装置22によりインバータ23を介してモータ21が、下限回転数(例:1000rpm)と上限回転数(例:7000rpm)との間で回転数制御され、圧縮機11が作動し、油供給流路IIから油注入されつつ圧縮された冷媒ガスが油を伴いつつ圧縮機11から油分離回収器12へと吐出される。油分離回収器12では、冷媒ガスと油とが分離され、冷媒ガスは凝縮器13へと送り出される一方、油は油分離回収器12の下部に回収され、一旦溜められる。
【0011】
さらに、冷媒ガスは、凝縮器13を経て、液状態となり、膨張弁14を経て膨張作用を伴い、ほぼガス状態となって蒸発器15に至り、ここで流路25内の被冷却液と熱交換する。そして、この被冷却液は冷却され、冷媒は被冷却液から熱を奪い、完全にガス状態になって圧縮機11に戻る。一方、油分離回収器12の下部に溜まった油は、油供給流路IIに送り出され、油冷却器16を経て、再度圧縮機11に導かれる。
そして、上記同様、圧縮機11にて油注入を受けつつ冷媒ガスが圧縮され、冷媒は冷媒循環流路Iを循環し、油は油供給流路IIを経て循環する。
【0012】
また、上述した冷凍機1Aの運転中、通常運転制御が行われ、温度検出器31による検出温度が高過ぎる場合、冷凍機1Aにおける蒸発器15での冷却熱負荷が大きく、圧縮機11の能力が不足しているため、モータ21の回転数を上げる必要があるのに対して、上記検出温度が低過ぎる場合、上記冷却熱負荷が小さく、圧縮機11の能力が過大になっているため、モータ21の回転数を下げる必要がある。したがって、温度検出器31からの検出温度を示す温度信号に基づいて、モータ21の回転数を冷却熱負荷に適合した値に保つように制御装置22からインバータ23に制御信号が出力される。
【0013】
ところで、上述したように冷媒ガスと油は油分離回収器12にて分離されるが、この分離を完全に行うことは困難で、実際には、油の一部は冷媒ガスに随伴して凝縮器13に向かい、さらに膨張弁14から蒸発器15へと流動してゆく。蒸発器15内に進入した油は、モータ21の回転数が高い場合には、圧縮機11に戻されて、循環するが、モータ21の回転数が低くなると、蒸発器15内の油が圧縮機11に戻されず、蒸発器15内に滞留することになる。この滞留を生じないモータ21の回転数の最小値である許容最小回転数は、上述した下限回転数よりも高く、冷凍機1Aの配管径および圧縮機11の仕様等により予め求められる。
【0014】
そこで、モータ21の回転数が上述した下限回転数と上限回転数との間で制御される上記通常運転制御下で、モータ21の回転数が上記許容最小回転数よりも下がり、この低速回転状態での連続運転時間が予め定めた許容限界時間に達したと制御装置22にて判断された場合には、優先的に油戻し制御が行われる。即ち、この場合、蒸発器15内に滞留した油が許容限度に達し、この油を直ちに圧縮機11に戻す必要があるということで、モータ21の回転数が上記許容最小回転数にまで上げられ、この滞留した油を圧縮機11に戻すことのできる予め定めた一定時間だけ運転が行われる。
この油戻し制御下での運転が一定時間行われた後は、上記通常運転制御に戻される。
上述した油戻し制御の結果、モータ21の低速回転状態での運転が行われても、この状態での運転が異常に長く続くことはなく、油供給流路IIを流れる油の適正な循環を維持し、冷媒循環流路Iにおける油の滞留を制限し、圧縮機11の損傷といった重大な不具合もなく冷凍機1Aの良好な運転状態を続けることが可能となる。
【0015】
なお、上述した冷凍機1Aでは、通常運転制御下における冷却熱負荷の大小の判断は温度検出器31による検出温度に基づき行われているが、温度検出器31に代えて、図1において二点鎖線で示すように圧縮機11の吸込みガス圧力を検出する圧力検出器32を設けて、この圧力検出器32による検出圧力に基づき、上記冷却熱負荷の大小の判断を行うようにした冷凍機をも含むものである。この場合、上記検出圧力が高い場合は上記冷却熱負荷が大きく、上記検出圧力が低い場合は上記冷却熱負荷が小さい。
このように、温度検出器31に代えて圧力検出器32を設ける点については、以下に述べる各発明についても同様であり、重複説明を省略する。
【0016】
図2は、第発明に係る冷凍機1Bを示し、図1に示す冷凍機1Aと共通する部分については、互いに同一番号を付して説明を省略する。
この冷凍機1Bでは、油戻し制御用として、油分離回収器12に、その下部の油溜り部12aにおける油面レベルを検出するための下限レベル検出器33と上限レベル検出器34とが設けられており、その各々による検出レベルを示すレベル信号は制御装置22に入力されている。
下限レベル検出器33は、蒸発器15内における油の滞留の許容限界時に達すると見なされる油面の下限レベルを検出するように設けられ、上限レベル検出器34は、油戻し制御時におけるハンチングを避けるために、下限レベル検出器33とは別に上記下限レベルよりも若干高い上限レベルを検出するように設けられている。この上限レベルは上記ハンチングを防ぐための必要最小限の高さで足りる。
【0017】
そして、斯かる構成により上記同様の通常運転制御が行われ、この通常運転制御下で、モータ21の回転数が上記許容最小回転数よりも下がり、上記油面が下限レベルよりも低くなり、下限レベル検出器33により検出されなくなった場合には、優先的に油戻し制御が行われる。この油戻し制御は、モータ21の回転数を上記許容最小回転数にまで上げ、上記油面が上限レベル検出器34により検出されるまで続けられ、その後上記通常運転制御が行われる。
この結果、上記同様に、油の適正な循環が維持され、冷媒循環流路Iにおける油の滞留が制限され、冷凍機1Bの良好な運転状態が保たれる。
【0018】
図3は、第発明に係る冷凍機1Cを示し、図1に示す冷凍機1Aと共通する部分については、互いに同一番号を付して説明を省略する。
この冷凍機1Cでは、油戻し制御用として、膨張弁14と蒸発器15との間における冷媒の圧力と圧縮機11の吸込圧力との差圧を検出する差圧計35が設けられ、差圧計35による検出差圧を示す圧力信号が制御装置22に入力されている。
【0019】
そして、斯かる構成により上記同様の通常運転制御が行われ、この通常運転制御下で、モータ21の回転数が上記許容最小回転数よりも下がり、上記差圧が、蒸発器15内における油の滞留の許容限度時に達すると見なされる予め定めた上限圧力以上になった場合には、優先的に油戻し制御が行われる。この油戻し制御は、モータ21の回転数を上記許容最小回転数にまで上げ、上記差圧が上記上限圧力よりも小さくなるまで続けられ、その後上記通常運転制御が行われる。
この結果、上記同様に、油の適正な循環が維持され、冷媒循環流路Iにおける油の滞留が制限され、冷凍機1Cの良好な運転状態が保たれる。
【0020】
図4は、第発明に係る冷凍機1Dを示し、図3に示す冷凍機1Cとは、差圧計35に代えて、蒸発器15の出口部の圧力と圧縮機11の吸込圧力との差圧を検出する差圧計36を設けた点を除き、他は実質的に同一であり、互いに共通する部分については、同一番号を付して説明を省略する。
【0021】
【発明の効果】
第一発明によれば、上記駆動部の回転数が、上記下限回転数より高く、上記蒸発器内に油を滞留させることのないよう上記循環流路の配管系および上記圧縮機の仕様により予め定めた許容最小回転数よりも下がり、上記油分離回収器内の油面が、上記蒸発器内における油の滞留の許容限界時に到達すると見なされる予め定めた下限レベルよりも低くなった場合には、上記油面が上記下限レベルよりも高い予め定めた上限レベルに達するまで、上記回転数を上記許容最小回転数にまで上げて運転させる油戻し制御を優先的に行うようにしてある。
【0022】
また、第発明によれば、上記駆動部の回転数が、上記下限回転数より高く、上記蒸発器内に油を滞留させることのないよう上記循環流路の配管系および上記圧縮機の仕様により予め定めた許容最小回転数よりも下がり、上記膨張弁と上記蒸発器との間における冷媒の圧力と上記油冷式圧縮機の吸込圧力との差圧が、上記蒸発器内における油の滞留の許容限界時に達すると見なされる予め定めた許容上限圧力以上になった場合には、上記駆動部の回転数を上記許容最小回転数にまで上げて、上記差圧が上記許容上限圧力よりも小さくなるまで運転させる油戻し制御を優先的に行うようにしてある。
【0023】
さらに、第発明によれば、上記駆動部の回転数が、上記下限回転数より高く、上記蒸発器内に油を滞留させることのないよう上記循環流路の配管系および上記圧縮機の仕様により予め定めた許容最小回転数よりも下がり、上記蒸発器の出口部における冷媒の圧力と上記油冷式圧縮機の吸込圧力との差圧が、上記蒸発器内における油の滞留の許容限界時に達すると見なされる予め定めた許容上限圧力以上になった場合には、上記駆動部の回転数を上記許容最小回転数にまで上げて、上記差圧が上記許容上限圧力よりも小さくなるまで運転させる油戻し制御を優先的に行うようにしてある。
【0024】
このため、圧縮機の駆動部であるモータの低速回転状態での運転が行われても、この状態での運転が異常に長く続くことはなく、油供給流路を流れる油の適正な循環を維持し、冷媒循環流路における油の滞留を制限し、圧縮機の損傷といった重大な不具合もなく冷凍機の良好な運転状態を続けることが可能となるという効果を奏する。
【図面の簡単な説明】
【図1】 参考例に係る冷凍機の全体構成を示す図である。
【図2】 第発明に係る冷凍機の全体構成を示す図である。
【図3】 第発明に係る冷凍機の全体構成を示す図である。
【図4】 第発明に係る冷凍機の全体構成を示す図である。
【符号の説明】
B,1C,1D 冷凍機
11 油冷式圧縮機
12 油分離回収器
12a 油溜り部
13 凝縮器
14 膨張弁
15 蒸発器
16 油冷却器
21 モータ
22 制御装置
23 インバータ
24 電源
25 流路
31 温度検出器
32 圧力検出器
33 下限レベル検出器
34 上限レベル検出器
35 差圧計
36 差圧計
I 冷媒循環流路
II 油供給流路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for operating an oil-cooled compression refrigerator in which refrigerant gas is compressed under oil injection.
[0002]
[Prior art]
Conventionally, an oil-cooled compression type refrigerator is disclosed in Japanese Patent Laid-Open No. 1-312361. The refrigerator is branched from a refrigerant circulation passage including an oil-cooled compressor, an oil separator, a condenser, an expansion valve, an evaporator and an accumulator, and a portion of the circulation passage on the primary side of the oil separator. And a bypass flow path that joins the circulation flow path portion on the primary side of the evaporator. The bypass flow path is provided with a first bypass solenoid valve, a high pressure tank, and a second bypass solenoid valve. In this refrigerator, the second bypass solenoid valve is opened, and the flow of gas from the high-pressure tank is guided to the evaporator, so that the oil accumulated in the evaporator is returned to the compressor.
[0003]
[Problems to be solved by the invention]
In the case of the conventional refrigerator described above, the number of rotations can be increased or decreased by controlling the motor that is the drive unit of the oil-cooled compressor, for example, freely changing the number of rotations between 0 rpm and 7000 rpm. It becomes possible. However, if the rotational speed is reduced too much, the above-described oil flow does not become as intended. That is, the bypass channel is branched on the primary side of the oil separator, and the bypass channel contains a large amount of oil.
[0004]
For this reason, when the second bypass solenoid valve is opened as described above, there is a problem that the oil is fed into the evaporator and stays there, and the oil is not necessarily returned to the compressor. When a large amount of oil stays in the evaporator, liquid oil returns to the compressor, which causes a serious problem of damage to the compressor due to so-called liquid compression, and the problem that the operation of the refrigerator becomes impossible occurs. .
An object of the present invention is to eliminate such a conventional problem, and to provide an operation method of an oil-cooled compression type refrigerator capable of appropriately circulating oil and eliminating unnecessary stagnation of oil. It is something to be offered.
[0005]
[Means for Solving the Problems]
The first invention includes a refrigerant circulation passage including an oil-cooled compressor, an oil separator / recovery unit, a condenser, an expansion valve, and an evaporator, and includes detection means for determining the magnitude of the cooling heat load, Based on the signal from the detection means, normal operation control is performed to keep the rotation speed of the compressor drive unit at a value suitable for the cooling heat load in the evaporator between the lower limit rotation speed and the upper limit rotation speed. In the operation method of the oil-cooled compression type refrigerator, the rotation speed of the drive unit is higher than the lower limit rotation speed, and the piping system of the circulation flow path and the compressor so as not to retain oil in the evaporator The oil pressure in the oil separation / recovery unit is lower than a predetermined lower limit level that is considered to reach an allowable limit of oil retention in the evaporator. If the oil level is Until a predetermined upper limit level higher than Le and the rotating speed so as to preferentially perform the oil return control to the operating raised to above the allowable minimum number of revolutions.
[0006]
The second invention is the oil-cooled compressor, the oil separation and recovery, a condenser, provided with a circulation passage of the refrigerant containing an expansion valve and an evaporator, comprising a detecting means for determining the magnitude of the cooling heat load Based on the signal from the detection means, the normal operation control for maintaining the rotational speed of the drive unit of the compressor between the lower limit rotational speed and the upper limit rotational speed to a value suitable for the cooling heat load in the evaporator. In the operation method of the oil-cooled compression refrigerator that is performed, the rotational speed of the drive unit is higher than the lower limit rotational speed, and the piping system of the circulation channel and the above-mentioned so as not to retain oil in the evaporator It falls below the allowable minimum rotational speed determined in advance by the specifications of the compressor, and the differential pressure between the refrigerant pressure between the expansion valve and the evaporator and the suction pressure of the oil-cooled compressor is within the evaporator. Preliminarily considered to reach an acceptable limit of oil retention in Priority is given to oil return control that increases the rotational speed of the drive unit to the allowable minimum rotational speed and operates until the differential pressure becomes lower than the allowable upper limit pressure. I tried to do it.
[0007]
Furthermore, the third invention includes a refrigerant circulation passage including an oil-cooled compressor, an oil separator / recovery unit, a condenser, an expansion valve and an evaporator, and a detection means for determining the magnitude of the cooling heat load. Based on the signal from the detection means, the normal operation control for maintaining the rotational speed of the drive unit of the compressor between the lower limit rotational speed and the upper limit rotational speed to a value suitable for the cooling heat load in the evaporator. In the operation method of the oil-cooled compression refrigerator that is performed, the rotational speed of the drive unit is higher than the lower limit rotational speed, and the piping system of the circulation channel and the above-mentioned so as not to retain oil in the evaporator The pressure falls below the minimum allowable number of rotations determined in advance by the specifications of the compressor, and the difference between the refrigerant pressure at the outlet of the evaporator and the suction pressure of the oil-cooled compressor causes the oil to stay in the evaporator. A predetermined allowance that is deemed to be reached when When the pressure exceeds the upper limit pressure, the oil return control is preferentially performed by increasing the rotational speed of the drive unit to the allowable minimum rotational speed and operating until the differential pressure becomes smaller than the allowable upper limit pressure. I did it.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a refrigerator 1A according to a reference example , and an oil-cooled compressor 11, for example, an oil-cooled screw compressor, an oil separator / collector 12, a condenser 13, an expansion valve 14, and an evaporator 15 are circulated in the refrigerant circulation. A flow path I is formed. Further, an oil supply channel II is formed through which oil is guided from the oil separator / collector 12 to the oil supply location such as the rotor chamber and the bearing / shaft seal in the compressor 11 via the oil cooler 16.
[0009]
A motor 21 that is a drive unit of the compressor 11 is connected to a power source 24 via an inverter 23 that receives a control signal corresponding to the number of rotations from a control device 22. Further, a temperature detector 31 for detecting the temperature of the liquid to be cooled is provided at a portion of the liquid flow path 25 that exits the evaporator 15, and a temperature signal indicating the temperature detected by the temperature detector 31 is provided. It is input to the control device 22.
With such a configuration, as will be described in detail below, the control device is operated based on the temperature signal via the inverter 23 so as to operate the compressor 11 appropriately corresponding to the cooling heat load in the evaporator 15. 22, normal operation control for controlling the rotation speed of the motor 21, and oil return control for preferentially removing this oil as needed by monitoring the oil retention state in the evaporator 15 by the control device 22. Done.
[0010]
Next, an operation method according to the present invention applied to the above-described refrigerator 1A will be described.
The motor 21 is controlled by the control device 22 via the inverter 23 between the lower limit rotational speed (example: 1000 rpm) and the upper limit rotational speed (example: 7000 rpm), the compressor 11 is operated, and the oil supply flow path The refrigerant gas compressed while being injected with oil from II is discharged from the compressor 11 to the oil separator / recoverer 12 with oil. In the oil separator / collector 12, the refrigerant gas and the oil are separated, and the refrigerant gas is sent to the condenser 13, while the oil is collected in the lower part of the oil separator / collector 12 and temporarily stored.
[0011]
Further, the refrigerant gas becomes a liquid state through the condenser 13, is expanded through the expansion valve 14, is almost in a gas state and reaches the evaporator 15, where the liquid to be cooled and the heat in the flow path 25 are heated. Exchange. Then, the liquid to be cooled is cooled, and the refrigerant takes heat from the liquid to be cooled, and is completely in a gas state and returns to the compressor 11. On the other hand, the oil accumulated in the lower part of the oil separator / recovery unit 12 is sent out to the oil supply channel II, and is guided to the compressor 11 again through the oil cooler 16.
As described above, the refrigerant gas is compressed while receiving oil injection by the compressor 11, the refrigerant circulates through the refrigerant circulation passage I, and the oil circulates through the oil supply passage II.
[0012]
Further, when the normal operation control is performed during the operation of the above-described refrigerator 1A and the temperature detected by the temperature detector 31 is too high, the cooling heat load in the evaporator 15 in the refrigerator 1A is large, and the capacity of the compressor 11 is increased. However, if the detected temperature is too low, the cooling heat load is small and the capacity of the compressor 11 is excessive. It is necessary to reduce the rotation speed of the motor 21. Therefore, based on the temperature signal indicating the detected temperature from the temperature detector 31, a control signal is output from the control device 22 to the inverter 23 so as to keep the rotation speed of the motor 21 at a value suitable for the cooling heat load.
[0013]
By the way, as described above, the refrigerant gas and the oil are separated by the oil separator / recovery unit 12, but it is difficult to completely perform the separation. In practice, part of the oil is condensed along with the refrigerant gas. It moves to the vessel 13 and further flows from the expansion valve 14 to the evaporator 15. The oil that has entered the evaporator 15 is returned to the compressor 11 and circulates when the rotational speed of the motor 21 is high, but the oil in the evaporator 15 is compressed when the rotational speed of the motor 21 is low. Instead of returning to the machine 11, it stays in the evaporator 15. The allowable minimum number of rotations, which is the minimum value of the number of rotations of the motor 21 that does not cause stagnation, is higher than the lower limit number of rotations described above, and is obtained in advance according to the piping diameter of the refrigerator 1A, the specifications of the compressor 11, and the like.
[0014]
Therefore, under the normal operation control in which the rotation speed of the motor 21 is controlled between the lower limit rotation speed and the upper limit rotation speed, the rotation speed of the motor 21 falls below the allowable minimum rotation speed, and this low-speed rotation state. When the control device 22 determines that the continuous operation time at has reached a predetermined allowable limit time, oil return control is preferentially performed. That is, in this case, the oil staying in the evaporator 15 reaches the allowable limit, and it is necessary to immediately return this oil to the compressor 11, so that the rotation speed of the motor 21 is increased to the allowable minimum rotation speed. The operation is performed for a predetermined period of time during which the accumulated oil can be returned to the compressor 11.
After the operation under the oil return control is performed for a predetermined time, the operation is returned to the normal operation control.
As a result of the oil return control described above, even if the motor 21 is operated in the low-speed rotation state, the operation in this state does not continue abnormally long, and proper circulation of the oil flowing through the oil supply channel II is prevented. It is possible to maintain and limit oil retention in the refrigerant circulation flow path I, and to continue a good operation state of the refrigerator 1A without serious problems such as damage to the compressor 11.
[0015]
In the refrigerator 1A has been described above, the cooling heat load of the magnitude of the decision in the normal operation under the control being performed based on the temperature detected by the temperature detector 31, in place of the temperature detector 31, in FIG. 1 two A refrigerator provided with a pressure detector 32 for detecting the suction gas pressure of the compressor 11 as indicated by a chain line, and determining the magnitude of the cooling heat load based on the pressure detected by the pressure detector 32. Is also included. In this case, when the detected pressure is high, the cooling heat load is large, and when the detected pressure is low, the cooling heat load is small.
As described above, the point that the pressure detector 32 is provided in place of the temperature detector 31 is the same for each invention described below, and redundant description is omitted.
[0016]
FIG. 2 shows the refrigerator 1B according to the first invention, and portions common to the refrigerator 1A shown in FIG.
In this refrigerator 1B, a lower limit level detector 33 and an upper limit level detector 34 for detecting the oil level in the lower oil reservoir 12a are provided in the oil separator / collector 12 for oil return control. A level signal indicating a detection level by each of the signals is input to the control device 22.
The lower limit level detector 33 is provided so as to detect the lower limit level of the oil level that is considered to reach the allowable limit of oil retention in the evaporator 15, and the upper limit level detector 34 performs hunting during oil return control. In order to avoid this, an upper limit level that is slightly higher than the lower limit level is provided separately from the lower limit level detector 33. This upper limit level is sufficient to prevent the above hunting.
[0017]
With this configuration, the same normal operation control as described above is performed. Under this normal operation control, the rotation speed of the motor 21 is lower than the allowable minimum rotation speed, and the oil level is lower than the lower limit level. When it is no longer detected by the level detector 33, oil return control is preferentially performed. This oil return control is continued until the rotational speed of the motor 21 is increased to the allowable minimum rotational speed and the oil level is detected by the upper limit level detector 34, and then the normal operation control is performed.
As a result, as described above, proper circulation of the oil is maintained, oil stagnation in the refrigerant circulation flow path I is limited, and a good operating state of the refrigerator 1B is maintained.
[0018]
FIG. 3 shows a refrigerator 1C according to the second aspect of the invention, and parts common to the refrigerator 1A shown in FIG.
In this refrigerator 1C, a differential pressure gauge 35 that detects a differential pressure between the refrigerant pressure between the expansion valve 14 and the evaporator 15 and the suction pressure of the compressor 11 is provided for oil return control. A pressure signal indicating the detected differential pressure is input to the control device 22.
[0019]
With this configuration, the same normal operation control as described above is performed. Under this normal operation control, the rotation speed of the motor 21 is lower than the allowable minimum rotation speed, and the differential pressure is reduced by the oil in the evaporator 15. When the pressure reaches or exceeds a predetermined upper limit pressure that is considered to be reached when the retention limit is reached, oil return control is preferentially performed. This oil return control is continued until the rotation speed of the motor 21 is increased to the allowable minimum rotation speed until the differential pressure becomes smaller than the upper limit pressure, and then the normal operation control is performed.
As a result, as described above, proper circulation of oil is maintained, oil retention in the refrigerant circulation flow path I is limited, and a good operating state of the refrigerator 1C is maintained.
[0020]
4 shows a refrigerator 1D according to the third aspect of the invention. The difference between the refrigerator 1C shown in FIG. 3 is the difference between the pressure at the outlet of the evaporator 15 and the suction pressure of the compressor 11 instead of the differential pressure gauge 35. Except for the point that a differential pressure gauge 36 for detecting pressure is provided, the others are substantially the same, and portions common to each other are denoted by the same reference numerals and description thereof is omitted.
[0021]
【The invention's effect】
According to the first invention, the rotational speed of the drive unit is higher than the lower limit rotational speed, and it is determined in advance according to the specifications of the piping system of the circulation channel and the compressor so as not to retain oil in the evaporator. When the oil pressure in the oil separation / recovery unit falls below a predetermined lower limit level that is considered to reach the allowable limit of oil retention in the evaporator, when the rotation speed falls below a predetermined allowable minimum rotational speed. Until the oil level reaches a predetermined upper limit level that is higher than the lower limit level, oil return control is performed preferentially so as to increase the rotational speed to the allowable minimum rotational speed.
[0022]
Further , according to the second invention, the rotational speed of the drive unit is higher than the lower limit rotational speed, and the specifications of the piping system of the circulation channel and the compressor so as not to retain oil in the evaporator. The difference between the refrigerant pressure between the expansion valve and the evaporator and the suction pressure of the oil-cooled compressor is reduced by the retention of oil in the evaporator. When the pressure exceeds a predetermined allowable upper limit pressure that is considered to be reached at the allowable limit, the rotational speed of the drive unit is increased to the allowable minimum rotational speed, and the differential pressure is smaller than the allowable upper limit pressure. The oil return control for operating until this is preferentially performed.
[0023]
Further, according to the third aspect of the invention, the rotational speed of the drive unit is higher than the lower limit rotational speed, and the specifications of the piping system of the circulation channel and the compressor so as not to retain oil in the evaporator. And the pressure difference between the refrigerant pressure at the outlet of the evaporator and the suction pressure of the oil-cooled compressor is lower than the allowable limit of oil retention in the evaporator. When the pressure exceeds a predetermined allowable upper limit pressure that is considered to be reached, the rotational speed of the drive unit is increased to the allowable minimum rotational speed, and the operation is performed until the differential pressure becomes smaller than the allowable upper limit pressure. The oil return control is preferentially performed.
[0024]
For this reason, even if the motor, which is the drive unit of the compressor, is operated in a low-speed rotation state, the operation in this state does not continue abnormally long, and proper circulation of the oil flowing through the oil supply flow path is prevented. This maintains the effect of restricting the retention of oil in the refrigerant circulation flow path and allowing the refrigerator to continue to operate in good condition without serious problems such as damage to the compressor.
[Brief description of the drawings]
FIG. 1 is a diagram showing an overall configuration of a refrigerator according to a reference example .
FIG. 2 is a diagram showing an overall configuration of a refrigerator according to the first invention.
FIG. 3 is a diagram showing an overall configuration of a refrigerator according to a second invention.
FIG. 4 is a diagram showing an overall configuration of a refrigerator according to a third invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 B, 1C, 1D Refrigerator 11 Oil-cooled compressor 12 Oil separation and recovery device 12a Oil reservoir 13 Condenser 14 Expansion valve 15 Evaporator 16 Oil cooler 21 Motor 22 Control device 23 Inverter 24 Power supply 25 Flow path 31 Temperature Detector 32 Pressure detector 33 Lower limit level detector 34 Upper limit level detector 35 Differential pressure gauge 36 Differential pressure gauge I Refrigerant circulation flow path
II Oil supply flow path

Claims (3)

油冷式圧縮機、油分離回収器、凝縮器、膨張弁および蒸発器を含む冷媒の循環流路を備え、冷却熱負荷の大小を判断するための検出手段を備え、上記検出手段からの信号に基づいて上記圧縮機の駆動部の回転数を下限回転数と上限回転数の間で上記蒸発器での冷却熱負荷に適合した値に保つための通常運転制御が行われる油冷圧縮形冷凍機の運転方法において、
上記駆動部の回転数が、上記下限回転数より高く、上記蒸発器内に油を滞留させることのないよう上記循環流路の配管系および上記圧縮機の仕様により予め定めた許容最小回転数よりも下がり、上記油分離回収器内の油面が、上記蒸発器内における油の滞留の許容限界時に到達すると見なされる予め定めた下限レベルよりも低くなった場合には、上記油面が上記下限レベルよりも高い予め定めた上限レベルに達するまで、上記回転数を上記許容最小回転数にまで上げて運転させる油戻し制御を優先的に行うことを特徴とする油冷圧縮形冷凍機の運転方法。
A refrigerant circulation path including an oil-cooled compressor, an oil separator / collector, a condenser, an expansion valve and an evaporator, and a detection means for judging the magnitude of the cooling heat load, and a signal from the detection means Oil-cooled compression type refrigeration in which normal operation control is performed to keep the rotational speed of the drive unit of the compressor between the lower limit rotational speed and the upper limit rotational speed at a value suitable for the cooling heat load in the evaporator In the operation method of the machine,
The rotational speed of the drive unit is higher than the lower limit rotational speed, and the allowable minimum rotational speed determined in advance by the piping system of the circulation channel and the specifications of the compressor so as not to retain oil in the evaporator. If the oil level in the oil separator / recovery unit becomes lower than a predetermined lower limit level that is considered to reach the allowable limit of oil retention in the evaporator, the oil level becomes lower than the lower limit. A method of operating an oil-cooled compression type refrigerator that preferentially performs oil return control that increases the rotational speed to the allowable minimum rotational speed until a predetermined upper limit level higher than the level is reached. .
油冷式圧縮機、油分離回収器、凝縮器、膨張弁および蒸発器を含む冷媒の循環流路を備え、冷却熱負荷の大小を判断するための検出手段を備え、上記検出手段からの信号に基づいて上記圧縮機の駆動部の回転数を下限回転数と上限回転数の間で上記蒸発器での冷却熱負荷に適合した値に保つための通常運転制御が行われる油冷圧縮形冷凍機の運転方法において、
上記駆動部の回転数が、上記下限回転数より高く、上記蒸発器内に油を滞留させることのないよう上記循環流路の配管系および上記圧縮機の仕様により予め定めた許容最小回転数よりも下がり、上記膨張弁と上記蒸発器との間における冷媒の圧力と上記油冷式圧縮機の吸込圧力との差圧が、上記蒸発器内における油の滞留の許容限界時に達すると見なされる予め定めた許容上限圧力以上になった場合には、上記駆動部の回転数を上記許容最小回転数にまで上げて、上記差圧が上記許容上限圧力よりも小さくなるまで運転させる油戻し制御を優先的に行うことを特徴とする油冷圧縮形冷凍機の運転方法。
A refrigerant circulation path including an oil-cooled compressor, an oil separator / collector, a condenser, an expansion valve and an evaporator, and a detection means for judging the magnitude of the cooling heat load, and a signal from the detection means Oil-cooled compression type refrigeration in which normal operation control is performed to keep the rotational speed of the drive unit of the compressor between the lower limit rotational speed and the upper limit rotational speed at a value suitable for the cooling heat load in the evaporator In the operation method of the machine,
The rotational speed of the drive unit is higher than the lower limit rotational speed, and the allowable minimum rotational speed determined in advance by the piping system of the circulation channel and the specifications of the compressor so as not to retain oil in the evaporator. The pressure difference between the refrigerant pressure between the expansion valve and the evaporator and the suction pressure of the oil-cooled compressor is preliminarily assumed to reach the allowable limit of oil retention in the evaporator. Priority is given to oil return control that increases the rotational speed of the drive unit to the allowable minimum rotational speed and operates until the differential pressure becomes smaller than the allowable upper limit pressure when the pressure exceeds a predetermined allowable upper limit pressure. The operation method of the oil-cooled compression type refrigerator characterized by performing in an automatic manner.
油冷式圧縮機、油分離回収器、凝縮器、膨張弁および蒸発器を含む冷媒の循環流路を備え、冷却熱負荷の大小を判断するための検出手段を備え、上記検出手段からの信号に基づいて上記圧縮機の駆動部の回転数を下限回転数と上限回転数の間で上記蒸発器での冷却熱負荷に適合した値に保つための通常運転制御が行われる油冷圧縮形冷凍機の運転方法において、
上記駆動部の回転数が、上記下限回転数より高く、上記蒸発器内に油を滞留させることのないよう上記循環流路の配管系および上記圧縮機の仕様により予め定めた許容最小回転数よりも下がり、上記蒸発器の出口部における冷媒の圧力と上記油冷式圧縮機の吸込圧力との差圧が、上記蒸発器内における油の滞留の許容限界時に達すると見なされる予め定めた許容上限圧力以上になった場合には、上記駆動部の回転数を上記許容最小回転数にまで上げて、上記差圧が上記許容上限圧力よりも小さくなるまで運転させる油戻し制御を優先的に行うことを特徴とする油冷圧縮形冷凍機の運転方法。
A refrigerant circulation path including an oil-cooled compressor, an oil separator / collector, a condenser, an expansion valve and an evaporator, and a detection means for judging the magnitude of the cooling heat load, and a signal from the detection means Oil-cooled compression type refrigeration in which normal operation control is performed to keep the rotational speed of the drive unit of the compressor between the lower limit rotational speed and the upper limit rotational speed at a value suitable for the cooling heat load in the evaporator In the operation method of the machine,
The rotational speed of the drive unit is higher than the lower limit rotational speed, and the allowable minimum rotational speed determined in advance by the piping system of the circulation channel and the specifications of the compressor so as not to retain oil in the evaporator. A predetermined allowable upper limit at which the differential pressure between the refrigerant pressure at the outlet of the evaporator and the suction pressure of the oil-cooled compressor is considered to reach the allowable limit of oil retention in the evaporator. When the pressure becomes higher than the pressure, the oil return control is preferentially performed by increasing the rotational speed of the drive unit to the allowable minimum rotational speed and operating until the differential pressure becomes smaller than the allowable upper limit pressure. A method of operating an oil-cooled compression refrigerator.
JP2000307532A 2000-10-06 2000-10-06 Operation method of oil-cooled compression refrigerator Expired - Lifetime JP4250320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000307532A JP4250320B2 (en) 2000-10-06 2000-10-06 Operation method of oil-cooled compression refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000307532A JP4250320B2 (en) 2000-10-06 2000-10-06 Operation method of oil-cooled compression refrigerator

Publications (2)

Publication Number Publication Date
JP2002115925A JP2002115925A (en) 2002-04-19
JP4250320B2 true JP4250320B2 (en) 2009-04-08

Family

ID=18788032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000307532A Expired - Lifetime JP4250320B2 (en) 2000-10-06 2000-10-06 Operation method of oil-cooled compression refrigerator

Country Status (1)

Country Link
JP (1) JP4250320B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235262A1 (en) 2017-06-23 2018-12-27 三菱電機株式会社 Refrigeration cycle device
WO2021146364A1 (en) * 2020-01-14 2021-07-22 Goodman Global Group, Inc. Heating, ventilation, and air-conditioning systems and methods

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145036A (en) * 2006-12-08 2008-06-26 Mitsubishi Heavy Ind Ltd Air conditioner and oil return control method thereof
US20080134701A1 (en) * 2006-12-12 2008-06-12 Ole Moelgaard Christensen Variable Compressor Oil Return
JP4609469B2 (en) * 2007-02-02 2011-01-12 ダイキン工業株式会社 Air conditioner
JP5017037B2 (en) * 2007-09-26 2012-09-05 三洋電機株式会社 Refrigeration cycle equipment
JP5772811B2 (en) * 2012-12-28 2015-09-02 ダイキン工業株式会社 Refrigeration equipment
DE102021210048A1 (en) 2021-09-10 2023-03-16 BSH Hausgeräte GmbH Operating a speed-controlled compressor of a household refrigeration appliance

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235262A1 (en) 2017-06-23 2018-12-27 三菱電機株式会社 Refrigeration cycle device
JPWO2018235262A1 (en) * 2017-06-23 2020-01-09 三菱電機株式会社 Refrigeration cycle device
EP3643979A4 (en) * 2017-06-23 2020-07-15 Mitsubishi Electric Corporation Refrigeration cycle device
WO2021146364A1 (en) * 2020-01-14 2021-07-22 Goodman Global Group, Inc. Heating, ventilation, and air-conditioning systems and methods
US11841179B2 (en) 2020-01-14 2023-12-12 Goodman Global Group, Inc. Heating, ventilation, and air-conditioning systems and methods

Also Published As

Publication number Publication date
JP2002115925A (en) 2002-04-19

Similar Documents

Publication Publication Date Title
JP3892487B2 (en) Cooling chiller starting method and apparatus
DK1923647T3 (en) COOLING DEVICES
US7325333B2 (en) Heat pump device and drying machine
JP5966364B2 (en) Refrigeration equipment
JP2009068459A (en) Waste heat recovering device
JP4250320B2 (en) Operation method of oil-cooled compression refrigerator
US5182919A (en) Oil recovery system for closed type centrifugal refrigerating machine
JP6705333B2 (en) Heat recovery system
US20030136136A1 (en) Auger type ice making machine
JP4767133B2 (en) Refrigeration cycle equipment
KR20060085162A (en) Screw compressor for refrigeration device
JP3950304B2 (en) Screw compressor for refrigeration equipment
US4517811A (en) Refrigerating apparatus having a gas injection path
JP4313083B2 (en) Screw refrigeration equipment
JPH07190520A (en) Freezer
US20050160749A1 (en) Enhanced manual start/stop sequencing controls for a steam turbine powered chiller unit
JP2009257684A (en) Compression refrigerating machine and method for recovering lubricating oil for the same
JP5991884B2 (en) Refrigeration air conditioner
US11371534B2 (en) Compressor and method of operating same
JP3425278B2 (en) refrigerator
JP2006170575A (en) Compressor control system
JPH0763184A (en) Lubrication control method for heat pump driving compressor and its device
JP3641850B2 (en) refrigerator
JP3916426B2 (en) Screw refrigerator
JP3467833B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060922

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060929

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4250320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4