JP2009257684A - Compression refrigerating machine and method for recovering lubricating oil for the same - Google Patents

Compression refrigerating machine and method for recovering lubricating oil for the same Download PDF

Info

Publication number
JP2009257684A
JP2009257684A JP2008108548A JP2008108548A JP2009257684A JP 2009257684 A JP2009257684 A JP 2009257684A JP 2008108548 A JP2008108548 A JP 2008108548A JP 2008108548 A JP2008108548 A JP 2008108548A JP 2009257684 A JP2009257684 A JP 2009257684A
Authority
JP
Japan
Prior art keywords
lubricating oil
refrigerant
tank
regeneration tank
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008108548A
Other languages
Japanese (ja)
Inventor
Tetsuya Endo
哲也 遠藤
Katsuyuki Issungi
克行 一寸木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Refrigeration Equipment and Systems Co Ltd
Original Assignee
Ebara Refrigeration Equipment and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Refrigeration Equipment and Systems Co Ltd filed Critical Ebara Refrigeration Equipment and Systems Co Ltd
Priority to JP2008108548A priority Critical patent/JP2009257684A/en
Publication of JP2009257684A publication Critical patent/JP2009257684A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compression refrigerating machine and a method for recovering lubricating oil for the same, performing stable operation by appropriately recovering the lubricating oil mixed into a refrigerant circulation system. <P>SOLUTION: An evaporator 10, a compressor 13, and a condenser 15 are connected to one another through refrigerant pipes 20, and also a lubricating oil circulation system is provided for supplying the lubricating oil in a lubricating oil tank 33 to the bearing 25 of the compressor 13. The compression refrigerating machine includes: a refrigerant regeneration tank 45 provided with a heater 47 heating a refrigerant with the lubricating oil dissolved to separate the lubricating oil from refrigerant vapor; a pipe 55 connecting the refrigerant regeneration tank 45 to the evaporator 10 to transfer a refrigerant liquid with the lubricating oil in the evaporator 10 dissolved into the refrigerant regeneration tank 45; a pipe 61 connecting the refrigerant regeneration tank 45 to the evaporator 10 to transfer the refrigerant vapor separated from the lubricating oil in the refrigerant regeneration tank 45 into the evaporator 10; and a pipe 65 connecting the refrigerant regeneration tank 45 to the lubricating oil tank 33 to transfer the lubricating oil separated from the refrigerant vapor in the refrigerant regeneration tank 45 into the lubricating oil tank 33. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、冷凍空調装置等に用いて好適な圧縮式冷凍機にかかり、特に冷媒からの潤滑油の回収を適正に行なえて安定運転が図れる圧縮式冷凍機及びその潤滑油回収方法に関するものである。   The present invention relates to a compression refrigeration machine suitable for use in a refrigeration air conditioner or the like, and more particularly to a compression refrigeration machine capable of appropriately recovering lubricating oil from a refrigerant and achieving stable operation, and a method for recovering the lubricating oil. is there.

従来、圧縮式冷凍機(蒸気圧縮式冷凍機)は、蒸発器と、モータ(電動機)によって駆動される圧縮機と、凝縮器と、膨張機構(膨張弁)とを冷媒配管で連結して構成されている。また圧縮式冷凍機は、圧縮機(及びモータ)の駆動軸とその軸受を潤滑及び冷却するために、冷媒と相溶性の潤滑油が潤滑油タンクから潤滑油ポンプによりこれら駆動軸の軸受を収納している軸受室内に圧送される(例えば特許文献1の図1参照)。   Conventionally, a compression refrigerator (vapor compression refrigerator) is configured by connecting an evaporator, a compressor driven by a motor (electric motor), a condenser, and an expansion mechanism (expansion valve) with a refrigerant pipe. Has been. In addition, in order to lubricate and cool the compressor (and motor) drive shafts and their bearings, the compression refrigerator stores the drive shaft bearings from the lubricant tank with a lubricant pump. It is pumped into the bearing chamber (see, for example, FIG. 1 of Patent Document 1).

そして一般に圧縮式冷凍機の圧縮機においては、前記潤滑油が供給される軸受室と冷媒循環系統との間(圧縮機の羽根車と軸受室との間や、冷媒の一部を用いて冷却されるモータの電動機室と軸受室との間)はラビリンスにより仕切られている。しかしながら、ラビリンスによるシールは完全とは言えず、このため圧縮式冷凍機の運転条件によっては軸受室と冷媒循環系統との圧力関係から、軸受室に供給された潤滑油の一部が冷媒循環系統に混入してしまう場合があった。冷媒と相溶性の潤滑油は、冷媒に混入した後、蒸発器に滞留し、蒸発器の伝熱特性を低下させる。その結果、圧縮式冷凍機の冷凍能力もしくは効率の低下を引き起こしてしまう。   In general, in a compressor of a compression refrigerator, cooling is performed between the bearing chamber to which the lubricating oil is supplied and the refrigerant circulation system (between the compressor impeller and the bearing chamber, or by using a part of the refrigerant. Between the motor chamber and the bearing chamber of the motor to be separated by a labyrinth. However, the labyrinth seal cannot be said to be perfect, so depending on the operating conditions of the compression refrigerator, a part of the lubricating oil supplied to the bearing chamber may be part of the refrigerant circulation system due to the pressure relationship between the bearing chamber and the refrigerant circulation system. In some cases, it was mixed. Lubricating oil compatible with the refrigerant is mixed in the refrigerant, and then stays in the evaporator, thereby degrading the heat transfer characteristics of the evaporator. As a result, the refrigerating capacity or efficiency of the compression refrigerator is reduced.

この現象を回避する方法として、圧縮機の吐出ガスを一部バイパスしてこれを駆動源とするエジェクターにより、蒸発器からキャリーオーバーして例えば圧縮機の羽根車の吸込み側に滞留している潤滑油を吸引し、吸引した潤滑油を潤滑油タンクに戻す方法があった。   As a method of avoiding this phenomenon, a part of the discharge gas of the compressor is bypassed, and an ejector using this as a drive source carries over from the evaporator and, for example, lubricates on the suction side of the compressor impeller. There was a method of sucking oil and returning the sucked lubricating oil to the lubricating oil tank.

しかしながらエジェクターを用いて潤滑油を回収する場合、エジェクターの吸引能力、つまり潤滑油の回収能力は、駆動源である圧縮機の吐出圧力に依存してしまう。このため冷却水温度が低い圧縮機の低ヘッド運転では、エジェクターの吸引能力が低下して充分な性能を発揮できず、潤滑油の吸引・分離が困難となって充分な量の潤滑油を回収することができず、冷媒循環系統への潤滑油混入量が増加して伝熱性能の低下、サージング、吸込低圧等のトラブルを生じる恐れがある。最も深刻な課題として、潤滑油の回収量が減ることにより、潤滑油タンクの油面が低下し、軸受への給油圧が低下して、圧縮式冷凍機の運転が継続できなくなることが挙げられる。
特開2008−14533号公報
However, when the lubricating oil is recovered using the ejector, the suction capability of the ejector, that is, the recovery capability of the lubricating oil, depends on the discharge pressure of the compressor that is the driving source. For this reason, in the low head operation of a compressor with a low cooling water temperature, the suction capacity of the ejector will not be able to exert its full performance, and it will be difficult to suck and separate the lubricating oil, and a sufficient amount of lubricating oil will be recovered The amount of lubricating oil mixed into the refrigerant circulation system may increase, and troubles such as deterioration in heat transfer performance, surging, and suction low pressure may occur. The most serious problem is that the oil level of the lubricating oil tank decreases due to a decrease in the amount of recovered lubricating oil, the supply hydraulic pressure to the bearing decreases, and the operation of the compression refrigerator cannot be continued. .
JP 2008-14533 A

本発明は上述の点に鑑みてなされたものでありその目的は、冷媒循環系統に混入した潤滑油を適正に回収でき、その結果安定運転を継続して行なうことができる圧縮式冷凍機及びその潤滑油回収方法を提供することにある。   The present invention has been made in view of the above points, and an object of the present invention is to properly recover the lubricating oil mixed in the refrigerant circulation system, and as a result, a compression type refrigerator that can continuously perform a stable operation, and its It is to provide a method for recovering a lubricating oil.

本願請求項1に記載の発明は、蒸発器と圧縮機と凝縮器とを冷媒を循環する冷媒配管によって連結すると共に、潤滑油が貯留されている潤滑油タンクを設置し、前記潤滑油タンク内の潤滑油を前記圧縮機の軸受に供給するとともに軸受を潤滑した潤滑油を潤滑油タンクに戻す潤滑油循環系を設けてなる圧縮式冷凍機において、潤滑油が溶け込んだ冷媒を加熱して潤滑油と冷媒蒸気に分離する加熱手段を備えた冷媒再生タンクと、前記冷媒再生タンクと前記蒸発器間を連通して蒸発器内の潤滑油が溶け込んだ冷媒液を冷媒再生タンクに移送する配管と、前記冷媒再生タンクと前記蒸発器間を連通して冷媒再生タンク内で潤滑油から分離された冷媒蒸気を蒸発器に移送する配管と、前記冷媒再生タンクと前記潤滑油タンク間を連通して冷媒再生タンク内で冷媒蒸気から分離された潤滑油を潤滑油タンクに移送する配管とを具備することを特徴とする圧縮式冷凍機にある。   According to the first aspect of the present invention, an evaporator, a compressor, and a condenser are connected by a refrigerant pipe that circulates a refrigerant, a lubricating oil tank in which lubricating oil is stored is installed, and the inside of the lubricating oil tank In a compression type refrigeration machine provided with a lubricating oil circulation system for supplying the lubricating oil to the compressor bearing and returning the lubricating oil lubricated to the bearing to the lubricating oil tank, the refrigerant in which the lubricating oil is dissolved is heated and lubricated. A refrigerant regeneration tank provided with a heating means for separating oil and refrigerant vapor, and a pipe that communicates between the refrigerant regeneration tank and the evaporator to transfer a refrigerant liquid in which the lubricating oil in the evaporator is dissolved to the refrigerant regeneration tank. A communication pipe between the refrigerant regeneration tank and the evaporator to transfer the refrigerant vapor separated from the lubricating oil in the refrigerant regeneration tank to the evaporator; and a communication between the refrigerant regeneration tank and the lubricating oil tank. Refrigerant regeneration unit Click inside in compression refrigerating machine, characterized by comprising a pipe for transferring the lubricating oil tank separated lubricating oil from the refrigerant vapor.

本願請求項2に記載の発明は、請求項1に記載の圧縮式冷凍機において、冷媒再生タンクと蒸発器間を連通して冷媒再生タンクに冷媒液を移送する前記配管には制御弁及び冷媒移送ポンプが設置され、冷媒再生タンクと蒸発器間を連通して蒸発器に冷媒蒸気を移送する前記配管には制御弁が設置され、冷媒再生タンクと潤滑油タンク間を連通して潤滑油タンクに潤滑油を移送する前記配管には制御弁及び潤滑油移送ポンプが設置されていることを特徴とする請求項1に記載の圧縮式冷凍機にある。   The invention according to claim 2 of the present application is the compression refrigeration machine according to claim 1, wherein a control valve and a refrigerant are provided in the pipe that communicates between the refrigerant regeneration tank and the evaporator and transfers the refrigerant liquid to the refrigerant regeneration tank. A transfer valve is installed, and a control valve is installed in the pipe for communicating refrigerant between the refrigerant regeneration tank and the evaporator and transferring the refrigerant vapor to the evaporator, and communicates between the refrigerant regeneration tank and the lubricating oil tank. 2. The compression type refrigerator according to claim 1, wherein a control valve and a lubricating oil transfer pump are installed in the pipe for transferring the lubricating oil to the pipe.

本願請求項3に記載の発明は、蒸発器と圧縮機と凝縮器とを冷媒を循環する冷媒配管によって連結すると共に、潤滑油が貯留されている潤滑油タンクを設置し、前記潤滑油タンク内の潤滑油を前記圧縮機の軸受に供給するとともに軸受を潤滑した潤滑油を潤滑油タンクに戻す潤滑油循環系を設けてなる圧縮式冷凍機において、潤滑油が溶け込んだ冷媒を加熱して潤滑油と冷媒蒸気に分離する加熱手段を備えた冷媒再生タンクと、前記冷媒再生タンクと前記蒸発器間を連通して蒸発器内の潤滑油が溶け込んだ冷媒液を冷媒再生タンクに移送する配管と、前記冷媒再生タンクと前記凝縮器間を連通して冷媒再生タンク内で潤滑油から分離された冷媒蒸気を凝縮器に移送する配管と、前記冷媒再生タンクと前記潤滑油タンク間を連通して冷媒再生タンク内で冷媒蒸気から分離された潤滑油を潤滑油タンクに移送する配管とを具備することを特徴とする圧縮式冷凍機にある。   According to the third aspect of the present invention, the evaporator, the compressor, and the condenser are connected by a refrigerant pipe that circulates the refrigerant, and a lubricating oil tank in which lubricating oil is stored is installed. In a compression type refrigeration machine provided with a lubricating oil circulation system for supplying the lubricating oil to the compressor bearing and returning the lubricating oil lubricated to the bearing to the lubricating oil tank, the refrigerant in which the lubricating oil is dissolved is heated and lubricated. A refrigerant regeneration tank provided with a heating means for separating oil and refrigerant vapor, and a pipe that communicates between the refrigerant regeneration tank and the evaporator to transfer a refrigerant liquid in which the lubricating oil in the evaporator is dissolved to the refrigerant regeneration tank. A communication pipe between the refrigerant regeneration tank and the condenser and transferring refrigerant vapor separated from the lubricating oil in the refrigerant regeneration tank to the condenser; and a communication between the refrigerant regeneration tank and the lubricating oil tank. Refrigerant regeneration unit Click inside in compression refrigerating machine, characterized by comprising a pipe for transferring the lubricating oil tank separated lubricating oil from the refrigerant vapor.

本願請求項4に記載の発明は、請求項3に記載の圧縮式冷凍機において、冷媒再生タンクと蒸発器間を連通して冷媒再生タンクに冷媒液を移送する前記配管には制御弁及び冷媒移送ポンプが設置され、冷媒再生タンクと凝縮器間を連通して凝縮器に冷媒蒸気を移送する前記配管には制御弁及び圧縮機が設置され、冷媒再生タンクと潤滑油タンク間を連通して潤滑油タンクに潤滑油を移送する前記配管には制御弁及び潤滑油移送ポンプが設置されていることを特徴とする請求項3に記載の圧縮式冷凍機にある。   According to a fourth aspect of the present invention, there is provided a compression type refrigerator according to the third aspect, wherein a control valve and a refrigerant are provided in the pipe that communicates between the refrigerant regeneration tank and the evaporator and transfers the refrigerant liquid to the refrigerant regeneration tank. A transfer pump is installed, and a control valve and a compressor are installed in the pipe for transferring the refrigerant vapor to the condenser through communication between the refrigerant regeneration tank and the condenser, and between the refrigerant regeneration tank and the lubricating oil tank. The compression refrigerator according to claim 3, wherein a control valve and a lubricating oil transfer pump are installed in the pipe for transferring the lubricating oil to the lubricating oil tank.

本願請求項5に記載の発明は、請求項1または2または3または4に記載の圧縮式冷凍機において、前記圧縮機によって圧縮された高圧側の冷媒蒸気を駆動源とするエジェクターと、圧縮機近傍の潤滑油回収部に溜まる潤滑油をこのエジェクターによって潤滑油タンクに移送する配管とが設置されていることを特徴とする圧縮式冷凍機にある。   The invention according to claim 5 of the present application is the compression refrigerator according to claim 1, 2 or 3 or 4, wherein an ejector having a high-pressure side refrigerant vapor compressed by the compressor as a driving source, and the compressor The compressor is provided with a piping for transferring lubricating oil collected in a nearby lubricating oil recovery section to a lubricating oil tank by this ejector.

本願請求項6に記載の発明は、蒸発器と圧縮機と凝縮器とを冷媒を循環する冷媒配管によって連結すると共に、潤滑油が貯留されている潤滑油タンクを設置し、前記潤滑油タンク内の潤滑油を前記圧縮機の軸受に供給するとともに軸受を潤滑した潤滑油を潤滑油タンクに戻す潤滑油循環系を設けてなる圧縮式冷凍機の潤滑油回収方法において、前記潤滑油タンクとは別に設置した冷媒再生タンク内に蒸発器内の潤滑油が溶け込んだ冷媒液を所定量移送する工程と、前記冷媒再生タンク内において前記潤滑油が溶け込んだ冷媒液を加熱することで潤滑油と冷媒蒸気とを分離する工程と、前記冷媒再生タンク内で潤滑油から分離した冷媒蒸気を蒸発器に移送するか、あるいは凝縮器に移送する工程と、前記冷媒再生タンク内で冷媒蒸気から分離した潤滑油を潤滑油タンクに移送する工程と、を具備することを特徴とする圧縮式冷凍機の潤滑油回収方法にある。   According to the sixth aspect of the present invention, the evaporator, the compressor, and the condenser are connected by a refrigerant pipe that circulates the refrigerant, and a lubricating oil tank in which lubricating oil is stored is installed. In the method for recovering lubricating oil of a compression refrigeration machine, the lubricating oil tank is provided with a lubricating oil circulation system that supplies the lubricating oil of the compressor to the bearing of the compressor and returns the lubricating oil lubricated to the bearing to the lubricating oil tank. A step of transferring a predetermined amount of the refrigerant liquid in which the lubricating oil in the evaporator is dissolved into a refrigerant regeneration tank installed separately, and the lubricating liquid and the refrigerant are heated by heating the refrigerant liquid in which the lubricating oil is dissolved in the refrigerant regeneration tank. Separating the vapor from the refrigerant, separating the refrigerant vapor separated from the lubricating oil in the refrigerant regeneration tank to the evaporator or transferring it to the condenser, and separating the refrigerant vapor from the refrigerant vapor in the refrigerant regeneration tank. In lubricating oil recovery method of a compression type refrigerator characterized by comprising the step of transferring the lubricating oil in the lubricating oil tank, a.

請求項1に記載の発明によれば、蒸発器から潤滑油の混入した冷媒を直接冷媒再生タンクに移送し、この冷媒再生タンク内でヒートアップすることにより潤滑油と冷媒蒸気とを分離するので、冷媒循環系統に混入した潤滑油を圧縮式冷凍機の運転条件によらず回収でき、その結果圧縮式冷凍機の安定運転が継続できる。   According to the first aspect of the present invention, the lubricant mixed with the lubricating oil is directly transferred from the evaporator to the refrigerant regeneration tank, and the lubricating oil and the refrigerant vapor are separated by heating up in the refrigerant regeneration tank. The lubricating oil mixed in the refrigerant circulation system can be recovered regardless of the operating conditions of the compression refrigerator, and as a result, the stable operation of the compression refrigerator can be continued.

請求項2に記載の発明によれば、蒸発器から冷媒再生タンクへの冷媒液の移送と、冷媒再生タンクから蒸発器への冷媒蒸気の移送と、冷媒再生タンクから潤滑油タンクへの潤滑油の移送とが、何れも簡単な構成でスムーズに行なえる。   According to the second aspect of the present invention, the transfer of the refrigerant liquid from the evaporator to the refrigerant regeneration tank, the transfer of the refrigerant vapor from the refrigerant regeneration tank to the evaporator, and the lubricating oil from the refrigerant regeneration tank to the lubricating oil tank. Can be smoothly performed with a simple configuration.

請求項3に記載の発明によれば、蒸発器から潤滑油の混入した冷媒を直接冷媒再生タンクに移送し、この冷媒再生タンク内でヒートアップすることにより潤滑油と冷媒蒸気とを分離するので、冷媒循環系統に混入した潤滑油を圧縮式冷凍機の運転条件によらず回収でき、その結果圧縮式冷凍機の安定運転が継続できる。さらにこの発明の場合、冷凍サイクルの高圧側(凝縮器)に冷媒蒸気を導入しているので、圧縮式冷凍機の効率低下を防ぐことができる。   According to the third aspect of the present invention, the lubricant mixed with the lubricating oil is directly transferred from the evaporator to the refrigerant regeneration tank, and the lubricating oil and the refrigerant vapor are separated by heating in the refrigerant regeneration tank. The lubricating oil mixed in the refrigerant circulation system can be recovered regardless of the operating conditions of the compression refrigerator, and as a result, the stable operation of the compression refrigerator can be continued. Furthermore, in the case of this invention, since the refrigerant | coolant vapor | steam is introduce | transduced into the high voltage | pressure side (condenser) of the refrigerating cycle, the efficiency fall of a compression type refrigerator can be prevented.

請求項4に記載の発明によれば、蒸発器から冷媒再生タンクへの冷媒液の移送と、冷媒再生タンクから凝縮器への冷媒蒸気の移送と、冷媒再生タンクから潤滑油タンクへの潤滑油の移送とが、何れも簡単な構成でスムーズに行なえる。   According to the fourth aspect of the present invention, the transfer of the refrigerant liquid from the evaporator to the refrigerant regeneration tank, the transfer of the refrigerant vapor from the refrigerant regeneration tank to the condenser, and the lubricating oil from the refrigerant regeneration tank to the lubricating oil tank. Can be smoothly performed with a simple configuration.

請求項5に記載の発明によれば、エジェクターを用いる潤滑油回収機構と、冷媒再生タンクを用いる潤滑油回収機構とを併用することが可能になり、潤滑油の回収効率を高めることができる。   According to the fifth aspect of the present invention, it is possible to use a lubricating oil recovery mechanism that uses an ejector and a lubricating oil recovery mechanism that uses a refrigerant regeneration tank, thereby improving the recovery efficiency of the lubricating oil.

請求項6に記載の発明によれば、蒸発器から潤滑油の混入した冷媒を直接冷媒再生タンクに移送し、この冷媒再生タンク内でヒートアップすることにより潤滑油と冷媒蒸気とを分離するので、冷媒循環系統に混入した潤滑油を圧縮式冷凍機の運転条件によらず回収でき、その結果圧縮式冷凍機の安定運転が継続できる。特に冷媒再生タンク内で潤滑油から分離した冷媒蒸気を高圧側(凝縮器)に移送する場合は、圧縮式冷凍機の効率低下を防ぐことができる。   According to the sixth aspect of the present invention, the lubricant mixed with the lubricating oil is directly transferred from the evaporator to the refrigerant regeneration tank, and the lubricating oil and the refrigerant vapor are separated by heating up in the refrigerant regeneration tank. The lubricating oil mixed in the refrigerant circulation system can be recovered regardless of the operating conditions of the compression refrigerator, and as a result, the stable operation of the compression refrigerator can be continued. In particular, when the refrigerant vapor separated from the lubricating oil in the refrigerant regeneration tank is transferred to the high-pressure side (condenser), it is possible to prevent the efficiency of the compression refrigerator from decreasing.

以下、本発明の実施形態を図面を参照して詳細に説明する。
〔第1実施形態〕
図1は本発明の第1実施形態にかかる圧縮式冷凍機1−1の全体概略構成図である。同図に示す圧縮式冷凍機1−1は、蒸気圧縮式の冷凍サイクルを行なう圧縮式冷凍機であって、冷媒を注入したクローズドサイクル(冷凍サイクル)から構成され、この冷凍サイクルは、冷水(被冷却流体)から熱を奪って冷媒が蒸発し冷凍効果を発揮する蒸発器10と、蒸発して蒸気となった冷媒(冷媒蒸気)を圧縮する圧縮機13と、圧縮蒸気を冷却水(冷却流体)で冷却して凝縮させる凝縮器15と、凝縮冷媒を減圧して膨張させる膨張機構(膨張弁)19とを、冷媒を循環する冷媒配管20によって連結して構成されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[First Embodiment]
FIG. 1 is an overall schematic configuration diagram of a compression refrigerator 1-1 according to the first embodiment of the present invention. A compression refrigerator 1-1 shown in the figure is a compression refrigerator that performs a vapor compression refrigeration cycle, and includes a closed cycle (refrigeration cycle) into which a refrigerant is injected. The evaporator 10 that takes heat from the fluid to be cooled) and evaporates the refrigerant to exert a refrigeration effect, the compressor 13 that compresses the refrigerant (refrigerant vapor) that has evaporated to become steam, and the compressed steam is cooled with cooling water (cooling). A condenser 15 that cools and condenses with a fluid) and an expansion mechanism (expansion valve) 19 that decompresses and expands the condensed refrigerant are connected by a refrigerant pipe 20 that circulates the refrigerant.

ここで圧縮機13はモータ21の駆動軸23によってその羽根車13aが駆動される。モータ21と圧縮機13(羽根車13a)の駆動軸23は軸受25によって回転自在に軸支されている。モータ21と凝縮器15の間は配管27,29によって接続されている。配管27は凝縮器15の下部に接続され、配管27中に設置した冷媒ポンプ31によってモータ冷却用の冷媒が凝縮器15からモータ21に供給され、モータ21を冷却した後の冷媒は配管29によって凝縮器15に戻される。   Here, the compressor 13 has its impeller 13 a driven by the drive shaft 23 of the motor 21. The drive shaft 23 of the motor 21 and the compressor 13 (the impeller 13a) is rotatably supported by a bearing 25. The motor 21 and the condenser 15 are connected by pipes 27 and 29. The pipe 27 is connected to the lower part of the condenser 15, the refrigerant for cooling the motor is supplied from the condenser 15 to the motor 21 by the refrigerant pump 31 installed in the pipe 27, and the refrigerant after cooling the motor 21 is sent through the pipe 29. It is returned to the condenser 15.

圧縮式冷凍機1−1には、モータ21の軸受25を潤滑する潤滑油を貯留する潤滑油タンク33が設置されると共に、この潤滑油タンク33と前記軸受25間に配管35,37を接続し、配管35中に設置した潤滑油ポンプ39によって前記潤滑油タンク33内の潤滑油を前記軸受25に供給すると共に、軸受25を潤滑した潤滑油を配管37を通して潤滑油タンク33に戻す潤滑油循環系が構成されている。潤滑油タンク33と蒸発器10間は均圧管41によって連通されている。また潤滑油タンク33内には、冷媒が溶け込んだ潤滑油を加熱して蒸気となった冷媒蒸気を均圧管41を介して蒸発器10に戻すヒータ43が設置されている。   The compression refrigerator 1-1 is provided with a lubricating oil tank 33 for storing lubricating oil for lubricating the bearing 25 of the motor 21, and pipes 35 and 37 are connected between the lubricating oil tank 33 and the bearing 25. Then, the lubricating oil in the lubricating oil tank 33 is supplied to the bearing 25 by the lubricating oil pump 39 installed in the pipe 35, and the lubricating oil that lubricated the bearing 25 is returned to the lubricating oil tank 33 through the pipe 37. A circulatory system is configured. The lubricating oil tank 33 and the evaporator 10 are connected by a pressure equalizing pipe 41. Also, a heater 43 is installed in the lubricating oil tank 33 to return the refrigerant vapor, which has been vaporized by heating the lubricating oil in which the refrigerant has melted, to the evaporator 10 via the pressure equalizing pipe 41.

一方前記潤滑油タンク33とは別に、冷媒と潤滑油とを分離する冷媒再生タンク45が設置されている。冷媒再生タンク45には、加熱手段(以下「ヒータ」という)47と液面検出器49と圧力検出器51と温度検出器53とが取り付けられている。ここでヒータ47は冷媒再生タンク45内に貯留している潤滑油が溶け込んだ冷媒をヒートアップして潤滑油と冷媒蒸気とを分離するものである。液面検出器49は冷媒再生タンク45内の潤滑油が溶け込んだ冷媒の液面高さを検出するものであり、この液面検出器49ではa,b,cのそれぞれの異なる液面高さを検出している。高さaは最も高い位置で、高さb,高さcになるにしたがってより低い位置となる。圧力検出器51は冷媒再生タンク45内の気相部分の圧力を検出するものであり、温度検出器53は冷媒再生タンク45内の液相部分の温度を検出するものである。   On the other hand, apart from the lubricating oil tank 33, a refrigerant regeneration tank 45 for separating the refrigerant and the lubricating oil is installed. A heating means (hereinafter referred to as “heater”) 47, a liquid level detector 49, a pressure detector 51, and a temperature detector 53 are attached to the refrigerant regeneration tank 45. Here, the heater 47 heats up the refrigerant in which the lubricating oil stored in the refrigerant regeneration tank 45 is dissolved to separate the lubricating oil and the refrigerant vapor. The liquid level detector 49 detects the liquid level of the refrigerant in which the lubricating oil in the refrigerant regeneration tank 45 is dissolved, and the liquid level detector 49 has different liquid level heights a, b and c. Is detected. The height a is the highest position, and becomes a lower position as the height b and the height c are reached. The pressure detector 51 detects the pressure of the gas phase portion in the refrigerant regeneration tank 45, and the temperature detector 53 detects the temperature of the liquid phase portion in the refrigerant regeneration tank 45.

また蒸発器10の液相部となる最下部と冷媒再生タンク45間は配管55によって連通され、配管55中には冷媒移送ポンプ57と電磁弁からなる制御弁59とが取り付けられている。また蒸発器10の気相部となる上部の部分と冷媒再生タンク45の気相部となる上部の部分間は配管61によって連通され、配管61中には電磁弁からなる制御弁63が取り付けられている。また冷媒再生タンク45の液相部となるその最下部と潤滑油タンク33間は配管65によって連通され、配管65中には潤滑油移送ポンプ67と制御弁69とが取り付けられている。さらに前記蒸発器10にはその蒸発温度と冷水出口温度とをそれぞれ測定する温度検出器71,73が設置されている。   Further, the lowermost part, which is the liquid phase part of the evaporator 10, communicates with the refrigerant regeneration tank 45 by a pipe 55, and a refrigerant transfer pump 57 and a control valve 59 including an electromagnetic valve are attached to the pipe 55. Further, the upper part that becomes the gas phase part of the evaporator 10 and the upper part that becomes the gas phase part of the refrigerant regeneration tank 45 communicate with each other by a pipe 61, and a control valve 63 made of an electromagnetic valve is attached in the pipe 61. ing. Further, the lowermost part, which is the liquid phase part of the refrigerant regeneration tank 45, and the lubricating oil tank 33 are communicated by a pipe 65, and a lubricating oil transfer pump 67 and a control valve 69 are attached in the pipe 65. Further, the evaporator 10 is provided with temperature detectors 71 and 73 for measuring the evaporation temperature and the cold water outlet temperature, respectively.

図2は圧縮式冷凍機1−1の潤滑油回収を制御する制御手段80を示す図である。同図に示すように制御手段80は、液面検出器49と圧力検出器51と温度検出器53と温度検出器71,73とからそれぞれ冷媒再生タンク45内の液面の位置と気相部分の圧力と液相部分の温度と蒸発器10の蒸発温度及び冷水出口温度の検出信号を入力し、またヒータ47の加熱・停止を制御するヒータ制御信号を出力し、また冷媒移送ポンプ57と潤滑油移送ポンプ67の起動・停止を制御する運転制御信号を出力し、また制御弁59と制御弁63と制御弁69とをそれぞれ開閉制御する開閉制御信号を出力する。   FIG. 2 is a diagram showing a control means 80 that controls the recovery of the lubricating oil in the compression refrigerator 1-1. As shown in the figure, the control means 80 includes the liquid level detector 49, the pressure detector 51, the temperature detector 53, and the temperature detectors 71 and 73, respectively, and the position of the liquid level and the gas phase portion in the refrigerant regeneration tank 45. , The temperature of the liquid phase part, the detection signal of the evaporation temperature of the evaporator 10 and the cold water outlet temperature, the heater control signal for controlling the heating / stopping of the heater 47, the refrigerant transfer pump 57 and the lubrication An operation control signal for controlling start / stop of the oil transfer pump 67 is output, and an opening / closing control signal for controlling the opening / closing of the control valve 59, the control valve 63, and the control valve 69 is output.

上記圧縮式冷凍機1−1において、冷水を蒸発器10に流し、冷却水を凝縮器15に流し、モータ21を起動して圧縮機13を駆動すれば、この冷凍サイクルにおいて冷媒が循環し、圧縮式冷凍機1−1が運転される。一方冷媒ポンプ31を起動することで凝縮器15の凝縮冷媒液の一部がモータ21に供給され、モータ21を冷却した後に蒸気となって凝縮器15に戻され、凝縮液化される。一方潤滑油ポンプ39を起動することで潤滑油タンク33内の潤滑油が軸受25に供給されて軸受25の潤滑及び冷却が行なわれ、軸受25を潤滑した潤滑油は配管37によって再び潤滑油タンク33に戻される。   In the compression refrigerator 1-1, if cold water is flowed to the evaporator 10, cooling water is flowed to the condenser 15, the motor 21 is started and the compressor 13 is driven, the refrigerant circulates in this refrigeration cycle, The compression refrigerator 1-1 is operated. On the other hand, by starting the refrigerant pump 31, a part of the condensed refrigerant liquid in the condenser 15 is supplied to the motor 21, and after cooling the motor 21, the vapor is returned to the condenser 15 to be condensed and liquefied. On the other hand, by starting the lubricating oil pump 39, the lubricating oil in the lubricating oil tank 33 is supplied to the bearing 25, and the bearing 25 is lubricated and cooled. The lubricating oil that lubricated the bearing 25 is again supplied by the pipe 37 to the lubricating oil tank. Return to 33.

そして上記圧縮式冷凍機1−1の運転を行なっていると前述のように、冷媒と相溶性の潤滑油が冷媒循環系統に移動・混入し、蒸発器10に滞留して蒸発器10の沸騰伝熱を阻害して効率低下を引き起こす。そこでこの圧縮式冷凍機1−1においては運転中に例えば以下の制御手順によって冷媒循環系統に混入した潤滑油を潤滑油タンク33(潤滑油循環系統)に回収する。以下の潤滑油の回収動作は、前記制御手段80の制御指令信号によって行なわれる。   When the compressor type refrigerator 1-1 is operated, as described above, lubricating oil compatible with the refrigerant moves and mixes in the refrigerant circulation system, stays in the evaporator 10 and boils the evaporator 10. Inhibits heat transfer and reduces efficiency. Therefore, in the compression refrigerator 1-1, during operation, the lubricating oil mixed in the refrigerant circulation system is recovered in the lubricating oil tank 33 (lubricating oil circulation system) by the following control procedure, for example. The following lubricating oil recovery operation is performed by a control command signal from the control means 80.

即ち上述したように圧縮式冷凍機1−1の運転が開始された後、制御手段80は温度検出器71,73から取り込んだ温度検出信号から蒸発器10のLTD(冷水出口温度と蒸発温度〔冷媒沸騰温度〕との差温)を求め、LTDの値が所定値を超えると蒸発器10内の冷媒液量が不足している、即ち潤滑油滞留量が所定量以上に増加したと判断し、以下の制御を自動的に開始する。   That is, after the operation of the compression refrigerator 1-1 is started as described above, the control means 80 determines the LTD (cold water outlet temperature and evaporation temperature [of the evaporator 10) from the temperature detection signal fetched from the temperature detectors 71 and 73. When the LTD value exceeds a predetermined value, it is determined that the amount of refrigerant liquid in the evaporator 10 is insufficient, that is, the lubricant retention amount has increased to a predetermined amount or more. The following control is automatically started.

即ちLTDが所定値を超えると、まず冷媒移送ポンプ57を運転し、その後制御弁59を開く。これにより蒸発器10から冷媒再生タンク45に冷媒(潤滑油が溶け込んだ冷媒液)が移送される。次に冷媒再生タンク45の液面高さが高さaの位置に達したことを液面検出器49が検出すると、制御弁59を閉じ、冷媒移送ポンプ57を停止する。   That is, when the LTD exceeds a predetermined value, the refrigerant transfer pump 57 is first operated, and then the control valve 59 is opened. As a result, the refrigerant (the refrigerant liquid in which the lubricating oil is dissolved) is transferred from the evaporator 10 to the refrigerant regeneration tank 45. Next, when the liquid level detector 49 detects that the liquid level of the refrigerant regeneration tank 45 has reached the position of the height a, the control valve 59 is closed and the refrigerant transfer pump 57 is stopped.

次にヒータ47をオンして加熱し、潤滑油の溶解した冷媒液をヒートアップして冷媒液を冷媒蒸気として潤滑油から分離する。これによって冷媒再生タンク45内の気相(冷媒蒸気)の圧力が上昇してくるので、圧力検出器51によって検出される冷媒再生タンク45の圧力が予め定めている設定値以上になると制御弁63を開き、冷媒再生タンク45内の冷媒蒸気を、この冷媒再生タンク45と蒸発器10の圧力差によって蒸発器10に移送する。潤滑油から分離された冷媒蒸気が蒸発器10に移送されることで冷媒再生タンク45内の液面高さが高さbまで低下したら、制御弁63を閉じる。このとき冷媒再生タンク45内の液体は主として潤滑油となっている。   Next, the heater 47 is turned on and heated, the refrigerant liquid in which the lubricating oil is dissolved is heated up, and the refrigerant liquid is separated from the lubricating oil as refrigerant vapor. As a result, the pressure of the gas phase (refrigerant vapor) in the refrigerant regeneration tank 45 rises. Therefore, when the pressure of the refrigerant regeneration tank 45 detected by the pressure detector 51 becomes equal to or higher than a preset value, the control valve 63. The refrigerant vapor in the refrigerant regeneration tank 45 is transferred to the evaporator 10 due to the pressure difference between the refrigerant regeneration tank 45 and the evaporator 10. When the refrigerant level separated from the lubricating oil is transferred to the evaporator 10 and the liquid level in the refrigerant regeneration tank 45 is lowered to the height b, the control valve 63 is closed. At this time, the liquid in the refrigerant regeneration tank 45 is mainly lubricating oil.

一方前記ヒータ47によるヒートアップは継続し、主として潤滑油となった冷媒再生タンク45内の液体の温度が所定の温度以上になったことを温度検出器53が検出すると、潤滑油移送ポンプ67を起動し、制御弁69を開き、冷媒再生タンク45内の潤滑油を潤滑油タンク33に移送する。そして冷媒再生タンク45内の液面高さが高さcまで低下したら制御弁69を閉じ、潤滑油移送ポンプ67を停止する。以上の操作によって冷媒から潤滑油を分離してそれぞれを冷媒循環系統と潤滑油循環系統に回収する1回の回収動作が完了する。   On the other hand, when the heater 47 continues to heat up and the temperature detector 53 detects that the temperature of the liquid in the refrigerant regeneration tank 45, which has become mainly lubricating oil, has reached a predetermined temperature or higher, the lubricating oil transfer pump 67 is turned on. The control valve 69 is opened, and the lubricating oil in the refrigerant regeneration tank 45 is transferred to the lubricating oil tank 33. When the liquid level in the refrigerant regeneration tank 45 is lowered to the height c, the control valve 69 is closed and the lubricating oil transfer pump 67 is stopped. Through the above operation, one recovery operation for separating the lubricating oil from the refrigerant and recovering the lubricating oil into the refrigerant circulation system and the lubricating oil circulation system is completed.

そして上記回収動作にて蒸発器10のLTDが設定値を下回れば、再び設定値を超えるまで上記回収動作を中断する。一方上記回収動作によってもいまだLTDが設定値を下回らない場合は、LTDが設定値を下回るまで、連続して上記回収動作を行なう。   If the LTD of the evaporator 10 falls below the set value in the collecting operation, the collecting operation is interrupted until it exceeds the set value again. On the other hand, if the LTD still does not fall below the set value due to the collecting operation, the collecting operation is continuously performed until the LTD falls below the set value.

以上説明したように、この圧縮式冷凍機1−1は、冷媒再生タンク45と蒸発器10間を連通して蒸発器10内の潤滑油が溶け込んだ冷媒液を冷媒再生タンク45に移送する配管55と、冷媒再生タンク45と蒸発器10間を連通して冷媒再生タンク45内で潤滑油から分離した冷媒蒸気を蒸発器10に移送する配管61と、冷媒再生タンク45と潤滑油タンク33間を連通して冷媒再生タンク45内で冷媒蒸気から分離された潤滑油を潤滑油タンク33に移送する配管65とを具備して構成しているので、蒸発器10から潤滑油の混入した冷媒液を直接冷媒再生タンク45に移送し、冷媒再生タンク45内でヒートアップすることにより潤滑油成分と冷媒蒸気とを分離でき、したがって冷媒循環系統に混入した潤滑油を圧縮式冷凍機1−1の運転条件によらずに回収でき、その結果圧縮式冷凍機1−1の安定運転が継続できる。特にこの圧縮式冷凍機1−1の場合、冷媒再生タンク45にヒータ47などを設置したり、配管55,61,65に冷媒移送ポンプ57や潤滑油移送ポンプ67や制御弁59,63,69などを設置するという簡単な構成で、蒸発器10から冷媒再生タンク45への冷媒液の移送と、冷媒再生タンク45から蒸発器10への冷媒蒸気の移送と、冷媒再生タンク45から潤滑油タンク33への潤滑油の移送とをスムーズに行なうことができ、好適である。   As described above, the compression refrigerator 1-1 is connected to the refrigerant regeneration tank 45 and the evaporator 10, and the piping for transferring the refrigerant liquid in which the lubricating oil in the evaporator 10 is dissolved to the refrigerant regeneration tank 45. 55, a pipe 61 that communicates between the refrigerant regeneration tank 45 and the evaporator 10 and transfers the refrigerant vapor separated from the lubricating oil in the refrigerant regeneration tank 45 to the evaporator 10, and between the refrigerant regeneration tank 45 and the lubricating oil tank 33. And the piping 65 for transferring the lubricating oil separated from the refrigerant vapor in the refrigerant regeneration tank 45 to the lubricating oil tank 33, so that the refrigerant liquid mixed with the lubricating oil from the evaporator 10 is provided. Is directly transferred to the refrigerant regeneration tank 45 and heated in the refrigerant regeneration tank 45, whereby the lubricating oil component and the refrigerant vapor can be separated. Therefore, the lubricating oil mixed in the refrigerant circulation system is removed from the compression refrigerator 1-1. Be recovered irrespective of the operating conditions, it can continue stable operation of the resulting compression refrigerating machine 1-1. In particular, in the case of the compression refrigerator 1-1, a heater 47 or the like is installed in the refrigerant regeneration tank 45, or a refrigerant transfer pump 57, a lubricant transfer pump 67, or control valves 59, 63, 69 are installed in the pipes 55, 61, 65. The refrigerant liquid is transferred from the evaporator 10 to the refrigerant regeneration tank 45, the refrigerant vapor is transferred from the refrigerant regeneration tank 45 to the evaporator 10, and the lubricant oil tank is transferred from the refrigerant regeneration tank 45 to the lubricating oil tank. The lubricating oil can be smoothly transferred to 33, which is preferable.

〔第2実施形態〕
図3は本発明の第2実施形態にかかる圧縮式冷凍機1−2の全体概略構成図である。同図に示す圧縮式冷凍機1−2も前記圧縮式冷凍機1−1と同様に、蒸気圧縮式の冷凍サイクルを行なう圧縮式冷凍機である。同図に示す圧縮式冷凍機1−2において、前記図1,図2に示す圧縮式冷凍機1−1と同一又は相当部分には同一符号を付す。なお以下で説明する事項以外の事項については、前記図1,図2に示す圧縮式冷凍機1−1と同じである。
[Second Embodiment]
FIG. 3 is an overall schematic configuration diagram of a compression refrigerator 1-2 according to the second embodiment of the present invention. Similarly to the compression refrigerator 1-1, the compression refrigerator 1-2 shown in the figure is a compression refrigerator that performs a vapor compression refrigeration cycle. In the compression type refrigerator 1-2 shown in the figure, the same or corresponding parts as those in the compression type refrigerator 1-1 shown in FIGS. Items other than those described below are the same as those of the compression refrigerator 1-1 shown in FIGS.

即ち圧縮式冷凍機1−2も、冷媒を注入したクローズドサイクル(冷凍サイクル)から構成され、この冷凍サイクルは、冷水(被冷却流体)から熱を奪って冷媒が蒸発し冷凍効果を発揮する蒸発器10と、蒸発して蒸気となった冷媒(冷媒蒸気)を圧縮する圧縮機13と、圧縮蒸気を冷却水(冷却流体)で冷却して凝縮させる凝縮器15と、凝縮冷媒を減圧して膨張させる膨張機構(膨張弁)19とを、冷媒を循環する冷媒配管20によって連結して構成されている。   That is, the compression refrigerator 1-2 is also composed of a closed cycle (refrigeration cycle) into which refrigerant is injected, and this refrigeration cycle takes heat from cold water (cooled fluid) and evaporates the refrigerant to exert a refrigeration effect. , The compressor 13 that compresses the refrigerant (refrigerant vapor) that has been evaporated into vapor, the condenser 15 that cools and compresses the compressed vapor with cooling water (cooling fluid), and depressurizes the condensed refrigerant An expansion mechanism (expansion valve) 19 for expansion is connected by a refrigerant pipe 20 that circulates the refrigerant.

そしてこの圧縮式冷凍機1−2において前記圧縮式冷凍機1−1と相違する点は、圧縮式冷凍機1−1においては蒸発器10の気相部となる上部の部分と冷媒再生タンク45の気相部となる上部の部分間を配管61によって連通し、配管61中に制御弁63を取り付けたが、これを省略し、その代わりに凝縮器15の上部の部分と冷媒再生タンク45の気相部となる上部の部分間を配管75によって連通し、配管75中に電磁弁からなる制御弁77と圧縮機79とを取り付けた点のみである。また図示はしないがこの圧縮式冷凍機1−2に用いる制御手段80は、図2に示す制御弁63を開閉制御する開閉制御信号を出力する代わりに、制御弁77を開閉制御する開閉制御信号を出力するとともに、圧縮機79の起動・停止を制御する運転制御信号を出力する。   The difference between the compression type refrigerator 1-1 and the compression type refrigerator 1-1 is that, in the compression type refrigerator 1-1, the upper part which is the gas phase part of the evaporator 10 and the refrigerant regeneration tank 45. The upper part, which is the gas phase part, is communicated by the pipe 61, and the control valve 63 is attached in the pipe 61, but this is omitted. Instead, the upper part of the condenser 15 and the refrigerant regeneration tank 45 The upper part which becomes the gas phase part is communicated by a pipe 75, and a control valve 77 made of an electromagnetic valve and a compressor 79 are attached in the pipe 75. Although not shown, the control means 80 used for the compression type refrigerator 1-2 does not output an opening / closing control signal for controlling the opening / closing of the control valve 63 shown in FIG. And an operation control signal for controlling the start / stop of the compressor 79 is output.

そして上記圧縮式冷凍機1−2の運転を開始し、また冷媒ポンプ31を起動してモータ21を冷却し、潤滑油ポンプ39を起動して軸受25の潤滑及び冷却を開始する。   Then, the operation of the compression refrigerator 1-2 is started, the refrigerant pump 31 is started to cool the motor 21, and the lubricating oil pump 39 is started to start lubrication and cooling of the bearing 25.

そして潤滑油タンク33への潤滑油の回収動作手順は例えば以下のようにして行なわれる。即ちまず制御手段80は温度検出器71,73から取り込んだ温度検出信号から蒸発器10のLTDを求め、LTDの値が所定値を超えることで蒸発器10内の潤滑油滞留量が所定量以上に増加したと判断すると、まず冷媒移送ポンプ57を運転し、その後制御弁59を開き、蒸発器10から冷媒再生タンク45に冷媒(潤滑油が溶け込んだ冷媒液)を移送する。次に冷媒再生タンク45の液面高さが高さaの位置に達したことを液面検出器49が検出すると、制御弁59を閉じ、冷媒移送ポンプ57を停止する。次にヒータ47をオンして潤滑油の溶解した冷媒液をヒートアップして冷媒液を冷媒蒸気として潤滑油から分離する。これによって冷媒再生タンク45内の気相(冷媒蒸気)の圧力が上昇してくるので、圧力検出器51によって検出される冷媒再生タンク45の圧力が予め定めている設定値以上になると圧縮機79を運転し、その後制御弁77を開き、冷媒再生タンク45内の冷媒蒸気を圧縮機79により強制的に抽気し、圧縮式冷凍機1−2の高圧側である凝縮器15に移送(圧送)する。潤滑油から分離された冷媒蒸気が凝縮器15に移送されることで冷媒再生タンク45内の液面高さが高さbまで低下したら、制御弁77を閉じ、圧縮機79を停止する。このとき冷媒再生タンク45内の液体は主として潤滑油となっている。   The procedure for collecting the lubricating oil into the lubricating oil tank 33 is performed as follows, for example. That is, first, the control means 80 obtains the LTD of the evaporator 10 from the temperature detection signals fetched from the temperature detectors 71 and 73, and when the LTD value exceeds a predetermined value, the amount of accumulated lubricating oil in the evaporator 10 exceeds a predetermined amount. When it is determined that the refrigerant has increased, first, the refrigerant transfer pump 57 is operated, and then the control valve 59 is opened to transfer the refrigerant (the refrigerant liquid in which the lubricating oil is dissolved) from the evaporator 10 to the refrigerant regeneration tank 45. Next, when the liquid level detector 49 detects that the liquid level of the refrigerant regeneration tank 45 has reached the position of the height a, the control valve 59 is closed and the refrigerant transfer pump 57 is stopped. Next, the heater 47 is turned on to heat up the refrigerant liquid in which the lubricating oil is dissolved, and the refrigerant liquid is separated from the lubricating oil as refrigerant vapor. As a result, the pressure of the gas phase (refrigerant vapor) in the refrigerant regeneration tank 45 rises. Therefore, when the pressure in the refrigerant regeneration tank 45 detected by the pressure detector 51 becomes equal to or higher than a predetermined set value, the compressor 79. Then, the control valve 77 is opened, the refrigerant vapor in the refrigerant regeneration tank 45 is forcibly extracted by the compressor 79, and transferred to the condenser 15 on the high pressure side of the compression type refrigerator 1-2. To do. When the refrigerant level separated from the lubricating oil is transferred to the condenser 15 and the liquid level in the refrigerant regeneration tank 45 is lowered to the height b, the control valve 77 is closed and the compressor 79 is stopped. At this time, the liquid in the refrigerant regeneration tank 45 is mainly lubricating oil.

一方前記ヒータ47によるヒートアップは継続し、主として潤滑油となった冷媒再生タンク45内の液体の温度が所定の温度以上になったことを温度検出器53が検出すると、潤滑油移送ポンプ67を起動し、制御弁69を開き、冷媒再生タンク45内の潤滑油を潤滑油タンク33に移送する。そして冷媒再生タンク45内の液面高さが高さcまで低下したら制御弁69を閉じ、潤滑油移送ポンプ67を停止する。以上の操作によって冷媒から潤滑油を分離してそれぞれを冷媒循環系統と潤滑油循環系統に回収する1回の回収動作が完了する。その後この回収動作を中断するか継続するかは、圧縮式冷凍機1−1の場合と同様である。   On the other hand, when the heater 47 continues to heat up and the temperature detector 53 detects that the temperature of the liquid in the refrigerant regeneration tank 45, which has become mainly lubricating oil, has reached a predetermined temperature or higher, the lubricating oil transfer pump 67 is turned on. The control valve 69 is opened, and the lubricating oil in the refrigerant regeneration tank 45 is transferred to the lubricating oil tank 33. When the liquid level in the refrigerant regeneration tank 45 is lowered to the height c, the control valve 69 is closed and the lubricating oil transfer pump 67 is stopped. With the above operation, one recovery operation is completed in which the lubricating oil is separated from the refrigerant and recovered into the refrigerant circulation system and the lubricating oil circulation system. Whether the collection operation is interrupted or continued thereafter is the same as in the case of the compression refrigerator 1-1.

以上説明したように、この圧縮式冷凍機1−2は、冷媒再生タンク45と蒸発器10間を連通して蒸発器10内の潤滑油が溶け込んだ冷媒液を冷媒再生タンク45に移送する配管55と、冷媒再生タンク45と凝縮器15間を連通して冷媒再生タンク45内で潤滑油から分離した冷媒蒸気を凝縮器15に移送する配管75と、冷媒再生タンク45と潤滑油タンク33間を連通して冷媒再生タンク45内で冷媒蒸気から分離された潤滑油を潤滑油タンク33に移送する配管65とを具備して構成されているので、蒸発器10から潤滑油の混入した冷媒液を直接冷媒再生タンク45に移送し、冷媒再生タンク45内でヒートアップすることにより潤滑油成分と冷媒蒸気とを分離でき、したがって冷媒循環系統に混入した潤滑油を圧縮式冷凍機1−2の運転条件によらず回収でき、その結果圧縮式冷凍機1−2の安定運転が継続できる。また前記圧縮式冷凍機1−1の場合と同様に、簡単な構成で、蒸発器10から冷媒再生タンク45への冷媒液の移送と、冷媒再生タンク45から凝縮器15への冷媒蒸気の移送と、冷媒再生タンク45から潤滑油タンク33への潤滑油の移送とをスムーズに行なうことができ、好適である。   As described above, the compression refrigerator 1-2 is connected to the refrigerant regeneration tank 45 and the evaporator 10 to transfer the refrigerant liquid in which the lubricating oil in the evaporator 10 is dissolved to the refrigerant regeneration tank 45. 55, a pipe 75 that communicates between the refrigerant regeneration tank 45 and the condenser 15 and transfers refrigerant vapor separated from the lubricating oil in the refrigerant regeneration tank 45 to the condenser 15, and between the refrigerant regeneration tank 45 and the lubricating oil tank 33. And the piping 65 for transferring the lubricating oil separated from the refrigerant vapor in the refrigerant regeneration tank 45 to the lubricating oil tank 33, so that the refrigerant liquid mixed with the lubricating oil from the evaporator 10 is formed. Is directly transferred to the refrigerant regeneration tank 45 and heated in the refrigerant regeneration tank 45, whereby the lubricating oil component and the refrigerant vapor can be separated. Therefore, the lubricating oil mixed in the refrigerant circulation system is removed from the compression refrigerator 1-. Of recovered regardless of the operating conditions, it can continue stable operation of the resulting compression refrigerating machine 1-2. Similarly to the case of the compression refrigerator 1-1, the refrigerant liquid is transferred from the evaporator 10 to the refrigerant regeneration tank 45 and the refrigerant vapor is transferred from the refrigerant regeneration tank 45 to the condenser 15 with a simple configuration. Therefore, it is possible to smoothly transfer the lubricating oil from the refrigerant regeneration tank 45 to the lubricating oil tank 33, which is preferable.

さらに前記圧縮式冷凍機1−1では冷媒再生タンク45で分離した冷媒蒸気を蒸発器10(低圧側)に導入していたが、この冷媒蒸気は蒸発器10の熱損失となって圧縮式冷凍機1−1の効率を低下させる。これに対して圧縮式冷凍機1−2では、冷媒再生タンク45の気相部分と凝縮器15を連通し、冷媒再生タンク45内の冷媒蒸気を圧縮機79により強制的に抽気し、圧縮式冷凍機1−2の冷凍サイクルの高圧側(凝縮器15)に冷媒蒸気を導入しているので、圧縮式冷凍機1−2の効率改善を図ることが可能となる。   Further, in the compression type refrigerator 1-1, the refrigerant vapor separated in the refrigerant regeneration tank 45 is introduced into the evaporator 10 (low pressure side). This refrigerant vapor becomes a heat loss of the evaporator 10, and the compression type refrigeration is performed. Reduce the efficiency of the machine 1-1. On the other hand, in the compression type refrigerator 1-2, the vapor phase portion of the refrigerant regeneration tank 45 and the condenser 15 are communicated, and the refrigerant vapor in the refrigerant regeneration tank 45 is forcibly extracted by the compressor 79, and is compressed. Since the refrigerant vapor is introduced into the high-pressure side (condenser 15) of the refrigeration cycle of the refrigerator 1-2, it is possible to improve the efficiency of the compression refrigerator 1-2.

〔第3実施形態〕
図4は本発明の第3実施形態にかかる圧縮式冷凍機1−3の全体概略構成図である。同図に示す圧縮式冷凍機1−3も前記圧縮式冷凍機1−1と同様、蒸気圧縮式の冷凍サイクルを行なう圧縮式冷凍機である。同図に示す圧縮式冷凍機1−3において、前記図1,図2に示す圧縮式冷凍機1−1と同一又は相当部分には同一符号を付す。なお以下で説明する事項以外の事項については、前記図1,図2に示す圧縮式冷凍機1−1と同じである。
[Third Embodiment]
FIG. 4 is an overall schematic configuration diagram of a compression refrigerator 1-3 according to the third embodiment of the present invention. Similarly to the compression refrigerator 1-1, the compression refrigerator 1-3 shown in the figure is also a compression refrigerator that performs a vapor compression refrigeration cycle. In the compression type refrigerator 1-3 shown in the same figure, the same or corresponding parts as those of the compression type refrigerator 1-1 shown in FIGS. Items other than those described below are the same as those of the compression refrigerator 1-1 shown in FIGS.

即ち圧縮式冷凍機1−3も、冷媒を注入したクローズドサイクル(冷凍サイクル)から構成され、この冷凍サイクルは、冷水(被冷却流体)から熱を奪って冷媒が蒸発し冷凍効果を発揮する蒸発器10と、蒸発して蒸気となった冷媒(冷媒蒸気)を圧縮する圧縮機13と、圧縮蒸気を冷却水(冷却流体)で冷却して凝縮させる凝縮器15と、凝縮冷媒を減圧して膨張させる膨張機構(膨張弁)19とを、冷媒を循環する冷媒配管20によって連結して構成されている。   That is, the compression refrigerator 1-3 is also composed of a closed cycle (refrigeration cycle) in which refrigerant is injected, and this refrigeration cycle takes heat from cold water (cooled fluid) and evaporates the refrigerant to exert a refrigeration effect. , The compressor 13 that compresses the refrigerant (refrigerant vapor) that has been evaporated into vapor, the condenser 15 that cools and compresses the compressed vapor with cooling water (cooling fluid), and depressurizes the condensed refrigerant An expansion mechanism (expansion valve) 19 for expansion is connected by a refrigerant pipe 20 that circulates the refrigerant.

そしてこの圧縮式冷凍機1−3において前記圧縮式冷凍機1−1と相違する点は、圧縮式冷凍機1−1で用いた冷媒再生タンク45による潤滑油回収機構に加えて、さらにエジェクターを用いる潤滑油回収機構を設置した点である。即ちこの圧縮式冷凍機1−3においては、前記圧縮式冷凍機1−1の構成に加えてエジェクター90を設置し、このエジェクター90の駆動源としてこのエジェクター90と圧縮機13の吐出側の冷媒配管20との間にエジェクター駆動用の配管91を接続し、またエジェクター90の吐出側に潤滑油タンク33に連通する配管93を接続し、またエジェクター90の吸引側と圧縮機13の吸込側の潤滑油回収部100間に配管95を接続して潤滑油回収機構を構成している。配管93と配管95にはそれぞれ電磁弁からなる制御弁97,99が取り付けられている。潤滑油回収部100は、羽根車13aの吸込側の潤滑油が滞留する部分に設けられている。即ち蒸発器10に溜まる潤滑油の一部は蒸発器10で蒸発する冷媒蒸気と共にキャリーオーバーされて圧縮機13の近傍に滞留することが知られており、この滞留部分を潤滑油回収部100としてこれに配管95を接続している。また図示はしないがこの圧縮式冷凍機1−3に用いる制御手段80は、図2に示す構成に加えて、制御弁97,99を開閉制御する開閉制御信号を出力する。   The difference between the compression refrigerator 1-1 and the compression refrigerator 1-1 in this compression refrigerator 1-3 is that, in addition to the lubricating oil recovery mechanism by the refrigerant regeneration tank 45 used in the compression refrigerator 1-1, an ejector is further provided. The lubricating oil recovery mechanism to be used is installed. That is, in the compression refrigerator 1-3, an ejector 90 is installed in addition to the configuration of the compression refrigerator 1-1, and a refrigerant on the discharge side of the ejector 90 and the compressor 13 serves as a drive source for the ejector 90. A pipe 91 for driving the ejector is connected between the pipe 20, a pipe 93 communicating with the lubricating oil tank 33 is connected to the discharge side of the ejector 90, and the suction side of the ejector 90 and the suction side of the compressor 13 are connected. A piping 95 is connected between the lubricating oil recovery units 100 to constitute a lubricating oil recovery mechanism. Control valves 97 and 99 made of electromagnetic valves are attached to the pipe 93 and the pipe 95, respectively. The lubricating oil recovery unit 100 is provided in a portion where the lubricating oil on the suction side of the impeller 13a stays. That is, it is known that a part of the lubricating oil collected in the evaporator 10 is carried over together with the refrigerant vapor evaporated in the evaporator 10 and stays in the vicinity of the compressor 13. A pipe 95 is connected to this. Although not shown, the control means 80 used in the compression refrigerator 1-3 outputs an opening / closing control signal for controlling opening / closing of the control valves 97 and 99 in addition to the configuration shown in FIG.

そして圧縮式冷凍機1−3の運転を開始し、また冷媒ポンプ31を起動してモータ21を冷却し、潤滑油ポンプ39を起動して軸受25の潤滑及び冷却を開始する。   Then, the operation of the compression refrigerator 1-3 is started, the refrigerant pump 31 is started to cool the motor 21, and the lubricating oil pump 39 is started to start lubrication and cooling of the bearing 25.

一方潤滑油タンク33への潤滑油の回収動作手順は、前記冷媒再生タンク45による潤滑油回収機構と、エジェクター90による潤滑油回収機構を併用して行なう。即ち例えば圧縮機13の高ヘッド運転時(高ヘッドであるか否かは例えば圧縮機13の吸込・吐出の圧力差を測定することで求められる)は、エジェクター90の吸引能力が高いので、制御弁97,99を開き、これによって圧縮機13によって圧縮された圧縮機吐出側(高圧側)の冷媒蒸気を駆動源とするエジェクター90によって潤滑油回収部100に溜まっている潤滑油を吸引して潤滑油タンク33に移送して潤滑油を回収する。   On the other hand, the operation of recovering the lubricating oil to the lubricating oil tank 33 is performed by using both the lubricating oil recovery mechanism by the refrigerant regeneration tank 45 and the lubricating oil recovery mechanism by the ejector 90. That is, for example, when the compressor 13 is operating at a high head (whether or not the head is a high head is obtained by measuring, for example, the pressure difference between the suction and discharge of the compressor 13), the suction performance of the ejector 90 is high. The valves 97 and 99 are opened, and thereby the lubricant accumulated in the lubricant recovery unit 100 is sucked by the ejector 90 using the compressor discharge side (high pressure side) refrigerant vapor compressed by the compressor 13 as a drive source. It is transferred to the lubricating oil tank 33 and the lubricating oil is recovered.

一方圧縮機13の低ヘッド運転時は、制御弁97,99を閉じて前記エジェクター90による潤滑油の回収動作を中止し、さらにLTDの値が所定値を超えた場合は冷媒移送ポンプ57の運転を開始して、その後制御弁59を開き、蒸発器10から冷媒再生タンク45に冷媒液を移送して、前記圧縮式冷凍機1−1の場合と同様の各工程にて潤滑油を潤滑油タンク33に回収する。   On the other hand, when the compressor 13 is operating at a low head, the control valves 97 and 99 are closed to stop the recovery operation of the lubricating oil by the ejector 90. Further, if the LTD value exceeds a predetermined value, the refrigerant transfer pump 57 is operated. Then, the control valve 59 is opened, the refrigerant liquid is transferred from the evaporator 10 to the refrigerant regeneration tank 45, and the lubricating oil is lubricated in the same steps as in the case of the compression refrigerator 1-1. Collect in the tank 33.

このようにエジェクター90による潤滑油の回収と、冷媒再生タンク45による潤滑油の回収とを併用すれば、圧縮機13の高ヘッド時はエジェクター90を利用した方が、ヒータ47や冷媒移送ポンプ57や潤滑油移送ポンプ67などを使用しなくて済むので省電力化が図れ、全体として潤滑油の回収効率を高めることができる。   Thus, if the recovery of the lubricating oil by the ejector 90 and the recovery of the lubricating oil by the refrigerant regeneration tank 45 are used in combination, the heater 47 and the refrigerant transfer pump 57 are used when the compressor 13 has a high head. Further, it is not necessary to use the lubricant transfer pump 67 or the like, so that power can be saved, and the recovery efficiency of the lubricant can be improved as a whole.

以上説明したように、この圧縮式冷凍機1−3は、圧縮式冷凍機1−1と同一の構成を有する上に、圧縮機13によって圧縮された高圧側の冷媒蒸気を駆動源とするエジェクター90と、圧縮機13近傍の潤滑油回収部100に溜まる潤滑油をこのエジェクター90によって潤滑油タンク33に移送する配管91,93,95とを設置したので、エジェクター90を用いる潤滑油回収機構と、冷媒再生タンク45を用いる潤滑油回収機構とを併用することが可能となり、潤滑油の回収効率を高めることができる。なお両潤滑油回収機構は、状況に応じて、別々に又は同時に運転しても良い。   As described above, the compression refrigerator 1-3 has the same configuration as that of the compression refrigerator 1-1, and also uses an ejector having a high-pressure side refrigerant vapor compressed by the compressor 13 as a drive source. 90 and pipes 91, 93, and 95 for transferring the lubricating oil collected in the lubricating oil collecting section 100 near the compressor 13 to the lubricating oil tank 33 by the ejector 90. Therefore, a lubricating oil collecting mechanism using the ejector 90 is provided. The lubricating oil recovery mechanism using the refrigerant regeneration tank 45 can be used together, and the recovery efficiency of the lubricating oil can be increased. Both lubricant recovery mechanisms may be operated separately or simultaneously depending on the situation.

なお上記圧縮式冷凍機1−3に用いたエジェクター90による潤滑油回収機構が、前記圧縮式冷凍機1−2にもそのまま適用できることは言うまでもない。   It goes without saying that the lubricating oil recovery mechanism by the ejector 90 used in the compression refrigerator 1-3 can be applied to the compression refrigerator 1-2 as it is.

以上本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。なお直接明細書及び図面に記載がない何れの構成であっても、本願発明の作用・効果を奏する以上、本願発明の技術的思想の範囲内である。例えば、上記圧縮式冷凍機1−3では圧縮機13の羽根車13aの上流側に潤滑油回収部100を設けたが、圧縮機13近傍の他の各部分(潤滑油回収部)に滞留する潤滑油を回収してもよい。また上記各例では圧縮式冷凍機として1つの冷凍サイクルのものを示したが、複数の冷凍サイクルを具備する圧縮式冷凍機に本発明を適用しても良い。即ち冷媒を封入した複数の冷凍サイクルを具備し、各冷凍サイクルが、被冷却流体から熱を奪って冷媒が蒸発し冷凍効果を発揮する蒸発器と、蒸発して蒸気となった冷媒を圧縮する圧縮機と、圧縮蒸気を冷却流体で冷却して凝縮させる凝縮器と、凝縮した冷媒液を膨張させる膨張機構とを有する構造の圧縮式冷凍機に本発明を用いても良い。その場合、1台のモータで前記複数の圧縮機を駆動することが好ましい。また冷却流体としては冷却水のほかに、冷却用空気などの他の顕熱変化をする流体を用いても良い。また被冷却流体としては冷水のほかに、ブラインなどの他の顕熱変化をする流体を用いても良い。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea described in the claims and the specification and drawings. Is possible. It should be noted that any configuration not directly described in the specification and drawings is within the scope of the technical idea of the present invention as long as the effects and advantages of the present invention are exhibited. For example, in the above-described compression refrigerator 1-3, the lubricating oil recovery unit 100 is provided on the upstream side of the impeller 13a of the compressor 13, but stays in other parts (lubricating oil recovery unit) in the vicinity of the compressor 13. Lubricating oil may be recovered. In each of the above examples, the compression type refrigerator has one refrigeration cycle. However, the present invention may be applied to a compression type refrigerator having a plurality of refrigeration cycles. That is, it has a plurality of refrigeration cycles filled with refrigerant, and each refrigeration cycle takes heat from the fluid to be cooled and evaporates the refrigerant to exert a refrigeration effect, and compresses the evaporated refrigerant into vapor The present invention may be applied to a compression refrigerator having a structure including a compressor, a condenser that cools and condenses compressed vapor with a cooling fluid, and an expansion mechanism that expands the condensed refrigerant liquid. In that case, it is preferable to drive the plurality of compressors with one motor. In addition to the cooling water, other sensible heat changing fluid such as cooling air may be used as the cooling fluid. Further, as the fluid to be cooled, in addition to cold water, other fluids that change sensible heat such as brine may be used.

圧縮式冷凍機1−1の全体概略構成図である。1 is an overall schematic configuration diagram of a compression refrigerator 1-1. 制御手段80を示す図である。It is a figure which shows the control means. 圧縮式冷凍機1−2の全体概略構成図である。It is a whole schematic block diagram of the compression type refrigerator 1-2. 圧縮式冷凍機1−3の全体概略構成図である。It is a whole schematic block diagram of the compression refrigerator 1-3.

符号の説明Explanation of symbols

1−1 圧縮式冷凍機
10 蒸発器
13 圧縮機
15 凝縮器
19 膨張弁(膨張機構)
20 冷媒配管
21 モータ
23 駆動軸
25 軸受
33 潤滑油タンク
35,37,55,61,65 配管
39 潤滑油ポンプ
45 冷媒再生タンク
47 ヒータ(加熱手段)
49 液面検出器
51 圧力検出器
53 温度検出器
57 冷媒移送ポンプ
59,63,69 制御弁
67 潤滑油移送ポンプ
71,73 温度検出器
80 制御手段
1−2 圧縮式冷凍機
75 配管
77 制御弁
79 圧縮機
1−3 圧縮式冷凍機
90 エジェクター
91,93,95 配管
97,99 制御弁
100 潤滑油回収部
1-1 Compression Refrigerator 10 Evaporator 13 Compressor 15 Condenser 19 Expansion Valve (Expansion Mechanism)
20 Refrigerant piping 21 Motor 23 Drive shaft 25 Bearing 33 Lubricating oil tank 35, 37, 55, 61, 65 Piping 39 Lubricating oil pump 45 Refrigerant regeneration tank 47 Heater (heating means)
49 Liquid level detector 51 Pressure detector 53 Temperature detector 57 Refrigerant transfer pump 59, 63, 69 Control valve 67 Lubricating oil transfer pump 71, 73 Temperature detector 80 Control means 1-2 Compressor refrigerator 75 Piping 77 Control valve 79 Compressor 1-3 Compressive refrigerator 90 Ejectors 91, 93, 95 Piping 97, 99 Control valve 100 Lubricating oil recovery section

Claims (6)

蒸発器と圧縮機と凝縮器とを冷媒を循環する冷媒配管によって連結すると共に、潤滑油が貯留されている潤滑油タンクを設置し、前記潤滑油タンク内の潤滑油を前記圧縮機の軸受に供給するとともに軸受を潤滑した潤滑油を潤滑油タンクに戻す潤滑油循環系を設けてなる圧縮式冷凍機において、
潤滑油が溶け込んだ冷媒を加熱して潤滑油と冷媒蒸気に分離する加熱手段を備えた冷媒再生タンクと、前記冷媒再生タンクと前記蒸発器間を連通して蒸発器内の潤滑油が溶け込んだ冷媒液を冷媒再生タンクに移送する配管と、前記冷媒再生タンクと前記蒸発器間を連通して冷媒再生タンク内で潤滑油から分離された冷媒蒸気を蒸発器に移送する配管と、前記冷媒再生タンクと前記潤滑油タンク間を連通して冷媒再生タンク内で冷媒蒸気から分離された潤滑油を潤滑油タンクに移送する配管とを具備することを特徴とする圧縮式冷凍機。
The evaporator, the compressor, and the condenser are connected by a refrigerant pipe that circulates the refrigerant, and a lubricating oil tank in which lubricating oil is stored is installed, and the lubricating oil in the lubricating oil tank is used as a bearing for the compressor. In a compression type refrigeration machine provided with a lubricating oil circulation system that supplies lubricating oil that has been supplied and lubricated to the lubricating oil tank.
A refrigerant regeneration tank provided with a heating means for heating the refrigerant in which the lubricating oil is dissolved to separate it into the lubricating oil and the refrigerant vapor, and the lubricating oil in the evaporator is dissolved in communication between the refrigerant regeneration tank and the evaporator. A pipe for transferring the refrigerant liquid to the refrigerant regeneration tank, a pipe for communicating the refrigerant vapor separated from the lubricating oil in the refrigerant regeneration tank by communicating between the refrigerant regeneration tank and the evaporator, and the refrigerant regeneration A compression type refrigeration machine comprising: a piping that communicates between the tank and the lubricating oil tank and transfers lubricating oil separated from the refrigerant vapor in the refrigerant regeneration tank to the lubricating oil tank.
請求項1に記載の圧縮式冷凍機において、
冷媒再生タンクと蒸発器間を連通して冷媒再生タンクに冷媒液を移送する前記配管には制御弁及び冷媒移送ポンプが設置され、冷媒再生タンクと蒸発器間を連通して蒸発器に冷媒蒸気を移送する前記配管には制御弁が設置され、冷媒再生タンクと潤滑油タンク間を連通して潤滑油タンクに潤滑油を移送する前記配管には制御弁及び潤滑油移送ポンプが設置されていることを特徴とする請求項1に記載の圧縮式冷凍機。
In the compression refrigerator according to claim 1,
A control valve and a refrigerant transfer pump are installed in the pipe that communicates between the refrigerant regeneration tank and the evaporator and transfers the refrigerant liquid to the refrigerant regeneration tank, and communicates between the refrigerant regeneration tank and the evaporator so that the refrigerant vapor is supplied to the evaporator. A control valve is installed in the pipe for transferring the oil, and a control valve and a lubricating oil transfer pump are installed in the pipe for transferring the lubricating oil to the lubricating oil tank by communicating between the refrigerant regeneration tank and the lubricating oil tank. The compression type refrigerator according to claim 1.
蒸発器と圧縮機と凝縮器とを冷媒を循環する冷媒配管によって連結すると共に、潤滑油が貯留されている潤滑油タンクを設置し、前記潤滑油タンク内の潤滑油を前記圧縮機の軸受に供給するとともに軸受を潤滑した潤滑油を潤滑油タンクに戻す潤滑油循環系を設けてなる圧縮式冷凍機において、
潤滑油が溶け込んだ冷媒を加熱して潤滑油と冷媒蒸気に分離する加熱手段を備えた冷媒再生タンクと、前記冷媒再生タンクと前記蒸発器間を連通して蒸発器内の潤滑油が溶け込んだ冷媒液を冷媒再生タンクに移送する配管と、前記冷媒再生タンクと前記凝縮器間を連通して冷媒再生タンク内で潤滑油から分離された冷媒蒸気を凝縮器に移送する配管と、前記冷媒再生タンクと前記潤滑油タンク間を連通して冷媒再生タンク内で冷媒蒸気から分離された潤滑油を潤滑油タンクに移送する配管とを具備することを特徴とする圧縮式冷凍機。
The evaporator, the compressor, and the condenser are connected by a refrigerant pipe that circulates the refrigerant, and a lubricating oil tank in which lubricating oil is stored is installed, and the lubricating oil in the lubricating oil tank is used as a bearing for the compressor. In a compression type refrigeration machine provided with a lubricating oil circulation system that supplies lubricating oil that has been supplied and lubricated to the lubricating oil tank.
A refrigerant regeneration tank provided with a heating means for heating the refrigerant in which the lubricating oil is dissolved to separate it into the lubricating oil and the refrigerant vapor, and the lubricating oil in the evaporator is dissolved in communication between the refrigerant regeneration tank and the evaporator. A pipe for transferring the refrigerant liquid to the refrigerant regeneration tank, a pipe for communicating the refrigerant vapor separated from the lubricating oil in the refrigerant regeneration tank by communicating between the refrigerant regeneration tank and the condenser, and the refrigerant regeneration A compression type refrigeration machine comprising: a piping that communicates between the tank and the lubricating oil tank and transfers lubricating oil separated from the refrigerant vapor in the refrigerant regeneration tank to the lubricating oil tank.
請求項3に記載の圧縮式冷凍機において、
冷媒再生タンクと蒸発器間を連通して冷媒再生タンクに冷媒液を移送する前記配管には制御弁及び冷媒移送ポンプが設置され、冷媒再生タンクと凝縮器間を連通して凝縮器に冷媒蒸気を移送する前記配管には制御弁及び圧縮機が設置され、冷媒再生タンクと潤滑油タンク間を連通して潤滑油タンクに潤滑油を移送する前記配管には制御弁及び潤滑油移送ポンプが設置されていることを特徴とする請求項3に記載の圧縮式冷凍機。
In the compression refrigerator according to claim 3,
A control valve and a refrigerant transfer pump are installed in the piping that communicates between the refrigerant regeneration tank and the evaporator and transfers the refrigerant liquid to the refrigerant regeneration tank, and communicates between the refrigerant regeneration tank and the condenser to connect the refrigerant vapor to the condenser. A control valve and a compressor are installed in the piping for transferring the oil, and a control valve and a lubricating oil transfer pump are installed in the piping for transferring the lubricating oil to the lubricating oil tank through communication between the refrigerant regeneration tank and the lubricating oil tank. The compression type refrigerator according to claim 3, wherein the compression refrigerator is used.
請求項1または2または3または4に記載の圧縮式冷凍機において、
前記圧縮機によって圧縮された高圧側の冷媒蒸気を駆動源とするエジェクターと、前記圧縮機近傍の潤滑油回収部に溜まる潤滑油をこのエジェクターによって潤滑油タンクに移送する配管とが設置されていることを特徴とする圧縮式冷凍機。
In the compression type refrigerator according to claim 1 or 2, 3 or 4,
An ejector using a high-pressure side refrigerant vapor compressed by the compressor as a drive source, and a pipe for transferring the lubricating oil collected in the lubricating oil recovery section near the compressor to the lubricating oil tank are installed. The compression type refrigerator characterized by this.
蒸発器と圧縮機と凝縮器とを冷媒を循環する冷媒配管によって連結すると共に、潤滑油が貯留されている潤滑油タンクを設置し、前記潤滑油タンク内の潤滑油を前記圧縮機の軸受に供給するとともに軸受を潤滑した潤滑油を潤滑油タンクに戻す潤滑油循環系を設けてなる圧縮式冷凍機の潤滑油回収方法において、
前記潤滑油タンクとは別に設置した冷媒再生タンク内に蒸発器内の潤滑油が溶け込んだ冷媒液を所定量移送する工程と、
前記冷媒再生タンク内において前記潤滑油が溶け込んだ冷媒液を加熱することで潤滑油と冷媒蒸気とを分離する工程と、
前記冷媒再生タンク内で潤滑油から分離した冷媒蒸気を蒸発器に移送するか、あるいは凝縮器に移送する工程と、
前記冷媒再生タンク内で冷媒蒸気から分離した潤滑油を潤滑油タンクに移送する工程と、
を具備することを特徴とする圧縮式冷凍機の潤滑油回収方法。
The evaporator, the compressor, and the condenser are connected by a refrigerant pipe that circulates the refrigerant, and a lubricating oil tank in which lubricating oil is stored is installed, and the lubricating oil in the lubricating oil tank is used as a bearing for the compressor. In a method for recovering lubricating oil of a compression refrigeration machine comprising a lubricating oil circulation system that supplies lubricating oil that has been supplied and lubricated to a lubricating oil tank.
Transferring a predetermined amount of refrigerant liquid in which the lubricating oil in the evaporator is dissolved in a refrigerant regeneration tank installed separately from the lubricating oil tank;
Separating the lubricating oil and the refrigerant vapor by heating the refrigerant liquid in which the lubricating oil is dissolved in the refrigerant regeneration tank;
Transferring the refrigerant vapor separated from the lubricating oil in the refrigerant regeneration tank to an evaporator or transferring it to a condenser;
Transferring the lubricating oil separated from the refrigerant vapor in the refrigerant regeneration tank to the lubricating oil tank;
A method for recovering lubricating oil of a compression type refrigerator, comprising:
JP2008108548A 2008-04-18 2008-04-18 Compression refrigerating machine and method for recovering lubricating oil for the same Pending JP2009257684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008108548A JP2009257684A (en) 2008-04-18 2008-04-18 Compression refrigerating machine and method for recovering lubricating oil for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008108548A JP2009257684A (en) 2008-04-18 2008-04-18 Compression refrigerating machine and method for recovering lubricating oil for the same

Publications (1)

Publication Number Publication Date
JP2009257684A true JP2009257684A (en) 2009-11-05

Family

ID=41385332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008108548A Pending JP2009257684A (en) 2008-04-18 2008-04-18 Compression refrigerating machine and method for recovering lubricating oil for the same

Country Status (1)

Country Link
JP (1) JP2009257684A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185513A (en) * 2010-03-08 2011-09-22 Ebara Refrigeration Equipment & Systems Co Ltd Lubricating oil recovery device
CN102207094A (en) * 2010-03-31 2011-10-05 株式会社Ihi Turbo compressor and turbo refrigerator
JP2016020783A (en) * 2014-07-15 2016-02-04 三菱重工業株式会社 Oil recovery device of turbo refrigerator
JP2019015471A (en) * 2017-07-10 2019-01-31 荏原冷熱システム株式会社 Compression type refrigerator
KR20190032740A (en) * 2017-09-20 2019-03-28 엘지전자 주식회사 Ciller unit and Chiller system including the same
CN114270114A (en) * 2019-06-17 2022-04-01 江森自控泰科知识产权控股有限责任合伙公司 Compressor lubrication system
JP7469339B2 (en) 2019-06-17 2024-04-16 ジョンソン・コントロールズ・タイコ・アイピー・ホールディングス・エルエルピー Heating, ventilation, air conditioning, and/or refrigeration (HVAC&R) systems

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185513A (en) * 2010-03-08 2011-09-22 Ebara Refrigeration Equipment & Systems Co Ltd Lubricating oil recovery device
CN102207094A (en) * 2010-03-31 2011-10-05 株式会社Ihi Turbo compressor and turbo refrigerator
JP2016020783A (en) * 2014-07-15 2016-02-04 三菱重工業株式会社 Oil recovery device of turbo refrigerator
JP2019015471A (en) * 2017-07-10 2019-01-31 荏原冷熱システム株式会社 Compression type refrigerator
KR20190032740A (en) * 2017-09-20 2019-03-28 엘지전자 주식회사 Ciller unit and Chiller system including the same
KR102037239B1 (en) * 2017-09-20 2019-10-28 엘지전자 주식회사 Ciller unit and Chiller system including the same
CN114270114A (en) * 2019-06-17 2022-04-01 江森自控泰科知识产权控股有限责任合伙公司 Compressor lubrication system
JP2022536976A (en) * 2019-06-17 2022-08-22 ジョンソン・コントロールズ・タイコ・アイピー・ホールディングス・エルエルピー Compressor lubrication system
JP7469339B2 (en) 2019-06-17 2024-04-16 ジョンソン・コントロールズ・タイコ・アイピー・ホールディングス・エルエルピー Heating, ventilation, air conditioning, and/or refrigeration (HVAC&R) systems

Similar Documents

Publication Publication Date Title
US10941967B2 (en) Lubrication and cooling system
JP6448936B2 (en) Oil recovery device for turbo refrigerator
JP6397372B2 (en) Compression refrigerator
JP2009257684A (en) Compression refrigerating machine and method for recovering lubricating oil for the same
JP2011133209A (en) Refrigerating apparatus
JP2008082622A (en) Compression type refrigerating device
JP2011133204A (en) Refrigerating apparatus
JP2011133205A (en) Refrigerating apparatus
JP6829664B2 (en) Compressed refrigerator
JP2008082623A (en) Compression type refrigerating device
JP2011133206A (en) Refrigerating apparatus
JP2008014533A (en) Oil recovering device of compression type refrigerating machine
JP5543093B2 (en) Compressive refrigerator and operation method thereof
JP2011137557A (en) Refrigerating apparatus
JP6094080B2 (en) Air conditioner
CN108072198B (en) Compressor assembly, control method thereof and refrigerating/heating system
JP6295121B2 (en) Turbo refrigerator
JP2009236429A (en) Compression type refrigerating machine and its lubricant recovering method
JP5934931B2 (en) Tank for refrigeration cycle apparatus and refrigeration cycle apparatus including the same
JPH0583666U (en) Refrigeration equipment
KR101256583B1 (en) Oil recovery system for centrifugal chiller
JP6003319B2 (en) Air conditioner
JP2001201195A (en) Turbo refrigerating machine and method for lubricating compressor for turbo refrigerating machine
JP6150907B2 (en) Refrigeration cycle equipment
CN116222023A (en) Compressor oil return system and control method thereof