JP5543093B2 - Compressive refrigerator and operation method thereof - Google Patents

Compressive refrigerator and operation method thereof Download PDF

Info

Publication number
JP5543093B2
JP5543093B2 JP2008261030A JP2008261030A JP5543093B2 JP 5543093 B2 JP5543093 B2 JP 5543093B2 JP 2008261030 A JP2008261030 A JP 2008261030A JP 2008261030 A JP2008261030 A JP 2008261030A JP 5543093 B2 JP5543093 B2 JP 5543093B2
Authority
JP
Japan
Prior art keywords
lubricating oil
oil
refrigerant
concentrator
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008261030A
Other languages
Japanese (ja)
Other versions
JP2010019541A (en
Inventor
修行 井上
忠司 山口
知行 内村
Original Assignee
荏原冷熱システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荏原冷熱システム株式会社 filed Critical 荏原冷熱システム株式会社
Priority to JP2008261030A priority Critical patent/JP5543093B2/en
Publication of JP2010019541A publication Critical patent/JP2010019541A/en
Application granted granted Critical
Publication of JP5543093B2 publication Critical patent/JP5543093B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lubricants (AREA)

Description

本発明は、圧縮機、凝縮器、及び蒸発器を備えた圧縮式冷凍機、及びその運転方法に関するものである。   The present invention relates to a compressor-type refrigerator including a compressor, a condenser, and an evaporator, and an operation method thereof.

従来、この種の圧縮式冷凍機は、電動機によって駆動される圧縮機、凝縮器、蒸発器を備え、これらを冷媒配管で接続した冷凍サイクルを備えている。また、この種の圧縮式冷凍機は、軸受や変速機のギアを潤滑するための潤滑油循環系を備えている。この潤滑油循環系は、油ポンプ、潤滑油タンクを備え、該潤滑油タンク内の潤滑油を潤滑油供給管を通して、軸受や変速機のギアに供給し、潤滑した後の潤滑油を戻し管を通して潤滑油タンクに戻すように構成されている。   Conventionally, this type of compression refrigerator includes a compressor driven by an electric motor, a condenser, and an evaporator, and includes a refrigeration cycle in which these are connected by a refrigerant pipe. In addition, this type of compression refrigerator includes a lubricating oil circulation system for lubricating bearings and transmission gears. This lubricating oil circulation system includes an oil pump and a lubricating oil tank, and the lubricating oil in the lubricating oil tank is supplied to the bearing and transmission gear through the lubricating oil supply pipe, and the lubricating oil after lubrication is returned to the return pipe. It is comprised so that it may return to a lubricating oil tank through.

ターボ冷凍機の圧縮機は、電動機、軸受(増速ギア部を含む)を含めて密閉化した構造とすることが多い(密閉式ターボ冷凍機)。この構造では、軸受或いは増速ギア部と、冷媒循環系との間は、ラビリンスシール、或いはオイルシール等を用いて、潤滑油循環系と冷媒循環系との間の冷媒の移動を制限している。しかし、潤滑油が冷凍サイクル(冷媒循環系)に漏れ出るのを、完全には止めることができず、長時間の内には、潤滑油が減り(漏洩し)、冷媒循環系に潤滑油が混入してくることを通常は避けられない。長期間の潤滑油漏出により、潤滑油循環系の油不足による油の循環不能が生じる。また、冷媒循環系に潤滑油が混入或いは溶解し、蓄積してくると、冷媒側の伝熱が悪化し、更には冷媒蒸気圧特性が変化してしまう等の問題がある。   In many cases, a compressor of a turbo chiller has a hermetically sealed structure including an electric motor and a bearing (including a speed increasing gear) (sealed turbo chiller). In this structure, the movement of the refrigerant between the lubricating oil circulation system and the refrigerant circulation system is limited between the bearing or the speed increasing gear portion and the refrigerant circulation system by using a labyrinth seal or an oil seal. Yes. However, it is not possible to completely stop the lubricating oil from leaking into the refrigeration cycle (refrigerant circulation system). Over a long period of time, the lubricating oil will decrease (leak), and the lubricating oil will leak into the refrigerant circulation system. It is usually unavoidable to mix. Due to the long-term leakage of the lubricating oil, the oil cannot be circulated due to the lack of oil in the lubricating oil circulation system. In addition, when lubricating oil is mixed or dissolved in the refrigerant circulation system and accumulates, there is a problem that heat transfer on the refrigerant side deteriorates and further, the refrigerant vapor pressure characteristics change.

この対策として、従来から、冷媒循環系から潤滑油の回収を行っている。特許文献1に示される従来例では、圧縮機の吸込み部に溜まった潤滑油の混入した冷媒を、圧縮機冷媒蒸気を駆動源とするエジェクタで吸込み、油タンクに回収している。回収液の冷媒濃度が高いと、油タンクでの冷媒濃度が高まり、フォーミングを起こし易くなる。そこで、特許文献1では、圧縮機吸込み部に溜まる油混入冷媒を、加熱濃縮(加熱し冷媒を蒸発放出し油を濃縮する)してから、エジェクタで油タンクに回収している。特許文献1では、蒸発器からの冷媒ミストが、圧縮機吸込み部に溜まることを想定している。しかし、蒸発器における気液分離性が高くミストが圧縮機に吸込まれないような圧縮冷凍機、或いは全負荷ではミストが発生しても部分負荷時には吸込み部の流速が低くミストが発生しない圧縮式冷凍機においては、油回収ができないという問題がある。   As a countermeasure against this, conventionally, the lubricating oil is recovered from the refrigerant circulation system. In the conventional example shown in Patent Document 1, the refrigerant mixed with the lubricating oil collected in the suction section of the compressor is sucked by an ejector using compressor refrigerant vapor as a drive source and collected in an oil tank. When the refrigerant concentration of the recovered liquid is high, the refrigerant concentration in the oil tank increases, and foaming is likely to occur. Therefore, in Patent Document 1, the oil-mixed refrigerant accumulated in the compressor suction portion is heated and concentrated (heated to evaporate and discharge the refrigerant and concentrate the oil), and then collected in an oil tank by an ejector. In patent document 1, it assumes that the refrigerant | coolant mist from an evaporator accumulates in a compressor suction part. However, the compressor / refrigerator has high vapor-liquid separation in the evaporator and mist is not sucked into the compressor, or a compression type in which the mist is generated at full load and the suction part has a low flow rate at partial load and does not generate mist. In the refrigerator, there is a problem that oil cannot be recovered.

このような場合、蒸発器の冷媒液を直接回収することになる。例えば、特許文献2では、蒸発器の冷媒液を、圧縮冷媒蒸気を駆動源とするエジェクタで吸込み、油タンクに回収している。これらの、エジェクタで油を回収する冷凍機は、油タンクを蒸発器或いは圧縮機の蒸発器からの吸い込み部などの低圧部の圧力に均圧しており、圧縮機の吐出部などの高圧と蒸発器などの低圧との圧力差でエジェクタの駆動が可能になっている。このエジェクタを駆動する蒸気は蒸発器に負荷となっていることになる。エジェクタはポンプとしての効率がよくないので比較的大きな負荷となる。また、冷却水温度が低下した場合には、凝縮器圧力が低下しエジェクタが駆動できなくなる。   In such a case, the refrigerant liquid in the evaporator is directly recovered. For example, in Patent Document 2, refrigerant liquid in an evaporator is sucked by an ejector using compressed refrigerant vapor as a drive source and collected in an oil tank. These refrigerators that collect oil with an ejector equalize the pressure of the oil tank to the pressure of the low pressure part such as the suction part from the evaporator or the evaporator of the compressor. The ejector can be driven by the pressure difference from the low pressure of the compressor. The steam that drives the ejector is a load on the evaporator. Since the ejector is not efficient as a pump, it becomes a relatively large load. Further, when the cooling water temperature decreases, the condenser pressure decreases and the ejector cannot be driven.

油タンクをエコノマイザ或いは凝縮器圧力に均圧して、圧縮式冷凍機の起動時に油タンクの急激な圧力低下を避け、フォーミングの発生を抑えることで、起動特性を改善する圧縮式冷凍機にあっては、蒸発器或いは圧縮機の吸込み部の低圧圧力側の冷媒と油の混合溶液を、圧縮機の吐出し蒸気(凝縮器圧力の蒸気)を駆動源とするエジェクタでは、圧力の高い油タンク部に回収できない(揚程不足)し、戻せる場合であっても、効率が悪くなるので、蒸発器への大きな負荷となってくる。   In a compression refrigeration machine that improves start-up characteristics by equalizing the oil tank to the economizer or condenser pressure, avoiding sudden pressure drop in the oil tank when starting the compression refrigeration machine, and suppressing the occurrence of forming. In an ejector that uses a mixed solution of refrigerant and oil at the low pressure side of the suction part of the evaporator or compressor, and the discharge steam of the compressor (steam at the condenser pressure) as a drive source, an oil tank part having a high pressure However, even if it cannot be recovered (lack of head) and can be returned, the efficiency deteriorates, resulting in a heavy load on the evaporator.

また、起動特性を改善するため、油タンクを蒸発器より高圧部に、例えばエコノマイザに均圧させる方式では、室温20℃、油タンク温度55℃で長時間停止し、潤滑油の冷媒濃度が10%になっていても、起動後のエコノマイザ露点(飽和温度)は20℃程度であり、油タンクの露点も20℃程度に落ち着くので、潤滑油の濃度変化は殆ど無く、従ってフォーミングの心配が無く、起動時間を大幅に短縮することができる。また、特許文献2のように油タンクを凝縮器に均圧させる方式では、室温20℃、潤滑油タンク温度55℃で長時間停止し、潤滑油の冷媒濃度が10%になっていても、起動後の凝縮器及び油タンクの露点は35℃程度で落ち着くので、潤滑油の濃度は20%程度に上昇し、フォーミングの心配は無く、起動時間を大幅に短縮できる。   Further, in order to improve the starting characteristics, in the method of equalizing the oil tank to the high pressure part from the evaporator, for example, an economizer, the oil tank is stopped for a long time at a room temperature of 20 ° C. and an oil tank temperature of 55 ° C. %, The economizer dew point (saturation temperature) after start-up is about 20 ° C, and the dew point of the oil tank settles down to about 20 ° C, so there is almost no change in the concentration of lubricating oil, so there is no worry of forming , Startup time can be greatly reduced. Further, in the method of pressure equalizing the oil tank in the condenser as in Patent Document 2, the oil tank is stopped for a long time at a room temperature of 20 ° C. and a lubricating oil tank temperature of 55 ° C., and even if the refrigerant concentration of the lubricating oil is 10%, Since the dew point of the condenser and oil tank after start-up settles at about 35 ° C., the concentration of the lubricating oil rises to about 20%, there is no fear of forming, and the start-up time can be greatly shortened.

また、上記圧縮式冷凍機の主要構成機器である圧縮機、凝縮器、及び蒸発器の中で、通常、蒸発器が最も下部に配置されている。このように配置された圧縮式冷凍機では、蒸発器からの冷媒を油濃縮器に移動し、また油濃縮器から油タンクに油濃度の濃い冷媒を移動するために、ポンプを使おうとすると、ポンプに対する押し込みヘッドが不足し、キャビテーションが発生する。このキャビテーションを防ぐには蒸発器の位置を上げる必要があり、圧縮式冷凍機の全体の高さが高くなってしまう。なお、凝縮器の冷媒を圧縮機を駆動する電動機の冷却に使う場合は、凝縮器の位置が高く、押し込みヘッドの確保ができるし、確保できない場合(押し込み不足となる場合)は、吸込み部に過冷却器を設け、吸込み液を蒸発器温度の冷媒で冷却してキャビテーションを防ぐことができる。蒸発器の冷媒の移動にポンプを使う場合に過冷却しようとしても、冷凍機内に更に低い温度がなく、過冷却を有効にするには別に冷熱源となる小型冷凍機が必要となる。
実公昭58−22064号公報 特開平10−300290号公報
Of the compressor, condenser, and evaporator, which are the main components of the compression refrigerator, the evaporator is usually disposed at the lowest position. In the compression refrigerator arranged in this way, if the refrigerant is transferred from the evaporator to the oil concentrator, and if the pump is used to move the refrigerant having a high oil concentration from the oil concentrator to the oil tank, The pushing head against the pump is insufficient and cavitation occurs. In order to prevent this cavitation, it is necessary to raise the position of the evaporator, which increases the overall height of the compression refrigerator. When the refrigerant of the condenser is used for cooling the electric motor that drives the compressor, the position of the condenser is high and the pushing head can be secured, and when it cannot be secured (when pushing is insufficient), the suction section A supercooler is provided, and the suction liquid can be cooled with a refrigerant at the evaporator temperature to prevent cavitation. Even if the pump is used for moving the refrigerant in the evaporator, there is no lower temperature in the refrigerator, and a small refrigerator serving as a cooling heat source is necessary to make the supercooling effective.
Japanese Utility Model Publication No. 58-22064 Japanese Patent Application Laid-Open No. 10-300290

本発明は上述の点に鑑みてなされたもので、本発明は、潤滑油タンクを蒸発器或いはエコノマイザに均圧した冷凍機において、蒸発系統の冷媒液から潤滑油を(濃縮して)回収し、潤滑油タンクに戻すこと、特に、潤滑油タンクの液面位置が油濃縮器の位置より高い場合、或いは潤滑油タンク圧力が油濃縮機の圧力よりも高い場合でも、効率よく回収潤滑油を潤滑油タンクに移動させる(戻す)ことのできる圧縮式冷凍機、及びその運転方法を提供することを目的とする。   The present invention has been made in view of the above points. The present invention recovers (concentrates) lubricating oil from a refrigerant liquid in an evaporation system in a refrigerator in which a lubricating oil tank is pressure-equalized in an evaporator or an economizer. Return to the lubricating oil tank, especially when the liquid level of the lubricating oil tank is higher than the position of the oil concentrator, or even when the lubricating oil tank pressure is higher than the pressure of the oil concentrator. It is an object of the present invention to provide a compression type refrigerator that can be moved (returned) to a lubricating oil tank, and an operation method thereof.

上記課題を解決するため本発明にかかる圧縮式冷凍機は、圧縮機と、凝縮器と、蒸発器を冷媒が循環する冷媒配管によって接続する冷凍サイクル系を高圧側及び低圧側の2系統備え、両冷凍サイクル系の圧縮機を1台の電動機で駆動すると共に、該電動機の冷却を高圧側冷凍サイクル系の冷媒で行い、圧縮機の軸受を潤滑する潤滑油が貯留される潤滑油タンクを備え、潤滑油タンク内の潤滑油を1台の油循環ポンプで軸受に供給するとともに該軸受を潤滑した潤滑油を潤滑油タンクに戻す潤滑油循環系を1系統備え、さらに低圧側冷凍サイクル系の蒸発器と高圧側冷凍サイクル系の蒸発器を配管で接続し、該配管に開閉弁を設けて両蒸発器の液面を略同じレベルに調節することで、高圧側の冷凍サイクル系に移動した冷媒を低圧側の冷凍サイクル系に戻し、潤滑油タンク内の気相部と高圧側冷凍サイクル系の低圧機器の気相部とを均圧管で接続し、低圧側冷凍サイクル系の蒸発器と切替え弁付きの配管で接続された潤滑油を濃縮する油濃縮器を設け、潤滑油タンクと油濃縮器とを液戻し配管で接続し、該液戻し配管に開閉弁を設け、油濃縮器の気相部を低圧側冷凍サイクル系の蒸発器或いは圧縮機の吸込み部に配管で接続し、該配管に開閉弁を設けたことを特徴とする。



In order to solve the above problems, a compression refrigerator according to the present invention includes two systems, a high pressure side and a low pressure side, which are connected to a compressor, a condenser, and a refrigerant pipe through which an evaporator is circulated. A compressor of both refrigeration cycle systems is driven by a single motor, and the motor is cooled by a refrigerant of a high-pressure side refrigeration cycle system, and a lubricating oil tank is provided in which lubricating oil for lubricating the compressor bearings is stored. And a lubricating oil circulation system for supplying lubricating oil in the lubricating oil tank to the bearing with one oil circulation pump and returning the lubricating oil lubricated to the bearing to the lubricating oil tank, and further comprising a low-pressure side refrigeration cycle system The evaporator and the high-pressure side refrigeration cycle evaporator were connected by a pipe, and an open / close valve was provided on the pipe to adjust the liquid level of both evaporators to approximately the same level, thereby moving to the high-pressure side refrigeration cycle system. Refrigerant refrigerant on the low-pressure side The gas phase part in the lubricating oil tank and the gas phase part of the low-pressure equipment of the high-pressure side refrigeration cycle system are connected by a pressure equalizing pipe, and the evaporator of the low-pressure side refrigeration cycle system is connected by a pipe with a switching valve. An oil concentrator for concentrating the lubricating oil is provided, the lubricating oil tank and the oil concentrator are connected by a liquid return pipe, an open / close valve is provided in the liquid return pipe, and the gas phase part of the oil concentrator is refrigerated on the low pressure side. It is connected to a suction portion of a cycle type evaporator or compressor by a pipe, and an on-off valve is provided in the pipe.



また、本発明にかかる圧縮式冷凍機は、圧縮機と、凝縮器と、蒸発器を冷媒が循環する冷媒配管によって接続する冷凍サイクル系を高圧側及び低圧側の2系統備え、両冷凍サイクル系の圧縮機を1台の電動機で駆動すると共に、該電動機の冷却を高圧側冷凍サイクル系の冷媒で行い、圧縮機の軸受を潤滑する潤滑油が貯留される潤滑油タンクを備え、潤滑油タンク内の潤滑油を1台の油循環ポンプで軸受に供給するとともに該軸受を潤滑した潤滑油を潤滑油タンクに戻す潤滑油循環系を1系統備え、さらに低圧側冷凍サイクル系の蒸発器と高圧側冷凍サイクル系の蒸発器を配管で接続し、該配管に開閉弁を設けて両蒸発器の液面を略同じレベルに調節することで、高圧側の冷凍サイクル系に移動した冷媒を低圧側の冷凍サイクル系に戻し、潤滑油タンク内の気相部と高圧側冷凍サイクル系の低圧機器の気相部とを均圧管で接続し、低圧側冷凍サイクル系の蒸発器と切替え弁付きの配管で接続された潤滑油を濃縮する油濃縮器を設け、潤滑油タンクと油濃縮器とを液戻し配管で接続し、該液戻し配管に開閉弁を設け、油濃縮器の気相部を低圧側冷凍サイクル系の蒸発器或いは圧縮機の吸込み部に配管で接続し、該配管に開閉弁を設け、油濃縮器と、潤滑油タンクの気相部を配管で接続された機器の圧力より高い圧力の機器を配管で接続し、該配管開閉弁を設けたことを特徴とする。
The compression type refrigerator according to the present invention includes a compressor, a condenser and, e two systems Bei high pressure side and low pressure side refrigeration cycle system the evaporator connected by refrigerant piping in which the refrigerant is circulated, both the refrigeration cycle A compressor is driven by a single motor, the motor is cooled by a refrigerant in a high-pressure side refrigeration cycle system, and a lubricating oil tank is provided in which lubricating oil for lubricating the bearings of the compressor is stored. one line Bei example, further low-pressure side refrigeration cycle system evaporator lubricating oil circulation system for returning the lubricating oil tank lubricating oil lubricating the bearings is supplied to the bearing at one oil circulation pump lubricating oil in the tank And the high-pressure side refrigeration cycle system evaporator are connected by piping, and an open / close valve is provided in the piping to adjust the liquid level of both evaporators to substantially the same level. back to the low pressure side of the refrigeration cycle system, Jun Connect the gas phase section in the oil tank to the gas phase section of the low-pressure equipment of the high-pressure side refrigeration cycle system with a pressure equalizing pipe, and concentrate the lubricating oil connected to the evaporator of the low-pressure side refrigeration cycle system and piping with a switching valve. An oil concentrator, a lubricating oil tank and an oil concentrator are connected by a liquid return pipe, an open / close valve is provided in the liquid return pipe, and a gas phase portion of the oil concentrator is connected to an evaporator of a low-pressure side refrigeration cycle system or Connect the pipe to the suction part of the compressor, provide an open / close valve in the pipe, and connect the oil concentrator and the equipment whose pressure is higher than the pressure of the equipment connected by the pipe to the gas phase part of the lubricating oil tank. , characterized in that a closing valve in the pipe.

また、本発明は、上記圧縮式冷凍機において、油濃縮器には油の濃度を検出する濃縮検出手段を備え、該濃縮検出手段の出力により油の濃縮完了を検出したら油濃縮器の液を潤滑油タンクに移動させる制御手段を備えたことを特徴とする。   Further, according to the present invention, in the above-described compression type refrigerator, the oil concentrator is provided with a concentration detecting means for detecting the concentration of oil, and when the completion of oil concentration is detected by the output of the concentration detecting means, the liquid in the oil concentrator is discharged. Control means for moving to the lubricating oil tank is provided.

また、本発明は、上記圧縮式冷凍機において、濃度検出手段は、溶液の露点と溶液の温度を検出する温度センサ、或いは油濃縮器の蒸気圧力を検出する蒸気圧力センサと溶液の温度を検出する温度センサであることを特徴とする。   Further, the present invention provides the above-described compression type refrigerator, wherein the concentration detecting means detects the temperature of the solution with a temperature sensor that detects the dew point of the solution and the temperature of the solution, or a vapor pressure sensor that detects the vapor pressure of the oil concentrator. It is a temperature sensor which performs.

また、本発明は、上記圧縮式冷凍機において、油濃縮器からの液の出し入れの少なくとも一方を、油濃縮器の液面を検出して行うことを特徴とする。   Further, the present invention is characterized in that, in the above-described compression refrigerator, at least one of taking in and out of the liquid from the oil concentrator is performed by detecting the liquid level of the oil concentrator.

また、本発明は、上記圧縮式冷凍機において、油濃縮器からの液の出し入れの少なくとも一方を、該出し入れの経過時間を基に行うことを特徴とする。   Further, the present invention is characterized in that, in the compression type refrigerator, at least one of the withdrawal and withdrawal of the liquid from the oil concentrator is performed based on the elapsed time of the withdrawal and entry.

また、本発明は、上記圧縮式冷凍機における油濃縮器内の潤滑油濃縮溶液を潤滑油タンクへ移送する圧縮式冷凍機の運転方法であって、油濃縮器内の潤滑油を含む冷媒の加熱による潤滑油濃縮完了後に、油濃縮器内で蒸発して溜まった冷媒蒸気により昇圧する該油濃縮器内の圧力により潤滑油濃縮溶液を潤滑油タンクへ移送することを特徴とする。
The present invention also relates to a method for operating a compression refrigeration machine for transferring a lubricating oil concentrated solution in an oil concentrator in the compression refrigeration machine to a lubricating oil tank, wherein the refrigerant containing the lubricating oil in the oil concentrator After completion of the concentration of the lubricating oil by heating, the concentrated lubricating oil solution is transferred to the lubricating oil tank by the pressure in the oil concentrator that is increased by the refrigerant vapor evaporated and accumulated in the oil concentrator.

また、本発明は、上記圧縮式冷凍機における油濃縮器内の潤滑油濃縮溶液を潤滑油タンクへ移送する圧縮式冷凍機の運転方法であって、油濃縮器内の潤滑油を含む冷媒の加熱による潤滑油濃縮完了後に、潤滑油タンクの気相部を配管で接続した機器の圧力より高い圧力の機器の圧力を導入し、該圧力で潤滑油濃縮溶液を潤滑油タンクへ移送することを特徴とする。   The present invention also relates to a method for operating a compression refrigeration machine for transferring a lubricating oil concentrated solution in an oil concentrator in the compression refrigeration machine to a lubricating oil tank, wherein the refrigerant containing the lubricating oil in the oil concentrator After completion of concentration of the lubricating oil by heating, the pressure of the equipment higher than the pressure of the equipment connected to the gas phase part of the lubricating oil tank by piping is introduced, and the lubricating oil concentrated solution is transferred to the lubricating oil tank at this pressure. Features.

本発明によれば、潤滑油タンクを凝縮器圧力よりも低い圧力機器(蒸発器或いはエコノマイザ)に均圧した冷凍機において、蒸発系統の冷媒液から潤滑油を濃縮回収して潤滑油タンクに戻すこと、特に潤滑油タンクの液面位置が油濃縮器の液面位置より高い場合、或いは潤滑油タンク圧力が油濃縮器圧力よりも高い場合でも、効率よく濃縮回収した潤滑油を潤滑油タンクに戻すことができる。   According to the present invention, in a refrigerator where the lubricating oil tank is pressure-equalized to a pressure device (evaporator or economizer) lower than the condenser pressure, the lubricating oil is concentrated and recovered from the refrigerant liquid of the evaporation system and returned to the lubricating oil tank. In particular, even when the liquid level position of the lubricating oil tank is higher than the liquid level position of the oil concentrator, or even when the lubricating oil tank pressure is higher than the oil concentrator pressure, the lubricating oil efficiently concentrated and recovered is put into the lubricating oil tank. Can be returned.

第1参考例
以下、本願発明の参考例と実施の形態例を図面に基づいて説明する。図1は本発明の第1参考例としての圧縮式冷凍機1−1の全体概略構成を示す図である。図1に示す圧縮式冷凍機1−1は、蒸気圧縮式の冷凍サイクルを有する圧縮式冷凍機であり、冷媒を封入したクローズドシステムを備えている。
[ First Reference Example ]
Reference examples and embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an overall schematic configuration of a compression refrigerator 1-1 as a first reference example of the present invention. A compression refrigerator 1-1 shown in FIG. 1 is a compression refrigerator having a vapor compression refrigeration cycle, and includes a closed system in which a refrigerant is sealed.

本圧縮式冷凍機1−1は、蒸発器11、圧縮機(ここでは二段圧縮機)13、凝縮器17、及びエコノマイザ18を備え、蒸発器11と圧縮機13は冷媒配管21aで接続され、圧縮機13と凝縮器17は冷媒配管21bで接続され、凝縮器17とエコノマイザ18は冷媒配管21cで接続され、エコノマイザ18と蒸発器11は冷媒配管21dで接続されている。また、冷媒配管21cには膨張弁19aが、冷媒配管21dには膨張弁19bが設けられている。   This compression refrigerator 1-1 includes an evaporator 11, a compressor (here, a two-stage compressor) 13, a condenser 17, and an economizer 18. The evaporator 11 and the compressor 13 are connected by a refrigerant pipe 21a. The compressor 13 and the condenser 17 are connected by a refrigerant pipe 21b, the condenser 17 and the economizer 18 are connected by a refrigerant pipe 21c, and the economizer 18 and the evaporator 11 are connected by a refrigerant pipe 21d. The refrigerant pipe 21c is provided with an expansion valve 19a, and the refrigerant pipe 21d is provided with an expansion valve 19b.

また、本圧縮式冷凍機1−1は図示を省略する制御装置(制御手段)を備え、電動機15の駆動制御や、後述する各種ポンプや各種機器の駆動制御をするようになっている。また、後に詳述するように、圧縮機13と電動機15の軸は一体に構成され、軸受23、23により回転自在に支持されている。なお、図1では圧縮機13の羽根車13aと電動機15のロータ15a(図16参照)の軸に直結しているが、図5に示すように、ロータ15aの回転をギアの組合せからなる増速機で増速して羽根車13aを駆動する構成としてもよい。その場合は増速機を構成するギアも潤滑油で潤滑する。   The compression refrigerator 1-1 is provided with a control device (control means) (not shown) to control the drive of the electric motor 15, and the drive control of various pumps and various devices described later. Further, as will be described in detail later, the shafts of the compressor 13 and the electric motor 15 are integrally formed, and are rotatably supported by bearings 23 and 23. In FIG. 1, the impeller 13a of the compressor 13 and the shaft of the rotor 15a (see FIG. 16) of the motor 15 are directly connected, but as shown in FIG. 5, the rotation of the rotor 15a is increased by a combination of gears. It is good also as a structure which accelerates with a speed machine and drives the impeller 13a. In that case, the gears constituting the gearbox are also lubricated with lubricating oil.

図16は電動機15及び軸受23、23の部分の詳細を示す図である。軸受23、23は電動機15の軸の一端部と、電動機15の軸の他端部と圧縮機13の吐出側の間に配置されている。軸受23、23は、軸受室70で囲まれ(軸受室70内に配置され)、圧縮機13の吐出側圧力部(羽根車裏側部)と電動機15のロータ15aが配置されているロータ室15bの間にはラビリンス或いは狭い隙間Lが配置され分離されている。図1において、軸受23、23から潤滑油タンク25への油の戻りを確実にするために軸受室70(図16参照)と潤滑油タンク25とを均圧管71で接続している。   FIG. 16 is a diagram showing details of the motor 15 and the bearings 23 and 23. The bearings 23 and 23 are disposed between one end of the shaft of the electric motor 15, the other end of the shaft of the electric motor 15, and the discharge side of the compressor 13. The bearings 23, 23 are surrounded by a bearing chamber 70 (arranged in the bearing chamber 70), and a rotor chamber 15 b in which a discharge side pressure portion (impeller rear side portion) of the compressor 13 and a rotor 15 a of the electric motor 15 are disposed. A labyrinth or a narrow gap L is arranged between them. In FIG. 1, the bearing chamber 70 (see FIG. 16) and the lubricating oil tank 25 are connected by a pressure equalizing pipe 71 in order to ensure the return of oil from the bearings 23, 23 to the lubricating oil tank 25.

潤滑油タンク25内には潤滑油液面が存在し、その上部は冷媒蒸気が存在する気相部、下部は潤滑油に冷媒が混入した溶液が存在する液相部となっている。潤滑油タンク25の下部に油ポンプ27を接続し、潤滑油タンク25内の潤滑油と冷媒の混合した溶液を潤滑油供給配管29aを通して軸受23、23に送り、軸受室70(図16参照)からの潤滑油を戻り配管29bを通して潤滑油タンク25に戻している。また、上記のように潤滑油タンク25の気相部とエコノマイザ18の上部(気相部)との間は均圧管31に接続され、潤滑油タンク25の気相部の冷媒蒸気はエコノマイザ18に導入されるようになっている。   The lubricating oil tank 25 has a lubricating oil liquid level, the upper part of which is a gas phase part where refrigerant vapor is present, and the lower part is a liquid phase part where a solution in which the refrigerant is mixed with lubricating oil is present. An oil pump 27 is connected to the lower part of the lubricating oil tank 25, and a mixed solution of the lubricating oil and the refrigerant in the lubricating oil tank 25 is sent to the bearings 23 and 23 through the lubricating oil supply pipe 29a, and the bearing chamber 70 (see FIG. 16). Is returned to the lubricating oil tank 25 through the return pipe 29b. Further, as described above, the gas phase part of the lubricating oil tank 25 and the upper part (gas phase part) of the economizer 18 are connected to the pressure equalizing pipe 31, and the refrigerant vapor in the gas phase part of the lubricating oil tank 25 is supplied to the economizer 18. It has been introduced.

なお、冷媒配管21cから分岐して電動機15に向う配管36a中にはポンプ35が設置され、該ポンプ35の下流側で配管36aから分岐した配管34aは潤滑油タンク25内に配置された油冷却器(熱交換器)33に接続されている。配管34a中には冷媒流量調節弁を設け、油温調節を行っている。ポンプ35を起動すれば、凝縮器17の出口から冷媒配管21cに排出された冷媒の一部は、油冷却器33と電動機15に供給され、両者を冷却した後、蒸気となって配管34b、配管36bを通って凝縮器17の入口側に戻される構成となっている。   A pump 35 is installed in a pipe 36 a branched from the refrigerant pipe 21 c and directed to the electric motor 15, and a pipe 34 a branched from the pipe 36 a on the downstream side of the pump 35 is an oil cooling unit disposed in the lubricating oil tank 25. Connected to a heat exchanger (heat exchanger) 33. A refrigerant flow rate adjustment valve is provided in the pipe 34a to adjust the oil temperature. When the pump 35 is started, a part of the refrigerant discharged from the outlet of the condenser 17 to the refrigerant pipe 21c is supplied to the oil cooler 33 and the electric motor 15, and after cooling both, the pipe 34b becomes steam. It is configured to return to the inlet side of the condenser 17 through the pipe 36b.

電動機15に供給された冷媒液は電動機15を冷却した後、蒸気となって上記のように配管36bを通って凝縮器17に戻され、蒸発しきれなかった冷媒はロータ室15b(図16参照)の下部から配管36cを通って凝縮器17の下部出口に接続されている冷媒配管21cに戻される。   The refrigerant liquid supplied to the electric motor 15 cools the electric motor 15 and then becomes steam and returns to the condenser 17 through the pipe 36b as described above. The refrigerant that cannot be evaporated is the rotor chamber 15b (see FIG. 16). ) Is returned to the refrigerant pipe 21c connected to the lower outlet of the condenser 17 through the pipe 36c.

一方、潤滑油は、潤滑油タンク25内の油冷却器33にて、凝縮器17からの冷媒液で冷却され、冷媒液は蒸発して配管34bを通って凝縮器17に戻り、冷却熱量を凝縮器17(冷却水)に放出する。なお、油冷却器33は潤滑油タンク25内でなく、油ポンプ27の出口に接続した潤滑油供給配管29aに設けてもよい。更に、冷媒系から油潤滑系に冷媒が入り込む場合、例えば、電動機15を冷却した冷媒が軸受室70(図16参照)に入り込むような場合、潤滑油タンク25内で潤滑油から冷媒が蒸発して、潤滑油が冷却されることになり、その冷却が充分であれば、油冷却器33を省略することもできる。なお、潤滑油タンク25には電気ヒータ24を設け、圧縮式冷凍機1−1の停止中に、電気ヒータ24にて油温度を保って冷媒を吸収しないようにして、潤滑油中の冷媒濃度を低く保持している。   On the other hand, the lubricating oil is cooled by the refrigerant liquid from the condenser 17 in the oil cooler 33 in the lubricating oil tank 25. The refrigerant liquid evaporates and returns to the condenser 17 through the pipe 34b, and the amount of cooling heat is increased. It discharges to the condenser 17 (cooling water). The oil cooler 33 may be provided not in the lubricating oil tank 25 but in the lubricating oil supply pipe 29 a connected to the outlet of the oil pump 27. Furthermore, when the refrigerant enters the oil lubrication system from the refrigerant system, for example, when the refrigerant that has cooled the electric motor 15 enters the bearing chamber 70 (see FIG. 16), the refrigerant evaporates from the lubricating oil in the lubricating oil tank 25. If the lubricating oil is cooled and the cooling is sufficient, the oil cooler 33 can be omitted. The lubricating oil tank 25 is provided with an electric heater 24, and while the compression refrigerator 1-1 is stopped, the electric heater 24 maintains the oil temperature so as not to absorb the refrigerant, so that the refrigerant concentration in the lubricating oil is increased. Is kept low.

本圧縮式冷凍機1−1は、蒸発器11の冷媒から油を回収し、潤滑油タンク25に戻す油回収手段を具備している。26は油濃縮器であり、上部は弁V8を備えた配管49で圧縮機13の吐出口に接続された冷媒配管21bに接続されている。また、油濃縮器26の内部には加熱手段60を備え、凝縮器17から蒸発器11に向かう配管62を通して凝縮冷媒を導き、潤滑油を含む冷媒を加熱濃縮し、潤滑油濃度を上げるようになっている。油回収手段は、油濃縮器26と潤滑油タンク25で構成され、油濃縮器26と潤滑油タンク25は弁V11を備えた配管28で接続され、潤滑油タンク25の気相部はエコノマイザ18の気相部に均圧管31で接続されている。蒸発器11内の油を含有している冷媒、圧縮機13の吸込み部の液溜り部a1の油を含有する冷媒を、油濃縮器26に導入し、加熱手段60で加熱することで、油濃縮器26内の溶液中の冷媒液は蒸発し、潤滑油が濃縮されて潤滑油濃縮溶液となる。この潤滑油濃縮溶液を油濃縮器26から潤滑油タンク25に移動させて冷媒中の潤滑油を回収する。 The compression refrigerator 1-1 includes oil recovery means for recovering oil from the refrigerant of the evaporator 11 and returning it to the lubricating oil tank 25. 26 is an oil concentrator, the upper is connected to the refrigerant pipe 21b connected to the discharge port of the compressor 13 by a pipe 49 having a valve V 8. Further, the oil concentrator 26 is provided with heating means 60 so that the condensed refrigerant is guided through the pipe 62 from the condenser 17 to the evaporator 11 so that the refrigerant containing the lubricating oil is heated and concentrated to increase the lubricating oil concentration. It has become. Oil recovery means comprises an oil concentrator 26 and the lubricating oil tank 25, oil concentrator 26 and the lubricating oil tank 25 is connected by a pipe 28 having a valve V 11, the gas phase portion of the lubricating oil tank 25 is economizer The pressure equalizing pipe 31 is connected to 18 gas phase portions. The refrigerant containing the oil in the evaporator 11 and the refrigerant containing the oil in the liquid pool part a1 of the suction part of the compressor 13 are introduced into the oil concentrator 26 and heated by the heating means 60. The refrigerant liquid in the solution in the concentrator 26 evaporates, and the lubricating oil is concentrated into a lubricating oil concentrated solution. The lubricating oil concentrated solution is moved from the oil concentrator 26 to the lubricating oil tank 25 to recover the lubricating oil in the refrigerant.

蒸発系統(蒸発器11、圧縮機13の吸い込み部の液溜り部a1)からの油濃縮器26への冷媒液(潤滑油を含有する冷媒液)の移送は、弁V10を開き、弁V8を閉じた状態で、弁V9を開き、弁V3を開くことで行うことができる。このとき弁V11を閉じておく。油濃縮器26への冷媒液の移動完了は液面センサ41で所定の高位液位を検知することで検知し、弁V9、弁V3を閉じる。この状態で、油濃縮器26内の潤滑油を含有した溶液(潤滑油と冷媒液の混合溶液)を加熱する。これにより溶液中の冷媒は蒸気となって弁V10を通って圧縮機13の吸込部に追い出され、冷媒の少ない、即ち潤滑油濃度の濃い潤滑油濃縮溶液になる。液面センサ41の所定の中位液面を検知することで、油濃縮器26内の冷媒が減少し、潤滑油が濃縮したことを検知することができる。また、溶液の温度で潤滑油濃度を検知し、所定温度に上昇して濃縮完了としてもよいし、また、加熱濃縮開始からの経過時間で濃縮度合いを推定してもよい。 Transfer of the refrigerant liquid (refrigerant liquid containing lubricating oil) from the evaporation system (evaporator 11, liquid reservoir part a <b> 1 of the suction portion of the compressor 13) to the oil concentrator 26 opens the valve V <b> 10 and opens the valve V <b> 10. With valve 8 closed, valve V 9 is opened and valve V 3 is opened. At this time, the valve V 11 is closed. Movement completion of refrigerant liquid into the oil concentrator 26 detects by detecting a predetermined high liquid level in the liquid level sensor 41, the valve V 9, closing the valve V 3. In this state, the solution containing the lubricating oil in the oil concentrator 26 (mixed solution of lubricating oil and refrigerant liquid) is heated. As a result, the refrigerant in the solution becomes steam and is expelled through the valve V 10 to the suction portion of the compressor 13, resulting in a lubricating oil concentrated solution having a small amount of refrigerant, that is, having a high lubricating oil concentration. By detecting a predetermined middle liquid level of the liquid level sensor 41, it is possible to detect that the refrigerant in the oil concentrator 26 has decreased and the lubricating oil has been concentrated. Alternatively, the concentration of the lubricating oil may be detected based on the temperature of the solution and the concentration may be increased to a predetermined temperature to complete the concentration, or the degree of concentration may be estimated based on the elapsed time from the start of heating concentration.

濃縮完了後、弁V10を閉じ、弁V8を開くことで、油濃縮器26内に配管49を通して圧縮機13の吐出圧(凝縮器圧力レベル)を印加し、この状態で油濃縮器26と潤滑油タンク25を接続する配管28に設けた弁V11を開いて、印加した圧力で油濃縮器26内の潤滑油濃縮溶液を潤滑油タンク25に移動させる。潤滑油タンク25への潤滑油濃縮溶液の移動完了は液面センサ41が所定の低位液位を検知することで検知し、弁V11及び弁V8を閉じる。なお、この潤滑油タンク25への溶液の移動完了は、弁V11を開いている時間で制御してもよい(一定容積を移動するのに必要な時間或いはこれより少し長い時間の間、弁V11を開く)。その後、上記蒸発系統から油濃縮器26への冷媒移送工程に戻る。 After completion of the concentration, the valve V 10 is closed and the valve V 8 is opened, so that the discharge pressure (condenser pressure level) of the compressor 13 is applied to the oil concentrator 26 through the pipe 49. The valve V 11 provided in the pipe 28 connecting the lubricating oil tank 25 is opened, and the lubricating oil concentrated solution in the oil concentrator 26 is moved to the lubricating oil tank 25 with the applied pressure. Movement completion of the lubricating oil concentrate solution into the lubricating oil tank 25 is detected by the liquid level sensor 41 detects a predetermined low liquid level, closing the valve V 11 and a valve V 8. The movement completion of the solution into the lubricating oil tank 25 during the time or than this slightly longer time required to move the controlled may be (constant volume by the time opening a valve V 11, the valve opening the V 11). Thereafter, the process returns to the refrigerant transfer step from the evaporation system to the oil concentrator 26.

圧縮機13の吸込み部の液溜り部a1に溜まった溶液(冷媒と潤滑油の混合溶液)は、前述のように、蒸発系統から油濃縮器26への冷媒移送工程の時に、液溜り部a1と油濃縮器26を接続する配管45に設けた弁V3を開き、油濃縮器26に移動させている。弁V10は液溜り部a1からの冷媒移動工程及び油濃縮工程中は開いている。これら弁V3と弁V10の両機能を兼用させる弁として破線で示す弁V10’で代用させてもよい。弁V10’の動作はV10と同じである。 As described above, the solution (mixed solution of refrigerant and lubricating oil) accumulated in the liquid reservoir a1 of the suction section of the compressor 13 is stored in the liquid reservoir a1 during the refrigerant transfer process from the evaporation system to the oil concentrator 26. And the valve V 3 provided in the pipe 45 connecting the oil concentrator 26 is opened and moved to the oil concentrator 26. The valve V 10 is in the refrigerant moving step and the oil concentration step from the liquid reservoir portion a1 is open. A valve V 10 ′ indicated by a broken line may be substituted for the valve V 3 and the valve V 10 . The operation of the valve V 10 'is the same as V 10 .

上記油濃縮器26内の潤滑油濃縮溶液を潤滑油タンク25に移動する際に、消費する圧縮機13から吐出されるガス量(冷媒蒸気量)は、油濃縮器26の容積の数倍で済み、殆ど無視できる量である。エジェクタによる移送の場合の圧縮機13の吐出ガスの消費量の数十分の一(エジェクタのノズル口径から算出)である。なお、溶液の移動の管理を時間で行う場合は、タイミングがずれると、油濃縮器26の溶液が無くなり、高圧蒸気が油濃縮器26から潤滑油タンク25に吹き抜けてしまうことがあるので、吹き抜け防止にフロートを浮かべ液面が無くなると出口を塞ぐ構造或いはフロート弁を設けてもよい。   When the lubricating oil concentrated solution in the oil concentrator 26 is moved to the lubricating oil tank 25, the amount of gas discharged from the compressor 13 (refrigerant vapor amount) is several times the volume of the oil concentrator 26. Almost negligible. This is several tenths of the consumption of the discharge gas of the compressor 13 in the case of transfer by the ejector (calculated from the nozzle diameter of the ejector). When managing the movement of the solution by time, if the timing is shifted, the solution in the oil concentrator 26 is lost, and high-pressure steam may be blown out from the oil concentrator 26 to the lubricating oil tank 25. In order to prevent the float from floating, a structure that closes the outlet when the liquid level disappears or a float valve may be provided.

図2は、本発明に係る圧縮式冷凍機1−2の全体概略構成例を示す図である。図2に示す圧縮式冷凍機1−2が図1に示す圧縮式冷凍機1−1と大きく相違する点は、図1の圧縮式冷凍機1−1の弁V8と弁V10’の役割を1個の三方弁V12に置き換えたこと、油濃縮器26と潤滑油タンク25を接続する配管28の弁を開閉弁V11に換えて逆止弁V13にしたことである。また、油濃縮器26の液面センサ41の検知液面は高位液面のみとし、中位液面、低位液面の管理は時間の管理で行うようにした。なお、夫々の機器の機能は図1の圧縮式冷凍機1−1を構成するものと同じであるので、説明は省略する。また、油濃縮器26の加熱手段60への冷媒供給配管は省略している。また、潤滑油タンク25の気相部とエコノマイザ18の気相部を均圧管31で接続し、潤滑油タンク25をエコノマイザ18に均圧させているが、均圧管の均圧先を破線の均圧管31’で示すように、蒸発器系(ここでは、蒸発器11と圧縮機13を結ぶ冷媒配管21a)に均圧させてもよい。なお、その場合はエコノマイザ18へ均圧はしない。 FIG. 2 is a diagram showing an overall schematic configuration example of the compression refrigerator 1-2 according to the present invention. The compression refrigerator 1-2 shown in FIG. 2 is greatly different from the compression refrigerator 1-1 shown in FIG. 1 in that the valves V 8 and V 10 ′ of the compression refrigerator 1-1 shown in FIG. The role is replaced by one three-way valve V 12 , and the valve of the pipe 28 connecting the oil concentrator 26 and the lubricating oil tank 25 is changed to the check valve V 13 instead of the on-off valve V 11 . In addition, the liquid level sensor 41 of the oil concentrator 26 detects only the high liquid level, and the middle liquid level and the low liquid level are managed by managing the time. The function of each device is the same as that constituting the compression refrigerator 1-1 of FIG. Further, the refrigerant supply pipe to the heating means 60 of the oil concentrator 26 is omitted. In addition, the gas phase portion of the lubricating oil tank 25 and the gas phase portion of the economizer 18 are connected by the pressure equalizing pipe 31, and the lubricating oil tank 25 is pressure-equalized by the economizer 18. As shown by the pressure pipe 31 ′, the pressure may be equalized in the evaporator system (here, the refrigerant pipe 21 a connecting the evaporator 11 and the compressor 13). In this case, pressure equalization is not performed on the economizer 18.

油濃縮器26内の潤滑油濃縮溶液の潤滑油タンク25への移送は、圧縮式冷凍機1−1の場合と同様、濃縮完了後、三方弁V12の操作により、油濃縮器26内に配管49を通して圧縮機13の吐出圧(凝縮器圧力レベル)を印加することで、油濃縮器26内の圧力が上昇し、その圧力で逆止弁V13及び配管28を通して油濃縮器26内の潤滑油濃縮溶液を潤滑油タンク25に移動させる。 Transfer of the lubricating oil concentrated solution in the oil concentrator 26 to the lubricating oil tank 25 is performed in the oil concentrator 26 by the operation of the three-way valve V 12 after the completion of concentration, as in the case of the compression refrigerator 1-1. By applying the discharge pressure (condenser pressure level) of the compressor 13 through the pipe 49, the pressure in the oil concentrator 26 rises, and the pressure in the oil concentrator 26 passes through the check valve V 13 and the pipe 28. The lubricating oil concentrated solution is moved to the lubricating oil tank 25.

第2参考例
図3は、本発明の第2参考例としての圧縮式冷凍機1−3の全体概略構成例を示す図である。本圧縮式冷凍機1−3は図1に示す圧縮式冷凍機1−1と同様、圧縮機13を二段圧縮機とし、凝縮器17と蒸発器11を接続する冷媒配管にエコノマイザ18を設け、エコノマイザ18と蒸発器11を冷媒配管21dで接続し、更に潤滑油タンク25の気相部とエコノマイザ18の気相部を均圧管31で接続し、潤滑油タンク25の圧力をエコノマイザ18に均圧している。
[ Second Reference Example ]
FIG. 3 is a diagram showing an overall schematic configuration example of a compression refrigerator 1-3 as a second reference example of the present invention. This compression refrigerator 1-3 is similar to the compression refrigerator 1-1 shown in FIG. 1, the compressor 13 is a two-stage compressor, and an economizer 18 is provided in a refrigerant pipe connecting the condenser 17 and the evaporator 11. The economizer 18 and the evaporator 11 are connected by the refrigerant pipe 21d, and the gas phase portion of the lubricating oil tank 25 and the gas phase portion of the economizer 18 are connected by the pressure equalizing pipe 31, and the pressure of the lubricating oil tank 25 is equalized to the economizer 18. Pressure.

本圧縮式冷凍機1−3では、油回収を蒸発器11からは直接行わず、圧縮機13の吸込み部から回収するようにしたものである。即ち、圧縮機13の吸込み部の液溜り部a1の下方に油濃縮器26を配置し、液溜り部a1と油濃縮器26とを弁V3’を備えた配管45で接続し、弁V3’の開閉操作により、液溜り部a1に溜まった潤滑油と冷媒液の混合した溶液を油濃縮器26に導入することができるようになっている。また、油濃縮器26の上部と圧縮機13の吐出口に接続された冷媒配管21bとを弁V8を備えた配管49で接続している。油濃縮器26の内部には加熱手段60を配設し、凝縮器17から配管62を通して凝縮冷媒液を導き、油濃縮器26内の潤滑油と冷媒の混合溶液を加熱濃縮し、潤滑油濃度を上げることができるようになっている。混合溶液を加熱した凝縮器17からの凝縮冷媒液は蒸発器11に流入する。 In the present compression refrigeration machine 1-3, oil is not recovered directly from the evaporator 11 but is recovered from the suction portion of the compressor 13. That is, the oil concentrator 26 is arranged below the liquid reservoir a1 of the suction portion of the compressor 13, and the liquid reservoir a1 and the oil concentrator 26 are connected by a pipe 45 having a valve V 3 ′. By the opening and closing operation of 3 ′, a solution obtained by mixing the lubricating oil and the refrigerant liquid collected in the liquid reservoir a1 can be introduced into the oil concentrator 26. Also connects the refrigerant pipe 21b connected to the upper and the discharge port of the compressor 13 of the oil concentrator 26 a pipe 49 provided with a valve V 8. A heating means 60 is disposed inside the oil concentrator 26, a condensed refrigerant liquid is guided from the condenser 17 through the pipe 62, and the mixed solution of the lubricating oil and the refrigerant in the oil concentrator 26 is heated and concentrated to obtain a lubricating oil concentration. Can be raised. The condensed refrigerant liquid from the condenser 17 that has heated the mixed solution flows into the evaporator 11.

油濃縮器26で濃縮完了後、弁V3’を閉じ、弁V8を開くことで、油濃縮器26内に圧縮機13の吐出圧(凝縮器圧力レベル)を配管49を通して印加し、この状態で油濃縮器26と潤滑油タンク25を接続する配管28に設けた弁V11を開いて、この印加した圧力で油濃縮器26内の潤滑油濃縮溶液を潤滑油タンク25に移動させる。 After completion of concentration in the oil concentrator 26, the valve V 3 ′ is closed and the valve V 8 is opened, so that the discharge pressure (condenser pressure level) of the compressor 13 is applied to the oil concentrator 26 through the pipe 49. In this state, the valve V 11 provided in the pipe 28 connecting the oil concentrator 26 and the lubricating oil tank 25 is opened, and the lubricating oil concentrated solution in the oil concentrator 26 is moved to the lubricating oil tank 25 with this applied pressure.

図4は、本発明に係る圧縮式冷凍機1−4の全体概略構成例を示す図である。図4に示す圧縮式冷凍機1−4が図3に示す圧縮式冷凍機1−3と大きく相違する点は、図3の圧縮式冷凍機1−3の弁V8と弁V3の役割を1個の三方弁V12に置き換えたこと、油濃縮器26内部の加熱手段60を無くし、油濃縮器26内の溶液を容器表面から外気で溶液を加熱するようにしたものである。本油濃縮器26の各機器の作用は、図3に示す圧縮式冷凍機1−3と同じなのでその説明は省略する。また、油濃縮器26内の潤滑油濃縮溶液の潤滑油タンク25への移送は油濃縮器26内に圧縮機13の吐出圧を印加し、弁V11を開いて行う。 FIG. 4 is a diagram showing an overall schematic configuration example of the compression refrigerator 1-4 according to the present invention. That compression refrigerating machine 1-4 shown in FIG. 4 differs significantly from the compression refrigerating machine 13 shown in FIG. 3, the role of the valve V 8 and valve V 3 of the compression type refrigerator 1-3 of FIG. 3 Is replaced with a single three-way valve V 12 , the heating means 60 inside the oil concentrator 26 is eliminated, and the solution in the oil concentrator 26 is heated from the container surface with outside air. The operation of each device of the oil concentrator 26 is the same as that of the compression refrigerator 1-3 shown in FIG. The lubricating oil concentrated solution in the oil concentrator 26 is transferred to the lubricating oil tank 25 by applying the discharge pressure of the compressor 13 in the oil concentrator 26 and opening the valve V 11 .

第3参考例
図5は、本発明の第3参考例としての圧縮式冷凍機1−5の全体概略構成例を示す図である。本圧縮式冷凍機1−5が図1に示す圧縮式冷凍機1−1と異なる点は、圧縮機13と電動機15間にギアの組合せで構成される増速機22を設けている点、潤滑油タンク25をギアボックス32と一体化し、該潤滑油タンク25の下部に油ポンプ27を設けている。エコノマイザ18の上部(気相部)を均圧管31でギアボックス32内と接続し、該ギアボックス32と一体化している潤滑油タンク25の気相部の圧力をエコノマイザ18に均圧している。圧縮機13の液溜り部a1の潤滑油を含む冷媒液の油濃縮器26への移送、蒸発器11の潤滑油を含む冷媒液の油濃縮器26への移送、油濃縮器26内の潤滑油の加熱濃縮、潤滑油濃縮溶液の潤滑油タンク25への移送は、上記圧縮式冷凍機1−1と同じであるから、その説明は省略する。
[ Third reference example ]
FIG. 5 is a diagram showing an overall schematic configuration example of a compression refrigerator 1-5 as a third reference example of the present invention. The point that this compression type refrigerator 1-5 differs from the compression type refrigerator 1-1 shown in FIG. 1 is that a speed increaser 22 configured by a combination of gears is provided between the compressor 13 and the electric motor 15. The lubricating oil tank 25 is integrated with the gear box 32, and an oil pump 27 is provided below the lubricating oil tank 25. The upper portion (gas phase portion) of the economizer 18 is connected to the inside of the gear box 32 by a pressure equalizing pipe 31, and the pressure in the gas phase portion of the lubricating oil tank 25 integrated with the gear box 32 is equalized to the economizer 18. Transfer of the refrigerant liquid containing the lubricating oil in the liquid reservoir a1 of the compressor 13 to the oil concentrator 26, transfer of the refrigerant liquid containing the lubricating oil of the evaporator 11 to the oil concentrator 26, and lubrication in the oil concentrator 26. The heating and oil concentration of the oil and the transfer of the lubricating oil concentrated solution to the lubricating oil tank 25 are the same as those in the compression refrigerator 1-1, and therefore the description thereof is omitted.

図6は、本発明に係る圧縮式冷凍機1−6の全体概略構成例を示す図である。図6に示す圧縮式冷凍機1−6が図5に示す圧縮式冷凍機1−5と相違する点は、圧縮機13を単段とし、エコノマイザ18を設けることなく、潤滑油タンク25の圧力を蒸発器11に均圧している点である。即ち、蒸発器11の上部(気相部)と、ギアボックス32内を均圧管としての配管63で接続し、潤滑油タンク25の気相圧力をギアボックス32及び配管63を介して蒸発器11の気相部に均圧している。圧縮機13の液溜り部a1の潤滑油を含む冷媒液の油濃縮器26への移送、蒸発器11の潤滑油を含む冷媒液の油濃縮器26への移送、油濃縮器26内の潤滑油の加熱濃縮、潤滑油濃縮溶液の潤滑油タンク25への移送は、上記圧縮式冷凍機1−1と同じであるから、その説明は省略する。   FIG. 6 is a diagram illustrating an overall schematic configuration example of the compression refrigerator 1-6 according to the present invention. The compression refrigerator 1-6 shown in FIG. 6 is different from the compression refrigerator 1-5 shown in FIG. 5 in that the compressor 13 is a single stage and the pressure of the lubricating oil tank 25 is not provided without providing the economizer 18. Is equalized in the evaporator 11. That is, the upper part (vapor phase part) of the evaporator 11 and the inside of the gear box 32 are connected by a pipe 63 as a pressure equalizing pipe, and the vapor pressure of the lubricating oil tank 25 is connected via the gear box 32 and the pipe 63 to the evaporator 11. The pressure is equalized in the gas phase. Transfer of the refrigerant liquid containing the lubricating oil in the liquid reservoir a1 of the compressor 13 to the oil concentrator 26, transfer of the refrigerant liquid containing the lubricating oil of the evaporator 11 to the oil concentrator 26, and lubrication in the oil concentrator 26. The heating and oil concentration of the oil and the transfer of the lubricating oil concentrated solution to the lubricating oil tank 25 are the same as those in the compression refrigerator 1-1, and therefore the description thereof is omitted.

第1実施形態例
図7は、本発明の第1実施形態としての圧縮式冷凍機1−7の全体概略構成例を示す図である。本圧縮式冷凍機1−7は、冷媒を封入した2つのクローズドシステムで二重化した冷凍サイクルを備えた圧縮式冷凍機である。
[ First Embodiment ]
FIG. 7 is a diagram illustrating an overall schematic configuration example of the compression refrigerator 1-7 as the first embodiment of the present invention. The present compression refrigeration machine 1-7 is a compression refrigeration machine provided with a refrigeration cycle duplicated by two closed systems enclosing a refrigerant.

本圧縮式冷凍機1−7は、低圧蒸発器11−1、高圧蒸発器11−2、低圧圧縮機13−1、高圧圧縮機13−2、低圧凝縮器17−1、高圧凝縮器17−2、低圧エコノマイザ18−1、高圧エコノマイザ18−2を備え、これらを冷媒配管で接続して構成している。即ち、低圧蒸発器11−1と低圧圧縮機13−1を冷媒配管21−1aで接続し、低圧圧縮機13−1と低圧凝縮器17−1を冷媒配管21−1bで接続し、低圧凝縮器17−1と低圧エコノマイザ18−1を冷媒配管21−1cで接続し、低圧エコノマイザ18−1と低圧蒸発器11−1を冷媒配管21−dで接続し、高圧蒸発器11−2と高圧圧縮機13−2を冷媒配管21−2aで接続し、高圧圧縮機13−2と高圧凝縮器17−2を冷媒配管21−2bで接続し、高圧凝縮器17−2と高圧エコノマイザ18−2を冷媒配管21−2cで接続し、高圧エコノマイザ18−2と高圧蒸発器11−2を冷媒配管21−2dで接続して二重化した冷凍サイクルを構成している。   This compression refrigerator 1-7 includes a low-pressure evaporator 11-1, a high-pressure evaporator 11-2, a low-pressure compressor 13-1, a high-pressure compressor 13-2, a low-pressure condenser 17-1, and a high-pressure condenser 17-. 2. A low-pressure economizer 18-1 and a high-pressure economizer 18-2 are provided and connected by refrigerant piping. That is, the low-pressure evaporator 11-1 and the low-pressure compressor 13-1 are connected by the refrigerant pipe 21-1a, and the low-pressure compressor 13-1 and the low-pressure condenser 17-1 are connected by the refrigerant pipe 21-1b, and the low-pressure condensation is performed. 17-1 and low pressure economizer 18-1 are connected by refrigerant piping 21-1c, low pressure economizer 18-1 and low pressure evaporator 11-1 are connected by refrigerant piping 21-d, and high pressure evaporator 11-2 and high pressure are connected. The compressor 13-2 is connected by a refrigerant pipe 21-2a, the high pressure compressor 13-2 and the high pressure condenser 17-2 are connected by a refrigerant pipe 21-2b, and the high pressure condenser 17-2 and the high pressure economizer 18-2 are connected. Are connected by a refrigerant pipe 21-2c, and a high-pressure economizer 18-2 and a high-pressure evaporator 11-2 are connected by a refrigerant pipe 21-2d to form a duplex refrigeration cycle.

そして、電動機15、潤滑油タンク25、油ポンプ27、油濃縮器26等は、両冷凍サイクルで共用している。2つの凝縮器、即ち低圧凝縮器17−1、高圧凝縮器17−2には冷却水102が直列に供給されており、同様に2つの低圧蒸発器11−1、高圧蒸発器11−2には冷水101が直列に供給されている。電動機15には高圧凝縮器17−2からの冷媒液をポンプ35で配管36aを通して供給し、ロータ室15b(図16参照)は冷却水102の出口側の高圧凝縮器17−2の気相部に配管36bで接続して均圧させ、潤滑油タンク25の圧力は、均圧管31を介して高圧冷凍サイクル側の高圧エコノマイザ18−2に均圧させている。   The electric motor 15, the lubricating oil tank 25, the oil pump 27, the oil concentrator 26, and the like are shared by both refrigeration cycles. Cooling water 102 is supplied in series to the two condensers, that is, the low-pressure condenser 17-1 and the high-pressure condenser 17-2, and similarly to the two low-pressure evaporators 11-1 and 11-2. Is supplied with cold water 101 in series. The refrigerant liquid from the high pressure condenser 17-2 is supplied to the electric motor 15 through the pipe 36a by the pump 35, and the rotor chamber 15b (see FIG. 16) is a gas phase part of the high pressure condenser 17-2 on the outlet side of the cooling water 102. The pressure of the lubricating oil tank 25 is equalized by the high pressure economizer 18-2 on the high pressure refrigeration cycle side via the pressure equalizing pipe 31.

低圧圧縮機13−1、高圧圧縮機13−2の羽根車13aの裏側圧力は、高圧エコノマイザ18−2に均圧させている軸受室70(図16参照)の圧力より高いので、ラビリンス経由で冷媒が漏れ込んでくる。軸受室70に入った冷媒は、潤滑油とともに潤滑油タンク25に戻ってくる。潤滑油タンク25は高圧冷凍サイクル側に接続されているので、低圧冷凍サイクルの低圧圧縮機13−1の羽根車13aの裏側から軸受室70に流れ込んだ冷媒は、高圧冷凍サイクル側に移動することになる。即ち、低圧冷凍サイクルから高圧冷凍サイクルに冷媒が移動することになる。この移動した冷媒を戻すために、高圧蒸発器11−2と低圧蒸発器11−1を弁V6を備えた配管66で接続し、高圧蒸発器11−2と低圧蒸発器11の液面が略同じレベルになるように調節している。なお、液位を検出する液面センサは図示していない。 Since the back side pressure of the impeller 13a of the low pressure compressor 13-1 and the high pressure compressor 13-2 is higher than the pressure in the bearing chamber 70 (see FIG. 16) that is equalized by the high pressure economizer 18-2, the labyrinth is used. The refrigerant leaks. The refrigerant that has entered the bearing chamber 70 returns to the lubricating oil tank 25 together with the lubricating oil. Since the lubricating oil tank 25 is connected to the high-pressure refrigeration cycle side, the refrigerant flowing into the bearing chamber 70 from the back side of the impeller 13a of the low-pressure compressor 13-1 of the low-pressure refrigeration cycle moves to the high-pressure refrigeration cycle side. become. That is, the refrigerant moves from the low pressure refrigeration cycle to the high pressure refrigeration cycle. To return the moving refrigerant, connect the high pressure evaporator 11-2 and the low pressure evaporator 11-1 piping 66 having a valve V 6, the liquid level of the high-pressure evaporator 11-2 and the low pressure evaporator 11 The level is adjusted to approximately the same level. A liquid level sensor for detecting the liquid level is not shown.

高圧蒸発器11−2及び低圧蒸発器11−1には、潤滑油系から漏れ出した潤滑油を少量含む冷媒液があり、蒸発器内の油濃度は底部から液面に向って高くなっているので、高圧蒸発器11−2の比較的上部から液を取出し、低圧蒸発器11−1に戻し、更に、低圧蒸発器11−1の比較的上部から油濃縮器26に冷媒液を導入し潤滑油を濃縮して潤滑油濃縮液とし、該潤滑油濃縮溶液を潤滑油タンク25に戻している。油濃縮器26で潤滑油濃縮の際に発生する冷媒蒸気を、弁V20及び配管46を経由して低圧冷凍サイクル側の低圧圧縮機13−1の吸込み部に排出し均圧を取るようにしている。ここでは、冷媒が低圧冷凍サイクル側から高圧冷凍サイクル側に移動することを前提にしているが、この冷媒の移動方向を確実にするために、例えば図示は省略するが低圧エコノマイザ18−1と高圧蒸発器11−2とを弁を有する配管で結び、弁を手動或いは自動で調節するようにしてもよい。 In the high pressure evaporator 11-2 and the low pressure evaporator 11-1, there is a refrigerant liquid containing a small amount of lubricating oil leaking from the lubricating oil system, and the oil concentration in the evaporator increases from the bottom toward the liquid level. Therefore, the liquid is taken out from the relatively upper part of the high-pressure evaporator 11-2, returned to the low-pressure evaporator 11-1, and further the refrigerant liquid is introduced into the oil concentrator 26 from the relatively upper part of the low-pressure evaporator 11-1. The lubricating oil is concentrated to obtain a lubricating oil concentrate, and the lubricating oil concentrated solution is returned to the lubricating oil tank 25. The refrigerant vapor generated when the lubricating oil concentrate with oil condenser 26, via a valve V 20 and the pipe 46 is discharged to the suction of the low pressure compressor 13-1 of the low pressure refrigeration cycle side to take pressure equalization ing. Here, it is assumed that the refrigerant moves from the low-pressure refrigeration cycle side to the high-pressure refrigeration cycle side. However, in order to ensure the moving direction of the refrigerant, for example, although not shown, the low-pressure economizer 18-1 and the high-pressure refrigeration cycle are omitted. The evaporator 11-2 may be connected by a pipe having a valve, and the valve may be adjusted manually or automatically.

具体的な油濃縮回収工程を以下に述べる。弁V11、弁V8を閉じ、弁V20を開き、更に弁V9を開いて、油濃縮器26に低圧蒸発器11−1の潤滑油を含む冷媒を導入し、液面センサ41が所定の高位液位を検知すると弁V9を閉じる。次いで弁V3-1を所定の時間だけ開き、低圧冷凍サイクル側の圧縮機13−1の吸込み部の液溜り部a1−1の潤滑油を含む液を油濃縮器26に導入し、更に弁V3-2を所定の時間開いて高圧冷凍サイクル側の圧縮機13−2の液溜り部a1−2の潤滑油を含む液も油濃縮器26に導入する(液溜り部a1−1、液溜り部a1−2からの液量も図示は省略するが、液面センサで管理するようにしてもよい)。弁V9、弁V3-1、弁V3-2を閉じ、弁V20を開いた状態で、油濃縮器26内の潤滑油を含む冷媒液をヒータ61で加熱すると、冷媒は蒸発し、潤滑油が濃縮されていく。 A specific oil concentration recovery process will be described below. The valve V 11 , the valve V 8 are closed, the valve V 20 is opened, the valve V 9 is further opened, and the refrigerant containing the lubricating oil of the low-pressure evaporator 11-1 is introduced into the oil concentrator 26. closing the valve V 9 when detecting a predetermined high liquid level. Next, the valve V 3-1 is opened for a predetermined time, and the liquid containing the lubricating oil in the liquid reservoir part a1-1 of the suction part of the compressor 13-1 on the low-pressure refrigeration cycle side is introduced into the oil concentrator 26. V 3-2 is opened for a predetermined time, and the liquid containing the lubricating oil in the liquid reservoir a1-2 of the compressor 13-2 on the high-pressure refrigeration cycle side is also introduced into the oil concentrator 26 (liquid reservoir a1-1, liquid Although the illustration of the amount of liquid from the reservoir a1-2 is also omitted, it may be managed by a liquid level sensor). When the refrigerant liquid containing the lubricating oil in the oil concentrator 26 is heated by the heater 61 with the valves V 9 , V 3-1 and V 3-2 closed and the valve V 20 opened, the refrigerant evaporates. The lubricating oil will be concentrated.

液面センサ41で所定低位の液面を検知することにより濃縮完了を検知し、弁V20を閉じる。濃縮完了後、弁V8を開き、油濃縮器26内を高圧凝縮器17−2の気相部内圧で加圧し、弁V11も開き、油濃縮器26の潤滑油が濃縮した潤滑油濃縮溶液を潤滑油タンク25に送り出す。所定の時間経過後に弁V11を閉じて、該溶液を潤滑油タンク25に戻すのを完了する。該溶液の戻しの完了は時間管理でなく、液面センサ41を利用してもよい。これらの潤滑油濃縮回収工程を本圧縮式冷凍機1−7の運転中に繰り返す。二重化した冷凍サイクルの圧縮式冷凍機に本発明を適用する場合、油濃縮器26、潤滑油タンク25等の接続先を低圧サイクル側とするか高圧サイクル側とするかの変形は各種存在し、図7に示す構成に限定されるわけではない。 Detecting the completion concentrated by detecting a predetermined low liquid level in the liquid level sensor 41 closes the valve V 20. After completion of the concentration, the valve V 8 is opened, the inside of the oil concentrator 26 is pressurized with the internal pressure of the gas phase of the high-pressure condenser 17-2, the valve V 11 is also opened, and the lubricating oil concentration in which the lubricating oil in the oil concentrator 26 is concentrated. The solution is sent out to the lubricating oil tank 25. After a predetermined time has elapsed, the valve V 11 is closed to complete the return of the solution to the lubricating oil tank 25. Completion of the return of the solution is not time management, and the liquid level sensor 41 may be used. These lubricating oil concentration and recovery steps are repeated during the operation of the compression type refrigerator 1-7. When the present invention is applied to a compression refrigeration machine of a double refrigeration cycle, various modifications exist such as connecting the oil concentrator 26, the lubricating oil tank 25, etc. to the low pressure cycle side or the high pressure cycle side, The configuration is not limited to that shown in FIG.

第2実施形態例
図8は、本発明の第2実施形態としての圧縮式冷凍機1−8の全体概略構成例を示す図である。本圧縮式冷凍機1−8は、図7に示す圧縮式冷凍機1−7と同様、冷媒を封入した2つのクローズドシステムで二重化した冷凍サイクルを備えた圧縮式冷凍機である。本圧縮式冷凍機1−8が図7に示す圧縮式冷凍機1−7と相違する主な点は、蒸発器系からの潤滑油回収を、低圧圧縮機13−1の吸込み部の液溜り部a1−1と高圧圧縮機13−2の吸込み部の液溜り部a1−2からだけとし、即ち液溜り部a1−1と油濃縮器26の間を弁V3-1を備えた配管45−1で接続し、液溜り部a1−2と油濃縮器26の間を弁V3-2を備えた配管45−2で接続し、低圧蒸発器11−1の冷媒からの潤滑油回収を行っていない点である。また、電動機15の冷却を低圧冷凍サイクル側の冷媒で行い、即ち低圧凝縮器17−1からの冷媒をポンプ35により配管36aを通して電動機15に供給し、該電動機15を冷却して蒸気となった冷媒を配管36bを通して低圧凝縮器17−1に戻し、更に潤滑油タンク25の気相部を均圧管31で低圧冷凍サイクル系の低圧エコノマイザ18−1の気相部に接続し、潤滑油タンク25の均圧先を低圧エコノマイザ18−1としている。
[ Second Embodiment ]
FIG. 8 is a diagram illustrating an overall schematic configuration example of a compression refrigerator 1-8 as a second embodiment of the present invention. The compression type refrigerator 1-8 is a compression type refrigerator including a refrigeration cycle duplicated by two closed systems in which a refrigerant is enclosed, like the compression refrigerator 1-7 shown in FIG. The main difference between the compression type refrigerator 1-8 and the compression type refrigerator 1-7 shown in FIG. 7 is that the lubricating oil is recovered from the evaporator system, and the liquid reservoir in the suction portion of the low pressure compressor 13-1. and only the parts a1-1 and suction part of the liquid reservoir portion a1-2 of the high pressure compressor 13-2, i.e. liquid reservoir portion a1-1 a pipe 45 having a valve V 3-1 between the oil concentrator 26 connect -1, between the liquid reservoir portion a1-2 oil concentrator 26 connected by a pipe 45-2 having a valve V 3-2, the lubricating oil collected from the refrigerant of the low pressure evaporator 11 - It is a point that is not done. Further, the electric motor 15 is cooled by the refrigerant on the low-pressure refrigeration cycle side, that is, the refrigerant from the low-pressure condenser 17-1 is supplied to the electric motor 15 through the pipe 36a by the pump 35, and the electric motor 15 is cooled to become steam. The refrigerant is returned to the low pressure condenser 17-1 through the pipe 36b, and the gas phase portion of the lubricating oil tank 25 is connected to the gas phase portion of the low pressure economizer 18-1 of the low pressure refrigeration cycle system by the pressure equalizing pipe 31. The pressure equalization destination is a low-pressure economizer 18-1.

圧縮式冷凍機1−8を上記のように構成した場合は、冷媒は低圧サイクル側が多くなり、高圧サイクル側が不足するので、この冷媒の不均衡を解消するために、低圧蒸発器11−1の膨張弁19b−1の上流側と高圧蒸発器11−2とを弁V16を備えた配管67で接続し、低圧蒸発器11−1と高圧蒸発器11−2の間で液面が略同じになるように調節できるようにしている。なお、液面センサは図示していない。 In the case where the compression refrigerator 1-8 is configured as described above, the refrigerant has more low-pressure cycle side and lacks high-pressure cycle side, so in order to eliminate this refrigerant imbalance, the low-pressure evaporator 11-1 the upstream side of the expansion valve 19b-1 and the high-pressure evaporator 11-2 is connected by a pipe 67 having a valve V 16, the liquid level between the low-pressure evaporator 11-1 and the high-pressure evaporator 11 - substantially the same So that it can be adjusted. The liquid level sensor is not shown.

具体的な油濃縮回収工程を以下に述べる。弁V3-1、弁V3-2を閉じる。弁V8を開き、次いで弁V3-1を所定時間開き、低圧圧縮機13−1の吸込み部の液溜り部a1−1にある冷媒液(潤滑油が混入した冷媒液)を油濃縮器26に移動させ、弁V3-1を閉じる。その後弁V3-2を所定時間開き、高圧圧縮機13−2の吸込み部の液溜り部a1−2にある冷媒液(潤滑油が混入した冷媒液)を油濃縮器26に移動させ、弁V3-2を閉じる。この状態で油濃縮器26内の潤滑油と冷媒の混合した溶液を加熱することにより、冷媒液が蒸発し、潤滑油が濃縮する。 A specific oil concentration recovery process will be described below. Close the valves V 3-1 and V 3-2 . The valve V 8 is opened, then the valve V 3-1 is opened for a predetermined time, and the refrigerant liquid (refrigerant liquid mixed with lubricating oil) in the liquid reservoir a1-1 of the suction part of the low-pressure compressor 13-1 is oil concentrated. Move to 26 and close valve V 3-1 . Thereafter, the valve V 3-2 is opened for a predetermined time, and the refrigerant liquid (refrigerant liquid mixed with lubricating oil) in the liquid reservoir a1-2 of the suction part of the high-pressure compressor 13-2 is moved to the oil concentrator 26. Close V 3-2 . In this state, by heating the mixed solution of the lubricating oil and the refrigerant in the oil concentrator 26, the refrigerant liquid is evaporated and the lubricating oil is concentrated.

蒸発した冷媒は弁V14を開くことにより、冷媒配管21−1aを通って、低圧圧縮機13−1の吸込み部に導かれる。所定時間の経過後に濃縮完了として弁V14を閉じ、油濃縮器26から潤滑油タンク25へ潤滑油が濃縮された溶液の移動工程に移る。この溶液移動は、先ず弁V8を開き、油濃縮器26に低圧凝縮器17−1の冷媒蒸気を配管49を通して導入し、該冷媒蒸気で油濃縮器26内を加圧し、弁V11を開いて、油濃縮器26内の潤滑油濃縮溶液を潤滑油タンク25に移動させ、所定時間後に移動完了として弁V11、弁V8を閉じる。これらの工程を本圧縮式冷凍機1−8の運転中繰り返す。弁V3-1、弁V3-2を開く順番は替わっても差し支えない。また、弁V14を省略し、その役目を弁V3-1に兼用させてもよい。 Evaporated refrigerant by opening the valve V 14, passes through the refrigerant pipe 21-1a, it is guided to the suction portion of the low pressure compressor 13-1. After a predetermined time has passed, the valve V 14 is closed as the completion of concentration, and the process moves to the step of moving the solution in which the lubricating oil is concentrated from the oil concentrator 26 to the lubricating oil tank 25. In this solution movement, first, the valve V 8 is opened, the refrigerant vapor of the low-pressure condenser 17-1 is introduced into the oil concentrator 26 through the pipe 49, the inside of the oil concentrator 26 is pressurized with the refrigerant vapor, and the valve V 11 is open, a lubricating oil concentrate solution in the oil concentrator 26 is moved to the lubricating oil tank 25, the valve V 11 as movement completion after a predetermined time, closing the valve V 8. These steps are repeated during the operation of the present compression refrigerator 1-8. The order in which the valves V 3-1 and V 3-2 are opened may be changed. Further, omitting the valve V 14, it may be also used that act on the valve V 3-1.

第4参考例
図9は本発明の第4参考例としての圧縮式冷凍機1−9の全体概略構成を示す図である。本圧縮式冷凍機1−9は、図5に示す圧縮式冷凍機1−5と同様、潤滑油タンク25が油濃縮器26よりも上にある例である。潤滑油タンク25は圧縮機13と電動機15の間に配置され、増速機22を収納するギアボックス32の下部に設けられている。電動機15は凝縮器圧力或いはエコノマイザ圧力の冷媒で冷却しており(図示省略)、潤滑油タンク25の圧力は蒸発器11の圧力よりも高くなっている。弁V1を閉、弁V3を閉、弁V7を開とし、該油濃縮器26内の圧力をその溶液の移動先である潤滑油タンク25と略同一圧力にすることで、移動に必要なヘッドが位置ヘッドのみとなる。
[ Fourth Reference Example ]
FIG. 9 is a diagram showing an overall schematic configuration of a compression refrigerator 1-9 as a fourth reference example of the present invention. This compression type refrigerator 1-9 is an example in which the lubricating oil tank 25 is above the oil concentrator 26, like the compression refrigerator 1-5 shown in FIG. The lubricating oil tank 25 is disposed between the compressor 13 and the electric motor 15 and is provided below the gear box 32 that houses the speed increaser 22. The electric motor 15 is cooled by a refrigerant having a condenser pressure or an economizer pressure (not shown), and the pressure in the lubricating oil tank 25 is higher than the pressure in the evaporator 11. The valve V 1 is closed, the valve V 3 is closed, the valve V 7 is opened, and the pressure in the oil concentrator 26 is made substantially the same as that of the lubricating oil tank 25 to which the solution is moved. The only necessary head is the position head.

弁V3を開き圧縮機13の液溜り部a1の冷媒を含む潤滑油を油濃縮器26内に導入し、更に弁V9を開いて蒸発器11の潤滑油を含む冷媒液を油濃縮器26内に導入する。その後弁V9を閉、V1を開、弁V7を閉として、加熱手段60で油濃縮器26内の冷媒液(潤滑油と冷媒液の混合溶液)を加熱し、冷媒液を蒸発させて潤滑油を濃縮する。なお、蒸発した冷媒蒸気は弁V1及び配管46を通って、圧縮機13の吸込み部に追い出される。濃縮完了後は、弁V1を閉じることにより、油濃縮器26内に蒸発した冷媒蒸気が溜まるので、油濃縮器26の内圧が上昇していく。この内圧が所定の圧力に達したら、弁V11を開くことにより、油濃縮器26内の濃縮した潤滑油濃縮液をこの内圧により潤滑油タンク25に圧送する。なお、潤滑油の濃縮検知は、上記のように液面センサによる液位検知、溶液の温度検知、加熱濃縮開始からの時間の経過等により行う。 The valve V 3 is opened and the lubricating oil containing the refrigerant in the liquid reservoir a1 of the compressor 13 is introduced into the oil concentrator 26. The valve V 9 is further opened to supply the refrigerant liquid containing the lubricating oil in the evaporator 11 to the oil concentrator. 26. Then valve V 9 closed, the V 1 open, the valve V 7 is closed, the refrigerant liquid in the oil concentrator 26 (mixed solution of lubricating oil and refrigerant liquid) heated by the heating means 60, evaporating the refrigerant liquid To concentrate the lubricant. The evaporated refrigerant vapor is expelled to the suction portion of the compressor 13 through the valve V 1 and the pipe 46. After concentration is completed, by closing valve V 1, the refrigerant vapor evaporated in the oil concentrator 26 is accumulated, the inner pressure of the oil concentrator 26 rises. When this internal pressure reaches a predetermined pressure, the concentrated lubricating oil concentrate in the oil concentrator 26 is pumped to the lubricating oil tank 25 by this internal pressure by opening the valve V 11 . In addition, the concentration detection of the lubricating oil is performed by detecting the liquid level by the liquid level sensor, detecting the temperature of the solution, elapse of time from the start of heating concentration, and the like as described above.

第5参考例
図10は本発明の第5参考例としての圧縮式冷凍機1−10の全体概略構成を示す図である。本圧縮式冷凍機1−10は、図9に示す圧縮式冷凍機1−9に移送用タンク55を設け、三方弁である弁V11'を操作して油濃縮器26の溶液を移送用タンク55に移動させるようにした例である。弁V3を閉、三方弁V4の操作により配管63を油濃縮器26の気相部に連通させることにより、該油濃縮器26をその溶液の移動先である潤滑油タンク25と略同一圧力にすることで、移動に必要なヘッドが位置ヘッドのみとなる。
[ Fifth Reference Example ]
FIG. 10 is a diagram showing an overall schematic configuration of a compression refrigerator 1-10 as a fifth reference example of the present invention. The compression refrigerator 1-10 is provided with a transfer tank 55 in the compression refrigerator 1-9 shown in FIG. 9, and operates the valve V 11 ′, which is a three-way valve, for transferring the solution in the oil concentrator 26. In this example, the tank 55 is moved. By closing the valve V 3 and operating the three-way valve V 4 to connect the pipe 63 to the gas phase part of the oil concentrator 26, the oil concentrator 26 is substantially the same as the lubricating oil tank 25 to which the solution is moved. By setting the pressure, only the position head is required for movement.

弁V3を開き、圧縮機13の液溜り部a1の冷媒を含む潤滑油を油濃縮器26内に導入し、更に弁V9を開いて蒸発器11の潤滑油を含む冷媒液を油濃縮器26内に導入する。その後弁V3を閉じて、加熱手段60で油濃縮器26内の冷媒液を加熱して潤滑油を濃縮する。濃縮完了後は、三方弁V4により、油濃縮器26の気相部と配管63の連通を遮断すると油濃縮器26内に蒸発した冷媒蒸気が溜まるので、油濃縮器26の内圧が上昇していく。この内圧が所定の圧力に達したら、三方弁V11’により配管66と油濃縮器26内の液層部を連通させることにより、濃縮した潤滑油濃縮液をこの内圧により配管66を通して潤滑油タンク25に圧送する。なお、潤滑油の濃縮検知は、上記のように液面センサによる液位検知、溶液の温度検知、加熱濃縮開始からの時間の経過等により行う。 The valve V 3 is opened, the lubricating oil containing the refrigerant in the liquid reservoir a 1 of the compressor 13 is introduced into the oil concentrator 26, and the valve V 9 is opened to concentrate the refrigerant liquid containing the lubricating oil in the evaporator 11. It is introduced into the vessel 26. Thereafter, the valve V 3 is closed, and the refrigerant liquid in the oil concentrator 26 is heated by the heating means 60 to concentrate the lubricating oil. After completion of the concentration, if the communication between the gas phase portion of the oil concentrator 26 and the pipe 63 is blocked by the three-way valve V 4 , the evaporated refrigerant vapor accumulates in the oil concentrator 26, so that the internal pressure of the oil concentrator 26 increases. To go. When the internal pressure reaches a predetermined pressure, the three-way valve V 11 ′ communicates the pipe 66 with the liquid layer portion in the oil concentrator 26, thereby concentrating the concentrated lubricating oil concentrate through the pipe 66 by this internal pressure. Pump to 25. In addition, the concentration detection of the lubricating oil is performed by detecting the liquid level by the liquid level sensor, detecting the temperature of the solution, elapse of time from the start of heating concentration, and the like as described above.

上記各実施形態例及び参考例の圧縮式冷凍機において、回収対象となる潤滑油が存在する場所(A)(図18、図19を参照)から、油濃縮器26に移し(位置ヘッドによるが、圧力差があってもよい)、油濃縮器26で蒸発した冷媒蒸気を蒸発系(蒸発器11或いは圧縮機13の吸込み部)に導く。潤滑油タンク25の均圧先は(B)は蒸発器11或いはエコノマイザ18(図18、図19を参照)とし、油濃縮器26内に圧力源(C)凝縮器17或いはエコノマイザ18(図18、図19を参照)の圧力を印加して、該油濃縮器26内で濃縮した潤滑油濃度の高い潤滑油濃縮溶液を潤滑油タンク25に移動させる。ここに、上記(A)、(B)、(C)は下記の通りである。
In the compression refrigerator of each of the above embodiments and reference examples , the oil is transferred from the place (A) (see FIGS. 18 and 19) where the lubricating oil to be collected exists to the oil concentrator 26 (depending on the position head). The refrigerant vapor evaporated by the oil concentrator 26 is guided to an evaporation system (evaporator 11 or a suction portion of the compressor 13). The pressure equalization destination of the lubricating oil tank 25 is (B) the evaporator 11 or the economizer 18 (see FIGS. 18 and 19), and the pressure source (C) condenser 17 or the economizer 18 (see FIG. 18) in the oil concentrator 26. 19 (see FIG. 19), and the lubricating oil concentrated solution having a high lubricating oil concentration concentrated in the oil concentrator 26 is moved to the lubricating oil tank 25. Here, (A), (B), and (C) are as follows.

(A):回収対象となる潤滑油の混入した冷媒が存在する場所(機器)は、蒸発器11及び圧縮機13の吸込み部の液溜り部a1である(但し、蒸発器11における気液分離が充分になされ、蒸発器11から圧縮機13に冷媒ミストが飛ばない場合には、圧縮機13の吸込み部の液溜り部a1には潤滑油の混入した冷媒は溜まらない)。
(B):潤滑油タンク25の均圧先は、蒸発系統(蒸発器11或いは圧縮機13の吸込み部)或いはエコノマイザ18である。
(C):油濃縮器26の油と冷媒が混合する溶液に圧力を加えて潤滑油タンク25に移動させる際の圧力源は、凝縮器17或いはエコノマイザ18(但し、潤滑油タンク25の均圧先が蒸発器11の場合)である。
(A): The place (apparatus) where the refrigerant mixed with the lubricating oil to be collected exists is the liquid reservoir a1 of the suction portion of the evaporator 11 and the compressor 13 (however, gas-liquid separation in the evaporator 11) If the refrigerant mist does not fly from the evaporator 11 to the compressor 13, the refrigerant mixed with lubricating oil does not accumulate in the liquid reservoir a <b> 1 of the suction portion of the compressor 13).
(B): The pressure equalization destination of the lubricating oil tank 25 is the evaporation system (the evaporator 11 or the suction portion of the compressor 13) or the economizer 18.
(C): Pressure is applied to the solution mixed with oil and refrigerant in the oil concentrator 26 and moved to the lubricating oil tank 25. The pressure source is the condenser 17 or the economizer 18 (however, the pressure equalization of the lubricating oil tank 25) This is the case of the evaporator 11).

図18は均圧先(B)が蒸発器の場合の基本的な組合せ例を示し、図19は均圧先(B)がエコノマイザの場合の基本的な組合せ例を示す。図18及び図19において、「吸込液溜」とは、圧縮機13の吸込み部の液溜り部a1の略称である。図示するように、均圧先(B)が蒸発器の場合はケース1〜ケース6の組み合わせがあり、均圧先(B)の場合はケース7〜ケース9の組み合わせがある。   FIG. 18 shows a basic combination example when the pressure equalization tip (B) is an evaporator, and FIG. 19 shows a basic combination example when the pressure equalization tip (B) is an economizer. In FIG. 18 and FIG. 19, “suction liquid reservoir” is an abbreviation for the liquid reservoir a <b> 1 of the suction portion of the compressor 13. As shown in the figure, when the pressure equalization tip (B) is an evaporator, there is a combination of case 1 to case 6, and when the pressure equalization tip (B) is, there is a combination of case 7 to case 9.

回収対象となる潤滑油の混入した冷媒液が存在する場所(A)(蒸発器11、液溜り部a1、)と油濃縮器26を接続する配管、油濃縮器26で蒸発した冷媒蒸気を蒸発系統(蒸発器11から液溜り部a1)に導く配管、油濃縮器26の潤滑油の濃縮された溶液を潤滑油タンク25に導く配管、及び油濃縮器26に圧力源(凝縮器17、エコノマイザ18)の圧力を導く配管にそれぞれ弁を設け、該弁の操作でこれらの配管のON/OFFを行っている。但し、これらの開閉弁は全て必要なものではない。また、例えば、液溜り部a1と油濃縮器26を接続する配管に設けられた弁V3と圧縮機13の吸込み部と油濃縮器26を接続する配管に設けられたV10を兼用させること(図1参照)や、油濃縮器26の溶液を潤滑油タンク25に送る配管に設けた弁V11を逆止弁V13とすること(図2参照)もできる。 The location (A) where the refrigerant liquid mixed with the lubricating oil to be collected exists (evaporator 11, liquid reservoir a1,) and the pipe connecting the oil concentrator 26, evaporating the refrigerant vapor evaporated in the oil concentrator 26 A pipe leading to the system (from the evaporator 11 to the liquid reservoir a1), a pipe leading the concentrated solution of the lubricating oil in the oil concentrator 26 to the lubricating oil tank 25, and a pressure source (condenser 17, economizer) to the oil concentrator 26 18) Valves are respectively provided in the pipes for guiding the pressure, and these pipes are turned ON / OFF by operating the valves. However, these on-off valves are not all necessary. Further, for example, the valve V 3 provided in the pipe connecting the liquid reservoir part a 1 and the oil concentrator 26 and the V 10 provided in the pipe connecting the suction part of the compressor 13 and the oil concentrator 26 are combined. (Refer to FIG. 1) Alternatively, the valve V 11 provided in the pipe for sending the solution of the oil concentrator 26 to the lubricating oil tank 25 may be a check valve V 13 (see FIG. 2).

潤滑油回収工程でON/OFFされる弁の代表例を下記に示す。
(1)油濃縮器26の加圧を止め(弁V8:閉)、油濃縮器26から潤滑油タンク25への溶液の移動を止めた(弁V11:閉)状態で、油濃縮器26を蒸発器11の圧力レベルに均圧(弁V10,V14,V20:開)させ、蒸発器11或いは圧縮機13の吸込み部と油濃縮器26の間を連通(弁V9:開、弁V3:開)させて、油濃縮器26に潤滑油を含む冷媒を導入する。
(2)油濃縮器26への溶液の導入を止め(弁V9:閉、弁V3:閉)他の弁は(1)の状態を保ち(弁V10,V14,V20:開、弁V11:閉、弁V8:閉)、該油濃縮器26内の冷媒を蒸発させ、潤滑油を濃縮する。(圧縮機13の吸込み部の液溜り部a1に溜まるミストが少ない場合、弁V3は開いたままとする場合もある。)
The following are typical examples of valves that are turned ON / OFF in the lubricant recovery process.
(1) Pressurization of the oil concentrator 26 is stopped (valve V 8 : closed), and movement of the solution from the oil concentrator 26 to the lubricating oil tank 25 is stopped (valve V 11 : closed). 26 is equalized to the pressure level of the evaporator 11 (valves V 10 , V 14 , V 20 : opened), and the suction portion of the evaporator 11 or the compressor 13 and the oil concentrator 26 are communicated (valve V 9 : The valve V 3 is opened), and the refrigerant containing lubricating oil is introduced into the oil concentrator 26.
(2) Stop the introduction of the solution into the oil concentrator 26 (valve V 9 : closed, valve V 3 : closed) and other valves maintain the state of (1) (valves V 10 , V 14 , V 20 : open) , Valve V 11 : closed, valve V 8 : closed), the refrigerant in the oil concentrator 26 is evaporated and the lubricating oil is concentrated. (If mist accumulated in the suction portion of the liquid reservoir portion a1 of the compressor 13 is small, it may be left valve V 3 is opened.)

(3)潤滑油の濃縮完了後、油濃縮器26から蒸発器圧力レベルに蒸発した冷媒蒸気を導く配管を遮断(弁V20:閉)し、加圧源である凝縮器17からの冷媒蒸気の導入(弁V8:開)を開始する。加圧とほぼ同時に弁V11を開くこともある。(なお、(2)で弁V9が開の場合、(3)では弁V10,V14,V20と共に閉じる。)
(4)油濃縮器26の気相部を加圧しながら(弁V8:開)、該油濃縮器26の溶液を潤滑油タンク25内に移動(弁V11:開)する。
(5)油濃縮器26内の溶液移動を完了(弁V11:閉)させ、加圧を止め(弁V8:閉)た後、弁V10,V14,V20を開き(1)に戻る。
以上まとめたものを図20に示す。
(3) After completion of the concentration of the lubricating oil, the piping for leading the refrigerant vapor evaporated from the oil concentrator 26 to the evaporator pressure level is shut off (valve V 20 : closed), and the refrigerant vapor from the condenser 17 as the pressurizing source Is started (valve V 8 : open). Pressure and also substantially simultaneously opening valve V 11. (Note that (if the valve V 9 is opened in 2), (3) in closed together with the valve V 10, V 14, V 20 .)
(4) While pressurizing the gas phase part of the oil concentrator 26 (valve V 8 : open), the solution in the oil concentrator 26 is moved into the lubricating oil tank 25 (valve V 11 : open).
(5) After the solution transfer in the oil concentrator 26 is completed (valve V 11 : closed), pressurization is stopped (valve V 8 : closed), and then the valves V 10 , V 14 and V 20 are opened (1) Return to.
A summary of the above is shown in FIG.

油濃縮器26を蒸発器圧力レベルにして、油濃縮器26内の溶液(冷媒液と潤滑油の混合溶液)を加熱することで、冷媒が蒸発して潤滑油濃度が上昇する。この加熱濃縮に使用する熱源は、下記のようにいろいろな熱源が適用できる。但し、温度の高い熱源の方が潤滑油濃度を高くすることができる。例えば、図17からわかるように、油濃縮器26の露点を5℃とすると、混合溶液を16℃まで上げれば冷媒濃度20%(潤滑油濃度80%)が得られ、混合溶液を33℃まで昇温すれば冷媒濃度10%(潤滑油濃度90%)が得られ、混合溶液を56℃まで昇温すれば冷媒濃度5%(潤滑油濃度95%)が得られる。   By bringing the oil concentrator 26 to the evaporator pressure level and heating the solution in the oil concentrator 26 (mixed solution of refrigerant liquid and lubricating oil), the refrigerant evaporates and the lubricating oil concentration increases. Various heat sources can be applied as the heat source used for the heat concentration as follows. However, the higher the temperature of the heat source, the higher the lubricating oil concentration can be. For example, as can be seen from FIG. 17, when the dew point of the oil concentrator 26 is 5 ° C., a refrigerant concentration of 20% (lubricating oil concentration of 80%) can be obtained by raising the mixed solution to 16 ° C. When the temperature is raised, a refrigerant concentration of 10% (lubricating oil concentration of 90%) is obtained, and when the mixed solution is heated to 56 ° C., a refrigerant concentration of 5% (lubricating oil concentration of 95%) is obtained.

(a)油濃縮器26内の溶液を凝縮器17からの冷媒で加熱し、その後冷媒を蒸発器11に戻す例が、図1に示す圧縮式冷凍機1−1である(ここで導く冷媒は、冷媒液でも冷媒蒸気でもよい)。
(b)油濃縮器26内の溶液を凝縮器17からの冷媒で加熱し、その後エコノマイザ18に戻す(ここで導く冷媒は、冷媒液でも冷媒蒸気でも気液二相でもよい。また、溶液を加熱した後の冷媒の戻し先を蒸発器11としてもよい)。
同様の温度レベルの加熱源として、
・凝縮器17の冷却水102で加熱する。
・蒸発器11の入口側に流入の冷水で加熱する。
(c)エコノマイザ18からの冷媒で加熱し、その後蒸発器11に戻す。
(d)軸受23等に供給する潤滑油で加熱する。
(e)電気ヒータ24で加熱する。
(f)外気で(特別に、熱交換器などを設けない)、油濃縮器26内の冷媒を蒸発器圧力レベル下に長時間曝して濃縮することもできるが、この場合は外気が熱源となっている。
(A) An example in which the solution in the oil concentrator 26 is heated with the refrigerant from the condenser 17 and then the refrigerant is returned to the evaporator 11 is the compression type refrigerator 1-1 shown in FIG. May be refrigerant liquid or refrigerant vapor).
(B) The solution in the oil concentrator 26 is heated with the refrigerant from the condenser 17 and then returned to the economizer 18 (the refrigerant introduced here may be refrigerant liquid, refrigerant vapor, or gas-liquid two-phase. The return destination of the refrigerant after heating may be the evaporator 11).
As a heating source of similar temperature level,
Heat with the cooling water 102 of the condenser 17.
Heat to the inlet side of the evaporator 11 with inflowing cold water.
(C) Heat with the refrigerant from the economizer 18 and then return to the evaporator 11.
(D) Heat with lubricating oil supplied to the bearing 23 and the like.
(E) Heat with the electric heater 24.
(F) The refrigerant in the oil concentrator 26 can be concentrated by being exposed to the evaporator pressure level for a long time with outside air (no special heat exchanger or the like is provided). It has become.

気相部が低圧側(蒸発器11或いは圧縮機13の吸込み部)に配管で接続された油濃縮器26の潤滑油の濃度は、例えば、冷媒露点(或いは蒸気圧力)と潤滑油と冷媒の混合溶液の温度との関係から算出できる。通常、蒸発器11の温度はほぼ一定であるので、溶液温度から概略温度を知ることができる。ただし、この方法では起動時で冷媒温度が下がりきっていないときを考慮する必要がある。例えば、起動後の数分は濃度判断をしないなど。また、油濃縮器26の液面センサ41で濃縮倍率を知ることもできる。蒸発器11からの潤滑油を含む冷媒の移動量を高位の液面レベルで管理し、濃縮完了(濃縮倍率到達)を中位液面レベル(或いは低位液面レベル)で管理することもできる。濃度を正確に検知しなくとも、低圧状態に曝している時間で、概略の濃縮管理をすることもできる。   The concentration of the lubricating oil in the oil concentrator 26 in which the gas phase portion is connected to the low pressure side (the evaporator 11 or the suction portion of the compressor 13) by piping is, for example, the refrigerant dew point (or vapor pressure), the lubricating oil and the refrigerant It can be calculated from the relationship with the temperature of the mixed solution. Usually, since the temperature of the evaporator 11 is substantially constant, the approximate temperature can be known from the solution temperature. However, in this method, it is necessary to consider the case where the refrigerant temperature has not fallen completely at the time of startup. For example, the concentration is not judged for several minutes after activation. Further, the concentration magnification can be known by the liquid level sensor 41 of the oil concentrator 26. It is also possible to manage the movement amount of the refrigerant containing the lubricating oil from the evaporator 11 at a high liquid level and manage the completion of concentration (concentration magnification reached) at a medium liquid level (or a low liquid level). Even if the concentration is not accurately detected, the rough concentration management can be performed during the time of exposure to the low pressure state.

油濃縮器26から潤滑油タンク25への潤滑油濃縮溶液の移動は、移動元である油濃縮器26と移動先である潤滑油タンク25の圧力差を利用して移動することができる。油濃縮器26の低位液面レベルを液面センサ41で検知して、移動完了を検知してもよいし、また移動開始からの経過時間で移動完了を推定してもよい。なお、経過時間で管理する場合は、フロート弁などを利用して吹き抜けを防止してもよい。   The lubricating oil concentrated solution can be moved from the oil concentrator 26 to the lubricating oil tank 25 using the pressure difference between the oil concentrator 26 that is the moving source and the lubricating oil tank 25 that is the moving destination. The lower liquid level of the oil concentrator 26 may be detected by the liquid level sensor 41 to detect the completion of movement, or the completion of movement may be estimated from the elapsed time from the start of movement. In addition, when managing by elapsed time, you may prevent a blow-through using a float valve etc.

第6参考例
図1に示す構成の圧縮式冷凍機1−1において、蒸発系統(蒸発器11、圧縮機13の吸込み部の液溜り部a1)から油濃縮器26への冷媒(潤滑油を含有する)の移送は、弁V10を開いた状態で、弁V9を開き、弁V3を開いて行う。この際、弁V11は閉じた状態としておく。油濃縮器26への溶液(潤滑油を含む冷媒液)の移送完了は液面センサ41が所定の高位の液面を検知し、溶液の移送完了により弁V9、弁V3を閉じる。この状態で油濃縮器26内の溶液が加熱され、冷媒は蒸気となって弁V10を通って圧縮機13の吸込み部に追い出され、冷媒の少なくなった溶液、即ち潤滑油濃度の濃い潤滑油濃縮溶液になる。油濃縮器26内の冷媒が減少し、液面センサ41が所定の中位液面を検知することで潤滑油が濃縮されたことを検知する。また、溶液の温度で潤滑油濃度を検知することとし、油濃縮器26内の溶液の温度が所定温度に昇温したことを検知することにより、濃縮完了としてもよい。また、溶液の加熱開始からの経過時間で潤滑油の濃縮度合いを推定してもよい。
[ Sixth Reference Example ]
In the compression refrigerator 1-1 having the configuration shown in FIG. 1, the refrigerant (containing lubricating oil) from the evaporation system (evaporator 11, liquid reservoir a <b> 1 of the suction portion of the compressor 13) to the oil concentrator 26 is contained. The transfer is performed with the valve V 10 opened, the valve V 9 opened, and the valve V 3 opened. At this time, the valve V 11 is kept closed. When the transfer of the solution (refrigerant liquid including lubricating oil) to the oil concentrator 26 is completed, the liquid level sensor 41 detects a predetermined high liquid level, and the valves V 9 and V 3 are closed when the transfer of the solution is completed. In this state, the solution in the oil concentrator 26 is heated, and the refrigerant becomes vapor and is expelled through the valve V 10 to the suction portion of the compressor 13, so that the solution with reduced refrigerant, that is, lubrication with a high lubricating oil concentration. Become oil concentrated solution. The refrigerant in the oil concentrator 26 decreases, and the liquid level sensor 41 detects a predetermined middle liquid level to detect that the lubricating oil has been concentrated. Alternatively, the concentration of the lubricating oil may be detected based on the temperature of the solution, and the concentration may be completed by detecting that the temperature of the solution in the oil concentrator 26 has risen to a predetermined temperature. Further, the degree of concentration of the lubricating oil may be estimated from the elapsed time from the start of heating of the solution.

濃縮操作完了後、弁V10を閉じることで、油濃縮器26内に蒸発した冷媒蒸気が溜まるので、油濃縮器26の内圧が上昇していく。所定の圧力又は温度に到達したら、油濃縮器26と潤滑油タンク25を接続する配管28に設けられた弁V11を開くことにより、油濃縮器26内の圧力により内部の潤滑油濃度の濃くなった潤滑油濃縮溶液は潤滑油タンク25内に移動する。また、溶液の潤滑油タンク25への移送完了は、液面センサ41で所定の低位液面を検知を検知することにより検知し、移動完了になったら弁V11を閉じる。溶液の潤滑油タンク25への移動完了は、弁V11を開いている時間で制御してもよい(一定体積を移動するのに必要な時間或いはこれよりも少し長い時間の間、弁V11を開とする)。油濃縮器26から潤滑油タンク25への溶液移動完了後は、弁V10を開いて、最初の蒸発系統から油濃縮器26への冷媒移送工程に戻る。このように、加熱により上昇した内圧を利用して、溶液を潤滑油タンク25に移動することもできるので、配管49及び弁V8を省略することもできる。 After concentration operations to complete by closing the valve V 10, the refrigerant vapor evaporated in the oil concentrator 26 is accumulated, the inner pressure of the oil concentrator 26 rises. When the predetermined pressure or temperature is reached, the valve V 11 provided in the pipe 28 connecting the oil concentrator 26 and the lubricating oil tank 25 is opened, so that the internal lubricating oil concentration is increased by the pressure in the oil concentrator 26. The resulting concentrated lubricating oil solution moves into the lubricating oil tank 25. Further, the transfer completion to the lubricating oil tank 25 of the solution is detected by detecting detects a predetermined low liquid level in the liquid level sensor 41, closing the valve V 11 Once turned movement completion. Completion of the transfer of the solution to the lubricating oil tank 25 may be controlled by the time when the valve V 11 is open (for the time required to move a certain volume or for a little longer than this, the valve V 11 Is open). After the solution completion of the movement from the oil concentrator 26 to the lubricating oil tank 25 by opening the valve V 10, returns to the refrigerant transfer process from the first evaporation system to the oil concentrator 26. Thus, by utilizing the increased internal pressure by heating, since the solution can also be moved to the lubricating oil tank 25 may be omitted piping 49 and the valve V 8.

圧縮機13の吸込み部の液溜り部a1に溜まった液(冷媒液と潤滑油が混合した混合溶液)は、前述のように、蒸発器系から油濃縮器26への冷媒移送工程の時に、液溜り部a1から油濃縮器26を接続する配管45に設けられた弁V3を開いて、油濃縮器26に移動させている。弁V10は前記液溜り部a1からの潤滑油を含有する冷媒が移動する移動工程中は開いている。これら弁V3と弁V10の両機能を兼用させる弁として破線で示す弁V10’で代用してよい。弁V10’の動作は弁V10と同じにする。なお、ここでは潤滑油タンク25を均圧管31でエコノマイザ18に均圧させているが、図2の破線で示すように、均圧管31’を蒸発系統に接続し、蒸発系統に均圧させてもよい(この場合、エコノマイザへの均圧はしない)。 The liquid (mixed solution in which the refrigerant liquid and the lubricating oil are mixed) accumulated in the liquid reservoir a1 of the suction section of the compressor 13 is, as described above, in the refrigerant transfer process from the evaporator system to the oil concentrator 26. The valve V 3 provided in the pipe 45 connecting the oil concentrator 26 from the liquid reservoir a 1 is opened and moved to the oil concentrator 26. The valve V 10 is moving step refrigerant containing lubricating oil from the liquid reservoir a1 moves open. A valve V 10 ′ indicated by a broken line may be substituted for the valve V 3 and the valve V 10 . Operation of the valve V 10 'is the same as the valve V 10. Here, although the lubricating oil tank 25 is pressure-equalized by the economizer 18 by the pressure equalizing pipe 31, the pressure equalizing pipe 31 'is connected to the evaporation system as shown by the broken line in FIG. (In this case, pressure equalization to the economizer is not performed).

図11は、本発明の第6参考例としての圧縮式冷凍機1−11の全体概略構成を示す図である。本圧縮式冷凍機1−11は、圧縮機13を二段圧縮機とし、凝縮器17と蒸発器11を接続する冷媒配管にエコノマイザ18を設け、即ち凝縮器17とエコノマイザ18を冷媒配管21cで接続し、エコノマイザ18と蒸発器11を冷媒配管21dで接続し、更に潤滑油タンク25の気相部とエコノマイザ18の気相部を均圧管31で接続し、潤滑油タンク25の圧力をエコノマイザ18に均圧している。
FIG. 11 is a diagram showing an overall schematic configuration of a compression refrigerator 1-11 as a sixth reference example of the present invention. In the present compression refrigeration machine 1-11, the compressor 13 is a two-stage compressor, and an economizer 18 is provided in a refrigerant pipe connecting the condenser 17 and the evaporator 11, that is, the condenser 17 and the economizer 18 are connected by a refrigerant pipe 21c. The economizer 18 and the evaporator 11 are connected by the refrigerant pipe 21d, and the gas phase portion of the lubricating oil tank 25 and the gas phase portion of the economizer 18 are connected by the pressure equalizing pipe 31, and the pressure in the lubricating oil tank 25 is controlled by the economizer 18. The pressure is even.

潤滑油タンク25の下部に油ポンプ27を接続し、潤滑油タンク25内の潤滑油と冷媒液の混合した溶液を潤滑油供給配管29aを通して軸受23、23に送り、軸受室70(図16参照)からの潤滑油戻り配管29bを通して潤滑油タンク25に戻している。また、潤滑油タンク25の気相部の冷媒蒸気は均圧管31を通してエコノマイザ18の上部(気相部)に導入される。   An oil pump 27 is connected to the lower portion of the lubricating oil tank 25, and a mixed solution of the lubricating oil and the refrigerant liquid in the lubricating oil tank 25 is sent to the bearings 23 and 23 through the lubricating oil supply pipe 29a, and the bearing chamber 70 (see FIG. 16). ) To the lubricating oil tank 25 through the lubricating oil return pipe 29b. Further, the refrigerant vapor in the gas phase portion of the lubricating oil tank 25 is introduced into the upper portion (gas phase portion) of the economizer 18 through the pressure equalizing pipe 31.

なお、冷媒配管21cから分岐して電動機15に向う配管36aにはポンプ35が設けられ、該ポンプ35の下流側で配管36aから分岐した配管34aは潤滑油タンク25内に配設された油冷却器(熱交換器)33に接続されている。ポンプ35を起動すれば、凝縮器17の出口から冷媒配管21cに輩出された冷媒の一部は、油冷却器33と電動機13に供給され、両者を冷却した後、冷媒蒸気となって配管34bを通って凝縮器17の入口側に戻される構成となっている。電動機15に供給された冷媒液は電動機15を冷却した後、蒸気となって配管36bを通って凝縮器17に戻され、蒸発しきれなかった冷媒はロータ室(図16参照)に戻され、蒸発しきれなかった冷媒はロータ室15bの下部から配管36cを通って冷媒配管21cに戻される。   Note that a pump 35 is provided in a pipe 36 a branched from the refrigerant pipe 21 c and directed to the electric motor 15, and a pipe 34 a branched from the pipe 36 a on the downstream side of the pump 35 is an oil cooling unit disposed in the lubricating oil tank 25. Connected to a heat exchanger (heat exchanger) 33. If the pump 35 is started, a part of the refrigerant produced from the outlet of the condenser 17 to the refrigerant pipe 21c is supplied to the oil cooler 33 and the electric motor 13, and after both are cooled, it becomes refrigerant vapor and the pipe 34b. It is configured to pass back to the inlet side of the condenser 17. The refrigerant liquid supplied to the electric motor 15 cools the electric motor 15 and then becomes vapor and is returned to the condenser 17 through the pipe 36b. The refrigerant that has not been evaporated is returned to the rotor chamber (see FIG. 16). The refrigerant that has not been evaporated is returned from the lower part of the rotor chamber 15b to the refrigerant pipe 21c through the pipe 36c.

一方、潤滑油は、潤滑油タンク25内の油冷却器33にて、凝縮器17からの冷媒液で冷却され、冷媒液は蒸発して配管34bを通って凝縮器17に戻り、冷却熱量を凝縮器17(冷却水)に放出する。なお、油冷却器33は潤滑油タンク25内でなく、油ポンプ27の出口に接続して潤滑油供給配管29aに設けてもよい。更に、冷媒系から油潤滑系に冷媒が入り込む場合、例えば、電動機15を冷却した冷媒が軸受室70(図16参照)に入り込むような場合、潤滑油タンク25内で潤滑油から冷媒が蒸発して、潤滑油が冷却されることになり、その冷却が充分であれば、油冷却器33を省略することもできる。なお、潤滑油タンク25には電気ヒータ24を設け、圧縮式冷凍機1−11の停止中に、該電気ヒータ24にて油温度を所定値に保って冷媒を吸収しないようにして、潤滑油中の冷媒濃度を低く保持している。   On the other hand, the lubricating oil is cooled by the refrigerant liquid from the condenser 17 in the oil cooler 33 in the lubricating oil tank 25. The refrigerant liquid evaporates and returns to the condenser 17 through the pipe 34b, and the amount of cooling heat is increased. It discharges to the condenser 17 (cooling water). Note that the oil cooler 33 may be provided not in the lubricating oil tank 25 but in the lubricating oil supply pipe 29a by connecting to the outlet of the oil pump 27. Furthermore, when the refrigerant enters the oil lubrication system from the refrigerant system, for example, when the refrigerant that has cooled the electric motor 15 enters the bearing chamber 70 (see FIG. 16), the refrigerant evaporates from the lubricating oil in the lubricating oil tank 25. If the lubricating oil is cooled and the cooling is sufficient, the oil cooler 33 can be omitted. The lubricating oil tank 25 is provided with an electric heater 24, and while the compression refrigerator 1-11 is stopped, the electric heater 24 keeps the oil temperature at a predetermined value so as not to absorb the refrigerant. The refrigerant concentration inside is kept low.

ここで、油濃縮器26と潤滑油タンク25は、本圧縮式冷凍機1−11の油回収手段を構成している。油濃縮器26の内部には加熱手段60を備え、凝縮器17から蒸発器11に向う配管62を通して凝縮冷媒液を導き、潤滑油と冷媒液の混合溶液を加熱して潤滑油濃度を上げるようになっている。油濃縮器26と潤滑油タンク25は逆止弁V13を備えた配管28で接続され、潤滑油タンク25の気相部はエコノマイザ18の気相部に均圧管31で接続されている。蒸発器11内の油を含有している冷媒液、圧縮機13の吸込み部の液溜り部a1の潤滑油と冷媒液の混合溶液を、油濃縮器26に導入し、加熱手段60で加熱することにより、油濃縮器26内の溶液は潤滑油が濃縮された潤滑油濃縮溶液となり、この潤滑油濃縮溶液を潤滑油タンク25に移動させて冷媒中の潤滑油を回収する。 Here, the oil concentrator 26 and the lubricating oil tank 25 constitute oil recovery means of the compression refrigeration machine 1-11. The oil concentrator 26 is provided with heating means 60, and the condensed refrigerant liquid is guided through the pipe 62 from the condenser 17 to the evaporator 11, and the mixed solution of the lubricating oil and the refrigerant liquid is heated to increase the lubricating oil concentration. It has become. The oil concentrator 26 and the lubricating oil tank 25 are connected by a pipe 28 having a check valve V 13, and the gas phase portion of the lubricating oil tank 25 is connected to the gas phase portion of the economizer 18 by a pressure equalizing pipe 31. The refrigerant liquid containing the oil in the evaporator 11 and the mixed solution of the lubricating oil and the refrigerant liquid in the liquid reservoir a1 of the suction part of the compressor 13 are introduced into the oil concentrator 26 and heated by the heating means 60. Accordingly, the solution in the oil concentrator 26 becomes a lubricating oil concentrated solution in which the lubricating oil is concentrated, and the lubricating oil concentrated solution is moved to the lubricating oil tank 25 to recover the lubricating oil in the refrigerant.

蒸発系統(蒸発器11、圧縮機13の吸い込み部液溜り部a1)からの油濃縮器26への冷媒液(潤滑油と冷媒液の混合溶液)の移送は、弁V10’を開き、弁V9を開くことにより行う。油濃縮器26への冷媒液移動の完了は液面センサ41で所定の高位液位を検知することで検知し、弁V9及び弁V10’を閉じる。この状態で、加熱手段60により油濃縮器26内の潤滑油と冷媒液の混合溶液を加熱する。この加熱により冷媒は蒸気となって弁V10’を通って圧縮機の吸込部に追い出され、冷媒の少なくなった溶液、即ち潤滑油濃度の濃い潤滑油濃縮溶液となる。なお、潤滑油が濃縮検知は、上記のように液面センサによる液位検知、溶液の温度検知、加熱濃縮開始からの時間の経過等により行う。 Transfer of the evaporation system (a mixed solution of the lubricating oil and refrigerant liquid) refrigerant liquid into the oil concentrator 26 from (the evaporator 11, the suction unit liquid reservoir a1 of the compressor 13) opens the valve V 10 ', the valve carried out by opening the V 9. Completion of the refrigerant fluid movement into the oil concentrator 26 detects by detecting a predetermined high liquid level in the liquid level sensor 41, closing the valve V 9 and the valve V 10 '. In this state, the mixed solution of the lubricating oil and the refrigerant liquid in the oil concentrator 26 is heated by the heating means 60. By this heating, the refrigerant becomes vapor and is expelled through the valve V 10 ′ to the suction portion of the compressor, and becomes a solution with a reduced amount of refrigerant, that is, a lubricating oil concentrated solution having a high lubricating oil concentration. Note that the concentration detection of the lubricating oil is performed by detecting the liquid level by the liquid level sensor, detecting the temperature of the solution, elapse of time from the start of heating concentration, and the like as described above.

濃縮完了後、弁V10’を閉じることにより、油濃縮器26内に蒸発した冷媒蒸気が溜まるので、油濃縮器26の内圧が上昇していく。この内圧の上昇により逆止弁V13及び配管28を通して油濃縮器26内の潤滑油濃縮溶液は潤滑油タンク25に圧送される。 By closing the valve V 10 ′ after the completion of the concentration, the evaporated refrigerant vapor is accumulated in the oil concentrator 26, so that the internal pressure of the oil concentrator 26 increases. As the internal pressure rises, the lubricating oil concentrated solution in the oil concentrator 26 is pumped to the lubricating oil tank 25 through the check valve V 13 and the pipe 28.

第7参考例
図12は、本発明の第7参考例としての圧縮式冷凍機1−12の全体概略構成を示す図である。本圧縮式冷凍機1−12は、図11に示す圧縮式冷凍機1−11と同様、圧縮機13を二段圧縮機とし、凝縮器17と蒸発器11を接続する冷媒配管にエコノマイザ18を設け、即ち凝縮器17とエコノマイザ18を冷媒配管21cで接続し、エコノマイザ18と蒸発器11を冷媒配管21dで接続し、更に潤滑油タンク25の上部(気相部)とエコノマイザ18の上部(気相部)を均圧管31で接続し、潤滑油タンク25の圧力をエコノマイザ18に均圧している。
[ Seventh Reference Example ]
FIG. 12 is a diagram showing an overall schematic configuration of a compression refrigerator 1-12 as a seventh reference example of the present invention. This compression type refrigerator 1-12 has a compressor 13 as a two-stage compressor, and an economizer 18 is connected to a refrigerant pipe connecting the condenser 17 and the evaporator 11 as in the case of the compression refrigerator 1-11 shown in FIG. In other words, the condenser 17 and the economizer 18 are connected by the refrigerant pipe 21c, the economizer 18 and the evaporator 11 are connected by the refrigerant pipe 21d, and the upper part (gas phase part) of the lubricating oil tank 25 and the upper part of the economizer 18 (gas Are connected by a pressure equalizing pipe 31 to equalize the pressure in the lubricating oil tank 25 to the economizer 18.

本圧縮式冷凍機1−12では、油回収を蒸発器11内の冷媒液から直接行わず、圧縮機13の吸込み部から回収するようにしたものである。即ち、圧縮機13の吸込み部の液溜り部a1の下方に油濃縮器26を配置し、液溜り部a1と油濃縮器26の上部を弁V3’を備えた配管45で接続し、弁V3’の開閉操作により、液溜り部a1に溜まった潤滑油と冷媒液の混合した溶液を油濃縮器26に導入することができるようになっている。また、油濃縮器26の内部には加熱手段60を配設し、凝縮器17から配管62を通して凝縮冷媒を導き、油濃縮器26内の潤滑油と冷媒液の混合溶液を加熱し、冷媒液を蒸発させて潤滑油濃度を上げるようになっている。該混合溶液を加熱した凝縮器17からの凝縮冷媒液は蒸発器11に流入する。 In the present compression refrigeration machine 1-12, oil is not recovered directly from the refrigerant liquid in the evaporator 11, but is recovered from the suction portion of the compressor 13. That is, the oil concentrator 26 is disposed below the liquid reservoir portion a1 of the suction portion of the compressor 13, and the liquid reservoir portion a1 and the upper portion of the oil concentrator 26 are connected by a pipe 45 having a valve V 3 ′. By opening and closing V 3 ′, the mixed solution of the lubricating oil and the refrigerant liquid accumulated in the liquid reservoir a 1 can be introduced into the oil concentrator 26. In addition, a heating means 60 is provided inside the oil concentrator 26, a condensed refrigerant is guided from the condenser 17 through the pipe 62, and the mixed solution of the lubricating oil and the refrigerant liquid in the oil concentrator 26 is heated, and the refrigerant liquid The concentration of the lubricating oil is increased by evaporating the oil. The condensed refrigerant liquid from the condenser 17 that has heated the mixed solution flows into the evaporator 11.

油濃縮器26内の混合溶液の濃縮完了後、弁V3’を閉じることにより、油濃縮器26内に蒸発した冷媒蒸気が溜まるので、油濃縮器26の内圧が上昇していく。この内圧が所定値に上昇したら、弁V11を開くことにより、油濃縮器26内の潤滑油濃縮溶液をこの内圧により潤滑油タンク25に圧送(移動)する。なお、潤滑油の濃縮検知は、上記のように液面センサによる液位検知、溶液の温度検知、加熱濃縮開始からの時間の経過等により行う。 After the concentration of the mixed solution in the oil concentrator 26 is completed, the refrigerant vapor evaporated in the oil concentrator 26 is accumulated by closing the valve V 3 ′, so that the internal pressure of the oil concentrator 26 increases. When the internal pressure rises to a predetermined value, the valve V 11 is opened to feed (move) the lubricating oil concentrated solution in the oil concentrator 26 to the lubricating oil tank 25 by this internal pressure. In addition, the concentration detection of the lubricating oil is performed by detecting the liquid level by the liquid level sensor, detecting the temperature of the solution, elapse of time from the start of heating concentration, and the like as described above.

図13は、本発明の第7参考例としての圧縮式冷凍機1−13の全体概略構成を示す図である。本圧縮式冷凍機1−13が図12に示す圧縮式冷凍機1−12と大きく相違する点は、油濃縮器26内部の加熱手段60を除去し、油濃縮器26内の潤滑油と冷媒液の混合溶液を容器表面からの外気で加熱するようにした点であり、液溜り部a1からの潤滑油と冷媒液の混合溶液の油濃縮器26への導入、油濃縮器26内で濃縮した潤滑油濃縮溶液の潤滑油タンク25への移動は図12に示す圧縮式冷凍機1−12と同じである。
FIG. 13: is a figure which shows the whole schematic structure of the compression refrigerator 1-13 as a 7th reference example of this invention. The main difference between this compression refrigerator 1-13 and the compression refrigerator 1-12 shown in FIG. 12 is that the heating means 60 in the oil concentrator 26 is removed, and the lubricating oil and refrigerant in the oil concentrator 26 are removed. The liquid mixed solution is heated by the outside air from the surface of the container. The mixed solution of the lubricating oil and the refrigerant liquid from the liquid reservoir a1 is introduced into the oil concentrator 26 and concentrated in the oil concentrator 26. The movement of the concentrated lubricating oil solution to the lubricating oil tank 25 is the same as that of the compression refrigerator 1-12 shown in FIG.

第8参考例
図14は、本発明の第8参考例としての圧縮式冷凍機1−14の全体概略構成を示す図である。本圧縮式冷凍機1−14は、圧縮機13を二段圧縮機とし、凝縮器17と蒸発器11を接続する冷媒配管にエコノマイザ18を設け、即ち凝縮器17とエコノマイザ18を冷媒配管21cで接続し、エコノマイザ18と蒸発器11を冷媒配管21dで接続している。潤滑油タンク25をギアボックス32と一体化し、該潤滑油タンク25の下部に油ポンプ27を設けている。エコノマイザ18の気相部を均圧管31でギアボックス32内と接続し、該ギアボックス32と一体化している潤滑油タンク25の圧力をエコノマイザ18に均圧している。
[ Eighth Reference Example ]
FIG. 14 is a diagram showing an overall schematic configuration of a compression refrigerator 1-14 as an eighth reference example of the present invention. In this compression refrigeration machine 1-14, the compressor 13 is a two-stage compressor, and an economizer 18 is provided in a refrigerant pipe connecting the condenser 17 and the evaporator 11, that is, the condenser 17 and the economizer 18 are connected by a refrigerant pipe 21c. The economizer 18 and the evaporator 11 are connected by a refrigerant pipe 21d. The lubricating oil tank 25 is integrated with the gear box 32, and an oil pump 27 is provided below the lubricating oil tank 25. The gas phase portion of the economizer 18 is connected to the inside of the gear box 32 by the pressure equalizing pipe 31, and the pressure of the lubricating oil tank 25 integrated with the gear box 32 is equalized to the economizer 18.

上記構成の圧縮式冷凍機1−14において、弁V10’を開いて圧縮機13の吸込み部の液溜り部a1の潤滑油と冷媒液の混合溶液を油濃縮器26に導入すると共に、弁V9を開いて蒸発器11内の潤滑油を含む冷媒液を油濃縮器26に導入する。導入の完了は液面センサ41で所定の高位液位を検出することにより検知する等上記と同様である。導入完了後、弁V9を閉じ、加熱手段60に凝縮器17の凝縮冷媒液を導入して混合溶液を加熱し、潤滑油を濃縮して潤滑油濃縮液とする。濃縮の完了検知はで液面センサ41で所定の中位液面を検出することにより検知する等上記と同様である。濃縮完了後、弁V10’を閉じることにより、油濃縮器26内に蒸発した冷媒蒸気が溜まるので、油濃縮器26の内圧が上昇していく。この内圧が所定値に上昇したら、弁V11を開くことにより、油濃縮器26内の潤滑油濃縮溶液はこの内圧により潤滑油タンク25に圧送される。 In the compression type refrigerator 1-14 having the above-described configuration, the valve V 10 ′ is opened to introduce the mixed solution of the lubricating oil and the refrigerant liquid in the liquid reservoir a1 of the suction portion of the compressor 13 into the oil concentrator 26. V 9 is opened and the refrigerant liquid containing the lubricating oil in the evaporator 11 is introduced into the oil concentrator 26. Completion of introduction is the same as described above, for example, by detecting the liquid level sensor 41 by detecting a predetermined high liquid level. After the introduction is completed, the valve V 9 is closed, the condensed refrigerant liquid of the condenser 17 is introduced into the heating means 60 to heat the mixed solution, and the lubricating oil is concentrated to obtain a lubricating oil concentrated liquid. Concentration completion detection is the same as described above, for example, by detecting a predetermined middle liquid level with the liquid level sensor 41. By closing the valve V 10 ′ after the completion of the concentration, the evaporated refrigerant vapor is accumulated in the oil concentrator 26, so that the internal pressure of the oil concentrator 26 increases. If this pressure rises to a predetermined value, by opening the valve V 11, lubricating oil concentrate solution in the oil concentrator 26 is pumped into the lubricating oil tank 25 by the internal pressure.

図15は、本発明の圧縮式冷凍機1−15の全体概略構成を示す図である。本圧縮式冷凍機1−15が図14に示す圧縮式冷凍機1−14と相違する点は、圧縮機13を単段とし、エコノマイザ18を設けることなく、潤滑油タンク25の圧力を蒸発器11の気相部に均圧している点である。即ち、蒸発器11の気相部とギアボックス32内を均圧管としての配管63で接続し、潤滑油タンク25の気相部の圧力をギアボックス32及び配管63を介して蒸発器11の気相部に均圧している。圧縮機13の吸込み部の液溜り部a1の潤滑油と冷媒液の混合溶液及び蒸発器11からの潤滑油を含む冷媒液の油濃縮器26への導入、加熱濃縮、濃縮した潤滑油濃縮液の潤滑油タンク25の移動は上記圧縮式冷凍機1−14と略同じであるのでその説明は省略する。   FIG. 15 is a diagram showing an overall schematic configuration of the compression refrigerator 1-15 of the present invention. This compression refrigerator 1-15 differs from the compression refrigerator 1-14 shown in FIG. 14 in that the compressor 13 is a single stage and the pressure of the lubricating oil tank 25 is reduced without providing an economizer 18. 11 is equalized in the gas phase. That is, the vapor phase portion of the evaporator 11 and the inside of the gear box 32 are connected by a pipe 63 as a pressure equalizing pipe, and the pressure of the vapor phase portion of the lubricating oil tank 25 is connected to the gas in the evaporator 11 via the gear box 32 and the pipe 63. Equal pressure is applied to the phase. Introducing, heating, concentrating, and concentrating the concentrated lubricating oil of the refrigerant liquid containing the lubricating oil and the refrigerant liquid in the liquid reservoir a1 of the suction section of the compressor 13 and the lubricating oil from the evaporator 11 to the oil concentrator 26 Since the movement of the lubricating oil tank 25 is substantially the same as that of the compression refrigerator 1-14, the description thereof is omitted.

図3に示す圧縮式冷凍機1−3では、潤滑油の回収を蒸発器11から直接行わず、圧縮機13の吸込み部の液溜り部a1から回収するようにしている。ここでは、弁V3’を開いて、液溜り部a1の潤滑油を含む冷媒を油濃縮器26に導入し、移動完了後に弁V3’を閉じ、弁V8を開き、油濃縮器26内の溶液(潤滑油を含む冷媒液)を加熱し、潤滑油を濃縮する。濃縮完了後は、弁V3’及び弁V8を閉じることにより、油濃縮器26内に蒸発した冷媒蒸気が溜まるので、油濃縮器26の内圧が上昇していく。所定の圧力又は温度に到達したら、油濃縮器26と潤滑油タンク25を接続する配管28に設けられた弁V11を開くことにより、油濃縮器26内の圧力により潤滑油濃縮溶液は潤滑油タンク25内に移動する。このように、加熱により上昇した内圧を利用して、溶液を潤滑油タンク25に移動することもできるので、配管49及び弁V8を省略することもできる。 In the compression refrigerator 1-3 shown in FIG. 3, the lubricating oil is not collected directly from the evaporator 11 but is collected from the liquid pool part a <b> 1 of the suction part of the compressor 13. Here, the valve V 3 ′ is opened, the refrigerant containing the lubricating oil in the liquid reservoir a 1 is introduced into the oil concentrator 26, the valve V 3 ′ is closed after the movement is completed, the valve V 8 is opened, and the oil concentrator 26 The solution (refrigerant liquid containing lubricating oil) is heated to concentrate the lubricating oil. After the concentration is completed, the vaporized refrigerant vapor is accumulated in the oil concentrator 26 by closing the valve V 3 ′ and the valve V 8 , so that the internal pressure of the oil concentrator 26 increases. When the predetermined pressure or temperature is reached, the valve V 11 provided in the pipe 28 connecting the oil concentrator 26 and the lubricating oil tank 25 is opened, so that the lubricating oil concentrated solution becomes the lubricating oil by the pressure in the oil concentrator 26. Move into the tank 25. Thus, by utilizing the increased internal pressure by heating, since the solution can also be moved to the lubricating oil tank 25 may be omitted piping 49 and the valve V 8.

図5に示す圧縮式冷凍機1−5は上記のように、潤滑油タンク25をギアボックス32と一体化している。ここでは、弁V10’を開いて、圧縮機13の吸込み部の液溜り部a1の潤滑油を含む冷媒を油濃縮器26に導入し、移動完了後に弁V10’を閉じ、弁V8を開き、油濃縮器26内の潤滑油を含む冷媒を加熱し、潤滑油を濃縮する。濃縮完了後は、弁V10’及び弁V8を閉じることにより、油濃縮器26内に蒸発した冷媒蒸気が溜まるので、油濃縮器26の内圧が上昇していく。所定の圧力又は温度に到達したら、油濃縮器26と潤滑油タンク25を接続する配管28に設けられた弁V11を開くことにより、油濃縮器26内の圧力により潤滑油濃縮溶液は潤滑油タンク25内に移動する。このように、加熱により上昇した内圧を利用して、溶液を潤滑油タンク25に移動することもできるので、配管49及び弁V8を省略することもできる。 The compression refrigerator 1-5 shown in FIG. 5 integrates the lubricating oil tank 25 with the gear box 32 as described above. Here, the valve V 10 ′ is opened, the refrigerant containing the lubricating oil in the liquid reservoir a1 of the suction portion of the compressor 13 is introduced into the oil concentrator 26, the valve V 10 ′ is closed after the movement is completed, and the valve V 8 The refrigerant containing the lubricating oil in the oil concentrator 26 is heated to concentrate the lubricating oil. After the concentration is completed, the vaporized refrigerant vapor is accumulated in the oil concentrator 26 by closing the valve V 10 ′ and the valve V 8 , so that the internal pressure of the oil concentrator 26 increases. When the predetermined pressure or temperature is reached, the valve V 11 provided in the pipe 28 connecting the oil concentrator 26 and the lubricating oil tank 25 is opened, so that the lubricating oil concentrated solution becomes the lubricating oil by the pressure in the oil concentrator 26. Move into the tank 25. Thus, by utilizing the increased internal pressure by heating, since the solution can also be moved to the lubricating oil tank 25 may be omitted piping 49 and the valve V 8.

図6の圧縮式冷凍機1−6は上記のように、図5に示す圧縮式冷凍機1−5の圧縮機13を単段として、エコノマイザ18を設けることなく、潤滑油タンク25の気相部をギアボックス32及び配管63を介して蒸発器11の気相部に接続し、潤滑油タンク25の均圧先を蒸発器11としている。ここでは弁V10’を開き圧縮機13の吸込み部の液溜り部a1の潤滑油を含む冷媒を油濃縮器26に導入し、移動完了後に弁V10’を閉じ、弁V8を開き、油濃縮器26内の潤滑油を含む冷媒を加熱し、潤滑油を濃縮する。濃縮完了後は、弁V10’及び弁V8を閉じることにより、油濃縮器26内に蒸発した冷媒蒸気が溜まるので、油濃縮器26の内圧が上昇していく。所定の圧力又は温度に到達したら、油濃縮器26と潤滑油タンク25を接続する配管28に設けられた弁V11を開くことにより、油濃縮器26内の圧力により潤滑油濃度の濃くなった潤滑油濃縮溶液は潤滑油タンク25内に移動する。図6でも、加熱により上昇した内圧を利用して、溶液を潤滑油タンク25に移動することもできるので、配管49及び弁V8を省略することもできる。 As described above, the compression type refrigerator 1-6 of FIG. 6 has the compressor 13 of the compression type refrigerator 1-5 shown in FIG. 5 as a single stage, and does not have an economizer 18 and is provided with a gas phase in the lubricating oil tank 25. The part is connected to the vapor phase part of the evaporator 11 via the gear box 32 and the pipe 63, and the pressure equalization destination of the lubricating oil tank 25 is the evaporator 11. Here, the valve V 10 ′ is opened, the refrigerant containing the lubricating oil in the liquid reservoir a1 of the suction portion of the compressor 13 is introduced into the oil concentrator 26, the valve V 10 ′ is closed after the movement is completed, the valve V 8 is opened, The refrigerant containing the lubricating oil in the oil concentrator 26 is heated to concentrate the lubricating oil. After the concentration is completed, the vaporized refrigerant vapor is accumulated in the oil concentrator 26 by closing the valve V 10 ′ and the valve V 8 , so that the internal pressure of the oil concentrator 26 increases. When a predetermined pressure or temperature is reached, the valve V 11 provided in the pipe 28 connecting the oil concentrator 26 and the lubricating oil tank 25 is opened to increase the lubricating oil concentration due to the pressure in the oil concentrator 26. The lubricating oil concentrated solution moves into the lubricating oil tank 25. Also in FIG. 6, using the elevated pressure by heating, since the solution can also be moved to the lubricating oil tank 25 may be omitted piping 49 and the valve V 8.

図7に示す圧縮式冷凍機1−7は上記のように、冷媒を封入した2つのクローズドシステムで二重化した冷凍サイクルを備えた圧縮式冷凍機である。具体的な油濃縮回収工程は、弁V11、弁V8を閉じ、弁V20を開き、更に弁V9を開いて、油濃縮器26に低圧蒸発器11−1の潤滑油を含む冷媒を導入し、液面センサ41が所定の高位液面を検知すると弁V9を閉じる。次いで弁V3-1を所定の時間だけ開き、低圧冷凍サイクル側の低圧圧縮機13−1の吸込み部の液溜り部a1−1の液を油濃縮器26に導入し、更に弁V3-2を所定の時間開いて高圧冷凍サイクル側の高圧圧縮機13−2の液溜り部a1−2の液も油濃縮器26に導入する。弁V3-1、弁V3-2を閉じ、弁V20を開いた状態で、油濃縮器26内の溶液を加熱することにより冷媒は蒸発し、潤滑油が濃縮されていく。蒸発した冷媒蒸気は配管46及び弁V20を通って低圧圧縮機13−1の吸込み部に追い出される。 As described above, the compression refrigerator 1-7 shown in FIG. 7 is a compression refrigerator having a refrigeration cycle duplicated by two closed systems in which a refrigerant is sealed. The specific oil concentration recovery process is as follows: the valve V 11 , the valve V 8 are closed, the valve V 20 is opened, the valve V 9 is further opened, and the oil concentrator 26 contains the lubricating oil of the low-pressure evaporator 11-1. was introduced, the liquid level sensor 41 detects a predetermined high liquid level closes the valve V 9. Then open the valve V 3-1 a predetermined period of time, to introduce the liquid in the liquid reservoir a1-1 suction of the low pressure compressor 13-1 of the low pressure refrigeration cycle side to the oil condenser 26, further valves V 3- 2 is opened for a predetermined time, and the liquid in the liquid reservoir a1-2 of the high-pressure compressor 13-2 on the high-pressure refrigeration cycle side is also introduced into the oil concentrator 26. When the valve V 3-1 and the valve V 3-2 are closed and the valve V 20 is opened, the refrigerant evaporates by heating the solution in the oil concentrator 26 and the lubricating oil is concentrated. The evaporated refrigerant vapor is expelled to the suction of the low pressure compressor 13-1 through the pipe 46 and valve V 20.

液面センサ41で所定低位の液面を検知することにより濃縮完了を検知し、弁V20を閉じる。その数分後には油濃縮器26の内圧が上昇してくる。油濃縮器26の内圧が所定圧力或いは溶液が所定の温度に到達したら或いは所定時間経過後に弁V11を開くことにより、油濃縮器26内の潤滑油濃縮溶液を潤滑油タンク25に送り出す。所定時間後に弁V11を閉じ、潤滑油の移動を完了する。潤滑油の移動の完了は時間管理でなく、液面センサ41で油濃縮器26の所定の低位液面を検知することで検知するようにしてもよい。このような潤滑油の濃縮回収工程を本圧縮式冷凍機1−7の運転中繰り返す。図7でも、加熱により上昇した内圧を利用して、溶液を潤滑油タンク25に移動することもできるので、配管49及び弁V8を省略することもできる。 Detecting the completion concentrated by detecting a predetermined low liquid level in the liquid level sensor 41 closes the valve V 20. Several minutes later, the internal pressure of the oil concentrator 26 increases. When the internal pressure of the oil concentrator 26 reaches a predetermined pressure or when the solution reaches a predetermined temperature, or when a predetermined time elapses, the valve V 11 is opened to send the lubricating oil concentrated solution in the oil concentrator 26 to the lubricating oil tank 25. Close the valve V 11 after a predetermined time to complete the movement of the lubricating oil. The completion of the movement of the lubricating oil may be detected not by time management but by detecting a predetermined lower liquid level of the oil concentrator 26 by the liquid level sensor 41. Such a concentration and recovery process of the lubricating oil is repeated during operation of the present compression type refrigerator 1-7. Also in FIG. 7, by utilizing the increased internal pressure by heating, since the solution can also be moved to the lubricating oil tank 25 may be omitted piping 49 and the valve V 8.

図8に示す圧縮式冷凍機1−8は上記のように、冷媒を封入した2つのクローズドシステムで二重化した冷凍サイクルを備えた圧縮式冷凍機である。蒸発系統からの潤滑油回収を、低圧圧縮機13−1の吸込み部の液溜り部a1−1と高圧圧縮機13−2の吸込み部の液溜り部a1−2からだけとし、即ち液溜り部a1−1と油濃縮器26の間を弁V3-1を備えた配管45−1で接続し、液溜り部a1−2と油濃縮器26の間を弁V3-2を備えた配管45−2で接続している。また、低圧凝縮器17−1からの冷媒をポンプ35により配管36aを通して電動機15に供給し、該電動機15を冷却して蒸気となった冷媒を配管36bを通して低圧凝縮器17−1に戻し、更に潤滑油タンク25の気相部を均圧管31で低圧冷凍サイクル系の低圧エコノマイザ18−1の気相部に接続し、潤滑油タンク25の均圧先を低圧エコノマイザ18−1としている。低圧蒸発器11−1の膨張弁19b−1の上流側と高圧蒸発器11−2とを弁V16を備えた配管67で接続し、低圧蒸発器11−1と高圧蒸発器11−2の間で液面が略同じになるように調節している。 As described above, the compression refrigerator 1-8 shown in FIG. 8 is a compression refrigerator having a refrigeration cycle that is duplicated by two closed systems filled with refrigerant. Lubricating oil recovery from the evaporation system is performed only from the liquid reservoir a1-1 of the suction portion of the low-pressure compressor 13-1 and the liquid reservoir a1-2 of the suction portion of the high-pressure compressor 13-2, that is, the liquid reservoir. between a1-1 oil concentrator 26 connected by a pipe 45-1 having a valve V 3-1, between the liquid reservoir portion a1-2 oil concentrator 26 with a valve V 3-2 piping Connected at 45-2. Further, the refrigerant from the low-pressure condenser 17-1 is supplied to the electric motor 15 through the pipe 36a by the pump 35, and the refrigerant which is cooled by the electric motor 15 is returned to the low-pressure condenser 17-1 through the pipe 36b. The gas phase portion of the lubricating oil tank 25 is connected to the gas phase portion of the low pressure economizer 18-1 of the low pressure refrigeration cycle system by the pressure equalizing pipe 31, and the pressure equalizing destination of the lubricating oil tank 25 is the low pressure economizer 18-1. Connected by a pipe 67 having an upstream side and a high pressure evaporator 11-2 and a valve V 16 of the expansion valve 19b-1 of the low-pressure evaporator 11-1, the low-pressure evaporator 11-1 and the high-pressure evaporator 11-2 The liquid level is adjusted to be approximately the same.

具体的な油濃縮回収工程を以下に述べる。弁V3-1、弁V3-2を閉じる。弁V8を開き、次いで弁V3-1を所定時間開き、低圧圧縮機13−1の吸込み部の液溜り部a1−1にある冷媒(潤滑油を含む)を油濃縮器26に移動し、弁V3-1を閉じる。その後弁V3-2を所定時間開き、高圧圧縮機13−2の吸込み部の液溜り部a1−2にある冷媒(潤滑油を含む)を油濃縮器26に移動し、弁V3-2を閉じる。この状態で油濃縮器26内の溶液(潤滑油と冷媒液が混合した溶液)を加熱することにより、冷媒が蒸発し、潤滑油が濃縮して潤滑油濃縮溶液となる。蒸発した冷媒は弁V14を開くことにより、冷媒配管21−1aを通って、低圧圧縮機13−1の吸込み部に導かれる。所定時間の経過後に濃縮完了として弁V14、V8を閉じ、油濃縮器26から潤滑油タンク25へ潤滑油濃縮溶液の移動工程に移る。この潤滑油濃縮溶液の移動は、油濃縮器26の内圧上昇を利用して行うのであり、弁V11を開いて、油濃縮器26内の潤滑油濃縮溶液を潤滑油タンク25に移動させ、所定時間後に移動完了として弁V11を閉じ、弁V8を開く。これらの工程を繰り返す。図8でも、加熱により上昇した内圧を利用して、溶液を潤滑油タンク25に移動することもできるので、配管49及び弁V8を省略することもできる。 A specific oil concentration recovery process will be described below. Close the valves V 3-1 and V 3-2 . Open the valve V 8, then open the valve V 3-1 the predetermined time, to move the refrigerant (including lubricating oil) at the suction portion of the liquid reservoir portion a1-1 of the low pressure compressor 13-1 to the oil concentrator 26 Close valve V 3-1 . Thereafter, the valve V 3-2 is opened for a predetermined time, and the refrigerant (including lubricating oil) in the liquid reservoir a1-2 of the suction part of the high-pressure compressor 13-2 is moved to the oil concentrator 26, and the valve V 3-2 Close. In this state, by heating the solution in the oil concentrator 26 (solution in which the lubricating oil and the refrigerant liquid are mixed), the refrigerant evaporates and the lubricating oil is concentrated to become a lubricating oil concentrated solution. Evaporated refrigerant by opening the valve V 14, passes through the refrigerant pipe 21-1a, it is guided to the suction portion of the low pressure compressor 13-1. After the elapse of a predetermined time, the valves V 14 and V 8 are closed as the completion of concentration, and the process moves to the step of moving the lubricating oil concentrated solution from the oil concentrator 26 to the lubricating oil tank 25. The movement of the lubricating oil concentrate solution is than performed by utilizing the internal pressure rise of the oil concentrator 26, opening the valve V 11, moves the lubricating oil concentrate solution in the oil concentrator 26 to the lubricating oil tank 25, close the valve V 11 as movement completion after a predetermined time, opening a valve V 8. These steps are repeated. Also in FIG. 8, by utilizing the increased internal pressure by heating, since the solution can also be moved to the lubricating oil tank 25 may be omitted piping 49 and the valve V 8.

上記第6〜8参考例の圧縮式冷凍機において、回収対象となる潤滑油が存在する冷媒液の場所(A)から、油濃縮器26に移し(位置ヘッドによるが、圧力差があってもよい)、油濃縮器26で加熱濃縮する。油濃縮器26で蒸発した冷媒蒸気は蒸発器系(蒸発器11或いは圧縮機13の吸込み部)に導く。潤滑油の濃縮完了にて油濃縮器26と他の機器との接続を遮断して加熱を続けて圧力を高め、油濃縮器26と潤滑油タンク25を接続する配管28に設けた弁V11を開いて、油濃縮器26内の潤滑油濃度の濃い潤滑油濃縮溶液を油濃縮器26へ移動する。上記(A)は下記の通りである。
In the compression type refrigerators of the sixth to eighth reference examples , the refrigerant liquid is moved from the location (A) where the lubricating oil to be collected exists to the oil concentrator 26 (depending on the position head, even if there is a pressure difference) Good) and heat concentrate in oil concentrator 26. The refrigerant vapor evaporated by the oil concentrator 26 is guided to the evaporator system (the evaporator 11 or the suction portion of the compressor 13). When the concentration of the lubricating oil is completed, the connection between the oil concentrator 26 and other equipment is cut off and heating is continued to increase the pressure, and the valve V 11 provided in the pipe 28 connecting the oil concentrator 26 and the lubricating oil tank 25 is provided. , And the concentrated lubricating oil concentrated solution in the oil concentrator 26 is moved to the oil concentrator 26. The above (A) is as follows.

(A):回収対象となる潤滑油の混入した冷媒液が存在する場所(機器)は、蒸発器11及び圧縮機13の吸込み部の液溜り部a1である。(但し、蒸発器11における気液分離が充分になされ、蒸発器11から圧縮機13に冷媒ミストが飛ばない場合には、圧縮機13の吸込み部の液溜り部a1には潤滑油の混入した冷媒は溜まらない。)潤滑油タンク25の均圧先は、蒸発系統(蒸発器11或いは圧縮機13の吸込み部)、エコノマイザ18或いは凝縮器17などどこでも差し支えない。但し、均圧先の圧力より高い圧力を得るために、熱源の種類が限定される。   (A): The place (apparatus) where the refrigerant liquid mixed with the lubricating oil to be collected exists is the liquid reservoir a1 of the suction section of the evaporator 11 and the compressor 13. (However, when the gas-liquid separation is sufficiently performed in the evaporator 11 and the refrigerant mist does not fly from the evaporator 11 to the compressor 13, lubricating oil is mixed in the liquid reservoir a <b> 1 of the suction portion of the compressor 13. The refrigerant does not accumulate.) The pressure equalization destination of the lubricating oil tank 25 may be anywhere such as the evaporation system (the evaporator 11 or the suction portion of the compressor 13), the economizer 18 or the condenser 17. However, the type of heat source is limited in order to obtain a pressure higher than the pressure at the pressure equalization destination.

潤滑油を回収するためにON/OFFする弁の種類は、下記の通りである。回収すべき潤滑油を含有する冷媒液の存在する場所(A)、即ち蒸発器11と油濃縮器26とを接続する配管48に設けられた弁V9、圧縮機13の吸込み部の液溜り部a1と油濃縮器26を接続する配管45に設けられた弁V3、V10’、油濃縮器26で蒸発した冷媒蒸気を蒸発系統に導く配管45に設けられた弁V3’、弁V10,V14,V20、油濃縮器26と潤滑油タンク25を接続する配管28に設けた弁V11等がある。これらの弁は全て必要とするわけではなく、例えば図1の弁V9と弁V10を兼用させ、或いは弁V11を逆止弁V13(図2参照)にしたりすることもできる。 The types of valves that are turned ON / OFF to recover the lubricating oil are as follows. The place (A) where the refrigerant liquid containing the lubricating oil to be recovered exists, that is, the valve V 9 provided in the pipe 48 connecting the evaporator 11 and the oil concentrator 26, and the liquid pool in the suction portion of the compressor 13 Valve V 3 , V 10 ′ provided in the pipe 45 connecting the part a1 and the oil concentrator 26, valve V 3 ′ provided in the pipe 45 leading the refrigerant vapor evaporated in the oil concentrator 26 to the evaporation system, valve V 10 , V 14 , V 20 , a valve V 11 provided in a pipe 28 connecting the oil concentrator 26 and the lubricating oil tank 25, and the like. These valves are not necessarily to all needs, for example, by also serves as a valve V 9 and the valve V 10 in FIG. 1, or may be subjected to a valve V 11 in the check valve V 13 (see FIG. 2).

潤滑油回収工程でON/OFFされる弁の代表例を下記に示す。
(1)油濃縮器26から潤滑油タンク25への溶液の移動を止めた(弁V11:閉)状態で、油濃縮器26を蒸発器11の圧力レベルに均圧(弁V10,V14,V20:開)させ、蒸発器11或いは圧縮機13の吸込み部と油濃縮器26の間を連通(弁V9:開、弁V3:開)させて、油濃縮器26に潤滑油を含む冷媒を導入する。
(2)油濃縮器26への溶液の導入を止め(弁V9:閉、弁V3:閉)他の弁は(1)の状態を保ち(弁V10,V14,V20:開、弁V11:閉)、該油濃縮器26内の冷媒を蒸発させ、潤滑油を濃縮する。(圧縮機13の吸込み部の液溜り部a1に溜まるミストが少ない場合、弁V3は開いたままとする場合もある。)
The following are typical examples of valves that are turned ON / OFF in the lubricant recovery process.
(1) With the movement of the solution from the oil concentrator 26 to the lubricating oil tank 25 stopped (valve V 11 : closed), the oil concentrator 26 is equalized to the pressure level of the evaporator 11 (valves V 10 , V 14 , V 20 : open), and the oil concentrator 26 is lubricated by communicating between the suction portion of the evaporator 11 or the compressor 13 and the oil concentrator 26 (valve V 9 : open, valve V 3 : open). Introduce refrigerant containing oil.
(2) Stop the introduction of the solution into the oil concentrator 26 (valve V 9 : closed, valve V 3 : closed) and other valves maintain the state of (1) (valves V 10 , V 14 , V 20 : open) , Valve V 11 : closed), the refrigerant in the oil concentrator 26 is evaporated, and the lubricating oil is concentrated. (If mist accumulated in the suction portion of the liquid reservoir portion a1 of the compressor 13 is small, it may be left valve V 3 is opened.)

(3)潤滑油の濃縮完了後、油濃縮器26から蒸発器圧力レベルに蒸発した冷媒蒸気を圧縮機13の吸込み部に導く配管を遮断(弁V10,V14,V20:閉)し、加熱により油濃縮器26内の圧力が徐々に上昇する。(なお、(2)で弁V9が開の場合、(3)では弁V10,V14,V20と共に閉じる。)
(4)弁V11を開くタイミングは、油濃縮器26内圧の検知、或いは溶液の温度検知、或いは弁V10,V14,V20閉後の時間でもよい(弁V11が設けられた配管28に逆止弁を加えて、タイミングがずれても逆流を防止するようにしてもよいし、或いは弁V11に代えて逆止弁として、油濃縮器26の内圧が高まるにつれて溶液を移動できるようにしてもよい。)。
(5)油濃縮器26内の溶液移動を完了(弁V11:閉)させ、弁V10,V14,V20を開き(1)に戻る。以上まとめたものを図21に示す。
(3) After completing the concentration of the lubricating oil, shut off the pipes that lead the refrigerant vapor evaporated from the oil concentrator 26 to the evaporator pressure level to the suction part of the compressor 13 (valves V 10 , V 14 , V 20 : closed). By heating, the pressure in the oil concentrator 26 gradually increases. (Note that (if the valve V 9 is opened in 2), (3) in closed together with the valve V 10, V 14, V 20 .)
The timing of opening the (4) valve V 11, the detection of the oil concentrator 26 pressure, or temperature sensing of the solution, or the valve V 10, V 14, V 20 may be time after engaging (valve V 11 is provided pipe A check valve may be added to the valve 28 to prevent backflow even if the timing is shifted. Alternatively, the check valve may be used in place of the valve V 11 to move the solution as the internal pressure of the oil concentrator 26 increases. You may do it.)
(5) The solution movement in the oil concentrator 26 is completed (valve V 11 : closed), and the valves V 10 , V 14 , and V 20 are opened and the process returns to (1). A summary of the above is shown in FIG.

油濃縮器26を蒸発器圧力レベルにして、油濃縮器26内の溶液(冷媒と潤滑油の混合溶液)を加熱することで、冷媒が蒸発して潤滑油濃度が上昇する。この加熱に使用する熱源は、上記第1〜第7実施形態例で示す(a)〜(f)と同様、いろいろな熱源を適用できる。   By bringing the oil concentrator 26 to the evaporator pressure level and heating the solution (mixed solution of refrigerant and lubricating oil) in the oil concentrator 26, the refrigerant evaporates and the lubricating oil concentration increases. As the heat source used for this heating, various heat sources can be applied in the same manner as (a) to (f) shown in the first to seventh embodiments.

・潤滑油タンク25の均圧先が蒸発器11の場合、(a)〜(e)の全てが利用可能となる。
・潤滑油タンク25の均圧先がエコノマイザ18の場合、(c)を除き利用可能(温度によっては(f)不可)。
・潤滑油タンク25の均圧先が凝縮器17の場合、(d)或いは(e)が利用可能。
なお、蒸発器11から油濃縮器26に冷媒液を移動する際には加熱源が電気ヒータ24の場合には、ヒータ加熱を止めるのが好ましい。
When the pressure equalization destination of the lubricating oil tank 25 is the evaporator 11, all of (a) to (e) can be used.
When the pressure equalization tip of the lubricating oil tank 25 is the economizer 18, it can be used except for (c) ((f) cannot be used depending on the temperature).
When the pressure equalizing point of the lubricating oil tank 25 is the condenser 17, (d) or (e) can be used.
When the refrigerant liquid is transferred from the evaporator 11 to the oil concentrator 26, when the heating source is the electric heater 24, it is preferable to stop the heater heating.

気相部が低圧側(蒸発器11或いは圧縮機13の吸込み部)に配管で接続された油濃縮器26の潤滑油の濃度は、例えば、冷媒露点(或いは蒸気圧力)と潤滑油と冷媒の混合溶液の温度との関係から算出できる。通常、蒸発器11の温度はほぼ一定であるので、溶液温度が下がりきっていないときを考慮する必要がある。例えば、起動後の数分は濃度判断をしないなど。また、油濃縮器26の液面センサで濃縮倍率を知ることもできる。蒸発器11からの潤滑油を含む冷媒の移動量を高い液面センサで管理し、濃縮完了(濃縮倍率到達)を中位液面レベル(或いは低位液面レベル)で管理することもできる。濃度を正確に検知しなくとも、低圧状態に曝している時間で、概略の濃縮管理をすることができる。   The concentration of the lubricating oil in the oil concentrator 26 in which the gas phase portion is connected to the low pressure side (the evaporator 11 or the suction portion of the compressor 13) by piping is, for example, the refrigerant dew point (or vapor pressure), the lubricating oil and the refrigerant It can be calculated from the relationship with the temperature of the mixed solution. Usually, since the temperature of the evaporator 11 is substantially constant, it is necessary to consider the case where the solution temperature has not been lowered. For example, the concentration is not judged for several minutes after activation. Further, the concentration magnification can be known by the liquid level sensor of the oil concentrator 26. It is also possible to manage the movement amount of the refrigerant containing the lubricating oil from the evaporator 11 with a high liquid level sensor, and manage the completion of concentration (reaching the concentration ratio) at the middle liquid level (or low liquid level). Even if the concentration is not accurately detected, the rough concentration management can be performed in the time of exposure to the low pressure state.

油濃縮器26から潤滑油タンク25への溶液(潤滑油に冷媒を含む)の移動は、移動元である油濃縮器26と移動先である潤滑油タンク25の圧力差を利用して移動することができる。油濃縮器26の低位液面レベルを液面センサで検知して、移動完了を検知してもよいし、また移動開始からの経過時間で移動完了を推定してもよい。なお、経過時間で管理する場合は、フロート弁などを利用して吹き抜けを防止してもよい。圧力を検知しないで弁V11を開く場合は、逆止弁を設け、潤滑油タンク25からの逆流を防止してもよい。 The solution (including the refrigerant in the lubricating oil) moves from the oil concentrator 26 to the lubricating oil tank 25 using the pressure difference between the oil concentrator 26 that is the moving source and the lubricating oil tank 25 that is the moving destination. be able to. The lower liquid level of the oil concentrator 26 may be detected by a liquid level sensor to detect the movement completion, or the movement completion may be estimated from the elapsed time from the start of movement. In addition, when managing by elapsed time, you may prevent a blow-through using a float valve etc. When the valve V 11 is opened without detecting the pressure, a check valve may be provided to prevent backflow from the lubricating oil tank 25.

以上、本発明の実施形態例を説明したが、本発明は上記実施形態例に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。なお、直接明細書及び図面に記載がない何れの形状や構造であっても、本願発明の作用効果を奏する以上、本願発明の技術範囲である。   The embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea described in the claims and the specification and drawings. Can be modified. Note that any shape or structure not directly described in the specification and drawings is within the technical scope of the present invention as long as the effects of the present invention are achieved.

参考例に係る圧縮式冷凍機1−1の全体概略構成例を示す図である。It is a figure which shows the whole schematic structural example of the compression type refrigerator 1-1 which concerns on a reference example . 参考例に係る圧縮式冷凍機1−2の全体概略構成例を示す図である。It is a figure which shows the example of whole schematic structure of the compression type refrigerator 1-2 which concerns on a reference example . 参考例に係る圧縮式冷凍機1−3の全体概略構成例を示す図である。It is a figure which shows the example of whole schematic structure of the compression type refrigerator 1-3 which concerns on a reference example . 参考例に係る圧縮式冷凍機1−4の全体概略構成例を示す図である。It is a figure which shows the example of whole schematic structure of the compression type refrigerator 1-4 which concerns on a reference example . 参考例に係る圧縮式冷凍機1−5の全体概略構成例を示す図である。It is a figure which shows the example of a whole schematic structure of the compression type refrigerator 1-5 which concerns on a reference example . 参考例に係る圧縮式冷凍機1−6の全体概略構成例を示す図である。It is a figure which shows the example of a whole schematic structure of the compression type refrigerator 1-6 which concerns on a reference example . 本発明に係る圧縮式冷凍機1−7の全体概略構成例を示す図である。It is a figure which shows the example of whole schematic structure of the compression type refrigerator 1-7 which concerns on this invention. 本発明に係る圧縮式冷凍機1−8の全体概略構成例を示す図である。It is a figure which shows the example of whole schematic structure of the compression type refrigerator 1-8 which concerns on this invention. 参考例に係る圧縮式冷凍機1−9の全体概略構成例を示す図である。It is a figure which shows the whole schematic structural example of the compression refrigerator 1-9 which concerns on a reference example . 参考例に係る圧縮式冷凍機1−10の全体概略構成例を示す図である。It is a figure which shows the example of a whole schematic structure of the compression type refrigerator 1-10 which concerns on a reference example . 参考例に係る圧縮式冷凍機1−11の全体概略構成例を示す図である。It is a figure which shows the example of a whole schematic structure of the compression type refrigerator 1-11 which concerns on a reference example . 参考例に係る圧縮式冷凍機1−12の全体概略構成例を示す図である。It is a figure which shows the whole schematic structural example of the compression refrigerator 1-12 which concerns on a reference example . 参考例に係る圧縮式冷凍機1−13の全体概略構成例を示す図である。It is a figure which shows the example of a whole schematic structure of the compression type refrigerator 1-13 which concerns on a reference example . 参考例に係る圧縮式冷凍機1−14の全体概略構成例を示す図である。It is a figure which shows the example of a whole schematic structure of the compression type refrigerator 1-14 which concerns on a reference example . 参考例に係る圧縮式冷凍機1−15の全体概略構成例を示す図である。It is a figure which shows the whole schematic structural example of the compression refrigerator 1-15 which concerns on a reference example . 圧縮機、電動機、及び軸受部の詳細を示す図である。It is a figure which shows the detail of a compressor, an electric motor, and a bearing part. 混合溶液と冷媒露点と冷媒濃度の関係の一例を示す図である。It is a figure which shows an example of the relationship between a mixed solution, a refrigerant | coolant dew point, and a refrigerant | coolant density | concentration. 潤滑油回収関連機器の基本的組合せ例を示す図である。It is a figure which shows the basic example of a combination of lubricating oil collection related apparatuses. 潤滑油回収関連機器の基本的組合せ例を示す図である。It is a figure which shows the basic example of a combination of lubricating oil collection related apparatuses. 潤滑油回収における弁の動作例を示す図である。It is a figure which shows the operation example of the valve in lubricating oil collection | recovery. 潤滑油回収における弁の動作例を示す図である。It is a figure which shows the operation example of the valve in lubricating oil collection | recovery.

符号の説明Explanation of symbols

1−1〜15 圧縮式冷凍機
11 蒸発器
11−1 低圧蒸発器
11−2 高圧蒸発器
13 圧縮機
13−1 低圧圧縮機
13−2 高圧圧縮機
13a 羽根車
15 電動機
15a ロータ
15b ロータ室
17 凝縮器
17−1 低圧凝縮器
17−2 高圧凝縮器
18 エコノマイザ
18−1 低圧エコノマイザ
18−2 高圧エコノマイザ
19,19a,b,19b−1,2 膨張機(膨張弁)
21a〜d,21−1a〜d,21−2a〜d 冷媒配管
22 増速機
23 軸受
24 電気ヒータ
25 潤滑油タンク
26 油濃縮器
27 油ポンプ
28 配管
29a 潤滑油供給配管
29b 潤滑油戻り配管
31 均圧管
32 ギアボックス
33 油冷却器(熱交換器)
34a,b配管
35 ポンプ
36a,b,c 配管
41 液面センサ
42 温度センサ
44 逆止弁
45 配管
46 配管
48 配管
49 配管
55 移送用タンク
56 配管
57 配管
60 加熱手段
61 ヒータ
62 配管
63 配管
64 エジェクタ
65 配管
66 配管
67 配管
68 均圧管
70 軸受室
71 均圧管
1
2
3
3-1
3-2
3’ 三方弁
4 三方弁
6
7
8
9
10
10’ 弁
11
11’ 弁
13’ 逆止弁
16
20
1-1-15 Compression refrigerator 11 Evaporator 11-1 Low pressure evaporator 11-2 High pressure evaporator 13 Compressor 13-1 Low pressure compressor 13-2 High pressure compressor 13a Impeller 15 Electric motor 15a Rotor 15b Rotor chamber 17 Condenser 17-1 Low pressure condenser 17-2 High pressure condenser 18 Economizer 18-1 Low pressure economizer 18-2 High pressure economizer 19, 19a, b, 19b-1, 2 Expander (expansion valve)
21a-d, 21-1a-d, 21-2a-d Refrigerant piping 22 Booster 23 Bearing 24 Electric heater 25 Lubricating oil tank 26 Oil concentrator 27 Oil pump 28 Piping 29a Lubricating oil supply piping 29b Lubricating oil return piping 31 Pressure equalizing pipe 32 Gear box 33 Oil cooler (heat exchanger)
34a, b piping 35 pump 36a, b, c piping 41 liquid level sensor 42 temperature sensor 44 check valve 45 piping 46 piping 48 piping 49 piping 55 transfer tank 56 piping 57 piping 60 heating means 61 heater 62 piping 63 piping 64 ejector 65 Piping 66 Piping 67 Piping 68 Pressure equalizing pipe 70 Bearing chamber 71 Pressure equalizing pipe V 1 valve V 2 valve V 3 valve V 3-1 valve V 3-2 valve V 3 'Three-way valve V 4 Three-way valve V 6 valve V 7 valve V 8 valve V 9 valve V 10 valve V 10 'valve V 11 valve V 11 ' valve V 13 'check valve V 16 valve V 20 valve

Claims (8)

圧縮機と、凝縮器と、蒸発器を冷媒が循環する冷媒配管によって接続する冷凍サイクル系を高圧側及び低圧側の2系統備え、両冷凍サイクル系の前記圧縮機を1台の電動機で駆動すると共に、該電動機の冷却を高圧側冷凍サイクル系の冷媒で行い、
前記圧縮機の軸受を潤滑する潤滑油が貯留される潤滑油タンクを備え、前記潤滑油タンク内の潤滑油を1台の油循環ポンプで前記軸受に供給するとともに該軸受を潤滑した潤滑油を前記潤滑油タンクに戻す潤滑油循環系を1系統備え、
さらに前記低圧側冷凍サイクル系の蒸発器と前記高圧側冷凍サイクル系の蒸発器を配管で接続し、該配管に開閉弁を設けて両蒸発器の液面を略同じレベルに調節することで、高圧側の冷凍サイクル系に移動した冷媒を低圧側の冷凍サイクル系に戻し、
前記潤滑油タンク内の気相部と前記高圧側冷凍サイクル系の低圧機器の気相部とを均圧管で接続し、
前記低圧側冷凍サイクル系の蒸発器と切替え弁付きの配管で接続された潤滑油を濃縮する油濃縮器を設け、
前記潤滑油タンクと前記油濃縮器とを液戻し配管で接続し、該液戻し配管に開閉弁を設け、
前記油濃縮器の気相部を前記低圧側冷凍サイクル系の蒸発器或いは圧縮機の吸込み部に配管で接続し、該配管に開閉弁を設けたことを特徴とする圧縮式冷凍機。
A refrigeration cycle system that connects a compressor, a condenser, and an evaporator with refrigerant piping through which a refrigerant circulates is provided with two systems, a high-pressure side and a low-pressure side, and the compressors of both refrigeration cycle systems are driven by a single electric motor. And cooling the electric motor with a refrigerant of a high-pressure side refrigeration cycle system,
A lubricating oil tank that stores lubricating oil for lubricating the bearing of the compressor; and the lubricating oil in the lubricating oil tank is supplied to the bearing by a single oil circulation pump and the lubricating oil is lubricated. 1 system of lubricating oil circulation system to return to the lubricating oil tank,
Furthermore, by connecting the evaporator of the low-pressure side refrigeration cycle system and the evaporator of the high-pressure side refrigeration cycle system by piping, and providing an on-off valve in the piping to adjust the liquid level of both evaporators to substantially the same level, Return the refrigerant that has moved to the refrigeration cycle system on the high pressure side to the refrigeration cycle system on the low pressure side,
The gas phase part in the lubricating oil tank and the gas phase part of the low pressure equipment of the high pressure side refrigeration cycle system are connected by a pressure equalizing pipe,
An oil concentrator for concentrating the lubricating oil connected to the low-pressure side refrigeration cycle evaporator and a pipe with a switching valve is provided,
The lubricating oil tank and the oil concentrator are connected by a liquid return pipe, and an opening / closing valve is provided in the liquid return pipe,
A compression-type refrigerator having a gas phase portion of the oil concentrator connected to an evaporator or a suction portion of the low-pressure side refrigeration cycle system by piping, and an open / close valve provided on the piping.
圧縮機と、凝縮器と、蒸発器を冷媒が循環する冷媒配管によって接続する冷凍サイクル系を高圧側及び低圧側の2系統備え、両冷凍サイクル系の前記圧縮機を1台の電動機で駆動すると共に、該電動機の冷却を高圧側冷凍サイクル系の冷媒で行い、
前記圧縮機の軸受を潤滑する潤滑油が貯留される潤滑油タンクを備え、前記潤滑油タンク内の潤滑油を1台の油循環ポンプで前記軸受に供給するとともに該軸受を潤滑した潤滑油を前記潤滑油タンクに戻す潤滑油循環系を1系統備え、
さらに前記低圧側冷凍サイクル系の蒸発器と前記高圧側冷凍サイクル系の蒸発器を配管で接続し、該配管に開閉弁を設けて両蒸発器の液面を略同じレベルに調節することで、高圧側の冷凍サイクル系に移動した冷媒を低圧側の冷凍サイクル系に戻し、
前記潤滑油タンク内の気相部と前記高圧側冷凍サイクル系の低圧機器の気相部とを均圧管で接続し、
前記低圧側冷凍サイクル系の蒸発器と切替え弁付きの配管で接続された潤滑油を濃縮する油濃縮器を設け、
前記潤滑油タンクと前記油濃縮器とを液戻し配管で接続し、該液戻し配管に開閉弁を設け、
前記油濃縮器の気相部を前記低圧側冷凍サイクル系の蒸発器或いは圧縮機の吸込み部に配管で接続し、該配管に開閉弁を設け、
前記油濃縮器と、前記潤滑油タンクの気相部を配管で接続された機器の圧力より高い圧力の機器を配管で接続し、該配管に開閉弁を設けたことを特徴とする圧縮式冷凍機。
A refrigeration cycle system that connects a compressor, a condenser, and an evaporator with refrigerant piping through which a refrigerant circulates is provided with two systems, a high-pressure side and a low-pressure side, and the compressors of both refrigeration cycle systems are driven by a single electric motor. And cooling the electric motor with a refrigerant of a high-pressure side refrigeration cycle system,
A lubricating oil tank that stores lubricating oil for lubricating the bearing of the compressor; and the lubricating oil in the lubricating oil tank is supplied to the bearing by a single oil circulation pump and the lubricating oil is lubricated. 1 system of lubricating oil circulation system to return to the lubricating oil tank,
Furthermore, by connecting the evaporator of the low-pressure side refrigeration cycle system and the evaporator of the high-pressure side refrigeration cycle system by piping, and providing an on-off valve in the piping to adjust the liquid level of both evaporators to substantially the same level, Return the refrigerant that has moved to the refrigeration cycle system on the high pressure side to the refrigeration cycle system on the low pressure side,
The gas phase part in the lubricating oil tank and the gas phase part of the low pressure equipment of the high pressure side refrigeration cycle system are connected by a pressure equalizing pipe,
An oil concentrator for concentrating the lubricating oil connected to the low-pressure side refrigeration cycle evaporator and a pipe with a switching valve is provided,
The lubricating oil tank and the oil concentrator are connected by a liquid return pipe, and an opening / closing valve is provided in the liquid return pipe,
The gas phase part of the oil concentrator is connected to the evaporator of the low-pressure side refrigeration cycle system or the suction part of the compressor by a pipe, and an open / close valve is provided in the pipe,
Compressive refrigeration characterized in that the oil concentrator and a device having a pressure higher than the pressure of the device connected by piping to the gas phase portion of the lubricating oil tank are connected by piping, and an open / close valve is provided in the piping. Machine.
請求項1又は2に記載の圧縮式冷凍機において、
前記油濃縮器には油の濃度を検出する濃縮検出手段を備え、該濃縮検出手段の出力により油の濃縮完了を検出したら前記油濃縮器の液を前記潤滑油タンクに移動させる制御手段を備えたことを特徴とする圧縮式冷凍機。
The compression refrigerator according to claim 1 or 2 ,
The oil concentrator is provided with concentration detecting means for detecting the concentration of oil, and control means for moving the liquid of the oil concentrator to the lubricating oil tank when the completion of oil concentration is detected by the output of the concentration detecting means. A compression type refrigerator characterized by the above.
請求項3に記載の圧縮式冷凍機において、
前記濃度検出手段は、溶液の露点と溶液の温度を検出する温度センサ、或いは前記油濃縮器の蒸気圧力を検出する蒸気圧力センサと溶液の温度を検出する温度センサであることを特徴とする圧縮式冷凍機。
In the compression refrigerator according to claim 3 ,
The concentration detecting means is a temperature sensor that detects a dew point of the solution and a temperature of the solution, or a vapor pressure sensor that detects a vapor pressure of the oil concentrator and a temperature sensor that detects the temperature of the solution. Type refrigerator.
請求項1又は2に記載の圧縮式冷凍機において、
前記油濃縮器からの液の出し入れの少なくとも一方を、前記油濃縮器の液面を検出して行うことを特徴とする圧縮式冷凍機。
The compression refrigerator according to claim 1 or 2 ,
A compression type refrigeration machine characterized in that at least one of taking in and out of the liquid from the oil concentrator is performed by detecting the liquid level of the oil concentrator.
請求項1又は2に記載の圧縮式冷凍機において、
前記油濃縮器からの液の出し入れの少なくとも一方を、該出し入れの経過時間を基に行うことを特徴とする圧縮式冷凍機。
The compression refrigerator according to claim 1 or 2 ,
A compression type refrigerator that performs at least one of taking in and out of the liquid from the oil concentrator based on an elapsed time of the taking in and out.
請求項1に記載の圧縮式冷凍機における前記油濃縮器内の潤滑油濃縮溶液を前記潤滑油タンクへ移送する圧縮式冷凍機の運転方法であって、
前記油濃縮器内の潤滑油を含む冷媒の加熱による潤滑油濃縮完了後に、油濃縮器内で蒸発して溜まった冷媒蒸気により昇圧する該油濃縮器内の圧力により前記潤滑油濃縮溶液を前記潤滑油タンクへ移送することを特徴とする圧縮式冷凍機の運転方法。
The operation method of the compression type refrigerator which transfers the lubricating oil concentration solution in the oil concentrator in the compression type refrigerator according to claim 1 to the lubricating oil tank,
After the completion of the concentration of the lubricating oil by heating the refrigerant containing the lubricating oil in the oil concentrator, the lubricating oil concentrated solution is reduced by the pressure in the oil concentrator increased by the refrigerant vapor evaporated and accumulated in the oil concentrator. A method for operating a compression refrigerator, wherein the method is transferred to a lubricating oil tank.
請求項2に記載の圧縮式冷凍機における前記油濃縮器内の潤滑油濃縮溶液を前記潤滑油タンクへ移送する圧縮式冷凍機の運転方法であって、
前記油濃縮器内の潤滑油を含む冷媒の加熱による潤滑油濃縮完了後に、前記潤滑油タンクの気相部を配管で接続した機器の圧力より高い圧力の機器の圧力を導入し、該圧力で前記潤滑油濃縮溶液を前記潤滑油タンクへ移送することを特徴とする圧縮式冷凍機の運転方法。
The operation method of the compression type refrigerator which transfers the lubricating oil concentration solution in the oil concentrator in the compression type refrigerator according to claim 2 to the lubricating oil tank,
After the completion of the concentration of the lubricating oil by heating the refrigerant containing the lubricating oil in the oil concentrator, the pressure of the equipment higher than the pressure of the equipment in which the gas phase part of the lubricating oil tank is connected by piping is introduced, and the pressure A method of operating a compression refrigerator, wherein the lubricating oil concentrated solution is transferred to the lubricating oil tank.
JP2008261030A 2008-06-09 2008-10-07 Compressive refrigerator and operation method thereof Expired - Fee Related JP5543093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008261030A JP5543093B2 (en) 2008-06-09 2008-10-07 Compressive refrigerator and operation method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008150576 2008-06-09
JP2008150576 2008-06-09
JP2008261030A JP5543093B2 (en) 2008-06-09 2008-10-07 Compressive refrigerator and operation method thereof

Publications (2)

Publication Number Publication Date
JP2010019541A JP2010019541A (en) 2010-01-28
JP5543093B2 true JP5543093B2 (en) 2014-07-09

Family

ID=41704627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008261030A Expired - Fee Related JP5543093B2 (en) 2008-06-09 2008-10-07 Compressive refrigerator and operation method thereof

Country Status (1)

Country Link
JP (1) JP5543093B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5714479B2 (en) * 2011-12-26 2015-05-07 株式会社神戸製鋼所 Oil-cooled two-stage compressor and heat pump
JP6064489B2 (en) * 2012-09-25 2017-01-25 ダイキン工業株式会社 Turbo refrigerator
CN111219911B (en) * 2020-01-09 2020-12-11 珠海格力电器股份有限公司 Injection oil return device and refrigeration equipment
CN117469822B (en) * 2023-12-27 2024-03-19 珠海格力电器股份有限公司 Air conditioning unit, control method and storage medium

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048462A (en) * 1983-08-26 1985-03-16 三洋電機株式会社 Air conditioner
JP3351001B2 (en) * 1993-03-23 2002-11-25 ダイキン工業株式会社 Liquid-filled evaporator
JP4567182B2 (en) * 2000-12-25 2010-10-20 三菱電機株式会社 Extraction / separation mechanism, heat source unit of refrigeration cycle apparatus, refrigeration cycle apparatus, and renewal method of refrigeration cycle apparatus
US6672102B1 (en) * 2002-11-27 2004-01-06 Carrier Corporation Oil recovery and lubrication system for screw compressor refrigeration machine
JP5096678B2 (en) * 2006-01-10 2012-12-12 株式会社荏原製作所 Refrigeration equipment
JP2008082622A (en) * 2006-09-27 2008-04-10 Ebara Corp Compression type refrigerating device

Also Published As

Publication number Publication date
JP2010019541A (en) 2010-01-28

Similar Documents

Publication Publication Date Title
US10941967B2 (en) Lubrication and cooling system
JP5091015B2 (en) Compression refrigerator
JP4714099B2 (en) Bearing lubricator for compression refrigerator
JP6448936B2 (en) Oil recovery device for turbo refrigerator
WO2002066872A1 (en) Self-contained regulating valve, and compression type refrigerating machine having the same
EP2959239B1 (en) Oil management for heating, ventilation and air conditioning system
WO2017122373A1 (en) Refrigeration cycle device
JP2008082622A (en) Compression type refrigerating device
JP5543093B2 (en) Compressive refrigerator and operation method thereof
JP2008082623A (en) Compression type refrigerating device
JP2009257684A (en) Compression refrigerating machine and method for recovering lubricating oil for the same
CN108362024B (en) Centrifugal refrigerator
JP2015190662A (en) turbo refrigerator
JP2008014533A (en) Oil recovering device of compression type refrigerating machine
JP2008128570A (en) Refrigerating apparatus
JP2008014598A (en) Bleeder for compression type refrigerating machine
JP5993332B2 (en) Turbo refrigerator
JP2009236429A (en) Compression type refrigerating machine and its lubricant recovering method
JP2018169059A (en) refrigerator
JP2001050601A (en) Refrigerator
JP3462955B2 (en) Refrigeration equipment
JP2000074506A (en) Compression refrigerating machine with built-in motor
JP6003319B2 (en) Air conditioner
JPS6149588B2 (en)
JPH06323687A (en) Refrigerator and operation thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140508

R150 Certificate of patent or registration of utility model

Ref document number: 5543093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees