JP2008014533A - Oil recovering device of compression type refrigerating machine - Google Patents

Oil recovering device of compression type refrigerating machine Download PDF

Info

Publication number
JP2008014533A
JP2008014533A JP2006184297A JP2006184297A JP2008014533A JP 2008014533 A JP2008014533 A JP 2008014533A JP 2006184297 A JP2006184297 A JP 2006184297A JP 2006184297 A JP2006184297 A JP 2006184297A JP 2008014533 A JP2008014533 A JP 2008014533A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
oil
mixed solution
lubricating oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006184297A
Other languages
Japanese (ja)
Inventor
Osayuki Inoue
修行 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2006184297A priority Critical patent/JP2008014533A/en
Publication of JP2008014533A publication Critical patent/JP2008014533A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oil recovering device of a compression type refrigerating machine capable of efficiently recovering a lubricant leaked out in a refrigerant cycle to an oil circulation system without energy loss in recovering. <P>SOLUTION: This oil recovering device 1-1 of the compression-type refrigerating machine recovers the lubricant in a refrigerant by introducing the refrigerant in piping 32 from an evaporator 11 to a lubricant tank 25 connected to a suction portion of a compressor 13 by an equalizer pipe 30 through an oil recovering heat exchanger 47 heated by the refrigerant in piping 38 from a condenser 17 toward the evaporator 11. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は冷媒サイクル中に漏れ出した潤滑油を回収する圧縮式冷凍機の油回収装置に関するものである。   The present invention relates to an oil recovery apparatus for a compression type refrigerator that recovers lubricating oil leaked during a refrigerant cycle.

従来、圧縮式冷凍機(蒸気圧縮式冷凍機)は、電動機によって駆動される圧縮機と凝縮器と蒸発器とを冷媒配管で連結して構成されている。また圧縮機と電動機の軸を回転自在に支持する軸受や、増速ギヤなどには、潤滑のため潤滑油を用いている。潤滑油は冷媒と相溶性のあるものを用いている。   Conventionally, a compression refrigerator (vapor compression refrigerator) is configured by connecting a compressor driven by an electric motor, a condenser, and an evaporator with a refrigerant pipe. Lubricating oil is used for lubrication for bearings that support the shafts of the compressor and the motor in a freely rotatable manner, speed increasing gears, and the like. The lubricating oil is compatible with the refrigerant.

圧縮機は、電動機、軸受、増速ギヤ(電動機と羽根車を直結している場合は不要)を含めて密閉化し、ケーシングを貫通するような軸シールを持たない構造とすることが多い(密閉式ターボ冷凍機)。この方式では、軸受あるいは増速ギヤ部から少量の潤滑油が漏れ出て、冷媒に混入することは通常避けられない。漏れ出した潤滑油は、運転中、冷凍サイクル中の蒸発器あるいは圧縮機吸込み部に溜まってくる。そして長時間の潤滑油漏出により、潤滑油系統の油不足による潤滑不能が生じる。また、冷媒系統に潤滑油が混入あるいは溶解し、蓄積してくると、冷媒側の伝熱が悪化し、さらには冷媒蒸気圧特性が変化してしまう等の問題が生じる。   In many cases, the compressor is hermetically sealed, including the motor, bearings, and speed-up gear (not required if the motor and impeller are directly connected), and does not have a shaft seal that penetrates the casing (sealed). Type turbo refrigerator). In this method, it is usually inevitable that a small amount of lubricating oil leaks out from the bearing or the speed increasing gear and enters the refrigerant. The leaked lubricating oil accumulates in the evaporator or compressor suction part in the refrigeration cycle during operation. In addition, due to the long-term leakage of lubricating oil, lubrication failure due to lack of oil in the lubricating oil system occurs. In addition, when lubricating oil is mixed or dissolved in the refrigerant system and accumulates, problems such as deterioration of heat transfer on the refrigerant side and further change in the refrigerant vapor pressure characteristics occur.

この対策として従来、冷媒循環系から潤滑油を回収することが行われている。即ち潤滑油の混入した冷媒を加熱蒸発させて冷媒中の潤滑油濃度を上げ、油循環系に回収している。例えば圧縮機吸込み部に溜まる油混入冷媒を、圧縮機の吐出蒸気で加熱して冷媒を蒸発させ、潤滑油濃度をあげ、冷媒蒸気は圧縮機に吸引させる方式(例えば特許文献1参照)や、潤滑油濃度の高い冷媒を捕集し、加熱して冷媒を蒸発させ、蒸発冷媒は蒸発器に戻し、その際の加熱源は圧縮機の吐出蒸気、ヒーターあるいは潤滑油などを使用する方式(例えば特許文献2参照)などである。   As a countermeasure against this, conventionally, lubricating oil is recovered from the refrigerant circulation system. That is, the refrigerant mixed with the lubricating oil is heated and evaporated to increase the concentration of the lubricating oil in the refrigerant and recovered in the oil circulation system. For example, the oil-mixed refrigerant that accumulates in the compressor suction section is heated with the discharge steam of the compressor to evaporate the refrigerant, the lubricating oil concentration is increased, and the refrigerant vapor is sucked into the compressor (see, for example, Patent Document 1), A refrigerant with high lubricating oil concentration is collected and heated to evaporate the refrigerant. The evaporated refrigerant is returned to the evaporator, and the heating source at that time uses a discharge steam of a compressor, a heater or lubricating oil (for example, Patent Document 2).

油の溶解した冷媒液は本来は冷凍効果を発揮してから圧縮機に吸い込まれるべきものであるが、上記従来の方式では、冷水(冷凍効果を発揮する対象、被冷却流体)とは別の流体あるいは熱源から熱を貰って蒸発させている。すなわち蒸発した冷媒は冷凍効果を発揮せずに、圧縮機への負荷となって、冷凍機の効率を低下させることになる。   The refrigerant liquid in which oil is dissolved should be sucked into the compressor after exhibiting the refrigeration effect. However, in the above conventional method, it is different from cold water (a target that exhibits the refrigeration effect, the fluid to be cooled). Evaporates with heat from a fluid or heat source. That is, the evaporated refrigerant does not exhibit the refrigeration effect, but becomes a load on the compressor, thereby reducing the efficiency of the refrigerator.

一方冷媒中の潤滑油濃度を高めて油循環系に回収したとしても、回収潤滑油中の冷媒濃度が高いと、油循環系の粘性管理(油温管理)により、冷媒濃度が高い分は蒸気の形で放出されることになる。つまり、潤滑油と共に油循環系に戻された回収液中の冷媒液の内、油循環系潤滑油の冷媒濃度より高い分については、冷凍効果を出さずに冷媒蒸気になるので、冷凍機の効率を低下させてしまうという問題がある。   On the other hand, even if the lubricating oil concentration in the refrigerant is increased and recovered in the oil circulation system, if the refrigerant concentration in the recovered lubricating oil is high, the viscosity of the refrigerant circulation system (oil temperature management) causes the higher refrigerant concentration to be vaporized. Will be released in the form of That is, among the refrigerant liquid in the recovered liquid returned to the oil circulation system together with the lubricating oil, the refrigerant concentration higher than the refrigerant concentration of the oil circulation system lubricating oil becomes refrigerant vapor without producing the refrigeration effect. There is a problem of reducing efficiency.

蒸発器からの冷媒ミストは、圧縮機吸込み部に吸引される。特許文献1では吸込み部に溜まった冷媒を加熱し、油濃度を高める構成としている。特許文献2では、なるべく油濃度の高い冷媒を吸引するように構成している。しかし、油循環系に戻す油濃度の管理は行っていない。   The refrigerant mist from the evaporator is sucked into the compressor suction portion. In patent document 1, it is set as the structure which heats the refrigerant | coolant collected in the suction part and raises oil concentration. In patent document 2, it is comprised so that the refrigerant | coolant with as high an oil concentration as possible may be attracted | sucked. However, the oil concentration returned to the oil circulation system is not managed.

特に、冷凍機起動時など、冷水(被冷却媒体)温度が高く、蒸発器の負荷が高くなる場合などは、圧縮機吸込み部に吸引される冷媒ミストが多量になり、ミスト中の油濃度は低下し、その油を濃縮して油循環系に戻しても、通常運転中の濃度よりもはるかに低下し、場合によっては、油循環系の油タンクが多量の冷媒の混入で溢れて、冷媒循環系に油が流出することさえある。また、起動時で冷水温度が高く、蒸発器の蒸発温度が冷凍機設置雰囲気よりも高温となるような場合、圧縮機胴体などで冷媒蒸気が凝縮し、冷媒ミストと共に圧縮吸込み底部(あるいはタンク)に溜まる。この場合の冷媒中の油濃度は低下し、加熱濃縮して油循環系に戻しても、通常運転中の濃度よりもはるかに低下し、前述の場合と同様に、油循環系の油タンクが多量の冷媒の混入で溢れて、冷媒循環系に流出することさえある。
実公昭58−22064号公報 特開昭61−180860号公報
In particular, when the temperature of the chilled water (cooled medium) is high, such as when the refrigerator is started, and the load on the evaporator increases, the amount of refrigerant mist sucked into the compressor suction section increases, and the oil concentration in the mist is Even if the oil is concentrated and returned to the oil circulation system, it will be much lower than the concentration during normal operation. Oil can even spill into the circulatory system. Also, when the cold water temperature is high at startup and the evaporation temperature of the evaporator is higher than the chiller installation atmosphere, the refrigerant vapor condenses in the compressor body, etc., and the compression suction bottom (or tank) together with the refrigerant mist It collects in. In this case, the oil concentration in the refrigerant is reduced, and even if it is concentrated by heating and returned to the oil circulation system, the oil concentration in the refrigerant is much lower than that during normal operation. It overflows with a large amount of refrigerant and may even flow out into the refrigerant circulation system.
Japanese Utility Model Publication No. 58-22064 JP-A-61-180860

本発明は上述の点に鑑みてなされたものでありその目的は、冷媒サイクル中に漏れ出した潤滑油を、油循環系に、回収時のエネルギー損失なく効率よく回収することができる圧縮式冷凍機の油回収装置を提供することにある。   The present invention has been made in view of the above points, and an object of the present invention is to provide a compression refrigeration capable of efficiently recovering lubricating oil leaked into the refrigerant cycle in the oil circulation system without energy loss during recovery. It is to provide a machine oil recovery device.

本願請求項1に記載の発明は、圧縮機と、凝縮器と、蒸発器とを冷媒を循環する冷媒配管によって連結すると共に、上記圧縮機の軸を回転自在に支持する軸受を潤滑油にて潤滑する圧縮式冷凍機において、前記蒸発器内の冷媒を、前記凝縮器から蒸発器へ向かう冷媒にて加熱する油回収熱交換器を経由して、圧縮機吸込み部に接続されたタンク、あるいは圧縮機吸込み部の底部に導入することで、前記冷媒中の潤滑油を回収することを特徴とする圧縮式冷凍機の油回収装置にある。
上記圧縮機吸込み部に接続されたタンクは、油循環系に設置される潤滑油タンクを含む概念である。前記圧縮機吸込み部の底部とは、圧縮機吸込みノズルの外側に、ノズルを覆って設けられるケーシングの底部である。また凝縮器から蒸発器へ向かう冷媒は、凝縮器と蒸発器の間にエコノマイザーを設置した冷凍装置の場合のエコノマイザーから蒸発器へ向かう冷媒、あるいは凝縮器からエコノマイザーへ向かう冷媒を含む概念である。
According to the first aspect of the present invention, a compressor, a condenser, and an evaporator are connected by a refrigerant pipe that circulates a refrigerant, and a bearing that rotatably supports the shaft of the compressor is made of lubricating oil. In a compression type refrigerator to be lubricated, a tank connected to a compressor suction section through an oil recovery heat exchanger that heats the refrigerant in the evaporator with refrigerant flowing from the condenser to the evaporator, or The lubricating oil in the refrigerant is recovered by being introduced into the bottom of the compressor suction portion.
The tank connected to the compressor suction part is a concept including a lubricating oil tank installed in an oil circulation system. The bottom part of the compressor suction part is a bottom part of a casing provided outside the compressor suction nozzle so as to cover the nozzle. In addition, the refrigerant from the condenser to the evaporator includes the refrigerant from the economizer to the evaporator or the refrigerant from the condenser to the economizer in the case of a refrigeration system in which an economizer is installed between the condenser and the evaporator. It is.

本願請求項2に記載の発明は、前記蒸発器から油回収熱交換器へ冷媒を導入する冷媒配管の前記蒸発器との接続位置は、蒸発器の冷水入口側であることを特徴とする請求項1に記載の圧縮式冷凍機の油回収装置にある。   The invention according to claim 2 of the present application is characterized in that the connection position of the refrigerant pipe for introducing the refrigerant from the evaporator to the oil recovery heat exchanger with the evaporator is the cold water inlet side of the evaporator. Item 1. The oil recovery device for a compression refrigerator according to Item 1.

本願請求項3に記載の発明は、前記蒸発器から油回収熱交換器へ冷媒を導入する冷媒配管中に、前記油回収熱交換器を通過した冷媒の過熱度に応じて冷媒流量を調節する調節手段を設けたことを特徴とする請求項1又は2に記載の圧縮式冷凍機の油回収装置にある。   The invention according to claim 3 of the present application adjusts the flow rate of the refrigerant in the refrigerant pipe for introducing the refrigerant from the evaporator to the oil recovery heat exchanger according to the degree of superheat of the refrigerant that has passed through the oil recovery heat exchanger. 3. An oil recovery apparatus for a compression refrigeration machine according to claim 1, further comprising an adjusting means.

本願請求項4に記載の発明は、前記タンクあるいは前記底部の液溜まり部を、凝縮器から蒸発器へ向かう冷媒にて加熱する加熱手段を具備することを特徴とする請求項1又は2又は3に記載の圧縮式冷凍機の油回収装置にある。
凝縮器から蒸発器へ向かう冷媒は、凝縮器と蒸発器の間にエコノマイザーを設置した冷凍装置の場合のエコノマイザーから蒸発器へ向かう冷媒、あるいは凝縮器からエコノマイザーへ向かう冷媒を含む概念である。また前記油回収熱交換器と併用しても良い。
The invention according to claim 4 of the present application is characterized by comprising heating means for heating the tank or the liquid reservoir at the bottom with a refrigerant directed from the condenser to the evaporator. It is in the oil collection | recovery apparatus of the compression-type refrigerator as described in above.
The refrigerant that goes from the condenser to the evaporator is a concept that includes the refrigerant that goes from the economizer to the evaporator or the refrigerant that goes from the condenser to the economizer in the case of a refrigeration system in which an economizer is installed between the condenser and the evaporator. is there. Moreover, you may use together with the said oil recovery heat exchanger.

本願請求項5に記載の発明は、圧縮機と、凝縮器と、蒸発器とを冷媒を循環する冷媒配管によって連結すると共に、上記圧縮機の軸を回転自在に支持する軸受を潤滑油にて潤滑する圧縮式冷凍機において、潤滑油と冷媒の混合溶液を集めておくタンクあるいは圧縮機吸込み部の底部と、前記タンクあるいは前記底部内の混合溶液の濃度を検知或いは推定する手段と、前記タンクあるいは前記底部から混合溶液を油循環系に移動する手段とを有することを特徴とする圧縮冷凍機の油回収装置にある。
そしてタンク内の混合溶液の油濃度が低いとき、混合溶液の油循環系への移動を禁止する。
According to the fifth aspect of the present invention, the compressor, the condenser, and the evaporator are connected by a refrigerant pipe that circulates the refrigerant, and a bearing that rotatably supports the shaft of the compressor is made of lubricating oil. In a compression type refrigerator to be lubricated, a tank for collecting a mixed solution of lubricating oil and a refrigerant or a bottom of a compressor suction portion, means for detecting or estimating a concentration of the mixed solution in the tank or the bottom, and the tank Or it has a means to move a mixed solution from the bottom to an oil circulation system, and it is in an oil recovery device of a compression refrigerator.
When the oil concentration of the mixed solution in the tank is low, the movement of the mixed solution to the oil circulation system is prohibited.

本願請求項6に記載の発明は、前記タンクあるいは前記底部内の混合溶液の濃度を検知する手段が、混合溶液の露点あるいは圧縮機吸込み部温度あるいは蒸発器冷媒温度と、混合溶液の温度の関係から混合溶液の濃度を求める手段であるか、前記タンクあるいは前記底部の蒸気圧力あるいは圧縮機吸込み部圧力あるいは蒸発器圧力と、混合溶液の温度の関係から混合溶液の濃度を求める手段であることを特徴とする請求項5に記載の圧縮式冷凍機の油回収装置にある。   In the invention according to claim 6 of the present application, the means for detecting the concentration of the mixed solution in the tank or the bottom is a relationship between the dew point of the mixed solution, the compressor suction portion temperature or the evaporator refrigerant temperature, and the temperature of the mixed solution. Or a means for determining the concentration of the mixed solution from the relationship between the vapor pressure of the tank or the bottom or the pressure of the compressor suction or the pressure of the evaporator and the temperature of the mixed solution. It is in the oil recovery device of the compression type refrigerator according to claim 5 characterized by the above-mentioned.

本願請求項7に記載の発明は、前記タンクあるいは前記底部内の混合溶液の濃度を推定する手段が、前記油循環系に設けた潤滑油タンク内の潤滑油の液面が所定の液面となったことを検出する手段、あるいは蒸発器圧力あるいは蒸発器温度が所定の値になったことを検出する手段、あるいは冷凍機起動後に所定時間が経過したことを検出する手段、であることを特徴とする請求項5に記載の圧縮式冷凍機の油回収装置にある。
液面の検出は、液面センサーあるいは液面スイッチが行う。そして液面の高位を検出したとき、あるいは蒸発器圧力が高いとき、あるいは蒸発温度が高いとき、あるいは冷凍機起動後の所定時間、油循環系への混合溶液の移動を禁止する。
According to the seventh aspect of the present invention, the means for estimating the concentration of the mixed solution in the tank or the bottom is such that the liquid level of the lubricating oil in the lubricating oil tank provided in the oil circulation system is a predetermined liquid level. A means for detecting that the evaporator pressure or the evaporator temperature has reached a predetermined value, or a means for detecting that a predetermined time has elapsed since the start of the refrigerator. It exists in the oil recovery apparatus of the compression type refrigerator of Claim 5.
The liquid level is detected by a liquid level sensor or a liquid level switch. When the high level of the liquid level is detected, when the evaporator pressure is high, when the evaporation temperature is high, or for a predetermined time after starting the refrigerator, the movement of the mixed solution into the oil circulation system is prohibited.

本願請求項8に記載の発明は、混合溶液中の潤滑油濃度が所定値より低いときあるいは低いと推定されるとき、前記油循環系への混合溶液の移動を禁止すると共に、前記タンクあるいは前記底部内の混合溶液を冷媒循環系に戻す手段を有することを特徴とする請求項5乃至7の内の何れかに記載の圧縮式冷凍機の油回収装置にある。   When the lubricating oil concentration in the mixed solution is estimated to be lower or lower than a predetermined value, the invention according to claim 8 of the present application prohibits the movement of the mixed solution to the oil circulation system, and the tank or the The oil recovery apparatus for a compression refrigeration machine according to any one of claims 5 to 7, further comprising means for returning the mixed solution in the bottom to the refrigerant circulation system.

請求項1に記載の発明によれば、凝縮器から蒸発器に導入される冷媒により、油の混入した冷媒を加熱し、加熱されて蒸発した冷媒が圧縮機に吸引される。その際、蒸発器に導入される冷媒は冷却される(熱量同一)ので、蒸発した冷媒と同熱量は、蒸発器で冷凍効果を発揮したと同じことになる。従って冷媒サイクル中に漏れ出した潤滑油を、回収時のエネルギー損失なく効率よく油循環系に回収することができる。   According to the first aspect of the present invention, the refrigerant mixed with oil is heated by the refrigerant introduced from the condenser to the evaporator, and the refrigerant evaporated by being heated is sucked into the compressor. At this time, since the refrigerant introduced into the evaporator is cooled (the same amount of heat), the same amount of heat as that of the evaporated refrigerant is the same as when the refrigeration effect is exhibited in the evaporator. Therefore, the lubricating oil leaked during the refrigerant cycle can be efficiently recovered in the oil circulation system without energy loss during recovery.

請求項2に記載の発明によれば、効果的な潤滑油の回収が図られる。即ち蒸発器の冷水入口側の方が冷水温度と冷媒温度との温度差が大きいため冷媒の沸騰が激しく、その分冷媒の蒸発が多くなり、残る冷媒液には潤滑油を多く含むことになる。従って請求項2に記載の発明のように構成すれば、油回収熱交換器へ導入される冷媒中の潤滑油の割合を多くすることができ、より効果的な潤滑油の回収が図られる。   According to the second aspect of the present invention, effective recovery of the lubricating oil is achieved. That is, since the temperature difference between the cold water temperature and the refrigerant temperature is larger on the cold water inlet side of the evaporator, the refrigerant is boiled more rapidly, and the refrigerant evaporates more, and the remaining refrigerant liquid contains a lot of lubricating oil. . Therefore, if it comprises like invention of Claim 2, the ratio of the lubricating oil in the refrigerant | coolant introduce | transduced into an oil collection | recovery heat exchanger can be increased, and more effective collection | recovery of lubricating oil is achieved.

請求項3に記載の発明によれば、冷媒の油回収熱交換器への導入量を適正な値に維持できる。   According to the invention described in claim 3, the amount of refrigerant introduced into the oil recovery heat exchanger can be maintained at an appropriate value.

請求項4に記載の発明によれば、潤滑油と冷媒の混合溶液の効率的な加熱が行える。   According to invention of Claim 4, the heating of the mixed solution of lubricating oil and a refrigerant | coolant can be performed efficiently.

請求項5乃至請求項8に記載の発明によれば、混合溶液の油濃度に応じて、混合溶液の油循環系への移動及びその禁止を行うことができる。   According to invention of Claim 5 thru | or 8, according to the oil concentration of a mixed solution, the movement to the oil circulation system of a mixed solution and its prohibition can be performed.

以下、本発明の実施形態を図面を参照して詳細に説明する。
〔第1実施形態〕
図1は本発明の第1実施形態を用いて構成される圧縮式冷凍機1−1の全体概略構成図である。同図に示すように圧縮式冷凍機1−1は、蒸気圧縮式の冷凍サイクルを行う圧縮式冷凍機であって、冷媒を封入したクローズドシステムで構成され、具体的に言えば、冷水(被冷却流体)から熱を奪って冷媒が蒸発し冷凍効果を発揮する蒸発器11と、電動機(駆動機)15によって回転駆動されて前記冷媒蒸気を圧縮して高圧蒸気にする圧縮機13と、高圧蒸気を冷却水(冷却流体)で冷却して凝縮させる凝縮器17と、前記凝縮した冷媒を減圧して膨張させて蒸発器11に送る膨張機19とを、冷媒を循環する冷媒配管21によって連結して構成されている。さらにこの圧縮式冷凍機1−1は、電動機15や各種ポンプの駆動制御や、各種開閉手段の開閉制御等を行う図示しない制御機器(制御手段)を具備している。圧縮機13と電動機15の軸は軸受23により回転自在に支持され、軸受23は潤滑油で潤滑されている。なお図1では圧縮機13の羽根車13aと電動機15とを直結しているが、電動機15の回転を増速ギヤで増速して羽根車13aを駆動する構造としても良い。その場合は増速ギヤも潤滑油で潤滑する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[First Embodiment]
FIG. 1 is an overall schematic configuration diagram of a compression refrigerator 1-1 configured by using the first embodiment of the present invention. As shown in the figure, the compression refrigerator 1-1 is a compression refrigerator that performs a vapor compression refrigeration cycle, and is composed of a closed system in which a refrigerant is enclosed. An evaporator 11 that removes heat from the cooling fluid) and evaporates the refrigerant to exert a refrigeration effect; a compressor 13 that is rotationally driven by an electric motor (driver) 15 to compress the refrigerant vapor into high-pressure vapor; A condenser 17 that cools and condenses steam with cooling water (cooling fluid) and an expander 19 that decompresses and expands the condensed refrigerant and sends it to the evaporator 11 are connected by a refrigerant pipe 21 that circulates the refrigerant. Configured. Further, the compression refrigerator 1-1 includes a control device (control means) (not shown) that performs drive control of the electric motor 15 and various pumps, open / close control of various open / close means, and the like. The shafts of the compressor 13 and the electric motor 15 are rotatably supported by a bearing 23, and the bearing 23 is lubricated with lubricating oil. In FIG. 1, the impeller 13a of the compressor 13 and the electric motor 15 are directly connected. However, the impeller 13a may be driven by increasing the rotation of the electric motor 15 with a speed increasing gear. In that case, the speed increasing gear is also lubricated with lubricating oil.

またこの圧縮式冷凍機1−1は圧縮機13の軸受23を潤滑する潤滑油を貯留している潤滑油タンク25を具備している。軸受23はこの実施形態では電動機15の両側に設置されている。潤滑油タンク25には、油ポンプ27を介して軸受23に潤滑油を供給する配管29aと、軸受23を潤滑した潤滑油を潤滑油タンク25に戻す配管29bとが取り付けられ、これら配管29a,29bと潤滑油タンク25と油ポンプ27とによって油循環系が構成されている。なお軸受23を転がり軸受とすれば、従来のすべり軸受よりも、潤滑油の許容粘性範囲を広く取ることができ、潤滑油管理が容易になる。   The compression refrigerator 1-1 includes a lubricating oil tank 25 that stores lubricating oil for lubricating the bearing 23 of the compressor 13. In this embodiment, the bearings 23 are installed on both sides of the electric motor 15. A pipe 29a for supplying the lubricating oil to the bearing 23 via the oil pump 27 and a pipe 29b for returning the lubricating oil that has lubricated the bearing 23 to the lubricating oil tank 25 are attached to the lubricating oil tank 25. 29b, the lubricating oil tank 25, and the oil pump 27 constitute an oil circulation system. If the bearing 23 is a rolling bearing, the allowable viscosity range of the lubricating oil can be made wider than that of the conventional sliding bearing, and management of the lubricating oil becomes easy.

潤滑油タンク25内には潤滑油液面が存在し、その上部は冷媒蒸気、下部は冷媒が混合した潤滑油(以下場合に応じて「混合溶液」という)となっている。そして配管29aは潤滑油タンク25の下部に接続されることで潤滑油タンク25内の潤滑油と冷媒の混合溶液が油ポンプ27によって軸受23に送られ、配管29bは潤滑油タンク25の上部に接続されることで軸受23から戻ってきた混合溶液を潤滑油タンク25の冷媒蒸気空間に導入する。また潤滑油タンク25の上部と圧縮機13の吸込み部との間は均圧管30によって連結され、潤滑油タンク25上部の冷媒蒸気は圧縮機13に導入されるように構成されている。   The lubricating oil tank 25 has a lubricating oil liquid level, the upper part of which is refrigerant vapor, and the lower part is lubricating oil mixed with the refrigerant (hereinafter referred to as “mixed solution” depending on the case). The piping 29 a is connected to the lower portion of the lubricating oil tank 25, so that the mixed solution of lubricating oil and refrigerant in the lubricating oil tank 25 is sent to the bearing 23 by the oil pump 27, and the piping 29 b is connected to the upper portion of the lubricating oil tank 25. The mixed solution returned from the bearing 23 by being connected is introduced into the refrigerant vapor space of the lubricating oil tank 25. The upper part of the lubricating oil tank 25 and the suction part of the compressor 13 are connected by a pressure equalizing pipe 30 so that the refrigerant vapor in the upper part of the lubricating oil tank 25 is introduced into the compressor 13.

そしてこの圧縮式冷凍機1−1は、蒸発器11の冷媒から油を回収し、潤滑油タンク25に戻す油回収手段を具備している。油回収手段は、蒸発器11内の油を含有している冷媒を、油回収熱交換器47を経由して、圧縮機13の吸込み部に均圧管30によって接続されている前記潤滑油タンク25に導入するように配管32で接続すると共に、油回収熱交換器47を通る前記冷媒を凝縮器17から蒸発器11へ向かう冷媒(配管38)にて加熱する構成とすることで、前記冷媒中の潤滑油を回収する構造となっている。即ち蒸発器11の冷媒を油回収熱交換器47に導き、凝縮器17から蒸発器11への冷媒で加熱している。蒸発器11から油回収熱交換器47への冷媒量は、蒸発後の過熱度を過熱度検出手段49で検出し、この過熱度が所定の値になるようにバルブ51の開度を制御することで調節する調節手段52によって行われている。この過熱蒸気は油濃度の高い冷媒液を管壁に沿って液膜の形で同伴し、潤滑油タンク25に入る。冷媒蒸気は均圧管30を通して圧縮機13の吸込み側に吸われていく。過熱度を調節することで、余分な冷媒液を油回収熱交換器47に導入せずに済む。   The compression refrigerator 1-1 includes oil recovery means for recovering oil from the refrigerant of the evaporator 11 and returning it to the lubricating oil tank 25. The oil recovery means connects the lubricating oil tank 25 in which the refrigerant containing the oil in the evaporator 11 is connected to the suction portion of the compressor 13 by the pressure equalizing pipe 30 via the oil recovery heat exchanger 47. In the refrigerant, the refrigerant passing through the oil recovery heat exchanger 47 is heated by the refrigerant (pipe 38) from the condenser 17 to the evaporator 11. It is structured to collect the lubricating oil. That is, the refrigerant in the evaporator 11 is guided to the oil recovery heat exchanger 47 and heated by the refrigerant from the condenser 17 to the evaporator 11. As for the amount of refrigerant from the evaporator 11 to the oil recovery heat exchanger 47, the degree of superheat after evaporation is detected by the superheat degree detecting means 49, and the opening degree of the valve 51 is controlled so that this superheat degree becomes a predetermined value. This is done by the adjusting means 52 that adjusts accordingly. This superheated steam entrains a refrigerant liquid having a high oil concentration along the tube wall in the form of a liquid film and enters the lubricating oil tank 25. The refrigerant vapor is sucked into the suction side of the compressor 13 through the pressure equalizing pipe 30. By adjusting the degree of superheat, it is not necessary to introduce excess refrigerant liquid into the oil recovery heat exchanger 47.

圧縮機13の吸込み部には、蒸発器11からの冷媒蒸気に同伴された冷媒液ミストが溜まる。冷媒液ミストは、潤滑油が濃縮される形で含まれており、蒸発しにくく、吸込み部の底部40に溜まることになる。この溜まった液体(冷媒と潤滑油の混合溶液)の油濃度を上げるため、凝縮器17から蒸発器11に向かう冷媒(配管34中に設けた加熱手段35)で加熱している。加熱された混合溶液から蒸発する冷媒蒸気は、吸込み部の隙間から羽根車13aに吸引される。冷媒と潤滑油の混合溶液の濃度は、図4に示すように、冷媒露点温度と混合溶液温度から知ることができる(図4は、冷媒にR245fa,潤滑油にポリオールエステルを用いた場合のデューリング線図である)。この濃度を管理しながら、圧縮機13の吸込み部の底部40と潤滑油タンク25とを接続する配管45及び配管45に接続した開閉手段(バルブ)43によって、底部40内の混合溶液を潤滑油タンク25に戻すことで、圧縮機13に余分な負荷を掛けないことができる。油循環系は、軸受23で機械摩擦損失による熱を受け、冷媒の溶け込んだ潤滑油は加熱され、冷媒は蒸発していく方向にある。潤滑油温度を下げるため、潤滑油タンク25内の冷媒濃度を他の油循環系の部分よりも高くし、冷媒蒸気で温度調節することも可能である。この図では、例えば、加熱濃縮する混合溶液の目標濃度を、油循環系が所定の温度になるように設定することで、潤滑油系の湯温を調節しており、潤滑油を冷却する油冷却器の設置を省略している(潤滑油系に意識的に冷媒を混入して、油冷却とする)。   In the suction portion of the compressor 13, refrigerant liquid mist accompanying the refrigerant vapor from the evaporator 11 is accumulated. The refrigerant liquid mist is contained in a form in which the lubricating oil is concentrated, is not easily evaporated, and accumulates at the bottom 40 of the suction portion. In order to increase the oil concentration of the accumulated liquid (mixed solution of refrigerant and lubricating oil), the liquid is heated by the refrigerant (heating means 35 provided in the pipe 34) from the condenser 17 toward the evaporator 11. Refrigerant vapor evaporating from the heated mixed solution is sucked into the impeller 13a through the gap between the suction portions. As shown in FIG. 4, the concentration of the mixed solution of the refrigerant and the lubricating oil can be known from the refrigerant dew point temperature and the mixed solution temperature (FIG. 4 shows a case where R245fa is used as the refrigerant and polyol ester is used as the lubricating oil. Ring diagram). While controlling this concentration, the mixed solution in the bottom 40 is lubricated by the piping 45 connecting the bottom 40 of the suction portion of the compressor 13 and the lubricating oil tank 25 and the opening / closing means (valve) 43 connected to the piping 45. By returning to the tank 25, it is possible not to apply an extra load to the compressor 13. The oil circulation system receives heat due to mechanical friction loss at the bearing 23, the lubricating oil in which the refrigerant is dissolved is heated, and the refrigerant evaporates. In order to lower the lubricating oil temperature, it is possible to make the refrigerant concentration in the lubricating oil tank 25 higher than that in the other oil circulation system and adjust the temperature with the refrigerant vapor. In this figure, for example, the target concentration of the mixed solution to be heated and concentrated is set so that the oil circulation system reaches a predetermined temperature, and the hot water temperature of the lubricating oil system is adjusted, and the oil that cools the lubricating oil Installation of a cooler is omitted (oil cooling is consciously mixed with a lubricant in the lubricating oil system).

なお混合溶液の濃度を検出する手段としては、上記混合溶液の露点と混合溶液の温度の関係から混合溶液の濃度を求める手段の他、圧縮機吸込み部温度と混合溶液の温度の関係、あるいは蒸発器冷媒温度と混合溶液の温度の関係から、同様に混合溶液の濃度を求めてもよい。さらに吸込み部の底部40の蒸気圧力あるいは圧縮機13吸込み部圧力あるいは蒸発器11圧力あるいは混合溶液の比重と、混合溶液の温度の関係から混合溶液の濃度を求めてもよい。   The means for detecting the concentration of the mixed solution includes means for obtaining the concentration of the mixed solution from the relationship between the dew point of the mixed solution and the temperature of the mixed solution, the relationship between the compressor suction portion temperature and the temperature of the mixed solution, or evaporation. Similarly, the concentration of the mixed solution may be obtained from the relationship between the refrigerant temperature and the temperature of the mixed solution. Further, the concentration of the mixed solution may be obtained from the relationship between the vapor pressure at the bottom 40 of the suction portion, the compressor 13 suction portion pressure, the evaporator 11 pressure, the specific gravity of the mixed solution, and the temperature of the mixed solution.

この圧縮式冷凍機1−1では、凝縮器17から蒸発器11への冷媒液で加熱する部分を二箇所設けたが(油回収熱交換器47と加熱手段35の部分)、どちらか一方のみ設けても効果はある。また凝縮器17と蒸発器11の間にエコノマイザーを持つ冷凍機の場合、効率的には若干劣るが、エコノマイザーから蒸発器11への冷媒で、あるいは凝縮器17からエコノマイザーへ向かう冷媒で、混合溶液を加熱するようにしても良い。   In this compression type refrigerator 1-1, two portions to be heated by the refrigerant liquid from the condenser 17 to the evaporator 11 are provided (oil recovery heat exchanger 47 and heating means 35), but only one of them is provided. Even if provided, there is an effect. In the case of a refrigerator having an economizer between the condenser 17 and the evaporator 11, the efficiency is slightly inferior, but the refrigerant from the economizer to the evaporator 11 or the refrigerant from the condenser 17 to the economizer The mixed solution may be heated.

圧縮機13の吸込み部から、潤滑油タンク25への混合溶液回収ライン(配管45)の開閉手段43は、混合溶液濃度によるのではなく、圧縮式冷凍機1−1起動時から所定時間の間閉止するという簡易な方法でも、冷媒を多く含み油濃度の低い混合溶液の回収を避けることができる(起動時から所定時間は混合溶液の油濃度が低い)。   The opening / closing means 43 of the mixed solution recovery line (pipe 45) from the suction portion of the compressor 13 to the lubricating oil tank 25 is not based on the concentration of the mixed solution, but for a predetermined time from the start of the compression refrigerator 1-1. Even with a simple method of closing, recovery of a mixed solution containing a large amount of refrigerant and having a low oil concentration can be avoided (the oil concentration of the mixed solution is low for a predetermined time from the start).

即ち上記圧縮式冷凍機1−1では、圧縮機13の吸込み部の底部40内の混合溶液の濃度を検出し、潤滑油が所定濃度以上のときに、底部40から油循環系に混合溶液を移動する手段である配管45及び開閉手段43によって油循環系に回収(移動)する。なお底部40の代わりに別途圧縮機13の吸込み部に接続されるタンクを設置してその濃度を検出し、測定した濃度が所定濃度以上のときに、この混合溶液を油循環系に回収(移動)するようにしてもよい。なお別途圧縮機13の吸込み部にタンクを接続する場合は、このタンクを潤滑油タンク25よりも高い位置(潤滑油タンク25をタンクよりも低い位置)とし、両タンクがほぼ同一圧力構成なら、位置ヘッドでタンクから潤滑油タンク25に混合溶液を回収することができる。またこのタンクが圧縮機吸込み圧力と均圧に接続され、潤滑油タンク25圧力の方が高い場合は、混合溶液を回収する際に、前記均圧のための接続を、圧縮機吸込み側から圧縮機吐出側に切り替えることで、タンクから潤滑油タンク25に混合溶液を回収することができる。   That is, in the compression refrigerator 1-1, the concentration of the mixed solution in the bottom portion 40 of the suction portion of the compressor 13 is detected, and when the lubricating oil has a predetermined concentration or more, the mixed solution is supplied from the bottom portion 40 to the oil circulation system. It is recovered (moved) to the oil circulation system by the piping 45 and the opening / closing means 43 which are moving means. A tank connected to the suction portion of the compressor 13 is installed in place of the bottom portion 40 to detect its concentration, and when the measured concentration is equal to or higher than the predetermined concentration, this mixed solution is recovered (moved) to the oil circulation system. ). When a tank is separately connected to the suction portion of the compressor 13, if this tank is positioned higher than the lubricating oil tank 25 (the lubricating oil tank 25 is lower than the tank) and both tanks are configured to have substantially the same pressure, The mixed solution can be recovered from the tank to the lubricating oil tank 25 by the position head. If this tank is connected to the compressor suction pressure and the pressure equalization, and the lubricating oil tank 25 pressure is higher, the pressure equalization connection is compressed from the compressor suction side when collecting the mixed solution. By switching to the machine discharge side, the mixed solution can be recovered from the tank to the lubricating oil tank 25.

なおこの実施形態においては、冷媒配管32の蒸発器11との接続位置を、蒸発器11の冷水入口側としている。これは、蒸発器11の冷水入口側の方が冷水温度と冷媒温度との温度差が大きいため冷媒の沸騰が激しく、その分冷媒の蒸発が多くなり、残る冷媒液には潤滑油を多く含むことになり、従って油回収熱交換器47へ導入される冷媒中の潤滑油の割合を多くすることができ、より効果的な潤滑油の回収が図られるからである。   In this embodiment, the connection position of the refrigerant pipe 32 with the evaporator 11 is the cold water inlet side of the evaporator 11. This is because the temperature difference between the cold water temperature and the refrigerant temperature is larger on the cold water inlet side of the evaporator 11, and the boiling of the refrigerant is intense, and the refrigerant evaporates more, and the remaining refrigerant liquid contains a lot of lubricating oil. Therefore, the ratio of the lubricating oil in the refrigerant introduced into the oil recovery heat exchanger 47 can be increased, and more effective recovery of the lubricating oil can be achieved.

〔第2実施形態〕
図2は本発明の第2実施形態を用いて構成される圧縮式冷凍機1−2の全体概略構成図である。同図に示す圧縮式冷凍機1−2において、前記図1に示す圧縮式冷凍機1−1と同一又は相当部分には同一符号を付す。なお以下で説明する事項以外の事項については、前記図1に示す実施形態と同じである。この圧縮式冷凍機1−2において、前記圧縮式冷凍機1−1と相違する点は、膨張機19の代りに動力回収装置63を設置した点である。
[Second Embodiment]
FIG. 2 is an overall schematic configuration diagram of a compression type refrigerator 1-2 configured using the second embodiment of the present invention. In the compression refrigeration machine 1-2 shown in the figure, the same or corresponding parts as those in the compression refrigeration machine 1-1 shown in FIG. Items other than those described below are the same as those in the embodiment shown in FIG. In this compression type refrigerator 1-2, the difference from the compression type refrigerator 1-1 is that a power recovery device 63 is installed instead of the expander 19.

この実施形態で用いている動力回収装置63は凝縮器17から蒸発器11への冷媒の流れが持つエネルギーを回収する回転式の動力回収膨張機であり、内部にノズルとタービンとを持ち、ノズルで凝縮器17からの冷媒液の流速を高めると共に旋回流とし、この液流をタービンに当ててタービンに回転力を与えている。動力回収装置63は発電機(動力回収機)65を具備し、この発電機65によって前記冷媒の流れが持つエネルギーを電力として回収する。回収した電力を電動機15に供給して圧縮仕事の一部に利用すれば、その分外部からの投入電力(投入動力)を減少することができる。また凝縮器17から蒸発器11に入る冷媒から動力を回収しているので、蒸発器11に入る冷媒のエンタルピーが低下しており、従って蒸発器11の冷凍能力も増大し、冷凍効果が増大する。   The power recovery device 63 used in this embodiment is a rotary power recovery expander that recovers the energy of the refrigerant flow from the condenser 17 to the evaporator 11, and has a nozzle and a turbine inside. Thus, the flow rate of the refrigerant liquid from the condenser 17 is increased and a swirling flow is applied, and this liquid flow is applied to the turbine to give a rotational force to the turbine. The power recovery device 63 includes a generator (power recovery machine) 65, and the generator 65 recovers the energy of the refrigerant flow as electric power. If the recovered electric power is supplied to the motor 15 and used for a part of the compression work, the input electric power (input power) from the outside can be reduced accordingly. Further, since the power is recovered from the refrigerant entering the evaporator 11 from the condenser 17, the enthalpy of the refrigerant entering the evaporator 11 is lowered, and thus the refrigerating capacity of the evaporator 11 is increased and the refrigeration effect is increased. .

〔第3実施形態〕
図3は本発明の第3実施形態を用いて構成される圧縮式冷凍機1−3の全体概略構成図である。同図に示す圧縮式冷凍機1−3において、前記図1に示す圧縮式冷凍機1−1と同一又は相当部分には同一符号を付す。なお以下で説明する事項以外の事項については、前記図1に示す実施形態と同じである。この圧縮式冷凍機1−3において、前記圧縮式冷凍機1−1と相違する点は、油回収熱交換器47や配管32等からなる油回収手段を省略し、一方油循環系(配管29a)に潤滑油を冷却する冷却器70を設置し、また前記圧縮機13の吸込み部の底部40と潤滑油タンク25とを接続する配管45中に接続した開閉手段43を、潤滑タンク25に設置した液面センサー41によって測定した潤滑油の液面が所定の液面の範囲になるように制御部44によって開閉制御する構成とした点である。
[Third Embodiment]
FIG. 3 is an overall schematic configuration diagram of a compression refrigerator 1-3 configured using the third embodiment of the present invention. In the compression refrigeration machine 1-3 shown in the same figure, the same or corresponding parts as those of the compression refrigeration machine 1-1 shown in FIG. Items other than those described below are the same as those in the embodiment shown in FIG. This compression refrigerator 1-3 is different from the compression refrigerator 1-1 in that the oil recovery means including the oil recovery heat exchanger 47 and the pipe 32 is omitted, while the oil circulation system (the pipe 29a ) Is provided with a cooler 70 for cooling the lubricating oil, and an opening / closing means 43 connected to the piping 45 that connects the bottom 40 of the suction portion of the compressor 13 and the lubricating oil tank 25 is installed in the lubricating tank 25. The controller 44 is configured to control opening and closing so that the liquid level of the lubricating oil measured by the liquid level sensor 41 falls within a predetermined liquid level range.

上述のように、圧縮機13の吸込み部の底部40には、蒸発器11からの冷媒蒸気に同伴された潤滑油濃度の高い冷媒液ミストが溜まる。この溜まった冷媒と潤滑油の混合溶液の油濃度をさらに上げるため、凝縮器17から蒸発器11に向かう冷媒(加熱手段35)で加熱している。加熱され混合溶液から蒸発する冷媒蒸気は、吸込み部の隙間から羽根車13aに吸引される。油濃度の高くなった混合溶液は、潤滑油タンク25の液面が所定以下のとき、開閉手段43が開いて潤滑油タンク25に回収され、液面が高い状態では開閉手段43が閉じ潤滑油タンク25には導入しない。油循環系は、軸受23で機械摩擦損失による熱を受け、冷媒の溶け込んだ潤滑油は加熱され冷媒は蒸発していく傾向にあるので、余分に冷媒が入っても差し支えない。潤滑油温度を冷却器70で管理しているので、図4のような関係で、潤滑油系の潤滑油中の冷媒濃度が過小になることはなく、冷媒濃度を管理できる。図3では省略しているが、冷却器70は凝縮器17の冷媒液で冷却し、蒸発した蒸気は凝縮器17あるいは蒸発器11に戻し、エコノマイザー付きの場合はエコノマイザーに戻しても良いし、冷却器そのものをエコノマイザー内に入れ、エコノマイザーで冷却しても差し支えない。   As described above, the refrigerant liquid mist having a high lubricating oil concentration accompanying the refrigerant vapor from the evaporator 11 accumulates at the bottom 40 of the suction portion of the compressor 13. In order to further increase the oil concentration of the mixed solution of the accumulated refrigerant and lubricating oil, the refrigerant is heated by the refrigerant (heating means 35) from the condenser 17 toward the evaporator 11. The refrigerant vapor that is heated and evaporates from the mixed solution is sucked into the impeller 13a through the gap between the suction portions. When the liquid level of the lubricating oil tank 25 is below a predetermined level, the mixed solution having a high oil concentration is recovered by the opening / closing means 43 and collected in the lubricating oil tank 25. When the liquid level is high, the opening / closing means 43 is closed and the lubricating oil is collected. It is not introduced into the tank 25. The oil circulation system receives heat due to mechanical friction loss at the bearing 23, and the lubricating oil in which the refrigerant has melted is heated and the refrigerant tends to evaporate. Therefore, there is no problem even if extra refrigerant enters. Since the cooling oil temperature is managed by the cooler 70, the refrigerant concentration in the lubricating oil of the lubricating oil system is not excessively reduced and the refrigerant concentration can be managed by the relationship shown in FIG. Although omitted in FIG. 3, the cooler 70 may be cooled with the refrigerant liquid of the condenser 17, and the evaporated vapor may be returned to the condenser 17 or the evaporator 11, and may be returned to the economizer when an economizer is provided. However, the cooler itself can be placed in the economizer and cooled by the economizer.

即ち圧縮式冷凍機1−3では、圧縮機13の吸込み部の底部40の混合溶液の濃度を推定し、推定した混合溶液中の潤滑油濃度が所定濃度以上のときに、油循環系にこれを回収(移動)する。また油循環系の潤滑油タンク25の液位を直接検出して、潤滑油タンク25が溢れないことを確認しながら油循環系に移動するのが好ましい。   That is, in the compression refrigerator 1-3, the concentration of the mixed solution at the bottom 40 of the suction portion of the compressor 13 is estimated, and when the estimated lubricating oil concentration in the mixed solution is equal to or higher than a predetermined concentration, this is added to the oil circulation system. Is recovered (moved). Further, it is preferable to directly detect the liquid level of the lubricating oil tank 25 in the oil circulation system and move to the oil circulation system while confirming that the lubricating oil tank 25 does not overflow.

潤滑油タンク25の液面が高く、油の戻しを制限していると、圧縮機13の吸込み部の底部40に混合溶液が溜まり過ぎることになる。この状態では圧縮機13の底部40の溶液の油濃度は低いことが推定できるので、前記吸込み部の底部40と蒸発器11とを連結する配管71によって余分な溶液は蒸発器11に戻すようにする。図3では吸込み部の底部40の混合溶液が配管71にオーバーフローするようにしている。なお配管71の途中に液シール部73を設け、冷媒の逆流を防いでいる。即ち冷媒配管71は底部40内の混合溶液を冷媒循環系に戻す手段である。   If the liquid level of the lubricating oil tank 25 is high and the return of oil is restricted, the mixed solution will accumulate too much at the bottom 40 of the suction portion of the compressor 13. In this state, it can be estimated that the oil concentration of the solution at the bottom 40 of the compressor 13 is low. Therefore, the excess solution is returned to the evaporator 11 by the pipe 71 connecting the bottom 40 of the suction unit and the evaporator 11. To do. In FIG. 3, the mixed solution at the bottom 40 of the suction portion overflows into the pipe 71. In addition, the liquid seal part 73 is provided in the middle of the pipe 71 to prevent the back flow of the refrigerant. That is, the refrigerant pipe 71 is means for returning the mixed solution in the bottom 40 to the refrigerant circulation system.

上記第1〜第3実施形態では比較的潤滑油濃度の高い冷媒を圧縮機13の吸込み部で捉えているが、他の部分で捉えても良い。即ち比較的濃度の高い冷媒を例えば蒸発器11で捉えても良いし、蒸発器のエリミネータ部(蒸発器にて蒸発した冷媒ガスより液滴を分離するもの)で捉えても良い。またこれら捉えた混合溶液を、圧縮機13吸込み部の底部40ではなく、圧縮機13吸込み部の底部40よりも高い位置にタンクを設けて蓄え、圧縮機13の吸込み部と均圧させて、さらには必要に応じて混合溶液を加熱して濃縮することもできる。このタンクで濃縮後、油循環系の潤滑油タンク25に回収する。なおタンクを用いた場合も濃度管理などは上述と同様の装置、方法が適用できる。   In the said 1st-3rd embodiment, although the refrigerant | coolant with comparatively high lubricating oil concentration is caught by the suction part of the compressor 13, you may catch by another part. That is, a relatively high-concentration refrigerant may be captured by, for example, the evaporator 11 or may be captured by an eliminator section of the evaporator (which separates droplets from refrigerant gas evaporated by the evaporator). Further, these captured mixed solutions are stored in a tank higher than the bottom 40 of the compressor 13 suction part instead of the bottom 40 of the compressor 13 suction part, and are stored in pressure with the suction part of the compressor 13, Furthermore, the mixed solution can be heated and concentrated as necessary. After concentrating in this tank, it is recovered in the lubricating oil tank 25 of the oil circulation system. Even when a tank is used, the same apparatus and method as described above can be applied for concentration management and the like.

なお混合溶液の濃度を推定する手段としては、この実施形態では潤滑油タンク25内の潤滑油の液面が所定の液面となったことを検出する手段を用いたが、それ以外にも蒸発器圧力あるいは蒸発器温度が所定の値になったことを検出する手段や、冷凍機起動後に所定時間が経過したことを検出する手段等を用いて推定することもできる。   As a means for estimating the concentration of the mixed solution, in this embodiment, a means for detecting that the liquid level of the lubricating oil in the lubricating oil tank 25 has become a predetermined liquid level is used. It can also be estimated by using means for detecting that the reactor pressure or the evaporator temperature has reached a predetermined value, means for detecting that a predetermined time has elapsed after the start of the refrigerator, and the like.

圧縮式冷凍機1−1の全体概略構成図である。1 is an overall schematic configuration diagram of a compression refrigerator 1-1. 圧縮式冷凍機1−2の全体概略構成図である。It is a whole schematic block diagram of the compression type refrigerator 1-2. 圧縮式冷凍機1−3の全体概略構成図である。It is a whole schematic block diagram of the compression refrigerator 1-3. 混合溶液温度と冷媒露点と冷媒濃度の関係を示す図である。It is a figure which shows the relationship between mixed solution temperature, a refrigerant | coolant dew point, and a refrigerant | coolant density | concentration.

符号の説明Explanation of symbols

1−1 圧縮式冷凍機
11 蒸発器
15 電動機(駆動機)
13 圧縮機
17 凝縮器
19 膨張機
21 冷媒配管
23 軸受
25 潤滑油タンク
27 油ポンプ
30 均圧管
35 加熱手段
40 底部
47 油回収熱交換器
49 過熱度検出手段
51 バルブ
52 調節手段
1−2 圧縮式冷凍機
63 動力回収装置
1−3 圧縮式冷凍機
70 冷却器
1-1 Compression Refrigerator 11 Evaporator 15 Electric Motor (Driver)
DESCRIPTION OF SYMBOLS 13 Compressor 17 Condenser 19 Expander 21 Refrigerant piping 23 Bearing 25 Lubricating oil tank 27 Oil pump 30 Pressure equalizing pipe 35 Heating means 40 Bottom part 47 Oil recovery heat exchanger 49 Superheat detection means 51 Valve 52 Adjustment means 1-2 Compression type Refrigerator 63 Power recovery device 1-3 Compressive refrigerator 70 Cooler

Claims (8)

圧縮機と、凝縮器と、蒸発器とを冷媒を循環する冷媒配管によって連結すると共に、上記圧縮機の軸を回転自在に支持する軸受を潤滑油にて潤滑する圧縮式冷凍機において、
前記蒸発器内の冷媒を、前記凝縮器から蒸発器へ向かう冷媒にて加熱する油回収熱交換器を経由して、圧縮機吸込み部に接続されたタンク、あるいは圧縮機吸込み部の底部に導入することで、前記冷媒中の潤滑油を回収することを特徴とする圧縮式冷凍機の油回収装置。
In the compression type refrigerator that connects the compressor, the condenser, and the evaporator with a refrigerant pipe that circulates the refrigerant, and lubricates a bearing that rotatably supports the shaft of the compressor with lubricating oil.
The refrigerant in the evaporator is introduced into the tank connected to the compressor suction section or the bottom of the compressor suction section via an oil recovery heat exchanger that heats the refrigerant from the condenser to the evaporator. By doing so, the oil recovery apparatus of the compression-type refrigerator which collects the lubricating oil in the said refrigerant | coolant is characterized by the above-mentioned.
前記蒸発器から油回収熱交換器へ冷媒を導入する冷媒配管の前記蒸発器との接続位置は、蒸発器の冷水入口側であることを特徴とする請求項1に記載の圧縮式冷凍機の油回収装置。   The compression refrigerator according to claim 1, wherein a connection position of the refrigerant pipe for introducing the refrigerant from the evaporator to the oil recovery heat exchanger with the evaporator is on a cold water inlet side of the evaporator. Oil recovery device. 前記蒸発器から油回収熱交換器へ冷媒を導入する冷媒配管中に、前記油回収熱交換器を通過した冷媒の過熱度に応じて冷媒流量を調節する調節手段を設けたことを特徴とする請求項1又は2に記載の圧縮式冷凍機の油回収装置。   The refrigerant pipe for introducing the refrigerant from the evaporator to the oil recovery heat exchanger is provided with adjusting means for adjusting the refrigerant flow rate according to the degree of superheat of the refrigerant that has passed through the oil recovery heat exchanger. The oil recovery apparatus of the compression type refrigerator according to claim 1 or 2. 前記タンクあるいは前記底部の液溜まり部を、凝縮器から蒸発器へ向かう冷媒にて加熱する加熱手段を具備することを特徴とする請求項1又は2又は3に記載の圧縮式冷凍機の油回収装置。   The oil recovery of the compression type refrigerator according to claim 1, 2 or 3, further comprising heating means for heating the tank or the liquid reservoir at the bottom with a refrigerant from a condenser to an evaporator. apparatus. 圧縮機と、凝縮器と、蒸発器とを冷媒を循環する冷媒配管によって連結すると共に、上記圧縮機の軸を回転自在に支持する軸受を潤滑油にて潤滑する圧縮式冷凍機において、
潤滑油と冷媒の混合溶液を集めておくタンクあるいは圧縮機吸込み部の底部と、前記タンクあるいは前記底部内の混合溶液の濃度を検知或いは推定する手段と、前記タンクあるいは前記底部から混合溶液を油循環系に移動する手段とを有することを特徴とする圧縮冷凍機の油回収装置。
In the compression type refrigerator that connects the compressor, the condenser, and the evaporator with a refrigerant pipe that circulates the refrigerant, and lubricates a bearing that rotatably supports the shaft of the compressor with lubricating oil.
A tank for collecting a mixed solution of lubricating oil and a refrigerant or a bottom portion of a compressor suction portion, means for detecting or estimating a concentration of the mixed solution in the tank or the bottom portion, and an oil mixture from the tank or the bottom portion. An oil recovery apparatus for a compression refrigeration machine comprising a means for moving to a circulation system.
前記タンクあるいは前記底部内の混合溶液の濃度を検知する手段が、
混合溶液の露点あるいは圧縮機吸込み部温度あるいは蒸発器冷媒温度と、混合溶液の温度の関係から混合溶液の濃度を求める手段であるか、
前記タンクあるいは前記底部の蒸気圧力あるいは圧縮機吸込み部圧力あるいは蒸発器圧力と、混合溶液の温度の関係から混合溶液の濃度を求める手段であることを特徴とする請求項5に記載の圧縮式冷凍機の油回収装置。
Means for detecting the concentration of the mixed solution in the tank or the bottom,
Is the means for obtaining the concentration of the mixed solution from the relationship between the dew point of the mixed solution or the compressor suction part temperature or the evaporator refrigerant temperature and the temperature of the mixed solution,
6. The compression refrigeration according to claim 5, wherein the concentration of the mixed solution is obtained from the relationship between the vapor pressure of the tank or the bottom, the pressure of the compressor suction portion or the evaporator pressure, and the temperature of the mixed solution. Machine oil recovery equipment.
前記タンクあるいは前記底部内の混合溶液の濃度を推定する手段が、
前記油循環系に設けた潤滑油タンク内の潤滑油の液面が所定の液面となったことを検出する手段、
あるいは蒸発器圧力あるいは蒸発器温度が所定の値になったことを検出する手段、
あるいは冷凍機起動後に所定時間が経過したことを検出する手段、
であることを特徴とする請求項5に記載の圧縮式冷凍機の油回収装置。
Means for estimating the concentration of the mixed solution in the tank or the bottom,
Means for detecting that the level of the lubricating oil in the lubricating oil tank provided in the oil circulation system has reached a predetermined level;
Or means for detecting that the evaporator pressure or the evaporator temperature has reached a predetermined value,
Alternatively, means for detecting that a predetermined time has elapsed after the start of the refrigerator,
The oil recovery apparatus for a compression type refrigerator according to claim 5, wherein
混合溶液中の潤滑油濃度が所定値より低いときあるいは低いと推定されるとき、前記油循環系への混合溶液の移動を禁止すると共に、前記タンクあるいは前記底部内の混合溶液を冷媒循環系に戻す手段を有することを特徴とする請求項5乃至7の内の何れかに記載の圧縮式冷凍機の油回収装置。   When the lubricating oil concentration in the mixed solution is lower than or lower than the predetermined value, the movement of the mixed solution to the oil circulation system is prohibited, and the mixed solution in the tank or the bottom is made into the refrigerant circulation system. The oil recovery apparatus for a compression type refrigerator according to any one of claims 5 to 7, further comprising a returning means.
JP2006184297A 2006-07-04 2006-07-04 Oil recovering device of compression type refrigerating machine Pending JP2008014533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006184297A JP2008014533A (en) 2006-07-04 2006-07-04 Oil recovering device of compression type refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006184297A JP2008014533A (en) 2006-07-04 2006-07-04 Oil recovering device of compression type refrigerating machine

Publications (1)

Publication Number Publication Date
JP2008014533A true JP2008014533A (en) 2008-01-24

Family

ID=39071724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006184297A Pending JP2008014533A (en) 2006-07-04 2006-07-04 Oil recovering device of compression type refrigerating machine

Country Status (1)

Country Link
JP (1) JP2008014533A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101065515B1 (en) * 2009-02-13 2011-09-19 엘지전자 주식회사 Level Maintenance Apparatus of Economizer
JP2014020613A (en) * 2012-07-13 2014-02-03 Fujitsu General Ltd Air conditioner
CN104949367A (en) * 2014-03-27 2015-09-30 荏原冷热系统株式会社 Turbine refrigerator
JP2017201215A (en) * 2016-05-02 2017-11-09 荏原冷熱システム株式会社 Turbo refrigerator
EP3745050A1 (en) * 2019-05-31 2020-12-02 Trane International Inc. Heat transfer circuit with increased bearing lubricant temperature, and method of supplying thereof
CN117469822A (en) * 2023-12-27 2024-01-30 珠海格力电器股份有限公司 Air conditioning unit, control method and storage medium

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4831645A (en) * 1971-08-27 1973-04-25
JPS54136655A (en) * 1978-04-14 1979-10-23 Matsushita Electric Works Ltd Electromagnetic apparatus
JPH02219960A (en) * 1989-02-21 1990-09-03 Sanki Eng Co Ltd Direct contact type freezing system
JPH05322330A (en) * 1992-05-19 1993-12-07 Mitsubishi Electric Corp Freezer device
JPH06249176A (en) * 1993-03-01 1994-09-06 Daikin Ind Ltd Refrigerator lubricating oil adjusting device
JPH06272977A (en) * 1993-03-23 1994-09-27 Daikin Ind Ltd Flooded type evaporator
JP2000346502A (en) * 1999-06-02 2000-12-15 Mitsubishi Electric Building Techno Service Co Ltd Refrigerating device
JP2002364953A (en) * 2001-06-05 2002-12-18 Sasakura Engineering Co Ltd Sherbet type ice making device
JP2005127554A (en) * 2003-10-22 2005-05-19 Hitachi Industries Co Ltd Refrigerator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4831645A (en) * 1971-08-27 1973-04-25
JPS54136655A (en) * 1978-04-14 1979-10-23 Matsushita Electric Works Ltd Electromagnetic apparatus
JPH02219960A (en) * 1989-02-21 1990-09-03 Sanki Eng Co Ltd Direct contact type freezing system
JPH05322330A (en) * 1992-05-19 1993-12-07 Mitsubishi Electric Corp Freezer device
JPH06249176A (en) * 1993-03-01 1994-09-06 Daikin Ind Ltd Refrigerator lubricating oil adjusting device
JPH06272977A (en) * 1993-03-23 1994-09-27 Daikin Ind Ltd Flooded type evaporator
JP2000346502A (en) * 1999-06-02 2000-12-15 Mitsubishi Electric Building Techno Service Co Ltd Refrigerating device
JP2002364953A (en) * 2001-06-05 2002-12-18 Sasakura Engineering Co Ltd Sherbet type ice making device
JP2005127554A (en) * 2003-10-22 2005-05-19 Hitachi Industries Co Ltd Refrigerator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101065515B1 (en) * 2009-02-13 2011-09-19 엘지전자 주식회사 Level Maintenance Apparatus of Economizer
JP2014020613A (en) * 2012-07-13 2014-02-03 Fujitsu General Ltd Air conditioner
CN104949367A (en) * 2014-03-27 2015-09-30 荏原冷热系统株式会社 Turbine refrigerator
JP2015190662A (en) * 2014-03-27 2015-11-02 荏原冷熱システム株式会社 turbo refrigerator
JP2017201215A (en) * 2016-05-02 2017-11-09 荏原冷熱システム株式会社 Turbo refrigerator
EP3745050A1 (en) * 2019-05-31 2020-12-02 Trane International Inc. Heat transfer circuit with increased bearing lubricant temperature, and method of supplying thereof
CN117469822A (en) * 2023-12-27 2024-01-30 珠海格力电器股份有限公司 Air conditioning unit, control method and storage medium
CN117469822B (en) * 2023-12-27 2024-03-19 珠海格力电器股份有限公司 Air conditioning unit, control method and storage medium

Similar Documents

Publication Publication Date Title
US10941967B2 (en) Lubrication and cooling system
JP4714099B2 (en) Bearing lubricator for compression refrigerator
JP5091015B2 (en) Compression refrigerator
JP2008082622A (en) Compression type refrigerating device
JP5923739B2 (en) Refrigeration equipment
JP2008014533A (en) Oil recovering device of compression type refrigerating machine
US10267548B2 (en) Oil management for heating ventilation and air conditioning system
JP2008082623A (en) Compression type refrigerating device
JP2009257684A (en) Compression refrigerating machine and method for recovering lubricating oil for the same
JP2014163608A (en) Binary power generation device and operation method of binary power generation device
JP5543093B2 (en) Compressive refrigerator and operation method thereof
JP2008014598A (en) Bleeder for compression type refrigerating machine
WO2018180225A1 (en) Refrigeration machine
JP4685483B2 (en) Power generation device and working medium / lubricant recovery method for power generation device
JP2007218507A (en) Heat pump device and control method thereof
JP2001174098A (en) Waste heat absorption refrigerating machine
JP6005586B2 (en) Binary drive
JP3799550B2 (en) Absorption chiller / hot water unit with expander
JP2009236427A (en) Compression type refrigerating machine
KR20100056434A (en) The cooling system for lubricant oil of turbine bearing using refrigerant evaporation heat
JP2003262411A (en) Refrigerating device
JP2006313044A (en) Screw refrigerating unit
JP2008101870A (en) Bleeder for compression type refrigerating machine

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110419