JP2000346502A - Refrigerating device - Google Patents

Refrigerating device

Info

Publication number
JP2000346502A
JP2000346502A JP11155176A JP15517699A JP2000346502A JP 2000346502 A JP2000346502 A JP 2000346502A JP 11155176 A JP11155176 A JP 11155176A JP 15517699 A JP15517699 A JP 15517699A JP 2000346502 A JP2000346502 A JP 2000346502A
Authority
JP
Japan
Prior art keywords
oil
compressor
temperature
accumulator
return
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11155176A
Other languages
Japanese (ja)
Other versions
JP3498009B2 (en
Inventor
Hiroshi Sasaki
博志 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Building Solutions Corp
Original Assignee
Mitsubishi Electric Building Techno Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Building Techno Service Co Ltd filed Critical Mitsubishi Electric Building Techno Service Co Ltd
Priority to JP15517699A priority Critical patent/JP3498009B2/en
Publication of JP2000346502A publication Critical patent/JP2000346502A/en
Application granted granted Critical
Publication of JP3498009B2 publication Critical patent/JP3498009B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2105Oil temperatures

Abstract

PROBLEM TO BE SOLVED: To improve the efficiency of oil return from an accumulator. SOLUTION: This refrigerating device is provided with an oil return piping 3 to effect intercommunication between the bottom of an accumulator 2 and a compressor suction piping 4 on the suction side of a compressor 1, and a hot gas piping 10 to perform communication between the discharge side of the compressor 1 and the suction side of the accumulator 2. The hot gas piping 10 is situated in the vicinity of a heat-exchange part 12 to heat the oil return piping 10 by hot gas from the compressor 1. The oil return piping 3 is provide with a return oil temperature detecting part 14 to detect the temperature of return oil, and a solenoid valve 5 to control inflow of return oil. The hot gas piping 10 is provided with a solenoid valve 11 to control inflow of hot gas. In this case, the return oil temperature detecting part 14 opens the solenoid valve 11 when a detecting oil temperature is reduced to a value lower than an oil sucking set temperature and meanwhile when the detecting oil temperature is higher than the oil sucking set temperature, control is carried out such that the solenoid valve 11 is closed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は冷凍装置、特にアキ
ュムレータに溜まった冷媒用油を効率良く回収すると共
に、冷凍装置の除霜運転中にアキュムレータに溜まる冷
媒液量を抑え、除霜終了後の再運転時に液冷媒が圧縮機
に吸い込まれることを防止する冷凍装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration apparatus, in particular, to efficiently collect refrigerant oil accumulated in an accumulator, suppress the amount of refrigerant liquid accumulated in the accumulator during the defrosting operation of the refrigeration apparatus, The present invention relates to a refrigeration apparatus that prevents liquid refrigerant from being sucked into a compressor during re-operation.

【0002】[0002]

【従来の技術】図6には、従来の冷凍装置における冷媒
回路の装置構成の概要が示されている。一般的な冷凍装
置器の冷媒回路では、冷媒ガスは圧縮機1において圧縮
され、高圧ガスとされ、凝縮器17に送られる。そし
て、凝縮器17において、冷媒高圧ガスは冷やされ、液
体化された冷媒にされる。液体化された冷媒は圧力が高
いため、膨脹弁18にて圧力を低下させて、蒸発器19
に送ることにより、低温度で蒸発し、冷却または冷凍作
用を行うことができる。そして、蒸発器19から吐出さ
れた冷媒ガスは、アキュムレータ2を介して再度圧縮機
1に送られる。このように冷媒を冷媒回路内に循環させ
ることによって、冷却・冷凍作用を行っている。
2. Description of the Related Art FIG. 6 shows an outline of a configuration of a refrigerant circuit in a conventional refrigeration system. In a refrigerant circuit of a general refrigeration apparatus, refrigerant gas is compressed in the compressor 1, turned into high-pressure gas, and sent to the condenser 17. Then, in the condenser 17, the refrigerant high-pressure gas is cooled and turned into a liquefied refrigerant. Since the pressure of the liquefied refrigerant is high, the pressure is reduced by the expansion valve 18 and the evaporator 19
To evaporate at a low temperature to perform a cooling or freezing action. Then, the refrigerant gas discharged from the evaporator 19 is sent to the compressor 1 again via the accumulator 2. By circulating the refrigerant in the refrigerant circuit in this manner, a cooling / refrigeration operation is performed.

【0003】通常、冷媒としてフロンが用いられてい
る。そして、冷媒は、一般に冷媒と相溶性のある油と共
に冷媒回路内を循環している。圧縮機1から冷媒と共に
吐出された油は、冷媒と共に冷媒回路を巡り、蒸発器1
9を経て、アキュムレータ2に溜まる。アキュムレータ
2に貯留された冷媒入り油から、冷媒ガスのみメタルオ
リフィス7を介して圧縮機吸込み配管4に戻され、アキ
ュムレータ2内には、主に循環用の油が溜まる。
[0003] Usually, Freon is used as a refrigerant. The refrigerant generally circulates in the refrigerant circuit together with oil that is compatible with the refrigerant. The oil discharged together with the refrigerant from the compressor 1 travels around the refrigerant circuit together with the refrigerant, and flows through the evaporator 1.
After 9, it accumulates in the accumulator 2. From the refrigerant-containing oil stored in the accumulator 2, only the refrigerant gas is returned to the compressor suction pipe 4 via the metal orifice 7, and mainly oil for circulation is accumulated in the accumulator 2.

【0004】従来、アキュムレータ2に溜まった油8を
圧縮機1に戻すために、図5に示すような構成が設けら
れている。すなわち、油濃度の最も濃いアキュムレータ
2の底部と圧縮機1吸引側の圧縮機吸込み配管4とを連
通する油戻し配管3が設けられ、圧縮機吸込み配管4と
油戻し配管3との合流部には接続口9が設けられてい
る。また、油戻し配管3には、ストレーナ6と、配管内
を自動開閉するための電磁弁5が設けられている。
Conventionally, a structure as shown in FIG. 5 is provided for returning the oil 8 accumulated in the accumulator 2 to the compressor 1. That is, an oil return pipe 3 communicating the bottom of the accumulator 2 with the highest oil concentration and the compressor suction pipe 4 on the compressor 1 suction side is provided, and at the junction of the compressor suction pipe 4 and the oil return pipe 3. Is provided with a connection port 9. The oil return pipe 3 is provided with a strainer 6 and a solenoid valve 5 for automatically opening and closing the inside of the pipe.

【0005】そして、油を圧縮機1に戻す場合には、圧
縮機1の運転に連動させて電磁弁5を開く。このとき、
接続口9における圧力と、油戻し配管3およびアキュム
レータ2の内圧に差が生じ、アキュムレータ2に溜まっ
た油8が圧縮機1に返油される。
When returning the oil to the compressor 1, the solenoid valve 5 is opened in conjunction with the operation of the compressor 1. At this time,
A difference occurs between the pressure at the connection port 9 and the internal pressures of the oil return pipe 3 and the accumulator 2, and the oil 8 accumulated in the accumulator 2 is returned to the compressor 1.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、接続口
9における差圧は、圧縮機1に吸い込まれる冷媒のガス
スピードによって異なる。すなわち、圧縮機1の吸込圧
力が高い場合には、冷媒の比体積が小さく、圧縮機1に
吸い込まれる冷媒量が大きくなるため、ガススピードが
早くなり、差圧が大きくなるため、アキュムレータ2内
の油の返油効率が促進される。一方、圧縮機1の吸込圧
力が低い場合には、冷媒の比体積が大きく、圧縮機1に
吸い込まれる冷媒量が小さくなるため、ガススピードは
遅くなる。その結果、アキュムレータ2内の油の返油効
率が低下する。また、圧縮機1が容量制御運転を行った
場合も、圧縮機1に吸い込まれる冷媒量が少ないため、
上記同様にガススピードが低下する。このため、接続口
9の差圧が小さくなり、油8の戻り量が減少してしま
う。
However, the differential pressure at the connection port 9 differs depending on the gas speed of the refrigerant sucked into the compressor 1. That is, when the suction pressure of the compressor 1 is high, the specific volume of the refrigerant is small, and the amount of the refrigerant sucked into the compressor 1 is large, so that the gas speed is increased and the differential pressure is increased. Oil return efficiency is promoted. On the other hand, when the suction pressure of the compressor 1 is low, the specific volume of the refrigerant is large and the amount of the refrigerant sucked into the compressor 1 is small, so that the gas speed is low. As a result, the oil return efficiency of the oil in the accumulator 2 decreases. Also, even when the compressor 1 performs the capacity control operation, the amount of refrigerant sucked into the compressor 1 is small.
The gas speed decreases as described above. For this reason, the differential pressure of the connection port 9 becomes small, and the return amount of the oil 8 decreases.

【0007】また、油の戻り量は、油8の粘度によって
も左右される。冷凍装置による冷却がすすむと、蒸発器
における冷媒の蒸発温度が低下し、低圧になる。かかる
場合、蒸発器からアキュムレータ2、圧縮機1の吸引側
にかけての低圧部の温度も低下する。このため、この低
圧部内の油の温度も低下する。油は、一般的に油温が低
下すると粘度が高くなり流動性が悪くなるという性質を
有する。従って、上記のように低圧になると、油8の流
動性が悪くなり、戻り量が減少してしまうという問題が
あった。
[0007] The amount of oil returned also depends on the viscosity of the oil 8. As the cooling by the refrigerating device proceeds, the evaporation temperature of the refrigerant in the evaporator decreases, and the pressure decreases. In this case, the temperature of the low-pressure section from the evaporator to the accumulator 2 and the suction side of the compressor 1 also decreases. Therefore, the temperature of the oil in the low-pressure section also decreases. Oil generally has the property that as the oil temperature decreases, the viscosity increases and the fluidity deteriorates. Therefore, when the pressure is lowered as described above, there is a problem that the fluidity of the oil 8 deteriorates and the return amount decreases.

【0008】更に、ホットガスデフロスト方式の冷凍装
置の場合、除霜中に冷凍装置内で生じた液冷媒を全てア
キュムレータ2に溜め、メタルオリフィス7を介して少
量ずつ圧縮機1に吸い込ませていた。ここで、ホットガ
スデフロスト方式とは、圧縮機吐出ガス(すなわち、ホ
ットガス)を冷凍装置内に流し、霜を溶かす方式をい
う。しかし、アキュムレータ2に溜まった液冷媒の量が
多すぎると、除霜後に圧縮機1を再起動させると、多量
の液冷媒が圧縮機1に吸い込まれてしまう。かかる場
合、圧縮機の内部部品を損傷するおそれがある。
Further, in the case of the refrigeration system of the hot gas defrost type, all the liquid refrigerant generated in the refrigeration system during defrosting is stored in the accumulator 2 and is sucked into the compressor 1 little by little through the metal orifice 7. . Here, the hot gas defrost method refers to a method in which a compressor discharge gas (that is, hot gas) is flowed into a refrigerating device to melt frost. However, if the amount of the liquid refrigerant accumulated in the accumulator 2 is too large, a large amount of the liquid refrigerant is sucked into the compressor 1 when the compressor 1 is restarted after defrosting. In such a case, the internal components of the compressor may be damaged.

【0009】本発明は、前記の課題を解決するためにな
されたものであり、アキュムレータからの油戻りの効率
を向上させると共に、除霜中にアキュムレータに溜まる
冷媒液量を抑え、除霜終了後の再運転時の圧縮機液戻り
を防止することを特徴とする冷凍装置を提供することを
目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and improves the efficiency of oil return from an accumulator, reduces the amount of refrigerant liquid accumulated in the accumulator during defrosting, and It is an object of the present invention to provide a refrigeration system characterized by preventing compressor liquid return at the time of re-operation.

【0010】[0010]

【課題を解決するための手段】前述の課題を解決するた
めに、本発明にかかる冷凍装置は、以下の特徴を有す
る。
In order to solve the above-mentioned problems, a refrigeration apparatus according to the present invention has the following features.

【0011】(1)圧縮機、凝縮器、減圧装置、蒸発
器、冷媒と相溶性のある油を貯留するアキュムレータを
順次接続してなる冷媒回路を有する冷凍装置において、
前記アキュムレータの底部と前記圧縮機の吸引側とを連
通する油戻し配管と、前記圧縮機の吐出側と前記アキュ
ムレータの吸引側とを連通し、前記圧縮機からの吐出ガ
スにより前記油戻し配管を加温可能に近接配置されたホ
ットガス配管と、前記油戻し配管に設けられ戻り油の温
度を検出する戻り油温度検出部と、前記ホットガス配管
に設けられた電磁弁と、前記戻り油温度検出部により検
出された温度が油吸引可能設定温度以下になると前記電
磁弁を開にし、前記戻し油温度検出部により検出された
温度が前記油吸引可能設定温度より高い場合には前記電
磁弁を閉にするように制御する電磁弁開閉制御部と、を
有する冷凍装置である。
(1) A refrigerating apparatus having a refrigerant circuit in which a compressor, a condenser, a decompression device, an evaporator, and an accumulator for storing oil compatible with a refrigerant are sequentially connected.
An oil return pipe communicating the bottom of the accumulator and the suction side of the compressor, an oil return pipe communicating the discharge side of the compressor and the suction side of the accumulator, and passing the oil return pipe by a discharge gas from the compressor. A hot gas pipe disposed close to the heater so as to be capable of heating, a return oil temperature detection unit provided in the oil return pipe to detect a temperature of the return oil, an electromagnetic valve provided in the hot gas pipe, and the return oil temperature The solenoid valve is opened when the temperature detected by the detection unit is equal to or lower than the oil suctionable set temperature, and the solenoid valve is opened when the temperature detected by the return oil temperature detection unit is higher than the oil suctionable set temperature. And a solenoid valve opening / closing controller that controls the valve to be closed.

【0012】圧縮機から吐出される冷媒のホットガスを
用いて、油戻し配管を加温するため、油温が上昇し、油
の粘度が下がり油の流動性が増して、返油効率が向上す
る。更に、ホットガスを常時ホットガス配管に流すと、
冷凍装置の能力が低下してしまうが、油戻り配管内の油
温度によってホットガスの流入を電磁弁により制御する
ことにより、冷凍装置の能力を低下させることなく、効
率よく返油を行うことができる。
Since the oil return pipe is heated by using the hot gas of the refrigerant discharged from the compressor, the oil temperature increases, the viscosity of the oil decreases, the fluidity of the oil increases, and the oil return efficiency improves. I do. Furthermore, if hot gas is always supplied to the hot gas pipe,
Although the capacity of the refrigeration system is reduced, the flow of hot gas is controlled by the solenoid valve according to the oil temperature in the oil return pipe, so that the oil can be returned efficiently without reducing the capacity of the refrigeration system. it can.

【0013】(2)圧縮機、凝縮器、減圧装置、蒸発
器、冷媒と相溶性のある油を貯留するアキュムレータを
順次接続してなる冷媒回路を有する冷凍装置において、
前記アキュムレータの底部と前記圧縮機の吸引側とを連
通する油戻し配管と、前記圧縮機の吐出側と前記アキュ
ムレータの吸引側とを連通し、前記圧縮機からの吐出ガ
スにより前記油戻し配管を加温可能に近接配置されたホ
ットガス配管と、前記油戻し配管に設けられ戻り油の温
度を検出する戻り油温度検出部と、前記ホットガス配管
に設けられた電磁弁と、前記電磁弁を周期的に所定時間
開閉するように制御する電磁弁制御部と、を有する冷凍
装置である。
(2) A refrigeration apparatus having a refrigerant circuit in which a compressor, a condenser, a decompression device, an evaporator, and an accumulator for storing oil compatible with a refrigerant are sequentially connected.
An oil return pipe communicating the bottom of the accumulator and the suction side of the compressor, an oil return pipe communicating the discharge side of the compressor and the suction side of the accumulator, and passing the oil return pipe by discharge gas from the compressor. A hot gas pipe disposed close to the heater so as to be capable of heating, a return oil temperature detection unit provided in the oil return pipe to detect the temperature of the return oil, an electromagnetic valve provided in the hot gas pipe, and the electromagnetic valve. And a solenoid valve control unit that controls the valve to open and close periodically for a predetermined time.

【0014】上記同様、圧縮機から吐出される冷媒のホ
ットガスを用いて、油戻し配管を加温するため、油温が
上昇し、油の粘度が下がり油の流動性が増して、返油効
率が向上する。更に、ホットガスを常時ホットガス配管
に流すと、冷凍装置の能力が低下しまうが、周期的に所
定時間ホットガスを流入するように電磁弁を制御するこ
とによって、冷凍装置の能力を低下させることなく、効
率よく返油を行うことができる。
As described above, since the oil return pipe is heated by using the hot gas of the refrigerant discharged from the compressor, the oil temperature rises, the viscosity of the oil decreases, the fluidity of the oil increases, and the oil is returned. Efficiency is improved. Further, if hot gas is always supplied to the hot gas pipe, the performance of the refrigeration system is reduced. However, the performance of the refrigeration system may be reduced by controlling the solenoid valve so that the hot gas flows periodically for a predetermined time. And oil can be returned efficiently.

【0015】(3)上記(1)または(2)に記載の冷
凍装置において、更に、前記油戻し配管には、配管内を
開閉する油戻し弁が設けられている冷凍装置である。
(3) The refrigerating apparatus according to the above (1) or (2), wherein the oil return pipe is further provided with an oil return valve for opening and closing the inside of the pipe.

【0016】冷凍装置の運転に応じて、油戻し弁を開に
することにより返油作業を行うことができる。従って、
更に冷凍装置の能力が低下することなく圧縮機への返油
を行うことができる。
The oil return operation can be performed by opening the oil return valve in accordance with the operation of the refrigeration system. Therefore,
Further, oil can be returned to the compressor without lowering the capacity of the refrigeration system.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態を、図
を用いて説明する。なお、上述した従来の冷凍装置およ
び返油構成と同様の構成要素には、同一の符号を付しそ
の説明を省略する。
Embodiments of the present invention will be described below with reference to the drawings. Note that the same components as those of the above-described conventional refrigeration apparatus and oil return configuration are denoted by the same reference numerals, and description thereof will be omitted.

【0018】実施の形態1.図1に示すように、本実施
の形態の冷凍装置には、アキュムレータ2の底部と圧縮
機1吸引側の圧縮機吸込み配管4とを連通する油戻し配
管3と、圧縮機1の吐出側とアキュムレータ2の吸引側
とを連通するホットガス配管10と、が設けられてい
る。ホットガス配管10は、圧縮機1からの吐出ガス
(いわゆるホットガス)により油戻し配管10を加温可
能なように部分的に近接して配置されている。この近接
部分が、熱交換部12である。また、油戻し配管3に
は、戻り油の温度を検出する戻り油温度検出部14と、
戻り油の流入を制御するための電磁弁5が設けられてい
る。また、ホットガス配管10には、ホットガスの流入
を制御するための電磁弁11が設けられている。更に、
前記戻り油温度検出部14は、検出した油温が油吸引可
能設定温度以下になると電磁弁11を開にし、一方検出
した油温が油吸引可能設定温度より高い場合には電磁弁
11を閉にするように制御する電磁弁開閉制御部として
も機能する。ここで、油吸引可能設定温度(以下「設定
温度」という)とは、油8が油戻り配管3内で適度な流
動性を有する粘度になる温度をいう。
Embodiment 1 As shown in FIG. 1, the refrigerating apparatus according to the present embodiment includes an oil return pipe 3 that connects the bottom of the accumulator 2 and a compressor suction pipe 4 on the compressor 1 suction side, and a discharge side of the compressor 1. And a hot gas pipe 10 communicating with the suction side of the accumulator 2. The hot gas pipe 10 is disposed partially close so that the oil return pipe 10 can be heated by a discharge gas (a so-called hot gas) from the compressor 1. This adjacent portion is the heat exchange unit 12. Also, the oil return pipe 3 includes a return oil temperature detection unit 14 that detects the temperature of the return oil,
An electromagnetic valve 5 for controlling the inflow of return oil is provided. The hot gas pipe 10 is provided with an electromagnetic valve 11 for controlling the flow of hot gas. Furthermore,
The return oil temperature detection unit 14 opens the solenoid valve 11 when the detected oil temperature becomes equal to or lower than the oil suctionable set temperature, and closes the solenoid valve 11 when the detected oil temperature is higher than the oil suctionable set temperature. It also functions as an electromagnetic valve opening / closing control unit that performs control such that Here, the oil suctionable set temperature (hereinafter referred to as “set temperature”) refers to a temperature at which the oil 8 has a viscosity having an appropriate fluidity in the oil return pipe 3.

【0019】次に、本実施の形態の冷凍装置の返油動作
について、図1および図2を用いて説明する。圧縮機1
を運転すると(S100)、アキュムレータ2に溜まっ
た油8を圧縮機1に返油するために電磁弁5を開ける
(S101)。これにより、アキュムレータ2より返油
される。
Next, the oil return operation of the refrigeration system of the present embodiment will be described with reference to FIGS. Compressor 1
Is operated (S100), the solenoid valve 5 is opened to return the oil 8 accumulated in the accumulator 2 to the compressor 1 (S101). Thereby, the oil is returned from the accumulator 2.

【0020】ここで、圧縮機1の吸引圧力が低下する
と、油戻り配管3および油8の温度が低下し、油8の粘
度が増大し、返油効率が下がる。油温度が、戻り油温度
検出部14に予め油に応じて設定された設定温度に以下
になった場合には(S102)、電磁弁11を開けて
(S104)、ホットガス配管10に圧縮機1から吐出
されたホットガスを流す。ホットガスは、熱交換部12
で油8と熱交換をした後、絞り13を経て、アキュムレ
ータ入口配管へ流れる。ここでは、油温度を直接測定し
たが、油戻し配管3の表面温度を測定して、油温度を間
接的に計測してもよい。
Here, when the suction pressure of the compressor 1 decreases, the temperature of the oil return pipe 3 and the oil 8 decreases, the viscosity of the oil 8 increases, and the oil return efficiency decreases. When the oil temperature has become equal to or lower than the set temperature previously set in the return oil temperature detector 14 in accordance with the oil (S102), the solenoid valve 11 is opened (S104), and the compressor is connected to the hot gas pipe 10 The hot gas discharged from 1 is flowed. The hot gas is supplied to the heat exchange unit 12
After the heat exchange with the oil 8, it flows through the throttle 13 to the accumulator inlet pipe. Here, the oil temperature is measured directly, but the surface temperature of the oil return pipe 3 may be measured to measure the oil temperature indirectly.

【0021】なお、電磁弁11を常時開状態にしておく
と、蒸発器への冷媒循環量の低下、冷却能力の低下を招
くため、電磁弁11の開閉を以下のように制御する。
If the solenoid valve 11 is kept open, a decrease in the amount of refrigerant circulating to the evaporator and a decrease in cooling capacity are caused. Therefore, the opening and closing of the solenoid valve 11 is controlled as follows.

【0022】すなわち、油温度または油戻し配管3表面
温度が、設定温度以下になった場合には(S102)、
上述のように電磁弁11を開にし(S104)、設定温
度まで温度が上昇した場合には(S105)、電磁弁1
1を閉じる(S108)。また、冷却負荷が少なくなる
と、圧縮機1は冷媒循環量を減少させて容量制御運転を
行う。容量制御運転中は、接続口9の差圧が小さくな
り、油8の戻り量が減少する。そこで、圧縮機1が容量
制御運転を行う場合には(S103)、電磁弁11を開
け(S104)、圧縮機1が容量制御運転からフルロー
ド運転に復帰すると(S106)、電磁弁11を閉じる
(S108)。これにより、圧縮機の運転方式に関係な
く、返油作業を円滑に行うことができる。
That is, when the oil temperature or the surface temperature of the oil return pipe 3 becomes lower than the set temperature (S102),
As described above, the solenoid valve 11 is opened (S104), and when the temperature rises to the set temperature (S105), the solenoid valve 1 is opened.
1 is closed (S108). Further, when the cooling load decreases, the compressor 1 performs the capacity control operation by reducing the refrigerant circulation amount. During the capacity control operation, the pressure difference at the connection port 9 is reduced, and the return amount of the oil 8 is reduced. Therefore, when the compressor 1 performs the capacity control operation (S103), the solenoid valve 11 is opened (S104). When the compressor 1 returns from the capacity control operation to the full load operation (S106), the solenoid valve 11 is closed. (S108). Thereby, the oil return operation can be performed smoothly regardless of the operation mode of the compressor.

【0023】本実施の形態の冷凍装置によれば、油戻り
低下の要因である油粘度の上昇を抑制し、油の流動性を
確保することができる。また、一般に、返油動作時に
は、油戻し配管3内の圧力が低下し、圧縮機吸込み配管
4との差圧が低下する。しかし、本実施の形態の冷凍装
置であれば、返油中の油8を加温することにより、油8
に含まれている冷媒が蒸発して冷媒ガスとなる。この冷
媒ガスにより、油戻し配管3内の圧力が上昇し、圧縮機
吸込み配管4(低圧)との差圧の低下を抑制できるの
で、返油動作を効率的に行うことができる。
According to the refrigerating apparatus of the present embodiment, it is possible to suppress an increase in oil viscosity, which is a cause of a decrease in oil return, and to ensure fluidity of oil. Further, in general, during the oil return operation, the pressure in the oil return pipe 3 decreases, and the differential pressure between the oil return pipe 3 and the compressor suction pipe 4 decreases. However, in the refrigeration apparatus of the present embodiment, the oil 8 is returned by heating the oil 8 being returned.
The refrigerant contained in the refrigerant evaporates and becomes refrigerant gas. Due to the refrigerant gas, the pressure in the oil return pipe 3 increases, and a decrease in the differential pressure with the compressor suction pipe 4 (low pressure) can be suppressed, so that the oil return operation can be performed efficiently.

【0024】更に、本実施の形態の冷凍装置は、上述し
たホットガスデフロスト方式の冷凍装置に用いる場合に
は、除霜運転中に生じた液冷媒は、全てアキュムレータ
2に溜まる。そこで、除霜運転中、電磁弁11を開き、
ホットガス配管10に圧縮機1から吐出されたホットガ
スを流す。このホットガスは、熱交換部12で油と熱交
換した後、絞り13を経て、アキュムレータ2の入口配
管に流れ、アキュムレータ2に溜まっている液冷媒と熱
交換する。その結果、液冷媒は蒸発して冷媒ガスとし
て、圧縮機1に戻る。
Further, when the refrigeration apparatus of the present embodiment is used in the above-described hot gas defrost type refrigeration apparatus, all the liquid refrigerant generated during the defrosting operation accumulates in the accumulator 2. Therefore, during the defrosting operation, the solenoid valve 11 is opened,
The hot gas discharged from the compressor 1 flows through the hot gas pipe 10. The hot gas exchanges heat with oil in the heat exchange section 12, then flows through the throttle 13 to the inlet pipe of the accumulator 2, and exchanges heat with the liquid refrigerant stored in the accumulator 2. As a result, the liquid refrigerant evaporates and returns to the compressor 1 as refrigerant gas.

【0025】これにより、除霜中にアキュムレータに多
量の液冷媒が溜まることを防止することができる。従っ
て、除霜終了後の圧縮機再起動時に、液冷媒が圧縮機に
吸い込まれることがないので、圧縮機に損傷を与えるお
それのある液圧縮を回避することができる。
Thus, it is possible to prevent a large amount of liquid refrigerant from accumulating in the accumulator during defrosting. Therefore, when the compressor is restarted after the completion of the defrosting, the liquid refrigerant is not sucked into the compressor, so that the liquid compression which may damage the compressor can be avoided.

【0026】実施の形態2.上記実施の形態1では、油
温により電磁弁11の開閉を行っていたが、本実施の形
態では、図3に示すように、電磁弁制御部としてタイマ
ー15,16を設け、電磁弁11の開閉を周期的にタイ
マーによって制御することとした。なお、上記実施の形
態1の構成と同一の構成には同一の符号を付しその説明
を省略する。
Embodiment 2 FIG. In the first embodiment, the solenoid valve 11 is opened and closed according to the oil temperature. However, in the present embodiment, as shown in FIG. Opening and closing are periodically controlled by a timer. The same components as those of the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.

【0027】本実施の形態の冷凍装置には、図3に示す
ように、電磁弁5に連動するタイマー15と、電磁弁1
1に連動するタイマー16が設けられている。
As shown in FIG. 3, the refrigeration apparatus of this embodiment includes a timer 15 linked to the solenoid valve 5 and a solenoid valve 1.
1 is provided with a timer 16 which is linked to the timer 1.

【0028】次に、本実施の形態の冷凍装置の返油動作
について図3および図4を用いて説明する。圧縮機1を
運転すると(S110)、アキュムレータ2に溜まった
油8を圧縮機1に返油するために電磁弁5を開ける(S
111)。電磁弁5の開に連動してタイマー15が、カ
ウントを開始し(S112)、所定時間経過後に電磁弁
11を開けるように接点出力をする(S113)。電磁
弁11が開くと(S115)、タイマー16がカウント
を開始し(S116)、所定時間後に電磁弁11を閉じ
る接点出力を出す(S117)。電磁弁11が閉じると
(S119)、再度タイマー15はカウントを開始し所
定時間経過後に電磁弁11を開ける(S113,S11
5)。この一連の動作を繰り返して、圧縮機連続運転
中、電磁弁11を周期的に一定時間開くように制御す
る。これにより、周期的に圧縮機から吐出されたホット
ガスにより油が加温され、返油効率が向上する。
Next, the oil return operation of the refrigeration system of the present embodiment will be described with reference to FIGS. When the compressor 1 is operated (S110), the solenoid valve 5 is opened to return the oil 8 accumulated in the accumulator 2 to the compressor 1 (S110).
111). In conjunction with the opening of the solenoid valve 5, the timer 15 starts counting (S112), and outputs a contact so as to open the solenoid valve 11 after a predetermined time has elapsed (S113). When the solenoid valve 11 is opened (S115), the timer 16 starts counting (S116), and outputs a contact output for closing the solenoid valve 11 after a predetermined time (S117). When the solenoid valve 11 is closed (S119), the timer 15 starts counting again and opens the solenoid valve 11 after a predetermined time has elapsed (S113, S11).
5). This series of operations is repeated to control the solenoid valve 11 to open periodically for a fixed time during the continuous operation of the compressor. Thereby, the oil is heated by the hot gas periodically discharged from the compressor, and the oil return efficiency is improved.

【0029】また、冷却負荷が少なくなると、圧縮機1
は冷媒循環量を減少させて容量制御運転を行う。容量制
御運転中は、接続口9の差圧が小さくなり、油8の戻り
量が減少する。そこで、圧縮機1が容量制御運転を行う
場合には(S114)、電磁弁11を開け(S11
5)、圧縮機1が容量制御運転からフルロード運転に復
帰すると(S118)、電磁弁11を閉じる(S11
9)。これにより、圧縮機の運転方式に関係なく、返油
作業を円滑に行うことができる。
When the cooling load is reduced, the compressor 1
Performs the capacity control operation by reducing the refrigerant circulation amount. During the capacity control operation, the pressure difference at the connection port 9 is reduced, and the return amount of the oil 8 is reduced. Therefore, when the compressor 1 performs the displacement control operation (S114), the solenoid valve 11 is opened (S11).
5) When the compressor 1 returns from the capacity control operation to the full load operation (S118), the solenoid valve 11 is closed (S11).
9). Thereby, the oil return operation can be performed smoothly regardless of the operation mode of the compressor.

【0030】[0030]

【発明の効果】以上のように、本発明に係る冷凍装置に
よれば、アキュムレータに溜まった油を円滑に圧縮機側
に戻すことができる。更に、除霜運転中にアキュムレー
タに溜まる液冷媒を、圧縮機から吐出されるホットガス
で熱交換して冷媒ガスとして圧縮機に戻すことができる
ので、除霜終了後に圧縮機を再起動した際に、圧縮機に
液冷媒が吸い込まれることを防止できる。従って、圧縮
機内の部品を損傷させるおそれのある液圧縮を防止する
ことができる。
As described above, according to the refrigerating apparatus of the present invention, the oil accumulated in the accumulator can be smoothly returned to the compressor. Furthermore, the liquid refrigerant accumulated in the accumulator during the defrosting operation can be heat-exchanged with hot gas discharged from the compressor and returned to the compressor as refrigerant gas. Furthermore, it is possible to prevent the liquid refrigerant from being sucked into the compressor. Therefore, it is possible to prevent liquid compression that may damage parts in the compressor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の冷凍装置の油戻し構成の一例の概要
を示す図である。
FIG. 1 is a diagram showing an outline of an example of an oil return configuration of a refrigeration apparatus of the present invention.

【図2】 図1に示す油戻し構成の油戻し動作を説明す
る図である。
FIG. 2 is a diagram illustrating an oil return operation of the oil return configuration shown in FIG.

【図3】 本発明の冷凍装置の油戻し構成の他の例の概
要を示す図である。
FIG. 3 is a diagram showing an outline of another example of the oil return configuration of the refrigeration apparatus of the present invention.

【図4】 図3に示す油戻し構成の油戻し動作を説明す
る図である。
4 is a diagram illustrating an oil return operation of the oil return configuration shown in FIG.

【図5】 従来の油戻し配管の構成を示す図である。FIG. 5 is a diagram showing a configuration of a conventional oil return pipe.

【図6】 従来の冷凍装置の構成の概要を示す図であ
る。
FIG. 6 is a diagram showing an outline of a configuration of a conventional refrigeration apparatus.

【符号の説明】[Explanation of symbols]

1 圧縮機、2 アキュムレータ、3 油戻し配管、4
圧縮機吸込み配管、5,11 電磁弁、6 ストレー
ナ、7 メタルオリフィス、8 油、9 接続口、10
ホットガス配管、12 熱交換部、13 絞り、14
戻り油温度検出部、15,16 タイマー。
1 compressor, 2 accumulator, 3 oil return piping, 4
Compressor suction pipe, 5,11 solenoid valve, 6 strainer, 7 metal orifice, 8 oil, 9 connection port, 10
Hot gas piping, 12 heat exchanger, 13 throttle, 14
Return oil temperature detector, 15, 16 timer.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、凝縮器、減圧装置、蒸発器、冷
媒と相溶性のある油を貯留するアキュムレータを順次接
続してなる冷媒回路を有する冷凍装置において、 前記アキュムレータの底部と前記圧縮機の吸引側とを連
通する油戻し配管と、 前記圧縮機の吐出側と前記アキュムレータの吸引側とを
連通し、前記圧縮機からの吐出ガスにより前記油戻し配
管を加温可能に近接配置されたホットガス配管と、 前記油戻し配管に設けられ戻り油の温度を検出する戻り
油温度検出部と、 前記ホットガス配管に設けられた電磁弁と、 前記戻り油温度検出部により検出された温度が油吸引可
能設定温度以下になると前記電磁弁を開にし、前記戻し
油温度検出部により検出された温度が前記油吸引可能設
定温度より高い場合には前記電磁弁を閉にするように制
御する電磁弁開閉制御部と、 を有することを特徴とする冷凍装置。
1. A refrigeration system having a refrigerant circuit in which a compressor, a condenser, a decompression device, an evaporator, and an accumulator for storing oil compatible with a refrigerant are sequentially connected, wherein a bottom portion of the accumulator and the compressor are provided. An oil return pipe communicating with a suction side of the compressor, a discharge side of the compressor and a suction side of the accumulator are communicated with each other, and the oil return pipe is disposed close to the compressor so that the oil return pipe can be heated by gas discharged from the compressor. A hot gas pipe, a return oil temperature detector provided in the oil return pipe and detecting a temperature of the return oil, an electromagnetic valve provided in the hot gas pipe, and a temperature detected by the return oil temperature detector. When the temperature becomes equal to or lower than the oil suctionable set temperature, the electromagnetic valve is opened, and when the temperature detected by the return oil temperature detection unit is higher than the oil suctionable set temperature, the electromagnetic valve is closed. Refrigerating apparatus characterized by having an electromagnetic valve opening and closing control unit that Gosuru.
【請求項2】 圧縮機、凝縮器、減圧装置、蒸発器、冷
媒と相溶性のある油を貯留するアキュムレータを順次接
続してなる冷媒回路を有する冷凍装置において、 前記アキュムレータの底部と前記圧縮機の吸引側とを連
通する油戻し配管と、 前記圧縮機の吐出側と前記アキュムレータの吸引側とを
連通し、前記圧縮機からの吐出ガスにより前記油戻し配
管を加温可能に近接配置されたホットガス配管と、 前記油戻し配管に設けられ戻り油の温度を検出する戻り
油温度検出部と、 前記ホットガス配管に設けられた電磁弁と、 前記電磁弁を周期的に所定時間開閉するように制御する
電磁弁制御部と、 を有することを特徴とする冷凍装置。
2. A refrigerating apparatus having a refrigerant circuit in which a compressor, a condenser, a decompression device, an evaporator, and an accumulator for storing oil compatible with a refrigerant are sequentially connected, wherein a bottom portion of the accumulator and the compressor are provided. An oil return pipe communicating with a suction side of the compressor, a discharge side of the compressor and a suction side of the accumulator are communicated with each other, and the oil return pipe is disposed close to the compressor so that the oil return pipe can be heated by gas discharged from the compressor. A hot gas pipe, a return oil temperature detection unit provided in the oil return pipe for detecting the temperature of the return oil, an electromagnetic valve provided in the hot gas pipe, and the electromagnetic valve is opened and closed periodically for a predetermined time. A refrigeration apparatus, comprising: an electromagnetic valve control unit that controls the temperature of the refrigeration system.
【請求項3】 請求項1または請求項2に記載の冷凍装
置において、 更に、前記油戻し配管には、配管内を開閉する油戻し弁
が設けられていることを特徴とする冷凍装置。
3. The refrigeration apparatus according to claim 1, wherein the oil return pipe is further provided with an oil return valve that opens and closes the inside of the pipe.
JP15517699A 1999-06-02 1999-06-02 Refrigeration equipment Expired - Fee Related JP3498009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15517699A JP3498009B2 (en) 1999-06-02 1999-06-02 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15517699A JP3498009B2 (en) 1999-06-02 1999-06-02 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2000346502A true JP2000346502A (en) 2000-12-15
JP3498009B2 JP3498009B2 (en) 2004-02-16

Family

ID=15600166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15517699A Expired - Fee Related JP3498009B2 (en) 1999-06-02 1999-06-02 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP3498009B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014533A (en) * 2006-07-04 2008-01-24 Ebara Corp Oil recovering device of compression type refrigerating machine
WO2010010414A1 (en) * 2008-07-23 2010-01-28 Carrier Corporation Methods and systems for compressor operation
WO2010097537A1 (en) * 2009-02-27 2010-09-02 Danfoss Commercial Compressors Device for separating a lubricant from a refrigerant lubricant/gas mixture discharged from at least one refrigerating compressor
KR101314270B1 (en) 2006-07-19 2013-10-02 엘지전자 주식회사 Oil seperating apparatus of cooling cycle apparatus and Control method of the same
CN104748462A (en) * 2013-12-25 2015-07-01 珠海格力节能环保制冷技术研究中心有限公司 Oil and gas separation device and air conditioner system
WO2016108361A1 (en) * 2014-12-30 2016-07-07 Samsung Electronics Co., Ltd. Oil level detecting apparatus and control method thereof, oil flow detecting apparatus and control method thereof, method for control oil return using oil level and oil flow
CN105972868A (en) * 2016-05-19 2016-09-28 珠海格力电器股份有限公司 Air conditioner system, air conditioner system control method and air conditioner
CN106288520A (en) * 2016-08-02 2017-01-04 珠海格力电器股份有限公司 A kind of compressor oil return control device, control method and air-conditioning
JP2018204945A (en) * 2017-05-31 2018-12-27 ダイキン工業株式会社 Gas/liquid separation unit for freezer and freezer
CN109114718A (en) * 2018-09-27 2019-01-01 克莱门特捷联制冷设备(上海)有限公司 Computer room compound air-conditioning system and its control method
WO2022007343A1 (en) * 2020-07-07 2022-01-13 重庆美的通用制冷设备有限公司 Air conditioning unit
JP2022111467A (en) * 2021-01-20 2022-08-01 ダイキン工業株式会社 Inspection method and inspection device for refrigeration device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014533A (en) * 2006-07-04 2008-01-24 Ebara Corp Oil recovering device of compression type refrigerating machine
KR101314270B1 (en) 2006-07-19 2013-10-02 엘지전자 주식회사 Oil seperating apparatus of cooling cycle apparatus and Control method of the same
WO2010010414A1 (en) * 2008-07-23 2010-01-28 Carrier Corporation Methods and systems for compressor operation
US9207005B2 (en) 2009-02-27 2015-12-08 Danfoss Commercial Compressors Device for separating lubricant from a lubricant-refrigerating gas mixture discharged from at least one refrigerant compressor
FR2942656A1 (en) * 2009-02-27 2010-09-03 Danfoss Commercial Compressors DEVICE FOR SEPARATING LUBRICANT FROM A LUBRICANT-REFRIGERATING GAS MIXTURE
WO2010097537A1 (en) * 2009-02-27 2010-09-02 Danfoss Commercial Compressors Device for separating a lubricant from a refrigerant lubricant/gas mixture discharged from at least one refrigerating compressor
CN104748462A (en) * 2013-12-25 2015-07-01 珠海格力节能环保制冷技术研究中心有限公司 Oil and gas separation device and air conditioner system
RU2697293C2 (en) * 2014-12-30 2019-08-13 Самсунг Электроникс Ко., Лтд. Device for determining oil level and method of controlling thereof
WO2016108361A1 (en) * 2014-12-30 2016-07-07 Samsung Electronics Co., Ltd. Oil level detecting apparatus and control method thereof, oil flow detecting apparatus and control method thereof, method for control oil return using oil level and oil flow
KR20160081021A (en) * 2014-12-30 2016-07-08 삼성전자주식회사 Oil level detecting apparatus and control method thereof, oil flow detecting apparatus and control method thereof, method for control oil return using oil level and oil flow
US10025323B2 (en) 2014-12-30 2018-07-17 Samsung Electronics Co., Ltd. Oil level detecting apparatus and control method thereof, oil flow detecting apparatus and control method thereof, method for control oil return using oil level and oil flow
KR102342565B1 (en) * 2014-12-30 2021-12-23 삼성전자주식회사 Oil level detecting apparatus and control method thereof, oil flow detecting apparatus and control method thereof, method for control oil return using oil level and oil flow
CN105972868A (en) * 2016-05-19 2016-09-28 珠海格力电器股份有限公司 Air conditioner system, air conditioner system control method and air conditioner
CN106288520A (en) * 2016-08-02 2017-01-04 珠海格力电器股份有限公司 A kind of compressor oil return control device, control method and air-conditioning
EP3611442A4 (en) * 2017-05-31 2021-01-13 Daikin Industries, Ltd. Gas-liquid separation unit for refrigeration device, and refrigeration device
JP2018204945A (en) * 2017-05-31 2018-12-27 ダイキン工業株式会社 Gas/liquid separation unit for freezer and freezer
CN109114718A (en) * 2018-09-27 2019-01-01 克莱门特捷联制冷设备(上海)有限公司 Computer room compound air-conditioning system and its control method
WO2022007343A1 (en) * 2020-07-07 2022-01-13 重庆美的通用制冷设备有限公司 Air conditioning unit
JP2022111467A (en) * 2021-01-20 2022-08-01 ダイキン工業株式会社 Inspection method and inspection device for refrigeration device
JP7280519B2 (en) 2021-01-20 2023-05-24 ダイキン工業株式会社 Refrigeration equipment inspection method and inspection device

Also Published As

Publication number Publication date
JP3498009B2 (en) 2004-02-16

Similar Documents

Publication Publication Date Title
CN102216700B (en) Heat pump system and method of operating
JPH07120121A (en) Drive controller for air conditioner
JP3498009B2 (en) Refrigeration equipment
CN210801680U (en) Cold and warm dual-purpose air source heat pump system
JP4605065B2 (en) Air conditioner
KR101203995B1 (en) Air conditioner and Defrosting Driving Method thereof
JP4269459B2 (en) Freezer refrigerator
JP3993540B2 (en) Refrigeration equipment
CN114413416A (en) Multi-split air conditioner defrosting control method, storage medium and multi-split air conditioner
JPH07248164A (en) Refrigerator
JPH109690A (en) Refrigerator
JPH09210515A (en) Refrigerating device
JP2757689B2 (en) Refrigeration equipment
JPH10220932A (en) Method of defrosting refrigerator
KR100525420B1 (en) method for controlling defrosting in heat pump
JP2004061056A (en) Oil level detecting method and device for compressor
JP3010908B2 (en) Refrigeration equipment
CN220818148U (en) Refrigerant quantity adjusting device for refrigeration cycle system, gas-liquid separator and air conditioning system
CN212511905U (en) Refrigeration system
CN112361685B (en) Two-stage compressor control method, two-stage compressor refrigeration system and refrigeration equipment
JP3168730B2 (en) Air conditioner
JPH11304265A (en) Air conditioner
CN116447704A (en) Heat pump system and control method for preventing bottom of air conditioner outdoor unit from frosting
JPH08136112A (en) Refrigerator
JP4023385B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees