JPH08136112A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPH08136112A
JPH08136112A JP26866594A JP26866594A JPH08136112A JP H08136112 A JPH08136112 A JP H08136112A JP 26866594 A JP26866594 A JP 26866594A JP 26866594 A JP26866594 A JP 26866594A JP H08136112 A JPH08136112 A JP H08136112A
Authority
JP
Japan
Prior art keywords
evaporator
defrosting
compressor
refrigerant
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26866594A
Other languages
Japanese (ja)
Inventor
Masataka Oda
雅隆 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP26866594A priority Critical patent/JPH08136112A/en
Publication of JPH08136112A publication Critical patent/JPH08136112A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To increase the amount of residence of a refrigerant owing to inflow of the refrigerant into an evaporator at the initial stage of defrosting and hence improve defrosting efficiency by making use of heat transfer with the refrigerant by closing a high pressure valve and a low pressure valve retarding from the initiation of the defrosting. CONSTITUTION: There are included a body 1 of a refrigerator having a freezing cycle where there are connected in order annularly a compressor 9, a condenser 10, a capillary tube 11, an evaporator 12, and a suction pipe 13, a defrosting heater disposed in the vicinity of the evaporator 12, high pressure valves 24 and low pressure valves 25 each disposed at connection parts among the evaporator 12, the capillary tube 11, and the suction pipe 13, and valve control means 26 for opening/closing the high pressure valves 24 and the low pressure valves 25 retarding the operation of the defrosting heater 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷蔵庫の冷凍サイクル
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerator refrigeration cycle.

【0002】[0002]

【従来の技術】従来例として特開平4−203756号
公報に示される冷蔵庫の構成を図8に示す。同図におい
て、1は冷蔵庫の本体で、内部を隔壁2により冷蔵室
3、冷凍室4とに区画されている。また、それぞれ冷蔵
室3、冷凍室4には冷蔵室扉5、冷凍室扉6が設置され
ている。本体1の背面下部には機械室7が設置されてい
る。
2. Description of the Related Art FIG. 8 shows the structure of a refrigerator disclosed in Japanese Patent Laid-Open No. 4-203756 as a conventional example. In the figure, reference numeral 1 denotes a main body of a refrigerator, which is partitioned by a partition wall 2 into a refrigerating room 3 and a freezing room 4. A refrigerating compartment door 5 and a freezing compartment door 6 are installed in the refrigerating compartment 3 and the freezing compartment 4, respectively. A machine room 7 is provided at a lower rear portion of the main body 1.

【0003】冷凍室4の背面側には、冷凍室4と区画さ
れた冷却室8が設置される。機械室7に圧縮機9が設置
され、凝縮器10、キャピラリチューブ11、冷却室8
に設置した蒸発器12、サクションパイプ13と順次環
状に接続し、冷却システムを構成する。キャピラリチュ
ーブ11とサクションパイプ13は互いに熱交換的に密
接し設置されている。
On the back side of the freezing room 4, a cooling room 8 is installed which is separated from the freezing room 4. A compressor 9 is installed in the machine room 7, a condenser 10, a capillary tube 11, a cooling room 8
The evaporator 12 and the suction pipe 13 installed in the above are sequentially connected in an annular shape to form a cooling system. The capillary tube 11 and the suction pipe 13 are installed in close contact with each other in heat exchange.

【0004】蒸発器12の近傍には、ヒータとしての除
霜用ヒータ14が設置されるとともに除霜の開始、終了
を検出する除霜検知手段15が設置される。また、蒸発
器12で冷却した空気を冷蔵室3、冷凍室4に循環させ
るための、庫内ファン16と冷蔵室3、冷凍室4と冷却
室8を連通する吹き出し風路17、吸い込み風路18を
有する。
In the vicinity of the evaporator 12, a defrosting heater 14 as a heater is installed, and defrosting detection means 15 for detecting the start and end of defrosting are installed. In addition, a blow-out air passage 17 and a suction air passage for communicating the air inside the refrigerator 16 and the refrigerating compartment 3 and the freezing compartment 4 and the cooling compartment 8 for circulating the air cooled by the evaporator 12 to the refrigerating compartment 3 and the freezing compartment 4. Have eighteen.

【0005】また、冷凍室4内には、冷凍室4の温度を
圧縮機9の運転停止により制御する冷凍室温度調節手段
19が設置されている。吹き出し風路17の冷蔵室3の
開口部20には、冷蔵室3の庫内温度を制御する冷蔵室
温度調整機構21が設置される。また、22はサクショ
ンパイプ13と圧縮機9の間に設けられたアキュムレー
タであり、23は冷却室8内において蒸発器12出口に
設けられた蒸発器アキュムレータである。
Further, inside the freezing compartment 4, a freezing compartment temperature adjusting means 19 for controlling the temperature of the freezing compartment 4 by stopping the operation of the compressor 9 is installed. A refrigerating compartment temperature adjusting mechanism 21 for controlling the temperature inside the refrigerating compartment 3 is installed in the opening 20 of the refrigerating compartment 3 of the blowing air passage 17. Further, 22 is an accumulator provided between the suction pipe 13 and the compressor 9, and 23 is an evaporator accumulator provided at the outlet of the evaporator 12 in the cooling chamber 8.

【0006】以上のように構成された冷蔵庫について、
以下その動作を説明する。圧縮機9を運転するとともに
庫内ファン16が運転を開始し冷蔵室3及び冷凍室4の
冷却が始まる。圧縮機9から吐出された高温高圧の冷媒
は凝縮器10で外気と熱交換して凝縮液化し、キャピラ
リチューブ11に流入する。キャピラリチューブ11で
冷媒は減圧されて蒸発器12で蒸発し庫内ファン16に
より冷蔵室3、冷凍室4内の空気と熱交換を行う。
Regarding the refrigerator constructed as described above,
The operation will be described below. When the compressor 9 is operated, the internal fan 16 starts operating, and cooling of the refrigerating chamber 3 and the freezing chamber 4 starts. The high-temperature and high-pressure refrigerant discharged from the compressor 9 exchanges heat with the outside air in the condenser 10 to be condensed and liquefied, and then flows into the capillary tube 11. The refrigerant is decompressed by the capillary tube 11 and evaporated by the evaporator 12, and the internal fan 16 exchanges heat with the air in the refrigerating chamber 3 and the freezing chamber 4.

【0007】ここで蒸発気化した冷媒は、そのままサク
ションパイプ13を通り、圧縮機9へと戻る。このとき
キャピラリチューブ11とサクションパイプ13は、熱
交換的に配設されているため、サクションパイプ13内
の気化した温度の低い冷媒と、キャピラリチューブ11
内の液化した温度の高い液冷媒は、熱交換を行い、液冷
媒は過冷却方向へ、ガス冷媒は加熱方向へとそれぞれエ
ンタルピが減少、増加する。これにより冷凍効果が大き
くなり、冷却システムの冷凍能力は向上する。
The refrigerant evaporated and vaporized here passes through the suction pipe 13 as it is and returns to the compressor 9. At this time, since the capillary tube 11 and the suction pipe 13 are disposed in a heat exchange manner, the vaporized low temperature refrigerant in the suction pipe 13 and the capillary tube 11
The liquefied liquid refrigerant having a high temperature therein exchanges heat, and the enthalpy of the liquid refrigerant decreases and increases in the supercooling direction and the gas refrigerant increases in the heating direction. This increases the refrigeration effect and improves the refrigeration capacity of the cooling system.

【0008】冷蔵室3の温度が所定の温度になると、冷
蔵室温度調整機構21は、吹き出し風路17の冷蔵室3
内の開口部20を閉じ、冷却室8で冷却された空気の冷
蔵室3内への流入を阻止する。
When the temperature of the refrigerating compartment 3 reaches a predetermined temperature, the refrigerating compartment temperature adjusting mechanism 21 causes the refrigerating compartment 3 of the blow-out air passage 17 to be cooled.
The inner opening 20 is closed to prevent the air cooled in the cooling chamber 8 from flowing into the refrigerating chamber 3.

【0009】また冷凍室4の温度が所定の温度となった
ときは、冷凍室温度調節手段19は、圧縮機9を停止
し、冷却を停止する。そして冷凍室4の温度が上昇しあ
る所定の温度に達したとき冷凍室温度調節手段19は再
び圧縮機9を運転し、冷却を開始する。
When the temperature of the freezer compartment 4 reaches a predetermined temperature, the freezer compartment temperature adjusting means 19 stops the compressor 9 and stops cooling. When the temperature of the freezer compartment 4 rises and reaches a certain temperature, the freezer compartment temperature adjusting means 19 operates the compressor 9 again and starts cooling.

【0010】運転を継続することにより蒸発器12は、
着霜がすすみ、所定の着霜量になったとき除霜検知手段
15は、着霜を検知し、除霜運転を開始する。除霜運転
の開始に伴い圧縮機9、庫内ファン16は停止し、同時
に除霜用ヒータ14に通電を開始する。このとき除霜用
ヒータ14の発生する熱により、蒸発器12を加熱し、
霜を融解する。
By continuing the operation, the evaporator 12 is
When the frost formation progresses to reach a predetermined frost formation amount, the defrost detection means 15 detects the frost formation and starts the defrost operation. When the defrosting operation is started, the compressor 9 and the internal fan 16 are stopped, and at the same time, the defrosting heater 14 is energized. At this time, the evaporator 12 is heated by the heat generated by the defrosting heater 14,
Thaw the frost.

【0011】その後、除霜検知手段15が霜の融解完了
を検知すると除霜用ヒータ14への通電を終了し圧縮機
9、庫内ファン16の運転を開始して再び冷蔵室3、冷
凍室4の冷却を開始する。
After that, when the defrost detecting means 15 detects the completion of melting of the frost, the defrosting heater 14 is de-energized, the compressor 9 and the internal fan 16 are started to operate again, and the refrigerating room 3 and the freezing room are restarted. Start cooling of No. 4.

【0012】[0012]

【発明が解決しようとする課題】しかしながら上記構成
では、特に、低外気温下における除霜の際には、圧縮機
9の停止後、除霜用ヒータ14によって加熱された蒸発
器12の温度は、外気温度の影響を受けて低温となった
凝縮器10やサクションパイプ13の温度と比べて逆に
高温となる。
However, in the above configuration, particularly in the case of defrosting at a low ambient temperature, the temperature of the evaporator 12 heated by the defrosting heater 14 after the compressor 9 is stopped. On the contrary, the temperature of the condenser 10 and the suction pipe 13, which are low due to the influence of the outside air temperature, is high.

【0013】すると、蒸発器12内の冷媒は、高温側で
ある蒸発器12と低温側との熱平衡を保つため熱搬送媒
体となり一方は低温側である凝縮器10に向かってキャ
ピラリチューブ11を通って逆流し、またもう一方は、
サクションパイプ13を介してアキュムレータ22の方
へと流出しようとする。その結果、蒸発器12内には冷
媒がほとんど存在しない状態となってしまう。このよう
に除霜時における冷媒の蒸発器12からの流出は、除霜
用ヒータ14による輻射熱よりも加熱された冷媒の熱搬
送に大きく依存する除霜方式にとって除霜効率の悪化を
招き除霜時間増大と庫内温度上昇による冷却効率低下を
引き起こす。
Then, the refrigerant in the evaporator 12 serves as a heat carrier medium for maintaining the thermal equilibrium between the evaporator 12 on the high temperature side and the low temperature side, and one of them passes through the capillary tube 11 toward the condenser 10 on the low temperature side. Backflow, and the other,
It tries to flow out toward the accumulator 22 through the suction pipe 13. As a result, almost no refrigerant exists in the evaporator 12. As described above, the outflow of the refrigerant from the evaporator 12 during defrosting causes the defrosting efficiency to deteriorate in the defrosting method, which largely depends on the heat transfer of the heated refrigerant rather than the radiant heat by the defrosting heater 14, and causes defrosting. This causes a decrease in cooling efficiency due to an increase in time and an increase in temperature inside the refrigerator.

【0014】またその後の圧縮機9の起動において、サ
クションパイプ13より上流の比較的内部ボリュームの
ある蒸発器12内に冷媒が存在しない状態であることか
ら圧縮機9は、その後、真空状態での運転を余儀なくさ
れる。
In the subsequent startup of the compressor 9, since the refrigerant is not present in the evaporator 12 having a relatively internal volume upstream of the suction pipe 13, the compressor 9 is then placed in a vacuum state. I am forced to drive.

【0015】さらに、この真空状態での運転によって圧
縮機9高圧側の吐出圧力があがらず、吐出圧力と吸入圧
力の圧力差は低いままの状態が継続されるため、液状態
となって凝縮器10内に滞留した冷媒を圧力損失の大き
いキャピラリチューブ11を介してシステム内に環流さ
せることが困難となり、低外気温による影響も加わり、
冷媒の循環量は、不足状態が続くこととなる。
Furthermore, since the discharge pressure on the high-pressure side of the compressor 9 does not rise and the pressure difference between the discharge pressure and the suction pressure remains low due to the operation in this vacuum state, the condenser becomes a liquid state and becomes a liquid state. It becomes difficult to recirculate the refrigerant staying in 10 into the system through the capillary tube 11 having a large pressure loss, and the influence of low outside temperature is added.
The circulating amount of the refrigerant will continue to be in short supply.

【0016】これらのことから、除霜効率の悪化並びに
冷媒循環量の不足による冷却能力の不足のみならず、循
環する冷媒による圧縮機9の摺動部への冷却効果や冷媒
に溶解して循環する冷凍機油による潤滑効果が得られ
ず、圧縮機9にとって大きなストレスになり圧縮機9の
耐久性の低化や損傷の危険性を有するといった欠点があ
った。
From the above, not only is the cooling capacity insufficient due to the deterioration of defrosting efficiency and the shortage of the refrigerant circulation amount, but also the cooling effect of the circulating refrigerant on the sliding parts of the compressor 9 and the circulation of the refrigerant after being dissolved in the refrigerant. The refrigerating machine oil does not provide a lubricating effect, which causes a great stress to the compressor 9 and reduces the durability of the compressor 9 and has a risk of damage.

【0017】本発明は上記の課題を解決するもので、除
霜効率を高めるとともに除霜後の起動時の冷媒流量の減
少を防止する冷蔵庫を提供することを目的とする。
The present invention solves the above problems, and an object of the present invention is to provide a refrigerator that enhances defrosting efficiency and prevents a decrease in the refrigerant flow rate at the time of startup after defrosting.

【0018】[0018]

【課題を解決するための手段】上記目的を達成するため
に本発明における冷蔵庫は、圧縮機と、凝縮器と、キャ
ピラリチューブと、蒸発器と、サクションパイプとを順
次環状に接続してなる冷凍サイクルを有する冷蔵庫の本
体と、蒸発器近傍に設置した除霜用ヒータと、蒸発器と
キャピラリチューブおよびサクションパイプとの接続部
にそれぞれ設置した高圧弁および低圧弁と、除霜用ヒー
タの作動に遅延して高圧弁および低圧弁を開閉させる弁
制御手段とからなる構成を有している。
To achieve the above object, a refrigerator according to the present invention is a refrigeration system in which a compressor, a condenser, a capillary tube, an evaporator and a suction pipe are sequentially connected in an annular shape. For the operation of the defrosting heater installed near the evaporator body, the defrosting heater installed near the evaporator, the high pressure valve and low pressure valve installed at the connection between the evaporator and the capillary tube, and the suction pipe, and the defrosting heater. The valve control means opens and closes the high pressure valve and the low pressure valve with a delay.

【0019】さらに、圧縮機吐出圧力検知手段と、蒸発
器圧力検知手段とを設けた構成となっている。
Further, the compressor discharge pressure detecting means and the evaporator pressure detecting means are provided.

【0020】さらに、圧縮機温度を検知する圧縮機温度
検知手段と、蒸発器の温度を検知する蒸発器温度検知手
段とを設けた構成となっている。
Further, a compressor temperature detecting means for detecting the compressor temperature and an evaporator temperature detecting means for detecting the temperature of the evaporator are provided.

【0021】[0021]

【作用】以上のような構成とすることにより、除霜時に
おける蒸発器からの冷媒の流出を防ぐことはもとより、
圧縮機停止から高圧弁及び低圧弁の閉鎖までに時間を設
け、所定時間遅延して作動させることで除霜初期の蒸発
器への流入冷媒を蒸発器内に滞留させ、その冷媒を熱媒
体として利用して蒸発器内での対流効果を促進すること
で除霜効率を高めるとともに、圧縮機起動時、特に、低
外気温下での除霜終了後の圧縮機起動時において、蒸発
器内の冷媒滞留量の不足から生じる起動後の一時的な冷
媒流量の減少を防いで圧縮機の真空運転の防止を図るこ
とができる。
[Function] With the above-described structure, not only is the refrigerant prevented from flowing out of the evaporator during defrosting,
A time is provided from the compressor stop to the closing of the high-pressure valve and the low-pressure valve, and the refrigerant flowing into the evaporator at the initial stage of defrosting is retained in the evaporator by operating with a delay for a predetermined time, and that refrigerant is used as a heat medium. The defrosting efficiency is enhanced by promoting the convection effect in the evaporator by using it, and at the time of starting the compressor, especially when starting the compressor after defrosting at low ambient temperature, It is possible to prevent the vacuum operation of the compressor by preventing a temporary decrease in the flow rate of the refrigerant after startup, which is caused by the shortage of the refrigerant retention amount.

【0022】さらに圧縮機吐出圧力検知手段と、蒸発器
圧力検知手段を有する構成としたことにより、除霜時初
期における冷媒の蒸発器への流入後流出に転じる圧力変
化を捉えることでその前に流路を断ち最も冷媒滞留量が
多い状態で対流効果を利用した除霜が可能となり除霜効
率の向上を図ることができる。
Further, since the compressor discharge pressure detecting means and the evaporator pressure detecting means are provided, it is possible to detect the pressure change at which the refrigerant flows into the evaporator and then flows out at the initial stage of defrosting. Defrosting using the convection effect can be performed in a state where the flow path is cut off and the refrigerant retention amount is the largest, and the defrosting efficiency can be improved.

【0023】さらに圧縮機温度を検知する圧縮機温度検
知手段と、蒸発器の温度を検知する蒸発器温度検知手段
を有する構成としたことにより、除霜初期における冷媒
の蒸発器への流入後、除霜進行に伴う温度の逆転により
低温部に向かって移動凝縮に転じるタイミングを温度変
化によって捉えることで最も冷媒滞留量が多い状態での
除霜が可能となり除霜効率の向上を図ることができる。
Further, since the compressor temperature detecting means for detecting the compressor temperature and the evaporator temperature detecting means for detecting the temperature of the evaporator are provided, after the refrigerant flows into the evaporator at the initial stage of defrosting, By capturing the timing at which the temperature shifts to the condensation part due to the reversal of the temperature accompanying the progress of defrosting by the temperature change, it is possible to defrost in the state where the refrigerant retention amount is the largest, and it is possible to improve the defrosting efficiency. .

【0024】[0024]

【実施例】以下本発明の一実施例について図面を参照し
ながら説明する。なお、従来例と同一構成については、
その詳細な説明を省略し、同一符号を付す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. For the same configuration as the conventional example,
The detailed description thereof is omitted and the same reference numerals are given.

【0025】図1は、第1の実施例における冷蔵庫の冷
凍サイクル図を示す。24、25は、それぞれ蒸発器1
2とキャピラリチューブ11およびサクションパイプ1
3との接続部にそれぞれ設置されて動作する高圧弁およ
び低圧弁であり、26は除霜用ヒータの動作に積算遅延
して高圧弁24、低圧弁25を開閉制御する弁制御手段
である。
FIG. 1 shows a refrigerating cycle diagram of the refrigerator in the first embodiment. 24 and 25 are the evaporator 1 respectively
2, capillary tube 11 and suction pipe 1
A high-pressure valve and a low-pressure valve that are respectively installed and operated at the connecting portions with 3, and 26 is a valve control unit that controls the opening and closing of the high-pressure valve 24 and the low-pressure valve 25 by cumulatively delaying the operation of the defrosting heater.

【0026】以下、動作について説明する。蒸発器12
の着霜がすすみ、所定の着霜量になったとき除霜検知手
段15は、着霜を検知し、除霜運転を開始する。除霜運
転の開始に伴い圧縮機9、庫内ファン16は停止し、同
時に除霜用ヒータ14に通電を開始する。さらにこれと
同時に弁制御手段26は積算を開始し蒸発器12が充分
加熱されて冷媒が流出し始めるタイミングを狙って信号
を出力し、高圧弁24および低圧弁25を閉じる。
The operation will be described below. Evaporator 12
When the frost is advancing and reaches a predetermined amount of frost, the defrost detecting means 15 detects the frost and starts the defrosting operation. When the defrosting operation is started, the compressor 9 and the internal fan 16 are stopped, and at the same time, the defrosting heater 14 is energized. Simultaneously with this, the valve control means 26 outputs a signal aiming at the timing when the integration is started, the evaporator 12 is sufficiently heated and the refrigerant starts to flow out, and the high pressure valve 24 and the low pressure valve 25 are closed.

【0027】その後冷媒は閉路内に閉じこめられ、加熱
された冷媒の対流作用に加え、除霜用ヒータ14の輻射
熱、さらに蒸発器12の熱伝導によって霜は融解する。
その後、除霜検知手段15が霜の融解完了を検知すると
除霜用ヒータ14への通電を終了する。除霜用ヒータ1
4への通電終了と同じくして弁制御手段26は積算を開
始し、所定時間積算後信号を出力する。これを受けた、
高圧弁24および低圧弁25は再び開放され、と同時に
圧縮機9、庫内ファン16は運転を開始して再び冷蔵室
3、冷凍室4の冷却を開始する。
After that, the refrigerant is trapped in the closed circuit, and the frost is melted by the radiant heat of the defrosting heater 14 and the heat conduction of the evaporator 12 in addition to the convection action of the heated refrigerant.
After that, when the defrost detecting means 15 detects the completion of melting of frost, the energization of the defrost heater 14 is terminated. Defrosting heater 1
Similarly to the end of energization to 4, the valve control means 26 starts integration and outputs a signal after integration for a predetermined time. Received this,
The high-pressure valve 24 and the low-pressure valve 25 are opened again, and at the same time, the compressor 9 and the in-compartment fan 16 start operating to start cooling the refrigerating chamber 3 and the freezing chamber 4 again.

【0028】以上のように本実施例によれば、除霜時に
おいて、運転停止後の高低圧差と温度差による冷媒の凝
縮移動により蒸発器内に冷媒が流入して運転状態より更
に滞留量が増加した時点で弁の閉塞を行うことで、蒸発
器全体の冷媒対流を利用する除霜において、除霜用ヒー
タの流出による熱損失を防ぎ、熱媒体としての冷媒を充
分確保することで効率のよい除霜が可能となる。さらに
その後の圧縮機起動時に蒸発器内に充分な冷媒の確保が
なされることで起動後の冷媒流量不足を防ぎ、真空運転
の防止を図ることができる。
As described above, according to this embodiment, during defrosting, the refrigerant flows into the evaporator due to the condensation and movement of the refrigerant due to the high / low pressure difference and the temperature difference after the operation is stopped, and the retention amount is further increased as compared with the operating state. By closing the valve at the time of increase, in defrosting using refrigerant convection of the entire evaporator, heat loss due to outflow of the defrosting heater is prevented, and sufficient refrigerant is secured as a heat medium to improve efficiency. Good defrosting is possible. Further, when the compressor is subsequently started, sufficient refrigerant is ensured in the evaporator, so that it is possible to prevent the insufficient flow rate of the refrigerant after the start and prevent the vacuum operation.

【0029】次に、第2の実施例について説明する。図
2は、第2の実施例における冷蔵庫の冷凍サイクル図を
示し、図3、図4は、電気回路のブロック図を示す。2
7は、圧縮機吐出圧力検知手段であり、28は蒸発器圧
力検知手段である。
Next, a second embodiment will be described. FIG. 2 shows a refrigeration cycle diagram of a refrigerator in the second embodiment, and FIGS. 3 and 4 show block diagrams of electric circuits. Two
Reference numeral 7 is a compressor discharge pressure detecting means, and 28 is an evaporator pressure detecting means.

【0030】次に動作について説明する。圧縮機9の停
止とともに高圧低圧はバランス方向に向かう。高圧側の
圧力検知を行う圧縮機圧力検知手段27と低圧側の圧力
検知を行う蒸発器圧力検知手段28はやがて所定圧力差
のバランスに達するかもしくは除霜用ヒータ14の通電
により逆に蒸発器圧力検知手段28が上回ったことを検
出して信号を出力し高圧弁24および低圧弁25を閉じ
る。その後は圧縮機9の起動タイミングに合わせて高圧
弁24および低圧弁25を開き通常運転状態へ移行す
る。
Next, the operation will be described. With the stop of the compressor 9, the high pressure and the low pressure move toward the balance direction. The compressor pressure detecting means 27 for detecting the pressure on the high pressure side and the evaporator pressure detecting means 28 for detecting the pressure on the low pressure side eventually reach the balance of a predetermined pressure difference or conversely when the defrosting heater 14 is energized. When the pressure detector 28 detects that the pressure has exceeded the limit, a signal is output and the high pressure valve 24 and the low pressure valve 25 are closed. After that, the high-pressure valve 24 and the low-pressure valve 25 are opened in accordance with the start timing of the compressor 9 to shift to the normal operation state.

【0031】以上のように本実施例によれば、圧縮機吐
出圧力検知手段と蒸発器圧力検知手段とを有する構成と
したことにより、除霜時の蒸発器加熱による圧力差逆転
に伴って冷媒が流出を始める以前の冷媒滞留量の多い状
態を検出できるため、除霜の際の有効熱媒体を確保でき
除霜効率を高めることができる。
As described above, according to this embodiment, the compressor discharge pressure detecting means and the evaporator pressure detecting means are provided, so that the refrigerant is accompanied by the reversal of the pressure difference due to the heating of the evaporator during defrosting. Since it is possible to detect the state in which the refrigerant retention amount is large before the start of outflow, it is possible to secure an effective heat medium at the time of defrosting and improve the defrosting efficiency.

【0032】次に、第3の実施例について説明する。図
5は、第3の実施例における冷蔵庫の冷凍サイクル図を
示し、図6、図7は、電気回路のブロック図を示す。2
9は、圧縮機温度検知手段であり、30は蒸発器温度検
知手段である。
Next, a third embodiment will be described. FIG. 5 shows a refrigeration cycle diagram of the refrigerator in the third embodiment, and FIGS. 6 and 7 show block diagrams of electric circuits. Two
Reference numeral 9 is a compressor temperature detecting means, and 30 is an evaporator temperature detecting means.

【0033】次に動作について説明する。圧縮機9の停
止とともにシステム中の冷媒は温度と圧力においてバラ
ンス方向に向かう。運転時低温であった蒸発器12は停
止後圧力バランスによる凝縮器10からの高温の冷媒移
動により若干加熱されるが、その後もさらになお低温で
ある蒸発器12への凝縮移動は続く。しかし除霜用ヒー
タ14による昇温が進み蒸発器温度検知手段30と蒸発
器温度検知手段29における検知温度が同等になると冷
媒移動はストップする。ここで蒸発器温度検知手段30
と蒸発器温度検知手段29における検知温度差が所定の
値に達するかもしくは同一になったことを検出して信号
を出力し高圧弁24および低圧弁25を閉じる。その後
は圧縮機9の起動タイミングに合わせて高圧弁24およ
び低圧弁25を開き通常運転状態へ移行する。
Next, the operation will be described. When the compressor 9 is stopped, the refrigerant in the system moves toward the balance in temperature and pressure. The evaporator 12 that was at a low temperature during operation is slightly heated by the movement of the high temperature refrigerant from the condenser 10 due to the pressure balance after the stop, but thereafter, the condensation and transfer to the evaporator 12 that is at a still lower temperature continues. However, if the temperature rise by the defrosting heater 14 progresses and the temperatures detected by the evaporator temperature detecting means 30 and the evaporator temperature detecting means 29 become equal, the movement of the refrigerant is stopped. Here, the evaporator temperature detecting means 30
And the evaporator temperature detecting means 29 detects that the detected temperature difference reaches or becomes equal to a predetermined value and outputs a signal to close the high pressure valve 24 and the low pressure valve 25. After that, the high-pressure valve 24 and the low-pressure valve 25 are opened in accordance with the start timing of the compressor 9 to shift to the normal operation state.

【0034】以上のように本実施例によれば、圧縮機温
度検知手段と蒸発器温度検知手段とを有する構成とした
ことにより、除霜時に蒸発器加熱による温度上昇に伴っ
て冷媒流出を始める以前の最も冷媒滞留量の多い状態を
検出できるため、除霜の際の有効熱媒体を確保でき除霜
効率を高めることができる。
As described above, according to this embodiment, since the compressor temperature detecting means and the evaporator temperature detecting means are provided, the refrigerant starts to flow out as the temperature rises due to heating of the evaporator during defrosting. Since it is possible to detect the previous state in which the amount of accumulated refrigerant is the largest, it is possible to secure an effective heat medium for defrosting and improve defrosting efficiency.

【0035】[0035]

【発明の効果】以上のように本発明は、圧縮機と、凝縮
器と、キャピラリチューブと、蒸発器と、サクションパ
イプとを順次環状に接続してなる冷凍サイクルを有する
冷蔵庫の本体と、蒸発器近傍に設置した除霜用ヒータ
と、蒸発器とキャピラリチューブおよびサクションパイ
プとの接続部にそれぞれ設置した高圧弁および低圧弁
と、除霜用ヒータの作動に遅延して高圧弁および低圧弁
を開閉させる弁制御手段とから構成されることにより除
霜時における蒸発器からの冷媒の流出を防ぐことはもと
より、圧縮機停止から高圧弁及び低圧弁の閉鎖までに時
間を設け、所定時間遅延して作動させることで除霜初期
の蒸発器への流入冷媒を蒸発器内に滞留させ、その冷媒
を熱媒体として利用して蒸発器内での対流効果を促進す
ることで除霜効率を高めるとともに、圧縮機起動時、特
に、低外気温下での除霜終了後の圧縮機起動時におい
て、蒸発器内の冷媒滞留量の不足から生じる起動後の一
時的な冷媒流量の減少を防いで圧縮機の真空運転の防止
を図ることができる。
As described above, according to the present invention, a compressor, a condenser, a capillary tube, an evaporator, and a main body of a refrigerator having a refrigeration cycle in which a suction pipe is sequentially connected in an annular shape, and an evaporator are provided. The defrosting heater installed near the device, the high-pressure valve and low-pressure valve installed at the connection between the evaporator and the capillary tube, and the suction pipe, and the high-pressure valve and low-pressure valve that are delayed after the defrosting heater is activated. Not only does it prevent the refrigerant from flowing out of the evaporator during defrosting by being configured with valve control means that opens and closes, but it also provides a time from the compressor stop to the closing of the high-pressure valve and the low-pressure valve, with a delay of a predetermined time. The defrosting efficiency is increased by making the refrigerant that flows into the evaporator in the initial stage of defrost stay in the evaporator by operating it as a heat medium to promote the convection effect in the evaporator. In addition, when the compressor is started, especially when starting the compressor after defrosting at low ambient temperature, it is possible to prevent a temporary decrease in the refrigerant flow rate after startup, which is caused by the shortage of the refrigerant retention amount in the evaporator. Thus, the vacuum operation of the compressor can be prevented.

【0036】さらに圧縮機吐出圧力検知手段と、蒸発器
圧力検知手段を有する構成としたことにより、除霜時初
期における冷媒の蒸発器への流入後流出に転じる圧力変
化を捉えることでその前に流路を断ち最も冷媒滞留量が
多い状態で対流効果を利用した除霜が可能となり除霜効
率の向上を図ることができる。
Further, since the compressor discharge pressure detecting means and the evaporator pressure detecting means are provided, it is possible to detect the pressure change in which the refrigerant flows into the evaporator and then flows out at the initial stage of defrosting. Defrosting using the convection effect can be performed in a state where the flow path is cut off and the refrigerant retention amount is the largest, and the defrosting efficiency can be improved.

【0037】さらに圧縮機温度を検知する圧縮機温度検
知手段と、蒸発器の温度を検知する蒸発器温度検知手段
を有する構成としたことにより、除霜初期における冷媒
の蒸発器への流入後、除霜進行に伴う温度の逆転により
低温部に向かって移動凝縮に転じるタイミングを温度変
化によって捉えることで最も冷媒滞留量が多い状態での
除霜が可能となり除霜効率の向上を図ることができる。
Further, since the compressor temperature detecting means for detecting the compressor temperature and the evaporator temperature detecting means for detecting the temperature of the evaporator are provided, after the refrigerant flows into the evaporator at the initial stage of defrosting, By capturing the timing at which the temperature shifts to the condensation part due to the reversal of the temperature accompanying the progress of defrosting by the temperature change, it is possible to defrost in the state where the refrigerant retention amount is the largest, and it is possible to improve the defrosting efficiency. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における冷蔵庫の冷凍サ
イクル図
FIG. 1 is a refrigeration cycle diagram of a refrigerator according to a first embodiment of the present invention.

【図2】本発明の第2の実施例における冷蔵庫の冷凍サ
イクル図
FIG. 2 is a refrigeration cycle diagram of a refrigerator according to a second embodiment of the present invention.

【図3】図1の圧縮機運転回路を示すブロック図FIG. 3 is a block diagram showing a compressor operation circuit of FIG.

【図4】図1の弁制御回路を示すブロック図FIG. 4 is a block diagram showing the valve control circuit of FIG.

【図5】本発明の第3の実施例における冷蔵庫の冷凍サ
イクル図
FIG. 5 is a refrigeration cycle diagram of a refrigerator according to a third embodiment of the present invention.

【図6】図5の圧縮機運転回路を示すブロック図6 is a block diagram showing a compressor operating circuit of FIG.

【図7】図5の弁制御回路を示すブロック図7 is a block diagram showing the valve control circuit of FIG.

【図8】従来の冷蔵庫の冷凍サイクル図FIG. 8 is a refrigeration cycle diagram of a conventional refrigerator.

【符号の説明】 1 本体 9 圧縮機 10 凝縮器 11 キャピラリチューブ 12 蒸発器 13 サクションパイプ 14 除霜用ヒータ 24 高圧弁 25 低圧弁 27 圧縮機吐出圧力検知手段 28 蒸発器圧力検知手段 29 圧縮機温度検知手段 30 蒸発器温度検知手段[Explanation of reference numerals] 1 main body 9 compressor 10 condenser 11 capillary tube 12 evaporator 13 suction pipe 14 defrost heater 24 high pressure valve 25 low pressure valve 27 compressor discharge pressure detection means 28 evaporator pressure detection means 29 compressor temperature Detecting means 30 Evaporator temperature detecting means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機と、凝縮器と、キャピラリチュー
ブと、蒸発器と、サクションパイプとを順次環状に接続
してなる冷凍サイクルを有する冷蔵庫の本体と、蒸発器
近傍に設置した除霜用ヒータと、蒸発器とキャピラリチ
ューブおよびサクションパイプとの接続部にそれぞれ設
置した高圧弁および低圧弁と、除霜用ヒータの作動に遅
延して高圧弁および低圧弁を開閉させる弁制御手段とを
設けた冷蔵庫。
1. A main body of a refrigerator having a refrigeration cycle in which a compressor, a condenser, a capillary tube, an evaporator, and a suction pipe are sequentially connected in an annular shape, and defrosting installed near the evaporator. A heater, a high-pressure valve and a low-pressure valve respectively installed at the connection between the evaporator, the capillary tube and the suction pipe, and valve control means for opening and closing the high-pressure valve and the low-pressure valve after delaying the operation of the defrosting heater are provided. Fridge.
【請求項2】 圧縮機吐出圧力検知手段と、蒸発器圧力
検知手段と、圧縮機吐出圧力検知手段と蒸発器圧力検知
手段との出力により高圧弁および低圧弁の開閉を制御す
ることを特徴とした請求項1の冷蔵庫。
2. The opening and closing of the high pressure valve and the low pressure valve are controlled by the outputs of the compressor discharge pressure detection means, the evaporator pressure detection means, and the compressor discharge pressure detection means and the evaporator pressure detection means. The refrigerator according to claim 1.
【請求項3】 圧縮機温度を検知する圧縮機温度検知手
段と、蒸発器の温度を検知する蒸発器温度検知手段と、
圧縮機温度検知手段と蒸発機温度検知手段の出力により
高圧弁および低圧弁の開閉を制御することを特徴とした
請求項1の冷蔵庫。
3. A compressor temperature detecting means for detecting a compressor temperature, and an evaporator temperature detecting means for detecting an evaporator temperature,
The refrigerator according to claim 1, wherein opening and closing of the high pressure valve and the low pressure valve are controlled by the outputs of the compressor temperature detecting means and the evaporator temperature detecting means.
JP26866594A 1994-11-01 1994-11-01 Refrigerator Pending JPH08136112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26866594A JPH08136112A (en) 1994-11-01 1994-11-01 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26866594A JPH08136112A (en) 1994-11-01 1994-11-01 Refrigerator

Publications (1)

Publication Number Publication Date
JPH08136112A true JPH08136112A (en) 1996-05-31

Family

ID=17461704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26866594A Pending JPH08136112A (en) 1994-11-01 1994-11-01 Refrigerator

Country Status (1)

Country Link
JP (1) JPH08136112A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010091171A (en) * 2008-10-07 2010-04-22 Mitsubishi Electric Corp Frost formation sensor, refrigerating cycle system and refrigerator
JP2010133590A (en) * 2008-12-03 2010-06-17 Mitsubishi Electric Corp Refrigerator-freezer
JP2019002620A (en) * 2017-06-14 2019-01-10 日立ジョンソンコントロールズ空調株式会社 Air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010091171A (en) * 2008-10-07 2010-04-22 Mitsubishi Electric Corp Frost formation sensor, refrigerating cycle system and refrigerator
JP2010133590A (en) * 2008-12-03 2010-06-17 Mitsubishi Electric Corp Refrigerator-freezer
JP2019002620A (en) * 2017-06-14 2019-01-10 日立ジョンソンコントロールズ空調株式会社 Air conditioner

Similar Documents

Publication Publication Date Title
CN109764607B (en) Control method of refrigerator
JPH0828969A (en) Cooling system
KR20110072441A (en) Refrigerator and method for controlling operation thereof
AU5997599A (en) Two-refrigerant refrigerating device
CN113970212B (en) Refrigerator and refrigerator defrosting method
JP6872689B2 (en) refrigerator
CN110940136B (en) Refrigerator refrigerating system and defrosting control method thereof
JPH07120130A (en) Refrigerator
JP3583570B2 (en) refrigerator
JP2001241825A (en) Freezing refrigerator
JPH08136112A (en) Refrigerator
JPH09210515A (en) Refrigerating device
JPH07139856A (en) Refrigerator
CN112856889B (en) Refrigerator and control method thereof
JP2000121183A (en) Binary chiller
JP2003139459A (en) Refrigerator
JPS6015861B2 (en) Cooling system
JPH09113042A (en) Refrigerator
JP3063746B2 (en) Refrigeration equipment
JP3010908B2 (en) Refrigeration equipment
JPH08240348A (en) Refrigerator
JPH074792A (en) Refrigerator
JP2513384B2 (en) Defrost controller for refrigeration equipment
JPH04194564A (en) Refrigerator
JPH11182950A (en) Refrigerator