JP3498009B2 - Refrigeration equipment - Google Patents

Refrigeration equipment

Info

Publication number
JP3498009B2
JP3498009B2 JP15517699A JP15517699A JP3498009B2 JP 3498009 B2 JP3498009 B2 JP 3498009B2 JP 15517699 A JP15517699 A JP 15517699A JP 15517699 A JP15517699 A JP 15517699A JP 3498009 B2 JP3498009 B2 JP 3498009B2
Authority
JP
Japan
Prior art keywords
oil
compressor
accumulator
return
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15517699A
Other languages
Japanese (ja)
Other versions
JP2000346502A (en
Inventor
博志 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Building Techno-Service Co Ltd
Original Assignee
Mitsubishi Electric Building Techno-Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Building Techno-Service Co Ltd filed Critical Mitsubishi Electric Building Techno-Service Co Ltd
Priority to JP15517699A priority Critical patent/JP3498009B2/en
Publication of JP2000346502A publication Critical patent/JP2000346502A/en
Application granted granted Critical
Publication of JP3498009B2 publication Critical patent/JP3498009B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2105Oil temperatures

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は冷凍装置、特にアキ
ュムレータに溜まった冷媒用油を効率良く回収すると共
に、冷凍装置の除霜運転中にアキュムレータに溜まる冷
媒液量を抑え、除霜終了後の再運転時に液冷媒が圧縮機
に吸い込まれることを防止する冷凍装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention efficiently collects refrigerant oil accumulated in a refrigerating device, particularly an accumulator, suppresses the amount of refrigerant liquid accumulated in the accumulator during the defrosting operation of the refrigerating device, and after the defrosting is completed. The present invention relates to a refrigeration system that prevents liquid refrigerant from being sucked into a compressor during restart.

【0002】[0002]

【従来の技術】図6には、従来の冷凍装置における冷媒
回路の装置構成の概要が示されている。一般的な冷凍装
置器の冷媒回路では、冷媒ガスは圧縮機1において圧縮
され、高圧ガスとされ、凝縮器17に送られる。そし
て、凝縮器17において、冷媒高圧ガスは冷やされ、液
体化された冷媒にされる。液体化された冷媒は圧力が高
いため、膨脹弁18にて圧力を低下させて、蒸発器19
に送ることにより、低温度で蒸発し、冷却または冷凍作
用を行うことができる。そして、蒸発器19から吐出さ
れた冷媒ガスは、アキュムレータ2を介して再度圧縮機
1に送られる。このように冷媒を冷媒回路内に循環させ
ることによって、冷却・冷凍作用を行っている。
2. Description of the Related Art FIG. 6 shows an outline of the configuration of a refrigerant circuit in a conventional refrigeration system. In the refrigerant circuit of a general refrigerating machine, the refrigerant gas is compressed in the compressor 1 to be a high-pressure gas and sent to the condenser 17. Then, in the condenser 17, the refrigerant high-pressure gas is cooled and turned into a liquefied refrigerant. Since the pressure of the liquefied refrigerant is high, the pressure is reduced by the expansion valve 18 and the evaporator 19
By sending to, it is possible to evaporate at a low temperature and perform a cooling or freezing action. Then, the refrigerant gas discharged from the evaporator 19 is sent to the compressor 1 again via the accumulator 2. By thus circulating the refrigerant in the refrigerant circuit, the cooling / freezing action is performed.

【0003】通常、冷媒としてフロンが用いられてい
る。そして、冷媒は、一般に冷媒と相溶性のある油と共
に冷媒回路内を循環している。圧縮機1から冷媒と共に
吐出された油は、冷媒と共に冷媒回路を巡り、蒸発器1
9を経て、アキュムレータ2に溜まる。アキュムレータ
2に貯留された冷媒入り油から、冷媒ガスのみメタルオ
リフィス7を介して圧縮機吸込み配管4に戻され、アキ
ュムレータ2内には、主に循環用の油が溜まる。
Freon is usually used as a refrigerant. The refrigerant generally circulates in the refrigerant circuit together with oil that is compatible with the refrigerant. The oil discharged from the compressor 1 together with the refrigerant travels around the refrigerant circuit together with the refrigerant, so that the evaporator 1
After 9, the water is accumulated in the accumulator 2. From the oil containing the refrigerant stored in the accumulator 2, only the refrigerant gas is returned to the compressor suction pipe 4 through the metal orifice 7, and the oil for circulation is mainly stored in the accumulator 2.

【0004】従来、アキュムレータ2に溜まった油8を
圧縮機1に戻すために、図5に示すような構成が設けら
れている。すなわち、油濃度の最も濃いアキュムレータ
2の底部と圧縮機1吸引側の圧縮機吸込み配管4とを連
通する油戻し配管3が設けられ、圧縮機吸込み配管4と
油戻し配管3との合流部には接続口9が設けられてい
る。また、油戻し配管3には、ストレーナ6と、配管内
を自動開閉するための電磁弁5が設けられている。
Conventionally, in order to return the oil 8 accumulated in the accumulator 2 to the compressor 1, a structure as shown in FIG. 5 is provided. That is, the oil return pipe 3 that connects the bottom of the accumulator 2 with the highest oil concentration and the compressor suction pipe 4 on the suction side of the compressor 1 is provided, and at the confluence of the compressor suction pipe 4 and the oil return pipe 3. Is provided with a connection port 9. Further, the oil return pipe 3 is provided with a strainer 6 and a solenoid valve 5 for automatically opening and closing the inside of the pipe.

【0005】そして、油を圧縮機1に戻す場合には、圧
縮機1の運転に連動させて電磁弁5を開く。このとき、
接続口9における圧力と、油戻し配管3およびアキュム
レータ2の内圧に差が生じ、アキュムレータ2に溜まっ
た油8が圧縮機1に返油される。
When returning the oil to the compressor 1, the solenoid valve 5 is opened in synchronization with the operation of the compressor 1. At this time,
A difference occurs between the pressure at the connection port 9 and the internal pressures of the oil return pipe 3 and the accumulator 2, and the oil 8 accumulated in the accumulator 2 is returned to the compressor 1.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、接続口
9における差圧は、圧縮機1に吸い込まれる冷媒のガス
スピードによって異なる。すなわち、圧縮機1の吸込圧
力が高い場合には、冷媒の比体積が小さく、圧縮機1に
吸い込まれる冷媒量が大きくなるため、ガススピードが
早くなり、差圧が大きくなるため、アキュムレータ2内
の油の返油効率が促進される。一方、圧縮機1の吸込圧
力が低い場合には、冷媒の比体積が大きく、圧縮機1に
吸い込まれる冷媒量が小さくなるため、ガススピードは
遅くなる。その結果、アキュムレータ2内の油の返油効
率が低下する。また、圧縮機1が容量制御運転を行った
場合も、圧縮機1に吸い込まれる冷媒量が少ないため、
上記同様にガススピードが低下する。このため、接続口
9の差圧が小さくなり、油8の戻り量が減少してしま
う。
However, the differential pressure at the connection port 9 differs depending on the gas speed of the refrigerant sucked into the compressor 1. That is, when the suction pressure of the compressor 1 is high, the specific volume of the refrigerant is small, the amount of the refrigerant sucked into the compressor 1 is large, the gas speed is high, and the differential pressure is large, so that the inside of the accumulator 2 is large. The efficiency of oil return is promoted. On the other hand, when the suction pressure of the compressor 1 is low, the specific volume of the refrigerant is large and the amount of the refrigerant sucked into the compressor 1 is small, so the gas speed becomes slow. As a result, the oil return efficiency of the oil in the accumulator 2 is reduced. Further, even when the compressor 1 performs the capacity control operation, the amount of the refrigerant sucked into the compressor 1 is small,
As in the above, the gas speed decreases. For this reason, the differential pressure at the connection port 9 becomes small, and the return amount of the oil 8 decreases.

【0007】また、油の戻り量は、油8の粘度によって
も左右される。冷凍装置による冷却がすすむと、蒸発器
における冷媒の蒸発温度が低下し、低圧になる。かかる
場合、蒸発器からアキュムレータ2、圧縮機1の吸引側
にかけての低圧部の温度も低下する。このため、この低
圧部内の油の温度も低下する。油は、一般的に油温が低
下すると粘度が高くなり流動性が悪くなるという性質を
有する。従って、上記のように低圧になると、油8の流
動性が悪くなり、戻り量が減少してしまうという問題が
あった。
The amount of oil returned also depends on the viscosity of the oil 8. As the cooling by the refrigerating device progresses, the evaporation temperature of the refrigerant in the evaporator decreases and the pressure becomes low. In such a case, the temperature of the low pressure portion from the evaporator to the suction side of the accumulator 2 and the compressor 1 also decreases. For this reason, the temperature of the oil in the low pressure section also drops. Oil generally has the property that when the oil temperature decreases, the viscosity increases and the fluidity deteriorates. Therefore, when the pressure becomes low as described above, there is a problem that the fluidity of the oil 8 deteriorates and the return amount decreases.

【0008】更に、ホットガスデフロスト方式の冷凍装
置の場合、除霜中に冷凍装置内で生じた液冷媒を全てア
キュムレータ2に溜め、メタルオリフィス7を介して少
量ずつ圧縮機1に吸い込ませていた。ここで、ホットガ
スデフロスト方式とは、圧縮機吐出ガス(すなわち、ホ
ットガス)を冷凍装置内に流し、霜を溶かす方式をい
う。しかし、アキュムレータ2に溜まった液冷媒の量が
多すぎると、除霜後に圧縮機1を再起動させると、多量
の液冷媒が圧縮機1に吸い込まれてしまう。かかる場
合、圧縮機の内部部品を損傷するおそれがある。
Further, in the case of the hot gas defrost type refrigerating apparatus, all the liquid refrigerant generated in the refrigerating apparatus during defrosting is stored in the accumulator 2 and sucked into the compressor 1 little by little through the metal orifice 7. . Here, the hot gas defrost method refers to a method in which compressor discharge gas (that is, hot gas) is caused to flow into the refrigerating apparatus to melt frost. However, if the amount of liquid refrigerant accumulated in the accumulator 2 is too large, a large amount of liquid refrigerant will be sucked into the compressor 1 when the compressor 1 is restarted after defrosting. In such a case, the internal parts of the compressor may be damaged.

【0009】本発明は、前記の課題を解決するためにな
されたものであり、アキュムレータからの油戻りの効率
を向上させると共に、除霜中にアキュムレータに溜まる
冷媒液量を抑え、除霜終了後の再運転時の圧縮機液戻り
を防止することを特徴とする冷凍装置を提供することを
目的とする。
The present invention has been made to solve the above problems, and improves the efficiency of oil return from the accumulator, suppresses the amount of refrigerant liquid accumulated in the accumulator during defrosting, and after defrosting is completed. It is an object of the present invention to provide a refrigeration system characterized by preventing the compressor liquid from returning during the re-operation.

【0010】[0010]

【課題を解決するための手段】前述の課題を解決するた
めに、本発明にかかる冷凍装置は、以下の特徴を有す
る。
In order to solve the above-mentioned problems, the refrigerating apparatus according to the present invention has the following features.

【0011】(1)圧縮機、凝縮器、減圧装置、蒸発
器、冷媒と相溶性のある油を貯留するアキュムレータを
順次接続してなる冷媒回路を有する冷凍装置において、
前記アキュムレータの底部と前記圧縮機の吸引側とを連
通する油戻し配管と、前記圧縮機の吐出側と前記アキュ
ムレータの吸引側とを連通し、前記圧縮機からの吐出ガ
スにより前記油戻し配管を加温可能に近接配置されたホ
ットガス配管と、前記油戻し配管に設けられ戻り油の温
度を検出する戻り油温度検出部と、前記ホットガス配管
に設けられた電磁弁と、前記戻り油温度検出部により検
出された温度が油吸引可能設定温度以下になると前記電
磁弁を開にし、前記戻し油温度検出部により検出された
温度が前記油吸引可能設定温度より高い場合には前記電
磁弁を閉にするように制御する電磁弁開閉制御部と、を
有する冷凍装置である。
(1) In a refrigeration system having a refrigerant circuit in which a compressor, a condenser, a pressure reducing device, an evaporator, and an accumulator that stores oil compatible with the refrigerant are sequentially connected,
An oil return pipe that connects the bottom of the accumulator and the suction side of the compressor, and a communication of the discharge side of the compressor and the suction side of the accumulator, and the oil return pipe by the discharge gas from the compressor. A hot gas pipe that is placed in proximity to allow heating, a return oil temperature detection unit that is provided in the oil return pipe to detect the temperature of return oil, a solenoid valve provided in the hot gas pipe, and the return oil temperature When the temperature detected by the detection unit becomes equal to or lower than the oil suction enable set temperature, the solenoid valve is opened, and when the temperature detected by the return oil temperature detection unit is higher than the oil suction enable set temperature, the solenoid valve is turned on. And a solenoid valve opening / closing control unit that controls the valve to be closed.

【0012】圧縮機から吐出される冷媒のホットガスを
用いて、油戻し配管を加温するため、油温が上昇し、油
の粘度が下がり油の流動性が増して、返油効率が向上す
る。更に、ホットガスを常時ホットガス配管に流すと、
冷凍装置の能力が低下してしまうが、油戻り配管内の油
温度によってホットガスの流入を電磁弁により制御する
ことにより、冷凍装置の能力を低下させることなく、効
率よく返油を行うことができる。
Since the oil return pipe is heated by using the hot gas of the refrigerant discharged from the compressor, the oil temperature rises, the viscosity of the oil decreases, the fluidity of the oil increases, and the oil return efficiency improves. To do. Furthermore, if hot gas is constantly supplied to the hot gas pipe,
Although the capacity of the refrigeration system will decrease, by controlling the inflow of hot gas by the solenoid valve depending on the oil temperature in the oil return pipe, it is possible to return oil efficiently without reducing the capacity of the refrigeration system. it can.

【0013】(2)圧縮機、凝縮器、減圧装置、蒸発
器、冷媒と相溶性のある油を貯留するアキュムレータを
順次接続してなる冷媒回路を有する冷凍装置において、
前記アキュムレータの底部と前記圧縮機の吸引側とを連
通する油戻し配管と、前記圧縮機の吐出側と前記アキュ
ムレータの吸引側とを連通し、前記圧縮機からの吐出ガ
スにより前記油戻し配管を加温可能に近接配置されたホ
ットガス配管と、前記油戻し配管に設けられ戻り油の温
度を検出する戻り油温度検出部と、前記ホットガス配管
に設けられた電磁弁と、前記電磁弁を周期的に所定時間
開閉するように制御する電磁弁制御部と、を有する冷凍
装置である。
(2) In a refrigeration system having a refrigerant circuit in which a compressor, a condenser, a pressure reducing device, an evaporator, and an accumulator that stores oil compatible with the refrigerant are sequentially connected,
An oil return pipe that connects the bottom of the accumulator and the suction side of the compressor, and a communication of the discharge side of the compressor and the suction side of the accumulator, and the oil return pipe by the discharge gas from the compressor. The hot gas pipes that are arranged close to each other so that they can be heated, the return oil temperature detection unit that is provided in the oil return pipe and that detects the temperature of the return oil, the solenoid valve that is provided in the hot gas pipe, and the solenoid valve And a solenoid valve control unit that controls to open and close periodically for a predetermined time.

【0014】上記同様、圧縮機から吐出される冷媒のホ
ットガスを用いて、油戻し配管を加温するため、油温が
上昇し、油の粘度が下がり油の流動性が増して、返油効
率が向上する。更に、ホットガスを常時ホットガス配管
に流すと、冷凍装置の能力が低下しまうが、周期的に所
定時間ホットガスを流入するように電磁弁を制御するこ
とによって、冷凍装置の能力を低下させることなく、効
率よく返油を行うことができる。
Similarly to the above, the hot gas of the refrigerant discharged from the compressor is used to heat the oil return pipe, so that the oil temperature rises, the viscosity of the oil decreases, the fluidity of the oil increases, and Efficiency is improved. Further, if the hot gas is constantly supplied to the hot gas pipe, the capacity of the refrigeration system is lowered, but the capacity of the refrigeration system is lowered by controlling the solenoid valve so that the hot gas is periodically flowed in for a predetermined time. The oil can be returned efficiently.

【0015】(3)上記(1)または(2)に記載の冷
凍装置において、更に、前記油戻し配管には、配管内を
開閉する油戻し弁が設けられている冷凍装置である。
(3) In the refrigeration system described in (1) or (2) above, the oil return pipe is further provided with an oil return valve for opening and closing the inside of the pipe.

【0016】冷凍装置の運転に応じて、油戻し弁を開に
することにより返油作業を行うことができる。従って、
更に冷凍装置の能力が低下することなく圧縮機への返油
を行うことができる。
Depending on the operation of the refrigeration system, the oil return operation can be performed by opening the oil return valve. Therefore,
Furthermore, oil can be returned to the compressor without reducing the capacity of the refrigeration system.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態を、図
を用いて説明する。なお、上述した従来の冷凍装置およ
び返油構成と同様の構成要素には、同一の符号を付しそ
の説明を省略する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. The same components as those of the above-described conventional refrigeration system and oil return configuration are designated by the same reference numerals and the description thereof will be omitted.

【0018】実施の形態1.図1に示すように、本実施
の形態の冷凍装置には、アキュムレータ2の底部と圧縮
機1吸引側の圧縮機吸込み配管4とを連通する油戻し配
管3と、圧縮機1の吐出側とアキュムレータ2の吸引側
とを連通するホットガス配管10と、が設けられてい
る。ホットガス配管10は、圧縮機1からの吐出ガス
(いわゆるホットガス)により油戻し配管10を加温可
能なように部分的に近接して配置されている。この近接
部分が、熱交換部12である。また、油戻し配管3に
は、戻り油の温度を検出する戻り油温度検出部14と、
戻り油の流入を制御するための電磁弁5が設けられてい
る。また、ホットガス配管10には、ホットガスの流入
を制御するための電磁弁11が設けられている。更に、
前記戻り油温度検出部14は、検出した油温が油吸引可
能設定温度以下になると電磁弁11を開にし、一方検出
した油温が油吸引可能設定温度より高い場合には電磁弁
11を閉にするように制御する電磁弁開閉制御部として
も機能する。ここで、油吸引可能設定温度(以下「設定
温度」という)とは、油8が油戻り配管3内で適度な流
動性を有する粘度になる温度をいう。
Embodiment 1. As shown in FIG. 1, in the refrigeration system of the present embodiment, an oil return pipe 3 that connects the bottom of the accumulator 2 and a compressor suction pipe 4 on the suction side of the compressor 1 and a discharge side of the compressor 1 are provided. A hot gas pipe 10 communicating with the suction side of the accumulator 2 is provided. The hot gas pipes 10 are arranged partially close to each other so that the oil return pipe 10 can be heated by the discharge gas (so-called hot gas) from the compressor 1. This close portion is the heat exchange section 12. In the oil return pipe 3, a return oil temperature detection unit 14 that detects the temperature of the return oil,
A solenoid valve 5 for controlling the inflow of return oil is provided. Further, the hot gas pipe 10 is provided with a solenoid valve 11 for controlling the inflow of hot gas. Furthermore,
The return oil temperature detection unit 14 opens the solenoid valve 11 when the detected oil temperature becomes equal to or lower than the oil suckable set temperature, and closes the solenoid valve 11 when the detected oil temperature is higher than the oil suckable set temperature. It also functions as a solenoid valve opening / closing control unit for controlling so that Here, the oil-suctionable set temperature (hereinafter referred to as “set temperature”) refers to a temperature at which the oil 8 has a viscosity having appropriate fluidity in the oil return pipe 3.

【0019】次に、本実施の形態の冷凍装置の返油動作
について、図1および図2を用いて説明する。圧縮機1
を運転すると(S100)、アキュムレータ2に溜まっ
た油8を圧縮機1に返油するために電磁弁5を開ける
(S101)。これにより、アキュムレータ2より返油
される。
Next, the oil return operation of the refrigerating apparatus of this embodiment will be described with reference to FIGS. 1 and 2. Compressor 1
(S100), the solenoid valve 5 is opened to return the oil 8 accumulated in the accumulator 2 to the compressor 1 (S101). As a result, oil is returned from the accumulator 2.

【0020】ここで、圧縮機1の吸引圧力が低下する
と、油戻り配管3および油8の温度が低下し、油8の粘
度が増大し、返油効率が下がる。油温度が、戻り油温度
検出部14に予め油に応じて設定された設定温度に以下
になった場合には(S102)、電磁弁11を開けて
(S104)、ホットガス配管10に圧縮機1から吐出
されたホットガスを流す。ホットガスは、熱交換部12
で油8と熱交換をした後、絞り13を経て、アキュムレ
ータ入口配管へ流れる。ここでは、油温度を直接測定し
たが、油戻し配管3の表面温度を測定して、油温度を間
接的に計測してもよい。
When the suction pressure of the compressor 1 is lowered, the temperatures of the oil return pipe 3 and the oil 8 are lowered, the viscosity of the oil 8 is increased, and the oil return efficiency is lowered. When the oil temperature becomes equal to or lower than the set temperature set in advance in the return oil temperature detection unit 14 according to the oil (S102), the solenoid valve 11 is opened (S104) and the compressor is installed in the hot gas pipe 10. The hot gas discharged from 1 is made to flow. The hot gas is used in the heat exchange section 12
After exchanging heat with the oil 8, the oil flows through the throttle 13 to the accumulator inlet pipe. Although the oil temperature is directly measured here, the surface temperature of the oil return pipe 3 may be measured to indirectly measure the oil temperature.

【0021】なお、電磁弁11を常時開状態にしておく
と、蒸発器への冷媒循環量の低下、冷却能力の低下を招
くため、電磁弁11の開閉を以下のように制御する。
If the solenoid valve 11 is kept open all the time, the refrigerant circulation amount to the evaporator and the cooling capacity will be reduced, so the opening / closing of the solenoid valve 11 is controlled as follows.

【0022】すなわち、油温度または油戻し配管3表面
温度が、設定温度以下になった場合には(S102)、
上述のように電磁弁11を開にし(S104)、設定温
度まで温度が上昇した場合には(S105)、電磁弁1
1を閉じる(S108)。また、冷却負荷が少なくなる
と、圧縮機1は冷媒循環量を減少させて容量制御運転を
行う。容量制御運転中は、接続口9の差圧が小さくな
り、油8の戻り量が減少する。そこで、圧縮機1が容量
制御運転を行う場合には(S103)、電磁弁11を開
け(S104)、圧縮機1が容量制御運転からフルロー
ド運転に復帰すると(S106)、電磁弁11を閉じる
(S108)。これにより、圧縮機の運転方式に関係な
く、返油作業を円滑に行うことができる。
That is, when the oil temperature or the surface temperature of the oil return pipe 3 becomes lower than the set temperature (S102),
As described above, the solenoid valve 11 is opened (S104), and when the temperature rises to the set temperature (S105), the solenoid valve 1
1 is closed (S108). Further, when the cooling load decreases, the compressor 1 reduces the refrigerant circulation amount and performs the capacity control operation. During the capacity control operation, the differential pressure at the connection port 9 becomes small and the return amount of the oil 8 decreases. Therefore, when the compressor 1 performs the capacity control operation (S103), the solenoid valve 11 is opened (S104), and when the compressor 1 returns from the capacity control operation to the full load operation (S106), the solenoid valve 11 is closed. (S108). Thereby, the oil return work can be smoothly performed regardless of the operation method of the compressor.

【0023】本実施の形態の冷凍装置によれば、油戻り
低下の要因である油粘度の上昇を抑制し、油の流動性を
確保することができる。また、一般に、返油動作時に
は、油戻し配管3内の圧力が低下し、圧縮機吸込み配管
4との差圧が低下する。しかし、本実施の形態の冷凍装
置であれば、返油中の油8を加温することにより、油8
に含まれている冷媒が蒸発して冷媒ガスとなる。この冷
媒ガスにより、油戻し配管3内の圧力が上昇し、圧縮機
吸込み配管4(低圧)との差圧の低下を抑制できるの
で、返油動作を効率的に行うことができる。
According to the refrigerating apparatus of the present embodiment, it is possible to suppress the increase in oil viscosity, which is a cause of the decrease in oil return, and to secure the fluidity of oil. Further, generally, during the oil return operation, the pressure in the oil return pipe 3 is reduced, and the pressure difference with the compressor suction pipe 4 is reduced. However, in the case of the refrigerating apparatus of the present embodiment, by heating the oil 8 being returned, the oil 8
The refrigerant contained in Evaporates into Refrigerant Gas. This refrigerant gas increases the pressure in the oil return pipe 3 and suppresses the decrease in the differential pressure with the compressor suction pipe 4 (low pressure), so that the oil return operation can be efficiently performed.

【0024】更に、本実施の形態の冷凍装置は、上述し
たホットガスデフロスト方式の冷凍装置に用いる場合に
は、除霜運転中に生じた液冷媒は、全てアキュムレータ
2に溜まる。そこで、除霜運転中、電磁弁11を開き、
ホットガス配管10に圧縮機1から吐出されたホットガ
スを流す。このホットガスは、熱交換部12で油と熱交
換した後、絞り13を経て、アキュムレータ2の入口配
管に流れ、アキュムレータ2に溜まっている液冷媒と熱
交換する。その結果、液冷媒は蒸発して冷媒ガスとし
て、圧縮機1に戻る。
Further, when the refrigerating apparatus of the present embodiment is used in the above-mentioned hot gas defrost type refrigerating apparatus, all the liquid refrigerant generated during the defrosting operation is accumulated in the accumulator 2. Therefore, during the defrosting operation, the solenoid valve 11 is opened,
The hot gas discharged from the compressor 1 is caused to flow through the hot gas pipe 10. This hot gas exchanges heat with oil in the heat exchange section 12, then passes through the throttle 13, flows into the inlet pipe of the accumulator 2, and exchanges heat with the liquid refrigerant accumulated in the accumulator 2. As a result, the liquid refrigerant evaporates and returns to the compressor 1 as refrigerant gas.

【0025】これにより、除霜中にアキュムレータに多
量の液冷媒が溜まることを防止することができる。従っ
て、除霜終了後の圧縮機再起動時に、液冷媒が圧縮機に
吸い込まれることがないので、圧縮機に損傷を与えるお
それのある液圧縮を回避することができる。
This makes it possible to prevent a large amount of liquid refrigerant from accumulating in the accumulator during defrosting. Therefore, since the liquid refrigerant is not sucked into the compressor when the compressor is restarted after the defrosting is completed, it is possible to avoid liquid compression that may damage the compressor.

【0026】実施の形態2.上記実施の形態1では、油
温により電磁弁11の開閉を行っていたが、本実施の形
態では、図3に示すように、電磁弁制御部としてタイマ
ー15,16を設け、電磁弁11の開閉を周期的にタイ
マーによって制御することとした。なお、上記実施の形
態1の構成と同一の構成には同一の符号を付しその説明
を省略する。
Embodiment 2. In the first embodiment, the solenoid valve 11 was opened / closed by the oil temperature, but in the present embodiment, as shown in FIG. It was decided to control the opening and closing periodically by a timer. The same components as those of the first embodiment are designated by the same reference numerals and the description thereof will be omitted.

【0027】本実施の形態の冷凍装置には、図3に示す
ように、電磁弁5に連動するタイマー15と、電磁弁1
1に連動するタイマー16が設けられている。
In the refrigerating apparatus of this embodiment, as shown in FIG. 3, a timer 15 interlocked with the solenoid valve 5 and the solenoid valve 1 are provided.
A timer 16 interlocked with 1 is provided.

【0028】次に、本実施の形態の冷凍装置の返油動作
について図3および図4を用いて説明する。圧縮機1を
運転すると(S110)、アキュムレータ2に溜まった
油8を圧縮機1に返油するために電磁弁5を開ける(S
111)。電磁弁5の開に連動してタイマー15が、カ
ウントを開始し(S112)、所定時間経過後に電磁弁
11を開けるように接点出力をする(S113)。電磁
弁11が開くと(S115)、タイマー16がカウント
を開始し(S116)、所定時間後に電磁弁11を閉じ
る接点出力を出す(S117)。電磁弁11が閉じると
(S119)、再度タイマー15はカウントを開始し所
定時間経過後に電磁弁11を開ける(S113,S11
5)。この一連の動作を繰り返して、圧縮機連続運転
中、電磁弁11を周期的に一定時間開くように制御す
る。これにより、周期的に圧縮機から吐出されたホット
ガスにより油が加温され、返油効率が向上する。
Next, the oil return operation of the refrigerating apparatus of this embodiment will be described with reference to FIGS. 3 and 4. When the compressor 1 is operated (S110), the solenoid valve 5 is opened to return the oil 8 accumulated in the accumulator 2 to the compressor 1 (S110).
111). The timer 15 starts counting in synchronization with the opening of the solenoid valve 5 (S112), and outputs a contact to open the solenoid valve 11 after a predetermined time has elapsed (S113). When the solenoid valve 11 is opened (S115), the timer 16 starts counting (S116), and a contact output for closing the solenoid valve 11 is output after a predetermined time (S117). When the solenoid valve 11 is closed (S119), the timer 15 starts counting again and opens the solenoid valve 11 after a predetermined time has elapsed (S113, S11).
5). By repeating this series of operations, during continuous operation of the compressor, the solenoid valve 11 is controlled to periodically open for a fixed time. Thereby, the oil is heated by the hot gas periodically discharged from the compressor, and the oil return efficiency is improved.

【0029】また、冷却負荷が少なくなると、圧縮機1
は冷媒循環量を減少させて容量制御運転を行う。容量制
御運転中は、接続口9の差圧が小さくなり、油8の戻り
量が減少する。そこで、圧縮機1が容量制御運転を行う
場合には(S114)、電磁弁11を開け(S11
5)、圧縮機1が容量制御運転からフルロード運転に復
帰すると(S118)、電磁弁11を閉じる(S11
9)。これにより、圧縮機の運転方式に関係なく、返油
作業を円滑に行うことができる。
When the cooling load decreases, the compressor 1
Performs the capacity control operation by reducing the refrigerant circulation amount. During the capacity control operation, the differential pressure at the connection port 9 becomes small and the return amount of the oil 8 decreases. Therefore, when the compressor 1 performs the capacity control operation (S114), the solenoid valve 11 is opened (S11).
5) When the compressor 1 returns from the capacity control operation to the full load operation (S118), the solenoid valve 11 is closed (S11).
9). Thereby, the oil return work can be smoothly performed regardless of the operation method of the compressor.

【0030】[0030]

【発明の効果】以上のように、本発明に係る冷凍装置に
よれば、アキュムレータに溜まった油を円滑に圧縮機側
に戻すことができる。更に、除霜運転中にアキュムレー
タに溜まる液冷媒を、圧縮機から吐出されるホットガス
で熱交換して冷媒ガスとして圧縮機に戻すことができる
ので、除霜終了後に圧縮機を再起動した際に、圧縮機に
液冷媒が吸い込まれることを防止できる。従って、圧縮
機内の部品を損傷させるおそれのある液圧縮を防止する
ことができる。
As described above, according to the refrigerating apparatus of the present invention, the oil accumulated in the accumulator can be smoothly returned to the compressor side. Furthermore, since the liquid refrigerant accumulated in the accumulator during the defrosting operation can be returned to the compressor as the refrigerant gas by exchanging heat with the hot gas discharged from the compressor, when the compressor is restarted after the defrosting is completed. Moreover, it is possible to prevent the liquid refrigerant from being sucked into the compressor. Therefore, it is possible to prevent the liquid compression which may damage the components in the compressor.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の冷凍装置の油戻し構成の一例の概要
を示す図である。
FIG. 1 is a diagram showing an outline of an example of an oil return structure of a refrigerating apparatus of the present invention.

【図2】 図1に示す油戻し構成の油戻し動作を説明す
る図である。
FIG. 2 is a diagram illustrating an oil returning operation of the oil returning structure shown in FIG.

【図3】 本発明の冷凍装置の油戻し構成の他の例の概
要を示す図である。
FIG. 3 is a diagram showing the outline of another example of the oil return configuration of the refrigeration apparatus of the present invention.

【図4】 図3に示す油戻し構成の油戻し動作を説明す
る図である。
FIG. 4 is a diagram illustrating an oil returning operation of the oil returning structure shown in FIG.

【図5】 従来の油戻し配管の構成を示す図である。FIG. 5 is a diagram showing a configuration of a conventional oil return pipe.

【図6】 従来の冷凍装置の構成の概要を示す図であ
る。
FIG. 6 is a diagram showing an outline of a configuration of a conventional refrigeration system.

【符号の説明】[Explanation of symbols]

1 圧縮機、2 アキュムレータ、3 油戻し配管、4
圧縮機吸込み配管、5,11 電磁弁、6 ストレー
ナ、7 メタルオリフィス、8 油、9 接続口、10
ホットガス配管、12 熱交換部、13 絞り、14
戻り油温度検出部、15,16 タイマー。
1 compressor, 2 accumulator, 3 oil return pipe, 4
Compressor suction pipe, 5,11 solenoid valve, 6 strainer, 7 metal orifice, 8 oil, 9 connection port, 10
Hot gas piping, 12 heat exchange section, 13 throttle, 14
Return oil temperature detector, 15, 16 timer.

フロントページの続き (56)参考文献 特開 平2−154959(JP,A) 特開 平7−318172(JP,A) 特開 平5−322323(JP,A) 実開 昭63−63660(JP,U) 実開 昭52−74551(JP,U) 実開 昭54−96458(JP,U) 実開 昭49−35448(JP,U) 実開 昭54−136655(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25B 43/02 F25B 43/00 Continuation of the front page (56) Reference JP-A-2-154959 (JP, A) JP-A-7-318172 (JP, A) JP-A-5-322323 (JP, A) Actual development Sho 63-63660 (JP , U) Actually open 52-74551 (JP, U) Actually open 54-96458 (JP, U) Actually open 49-35448 (JP, U) Actually open 54-136655 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) F25B 43/02 F25B 43/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機、凝縮器、減圧装置、蒸発器、冷
媒と相溶性のある油を貯留するアキュムレータを順次接
続してなる冷媒回路を有する冷凍装置において、 前記アキュムレータの底部と前記圧縮機の吸引側とを連
通する油戻し配管と、 前記圧縮機の吐出側と前記アキュムレータの吸引側とを
連通し、前記圧縮機からの吐出ガスにより前記油戻し配
管を加温可能に近接配置されたホットガス配管と、 前記油戻し配管に設けられ戻り油の温度を検出する戻り
油温度検出部と、 前記ホットガス配管に設けられた電磁弁と、 前記戻り油温度検出部により検出された温度が油吸引可
能設定温度以下になると前記電磁弁を開にし、前記戻し
油温度検出部により検出された温度が前記油吸引可能設
定温度より高い場合には前記電磁弁を閉にするように制
御する電磁弁開閉制御部と、 を有することを特徴とする冷凍装置。
1. A refrigeration apparatus having a refrigerant circuit in which a compressor, a condenser, a pressure reducing device, an evaporator, and an accumulator that stores oil compatible with a refrigerant are sequentially connected, wherein a bottom portion of the accumulator and the compressor are provided. The oil return pipe communicating with the suction side of the compressor, the discharge side of the compressor and the suction side of the accumulator are communicated with each other, and the oil return pipe is warmly arranged close to the discharge gas from the compressor. A hot gas pipe, a return oil temperature detection unit provided in the oil return pipe for detecting the temperature of return oil, an electromagnetic valve provided in the hot gas pipe, and a temperature detected by the return oil temperature detection unit. The solenoid valve is opened when the temperature becomes lower than the oil suckable set temperature, and the solenoid valve is closed when the temperature detected by the return oil temperature detection unit is higher than the oil suckable set temperature. Refrigerating apparatus characterized by having an electromagnetic valve opening and closing control unit that Gosuru.
【請求項2】 圧縮機、凝縮器、減圧装置、蒸発器、冷
媒と相溶性のある油を貯留するアキュムレータを順次接
続してなる冷媒回路を有する冷凍装置において、 前記アキュムレータの底部と前記圧縮機の吸引側とを連
通する油戻し配管と、 前記圧縮機の吐出側と前記アキュムレータの吸引側とを
連通し、前記圧縮機からの吐出ガスにより前記油戻し配
管を加温可能に近接配置されたホットガス配管と、 前記油戻し配管に設けられ戻り油の温度を検出する戻り
油温度検出部と、 前記ホットガス配管に設けられた電磁弁と、 前記電磁弁を周期的に所定時間開閉するように制御する
電磁弁制御部と、 を有することを特徴とする冷凍装置。
2. A refrigeration apparatus having a refrigerant circuit in which a compressor, a condenser, a pressure reducing device, an evaporator, and an accumulator that stores oil compatible with a refrigerant are sequentially connected, the bottom of the accumulator and the compressor. The oil return pipe communicating with the suction side of the compressor, the discharge side of the compressor and the suction side of the accumulator are communicated with each other, and the oil return pipe is warmly arranged close to the discharge gas from the compressor. A hot gas pipe, a return oil temperature detection unit provided in the oil return pipe for detecting the temperature of return oil, an electromagnetic valve provided in the hot gas pipe, and a solenoid valve that is opened and closed periodically for a predetermined time. And a solenoid valve control unit for controlling the above.
【請求項3】 請求項1または請求項2に記載の冷凍装
置において、 更に、前記油戻し配管には、配管内を開閉する油戻し弁
が設けられていることを特徴とする冷凍装置。
3. The refrigerating apparatus according to claim 1, further comprising an oil return valve that opens and closes the inside of the oil return pipe.
JP15517699A 1999-06-02 1999-06-02 Refrigeration equipment Expired - Fee Related JP3498009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15517699A JP3498009B2 (en) 1999-06-02 1999-06-02 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15517699A JP3498009B2 (en) 1999-06-02 1999-06-02 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2000346502A JP2000346502A (en) 2000-12-15
JP3498009B2 true JP3498009B2 (en) 2004-02-16

Family

ID=15600166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15517699A Expired - Fee Related JP3498009B2 (en) 1999-06-02 1999-06-02 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP3498009B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014533A (en) * 2006-07-04 2008-01-24 Ebara Corp Oil recovering device of compression type refrigerating machine
KR101314270B1 (en) 2006-07-19 2013-10-02 엘지전자 주식회사 Oil seperating apparatus of cooling cycle apparatus and Control method of the same
CN102105759B (en) * 2008-07-23 2013-11-13 开利公司 Methods and systems for compressor operation
FR2942656B1 (en) * 2009-02-27 2013-04-12 Danfoss Commercial Compressors DEVICE FOR SEPARATING LUBRICANT FROM A LUBRICANT-REFRIGERATING GAS MIXTURE
CN104748462A (en) * 2013-12-25 2015-07-01 珠海格力节能环保制冷技术研究中心有限公司 Oil and gas separation device and air conditioner system
KR102342565B1 (en) * 2014-12-30 2021-12-23 삼성전자주식회사 Oil level detecting apparatus and control method thereof, oil flow detecting apparatus and control method thereof, method for control oil return using oil level and oil flow
CN105972868B (en) * 2016-05-19 2019-06-14 珠海格力电器股份有限公司 Air conditioning system, air conditioning system control method and air conditioner
CN106288520A (en) * 2016-08-02 2017-01-04 珠海格力电器股份有限公司 Compressor oil return control device and method and air conditioner
JP6458895B2 (en) * 2017-05-31 2019-01-30 ダイキン工業株式会社 Gas-liquid separation unit of refrigeration apparatus and refrigeration apparatus
CN109114718A (en) * 2018-09-27 2019-01-01 克莱门特捷联制冷设备(上海)有限公司 Computer room compound air-conditioning system and its control method
CN111811173A (en) * 2020-07-07 2020-10-23 重庆美的通用制冷设备有限公司 Air conditioning unit
JP7280519B2 (en) * 2021-01-20 2023-05-24 ダイキン工業株式会社 Refrigeration equipment inspection method and inspection device

Also Published As

Publication number Publication date
JP2000346502A (en) 2000-12-15

Similar Documents

Publication Publication Date Title
CN102216700B (en) Heat pump system and method of operating
EP1484559A1 (en) Heat pump type water heater
JP3498009B2 (en) Refrigeration equipment
JP3743861B2 (en) Refrigeration air conditioner
EP3267130B1 (en) Refrigeration cycle device
WO2002006738A1 (en) Refrigerant circuit of air conditioner
JP4479828B2 (en) Refrigeration equipment
JP2002257427A (en) Refrigerating air conditioner and its operating method
JP2002228297A (en) Refrigerating device
JP2006258418A (en) Refrigerating device
JP4274250B2 (en) Refrigeration equipment
JP3603514B2 (en) Refrigeration equipment
JPH06323636A (en) Refrigerator
JPH1038387A (en) Operation controller of air conditioner
JP2005048981A (en) Refrigeration unit
JP2757689B2 (en) Refrigeration equipment
JPH109690A (en) Refrigerator
JPH09210515A (en) Refrigerating device
JP2008032391A (en) Refrigerating unit
JP3010908B2 (en) Refrigeration equipment
JP2004061056A (en) Oil level detecting method and device for compressor
JP3168730B2 (en) Air conditioner
JP7031010B2 (en) Refrigeration cycle device
JP2522011B2 (en) Air conditioner
JPS6314269B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees