JP2007218507A - Heat pump device and control method thereof - Google Patents

Heat pump device and control method thereof Download PDF

Info

Publication number
JP2007218507A
JP2007218507A JP2006040112A JP2006040112A JP2007218507A JP 2007218507 A JP2007218507 A JP 2007218507A JP 2006040112 A JP2006040112 A JP 2006040112A JP 2006040112 A JP2006040112 A JP 2006040112A JP 2007218507 A JP2007218507 A JP 2007218507A
Authority
JP
Japan
Prior art keywords
magnetic bearing
compressor
heat pump
heat
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006040112A
Other languages
Japanese (ja)
Inventor
Ryo Akiyama
陵 秋山
Takanori Shibata
貴範 柴田
Hidetoshi Kuroki
英俊 黒木
Shigeo Hatamiya
重雄 幡宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006040112A priority Critical patent/JP2007218507A/en
Publication of JP2007218507A publication Critical patent/JP2007218507A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump device excellent in reliability capable of generating high purity steam which can be directly supplied to a heat using facility while suppressing the erosion of a compressor vane caused by the inclusion of a lubricating medium of a bearing into the vapor of a working fluid, and a control method thereof. <P>SOLUTION: The heat pump device comprises turbo compressors for compressing steam as the working fluid (first-stage compressor 33 and a second-stage compressor 32), and a vaporizer 42 recovering heat from a heat source and vaporizing liquid water to generate steam. As the bearings of rotating shafts of the compressors, magnetic bearings (first magnetic bearing 1 and second magnetic bearing 2) are used. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ヒートポンプ装置及びその制御方法に係わる。   The present invention relates to a heat pump apparatus and a control method thereof.

水を作動媒体としたターボ圧縮機によるヒートポンプシステムは、低温熱源を供給するものとして既に実用化されており、空調システムなどに利用されている。例えば、特開
2001−165514号公報には一つの密閉された容器の中に、蒸発器,凝縮器,圧縮機および駆動モータを一体にパッケージングする技術が開示されている。また、特開昭
63−231150号公報には、水を作動媒体としてヒートポンプにおいて100℃以上の温水を供給する技術が開示されている。
A heat pump system using a turbo compressor using water as a working medium has already been put into practical use as a low-temperature heat source and is used in an air conditioning system or the like. For example, Japanese Patent Application Laid-Open No. 2001-165514 discloses a technique of integrally packaging an evaporator, a condenser, a compressor, and a drive motor in a single sealed container. Japanese Patent Laid-Open No. 63-231150 discloses a technique for supplying hot water of 100 ° C. or higher in a heat pump using water as a working medium.

特開2001−165514号公報JP 2001-165514 A 特開昭63−231150号公報JP 63-231150 A

しかし、いずれの公知例においても、軸受部の潤滑媒体(油もくしは液水)の漏れ対策が十分でなく、多量の潤滑媒体を消費する可能性が高かった。また、潤滑媒体の液滴が、主流の蒸気に同伴されて圧縮機の翼に衝突し、エロージョンを発生させる可能性もあった。さらに、潤滑媒体として油を用いた場合には、主流の蒸気に油が混入することになり、純度の高い水蒸気が必要とされる食品の乾燥,煮沸などの熱利用設備などには、ヒートポンプの生成する熱を熱交換器により間接的に熱利用設備へ供給させる必要があった。このことは、熱交換器の追設による製造コストと設備の大型化を招くことになる。つまり、潤滑媒体の液滴が主流の蒸気に同伴され圧縮機の翼に衝突してエロージョンを発生させることを抑制し、ヒートポンプ吐出の水蒸気を熱利用設備へ直接供給できるような高純度な水蒸気を生成することが望まれる。   However, in any of the known examples, the countermeasure against leakage of the lubricating medium (oil or liquid) is not sufficient, and there is a high possibility that a large amount of lubricating medium is consumed. In addition, there is a possibility that the droplets of the lubricating medium are accompanied by the mainstream steam and collide with the blades of the compressor to generate erosion. In addition, when oil is used as the lubricating medium, the oil will be mixed into the mainstream steam, and heat pumps are used for heat utilization equipment such as drying and boiling of foods that require high-purity steam. It was necessary to supply the generated heat indirectly to the heat utilization facility by a heat exchanger. This leads to an increase in manufacturing cost and equipment due to the additional installation of the heat exchanger. In other words, high-purity water vapor that suppresses the occurrence of erosion due to the droplets of the lubricating medium being entrained by the mainstream vapor and colliding with the compressor blades, and the water vapor discharged from the heat pump can be directly supplied to the heat utilization equipment. It is desirable to generate.

本発明の目的は、軸受の潤滑媒体が作動流体の蒸気に混入して生じる圧縮機翼のエロージョンの発生を抑制し、熱利用設備へ直接供給可能な高純度な蒸気を生成して、信頼性に優れたヒートポンプ装置及びその制御方法を提供することにある。   The object of the present invention is to reduce the occurrence of erosion of the compressor blades caused by mixing of the bearing's lubricating medium with the steam of the working fluid, and to produce high-purity steam that can be directly supplied to the heat utilization equipment, thereby improving reliability. It is in providing the heat pump apparatus excellent in the, and its control method.

水蒸気を作動流体とし該水蒸気を圧縮するターボ式の圧縮機,熱源から熱を回収して液水を蒸発させ水蒸気を生成する蒸発器とを備え、該圧縮機の回転軸の軸受を磁気軸受とする。   A turbo-type compressor that uses water vapor as a working fluid and compresses the water vapor; and an evaporator that recovers heat from a heat source to evaporate liquid water to generate water vapor, and the rotary shaft bearing of the compressor is a magnetic bearing. To do.

本発明によると、軸受の潤滑媒体が作動流体の蒸気に混入して生じる圧縮機翼のエロージョンの発生を抑制し、熱利用設備へ直接供給可能な高純度な蒸気を生成して、信頼性に優れたヒートポンプ装置及びその制御方法を提供できる。   According to the present invention, it is possible to suppress the occurrence of erosion of the compressor blade caused by mixing of the lubricating medium of the bearing with the steam of the working fluid, and to generate high-purity steam that can be directly supplied to the heat utilization equipment, thereby improving reliability. An excellent heat pump apparatus and its control method can be provided.

本発明は、熱を供給するヒートポンプにおいて、蒸気で熱を供給する業務用及び産業用に適用可能である。特にヒートポンプの作動媒体として水(水蒸気)を採用し、圧縮機としてターボ式を用いたものに適用できる。   INDUSTRIAL APPLICABILITY The present invention is applicable to business and industrial uses for supplying heat with steam in a heat pump that supplies heat. In particular, the present invention can be applied to a case where water (steam) is used as a working medium of a heat pump and a turbo type is used as a compressor.

(実施例1)
図1を用い、本発明の実施例を詳細に説明する。図1は、本発明の一実施例であるヒートポンプ装置のシステム構成図を示す。本実施例のヒートポンプ装置は、主に、熱源から熱を回収して液水を蒸発させ水蒸気を生成する蒸発器42,圧縮手段としての1段圧縮機33及び2段圧縮機32,圧縮機を回転駆動する駆動源17,配管系統を備えている。更に、ヒートポンプシステムの構成部位として、熱を消費する熱利用設備20、その熱利用設備に媒体を供給可能とする供給系統と温水系統40を通る水を温める外部熱源(図示省略)を有している。
Example 1
An embodiment of the present invention will be described in detail with reference to FIG. FIG. 1 is a system configuration diagram of a heat pump apparatus according to an embodiment of the present invention. The heat pump apparatus of the present embodiment mainly includes an evaporator 42 that recovers heat from a heat source to evaporate liquid water to generate water vapor, a first-stage compressor 33 and a two-stage compressor 32 as a compression means, and a compressor. A drive source 17 that rotates and a piping system are provided. Furthermore, the heat pump system includes a heat utilization facility 20 that consumes heat, a supply system that can supply a medium to the heat utilization facility, and an external heat source (not shown) that heats water passing through the hot water system 40. Yes.

蒸発器42に給水系統31の弁39を開き液水35を供給する。蒸発器42では、加熱手段である温水系統40によって、液水35を加熱して蒸気36が生成される。この生成された蒸気36は、1段圧縮機33へ供給される。なお、本実施例で圧縮手段として、1段圧縮機33及び2段圧縮機32からなる2段式圧縮機としているが、2段式以外の圧縮機、例えば、1段圧縮機や、3段以上の圧縮機を使用しても良い。   The valve 39 of the water supply system 31 is opened to supply the liquid water 35 to the evaporator 42. In the evaporator 42, the liquid water 35 is heated by the hot water system 40 which is a heating means, and the vapor | steam 36 is produced | generated. The generated steam 36 is supplied to the first stage compressor 33. In this embodiment, as the compression means, a two-stage compressor including a first-stage compressor 33 and a two-stage compressor 32 is used. However, a compressor other than the two-stage compressor, such as a one-stage compressor or a three-stage compressor, is used. The above compressor may be used.

圧縮手段である、1段圧縮機33及び2段圧縮機32は、回転中心軸3を回転軸として駆動源17によって高速回転される。この回転中心軸3は、第1磁気軸受1,第2磁気軸受2によって支持されている。つまり、本実施例では、ヒートポンプ装置の圧縮手段の回転軸を回転可能に支持する軸受を、磁気軸受としている。   The first-stage compressor 33 and the second-stage compressor 32 as compression means are rotated at high speed by the drive source 17 with the rotation center shaft 3 as a rotation axis. The rotation center shaft 3 is supported by the first magnetic bearing 1 and the second magnetic bearing 2. That is, in this embodiment, the bearing that rotatably supports the rotation shaft of the compression means of the heat pump device is a magnetic bearing.

ここで、磁気軸受とは、電磁的な吸引力あるいは反発力によってロータを浮上させて支持する軸受であり、潤滑油が不要であり、また電磁的な吸引力あるいは反発力を適切に制御することで過大な軸振動の発生を抑制することができる軸受である。   Here, the magnetic bearing is a bearing that supports the rotor by levitation by electromagnetic attractive force or repulsive force, does not require lubricating oil, and appropriately controls the electromagnetic attractive force or repulsive force. This is a bearing capable of suppressing the occurrence of excessive shaft vibration.

図2に、軸振動を抑制する為の磁気軸受の制御回路の一例を示す。図2に示すように、圧縮機のロータ63を磁気軸受によって支持している。この磁気軸受は、ロータ63を浮上させる為の電磁的な吸引力あるいは反発力を発生させる為の電磁石61,ロータ位置を測定する為の変位センサ62a及び変位センサ62b,ロータ支持を制御する制御装置
64,電磁石61に必要な電磁力を伝達する為の回路65を備えている。ロータ63は、電磁石61の電磁力によって浮上した状態で、回転方向66に高速回転し、軸受によって支持される。主に、ヒートポンプ装置の制御では、回転軸であるロータ63の変位センサ62aや変位センサ62bの測定値に基づき、磁気軸受の電磁力を制御して、回転可能に支持している。本制御により、ヒートポンプ装置への磁気軸受の適用を可能とし、軸振動などの抑制も可能となる。
FIG. 2 shows an example of a magnetic bearing control circuit for suppressing shaft vibration. As shown in FIG. 2, the rotor 63 of the compressor is supported by a magnetic bearing. The magnetic bearing includes an electromagnet 61 for generating an electromagnetic attractive force or repulsive force for floating the rotor 63, a displacement sensor 62a and a displacement sensor 62b for measuring the rotor position, and a control device for controlling the rotor support. 64, a circuit 65 for transmitting the necessary electromagnetic force to the electromagnet 61 is provided. The rotor 63 rotates at a high speed in the rotation direction 66 in a state of being levitated by the electromagnetic force of the electromagnet 61 and is supported by a bearing. Mainly, in the control of the heat pump device, the electromagnetic force of the magnetic bearing is controlled based on the measured values of the displacement sensor 62a and the displacement sensor 62b of the rotor 63, which is the rotating shaft, and is supported rotatably. This control makes it possible to apply a magnetic bearing to the heat pump device and to suppress shaft vibration and the like.

磁気軸受の制御手順は、ロータの位置を変位センサ62aや変位センサ62bで測定して、その測定結果であるロータ位置情報を制御装置64に送信する。ロータ仕様や制御装置64では、送信されたロータ位置情報に基づき電磁石61に必要な電磁力を算出し、回路65を通して電磁石61に必要な電磁力を伝達する。その電磁力によってロータを浮上させている。ここで、磁気軸受は、その電磁的作用により、軸受内部から発熱する。そのため、磁気軸受は軸受内部が150℃以下程度となるように冷却することが望ましい。   In the magnetic bearing control procedure, the position of the rotor is measured by the displacement sensor 62a and the displacement sensor 62b, and the rotor position information as the measurement result is transmitted to the control device 64. The rotor specification and the control device 64 calculate the electromagnetic force necessary for the electromagnet 61 based on the transmitted rotor position information, and transmit the necessary electromagnetic force to the electromagnet 61 through the circuit 65. The rotor is levitated by the electromagnetic force. Here, the magnetic bearing generates heat from the inside of the bearing due to its electromagnetic action. Therefore, it is desirable to cool the magnetic bearing so that the inside of the bearing is about 150 ° C. or less.

また、本実施例では、磁気軸受の冷却手段を設けている。磁気軸受を150℃以下に冷却するよう、別置の冷却媒体供給設備11を設けている。冷却媒体供給設備11から冷却媒体を第1磁気軸受1や第2磁気軸受2に供給している。冷却媒体としては、空気を使用するか、蒸気等その他の媒体を使用することも考えられる。   In this embodiment, a cooling means for the magnetic bearing is provided. A separate cooling medium supply facility 11 is provided to cool the magnetic bearing to 150 ° C. or lower. A cooling medium is supplied from the cooling medium supply facility 11 to the first magnetic bearing 1 and the second magnetic bearing 2. As the cooling medium, air or other medium such as steam may be used.

次に、ヒートポンプ装置における流体の流れについて説明する。給水系統31を通過する媒体である水は、弁39の開閉制御により、蒸発器42に供給される。蒸発器42において、温水系統40である外部熱源(例えば80℃程度)から熱が供給され、液水35を蒸発させ水蒸気を生成する。この水蒸気は、1段圧縮機33および2段圧縮機32で昇圧,昇温化されて熱利用設備20に供給される。圧力や温度条件の一例として、1段圧縮機33の入口では0.2ata,60℃程度、1段圧縮機33出口では、1.0ata,100℃程度、2段圧縮機32の出口では、4ata,140℃程度の水蒸気となっている。   Next, the flow of fluid in the heat pump device will be described. Water that is a medium passing through the water supply system 31 is supplied to the evaporator 42 by opening / closing control of the valve 39. In the evaporator 42, heat is supplied from an external heat source (for example, about 80 ° C.) that is the hot water system 40, and the liquid water 35 is evaporated to generate water vapor. The steam is boosted and heated by the first-stage compressor 33 and the second-stage compressor 32 and supplied to the heat utilization facility 20. As an example of pressure and temperature conditions, the inlet of the first stage compressor 33 is about 0.2 at 60 ° C., the outlet of the first stage compressor 33 is about 1.0 at 100 ° C., and the outlet of the second stage compressor 32 is 4 ata. The water vapor is about 140 ° C.

1段圧縮機33および2段圧縮機32の回転軸の軸端には駆動機として駆動源17が接続され、水蒸気の圧縮に必要な圧縮動力を供給している。但し、駆動源17に供給される電気の系統は図示を省略した。   A drive source 17 is connected to the shaft ends of the rotary shafts of the first-stage compressor 33 and the second-stage compressor 32 as a drive machine to supply compression power necessary for compressing water vapor. However, the electrical system supplied to the drive source 17 is not shown.

本実施例のヒートポンプ装置の蒸発器42は、外部熱源により温められた温水が通過する温水系統40を有する。温水系統40に供給される温水は、工場やごみ焼却場の排熱,河川,下水,大気などの未利用熱源を利用して生成されたものであることが望ましい。   The evaporator 42 of the heat pump apparatus of the present embodiment has a hot water system 40 through which hot water warmed by an external heat source passes. The hot water supplied to the hot water system 40 is desirably generated using unused heat sources such as exhaust heat from factories and waste incineration plants, rivers, sewage, and air.

図1の実施例では、温水系統40の水と蒸発器42の内部の水は直接的には接触しない間接式の熱交換器としているが、温水系統40の温水と蒸発器42内の液水が混合する直接接触式の熱交換器であっても良い。また、伝熱面として、蒸発器内に溜まった液水の中をチューブ式の配管を配置した熱交換器であっても、二相流式のプレート式熱交換器であっても、どちらでも良い。   In the embodiment of FIG. 1, the water in the hot water system 40 and the water in the evaporator 42 are indirect heat exchangers that do not come into direct contact, but the hot water in the hot water system 40 and the liquid water in the evaporator 42 are used. It may be a direct contact type heat exchanger in which is mixed. Moreover, as a heat transfer surface, either a heat exchanger in which tube-type piping is arranged in the liquid water accumulated in the evaporator, or a two-phase flow type plate heat exchanger, good.

以上のように、本実施例においては、回転軸の支持に磁気軸受を利用している。この為、油潤滑式軸受や、水潤滑式軸受に必要となる、潤滑媒体供給設備が必要ない。   As described above, in this embodiment, a magnetic bearing is used to support the rotating shaft. For this reason, the lubrication medium supply equipment required for the oil lubricated bearing and the water lubricated bearing is not necessary.

また、油や液水などの潤滑媒体を使用しないため、軸受室内部の液滴が、作動媒体である蒸気中に流出して、主流の蒸気に同伴されて圧縮機の翼に衝突し、エロージョンを発生させることを抑制できる。   In addition, since no lubricating medium such as oil or liquid water is used, droplets inside the bearing chamber flow into the working steam, collide with the mainstream steam and collide with the compressor blades, causing erosion. Can be suppressed.

また、油潤滑式の軸受を利用したヒートポンプでは、軸受室内部の潤滑油が作動媒体である蒸気中に流出して、蒸気に潤滑油が混入する可能性がある。主流の蒸気に潤滑油が混入することで、純度の高い水蒸気が必要とされる食品の乾燥,煮沸などの熱利用設備などには、ヒートポンプの生成する熱を熱交換器により間接的に熱利用設備へ供給させる必要がある。このことは、熱交換器の追設による製造コスト増加と設備の大型化を招くことになる。   Further, in a heat pump using an oil lubricated bearing, there is a possibility that the lubricating oil inside the bearing chamber flows out into the steam that is the working medium, and the lubricating oil is mixed into the steam. The heat generated by heat pumps is indirectly used by heat exchangers for heat-use equipment such as drying and boiling of foods that require high-purity water vapor by mixing lubricating oil with mainstream steam. It is necessary to supply the equipment. This leads to an increase in manufacturing costs and an increase in equipment size due to the additional installation of the heat exchanger.

本発明においては、軸受部に磁気軸受を使用しているため、潤滑油を使用しない。この為、主流媒体である蒸気中に潤滑油が混入することが無く、純度の高い水蒸気が必要とされる熱利用設備施設においても、ヒートポンプによって生成される高温の蒸気を直接供給して使用することができ、熱交換器の追設による製造コスト増加と設備の大型化を抑制することができる。   In the present invention, since a magnetic bearing is used for the bearing portion, no lubricating oil is used. For this reason, lubricating oil is not mixed into the steam that is the mainstream medium, and high-temperature steam generated by a heat pump is directly supplied and used even in heat utilization equipment facilities that require high-purity steam. It is possible to suppress an increase in manufacturing cost and an increase in equipment size due to the additional installation of the heat exchanger.

従って、軸受の潤滑媒体が作動流体の蒸気に混入して生じる圧縮機翼のエロージョンの発生を抑制し、熱利用設備へ直接供給可能な高純度な蒸気を生成して、信頼性に優れたヒートポンプ装置及びその制御方法を提供できる。   Therefore, it is possible to suppress the occurrence of erosion of the compressor blades caused by mixing the bearing lubrication medium with the working fluid steam, and to produce high-purity steam that can be directly supplied to the heat utilization equipment, thus providing a highly reliable heat pump. An apparatus and a control method thereof can be provided.

(実施例2)
図3を用い、本発明の他の実施例を説明する。本実施例は、第1磁気軸受1と蒸発器
42が連通するように流路6を設け、流路6内部に蒸発器42から取り出した蒸気36を流通させて第1磁気軸受1へ導いている。また同様に、第2磁気軸受2と蒸発器42が連通するように流路7を設け、流路7内部に蒸発器42から取り出した蒸気36を流通させて第2磁気軸受2へ導いている。
(Example 2)
Another embodiment of the present invention will be described with reference to FIG. In the present embodiment, the flow path 6 is provided so that the first magnetic bearing 1 and the evaporator 42 communicate with each other, and the steam 36 taken out from the evaporator 42 is circulated inside the flow path 6 and led to the first magnetic bearing 1. Yes. Similarly, the flow path 7 is provided so that the second magnetic bearing 2 and the evaporator 42 communicate with each other, and the vapor 36 taken out from the evaporator 42 is circulated inside the flow path 7 and led to the second magnetic bearing 2. .

第1磁気軸受1,第2磁気軸受2へ導入された蒸気36は、磁気軸受の冷却に使用される。また、第1磁気軸受1と1段圧縮機33の入口部が連通するように流路8が設けられており、同様に、第2磁気軸受2と1段圧縮機33の入口部が連通するように流路9が設けられている。   The steam 36 introduced into the first magnetic bearing 1 and the second magnetic bearing 2 is used for cooling the magnetic bearing. A flow path 8 is provided so that the first magnetic bearing 1 and the inlet of the first stage compressor 33 communicate with each other. Similarly, the second magnetic bearing 2 and the inlet of the first stage compressor 33 communicate with each other. A flow path 9 is provided as described above.

第1磁気軸受1,第2磁気軸受2を冷却した蒸気36は、上記流路8,9を通って1段圧縮機33の入口部へ導入される。   The steam 36 that has cooled the first magnetic bearing 1 and the second magnetic bearing 2 is introduced into the inlet of the first stage compressor 33 through the flow paths 8 and 9.

磁気軸受は、その電磁的作用により、軸受内部から発熱する。通常、磁気軸受は軸受内部が150℃以下程度となるように冷却しなければならない。例えば、本実施例におけるヒートポンプの一例では、蒸発器42内部の蒸気36は、圧力0.2ata程度,温度60℃程度であり、温度が十分低く、磁気軸受の冷却に適している。   The magnetic bearing generates heat from the inside of the bearing due to its electromagnetic action. Usually, the magnetic bearing must be cooled so that the inside of the bearing is about 150 ° C. or less. For example, in an example of the heat pump in the present embodiment, the steam 36 in the evaporator 42 has a pressure of about 0.2 ata and a temperature of about 60 ° C., and the temperature is sufficiently low, which is suitable for cooling a magnetic bearing.

更に、冷却後の蒸気は、1段圧縮機33の入口部へ導入されるが、1段圧縮機33の入口部圧力は、蒸発器42内部の圧力より若干低い。この為、昇圧ポンプなどを設けなくても、磁気軸受冷却後の蒸気は自然に1段圧縮機33の入口部へ流入する。   Further, the cooled steam is introduced into the inlet of the first stage compressor 33, but the inlet pressure of the first stage compressor 33 is slightly lower than the pressure inside the evaporator 42. For this reason, the steam after cooling the magnetic bearing naturally flows into the inlet of the first stage compressor 33 without providing a booster pump or the like.

この為、別置の冷却媒体供給設備などの設置による、設備コスト増加,設備面積増加を抑制することができる。   For this reason, it is possible to suppress an increase in equipment cost and an equipment area due to installation of a separate cooling medium supply equipment.

更に、磁気軸受冷却によって冷却媒体に移動した熱量を、1段圧縮機33の入口部へ回収している為、システム効率も向上する。   Furthermore, since the amount of heat transferred to the cooling medium by the magnetic bearing cooling is recovered at the inlet of the first stage compressor 33, the system efficiency is also improved.

(実施例3)
図4を用い、本発明の他の実施例を説明する。本実施例は、1段圧縮機33の出口流路に分岐点12を設け、分岐点12と第1磁気軸受1とが連通するように流路13を設け、流路13内部に1段圧縮機33から取り出した蒸気を流通させて第1磁気軸受1へ導いている。また同様に、第2磁気軸受2と分岐点12が連通するように流路14を設け、流路14内部に1段圧縮機33から取り出した蒸気を流通させて第2磁気軸受2へ導いている。
(Example 3)
Another embodiment of the present invention will be described with reference to FIG. In this embodiment, a branch point 12 is provided in the outlet flow path of the first stage compressor 33, a flow path 13 is provided so that the branch point 12 and the first magnetic bearing 1 communicate with each other, and the first stage compression is performed inside the flow path 13. The steam taken out from the machine 33 is circulated and led to the first magnetic bearing 1. Similarly, a flow path 14 is provided so that the second magnetic bearing 2 and the branch point 12 communicate with each other, and the steam taken out from the first-stage compressor 33 is circulated inside the flow path 14 and led to the second magnetic bearing 2. Yes.

流路13,14を通して第1磁気軸受1,第2磁気軸受2へ導入された蒸気は、磁気軸受の冷却に使用される。また、第1磁気軸受1と1段圧縮機33の入口部が連通するように流路8が設けられており、同様に、第2磁気軸受2と1段圧縮機33の入口部が連通するように流路9が設けられている。   The steam introduced into the first magnetic bearing 1 and the second magnetic bearing 2 through the flow paths 13 and 14 is used for cooling the magnetic bearing. A flow path 8 is provided so that the first magnetic bearing 1 and the inlet of the first stage compressor 33 communicate with each other. Similarly, the second magnetic bearing 2 and the inlet of the first stage compressor 33 communicate with each other. A flow path 9 is provided as described above.

第1磁気軸受1,第2磁気軸受2を冷却した蒸気は、上記流路8,9を通って1段圧縮機33の入口部へ導入される。   The steam that has cooled the first magnetic bearing 1 and the second magnetic bearing 2 is introduced into the inlet portion of the first stage compressor 33 through the flow paths 8 and 9.

1段圧縮機33の出口部分の蒸気は、本発明によるヒートポンプの一例によれば、圧力1.0ata程度,温度100℃程度であり、磁気軸受の冷却に使用できる。   According to an example of the heat pump according to the present invention, the steam at the outlet of the first stage compressor 33 has a pressure of about 1.0 ata and a temperature of about 100 ° C. and can be used for cooling the magnetic bearing.

また、冷却後の蒸気は、1段圧縮機33の入口部へ導入されるが、1段圧縮機33の入口部圧力は、蒸発器42内部の圧力より若干低く、本実施例によるヒートポンプの一例によれば0.2ata以下である。   Further, the cooled steam is introduced into the inlet portion of the first stage compressor 33. The inlet portion pressure of the first stage compressor 33 is slightly lower than the pressure inside the evaporator 42, and is an example of the heat pump according to this embodiment. According to, it is below 0.2ata.

磁気軸受の蒸気入口側の圧力は1段圧縮機33出口部分の圧力と同等となっており、磁気軸受の蒸気出口側圧力は、1段圧縮機33の入口部と同等となっている。この為、磁気軸受の蒸気入口と蒸気出口の蒸気圧力の差が実施例2に比べて大きい為、昇圧ポンプなどを設けなくても、実施例2に比べて大流量の冷却蒸気が第1磁気軸受1,第2磁気軸受2を通過して、1段圧縮機33の入口部へ流入する。   The pressure on the steam inlet side of the magnetic bearing is equivalent to the pressure at the outlet portion of the first stage compressor 33, and the pressure on the steam outlet side of the magnetic bearing is equivalent to the inlet portion of the first stage compressor 33. For this reason, since the difference in the steam pressure between the steam inlet and the steam outlet of the magnetic bearing is larger than that in the second embodiment, the cooling steam having a larger flow rate than that in the second embodiment does not have a booster pump. It passes through the bearing 1 and the second magnetic bearing 2 and flows into the inlet of the first stage compressor 33.

この為、別置の冷却媒体供給設備などの設置コスト,設置面積を低減することができる。更に、磁気軸受部冷却によって冷却媒体に移動した熱量を、1段圧縮機33の入口部へ回収している為、システム効率も向上する。   For this reason, it is possible to reduce the installation cost and installation area of a separate cooling medium supply facility. Furthermore, since the amount of heat transferred to the cooling medium by cooling the magnetic bearing portion is recovered to the inlet portion of the first stage compressor 33, the system efficiency is also improved.

また、実施例2に比べて冷却蒸気の温度は高いが、冷却蒸気の流量を大きくすることができるため、適切な設計をすれば、磁気軸受部の冷却能力は実施例2よりも高くなり、磁気軸受の信頼性を高めることができる。   In addition, although the temperature of the cooling steam is higher than that of Example 2, since the flow rate of the cooling steam can be increased, the cooling capacity of the magnetic bearing portion is higher than that of Example 2 if appropriately designed. The reliability of the magnetic bearing can be increased.

(実施例4)
図5を用い、本発明の他の実施例を説明する。本実施例4のヒートポンプ装置は、蒸気を流通させる流路6に弁21が、流路7に弁22が設けられており、弁21,弁22の開閉によって磁気軸受への蒸気の流通の有無を制御することができる。
Example 4
Another embodiment of the present invention will be described with reference to FIG. In the heat pump device according to the fourth embodiment, a valve 21 is provided in the flow path 6 through which steam is circulated, and a valve 22 is provided in the flow path 7, and whether or not steam is circulated to the magnetic bearing by opening and closing the valves 21 and 22. Can be controlled.

蒸気は、飽和蒸気温度以下になると液体に変化して、水分が発生する。この為、第1磁気軸受1,第2磁気軸受2の軸受雰囲気温度が飽和蒸気温度以下のときに蒸気を流通させると、水分を発生して、磁気軸受内に液滴(ドレン)が溜まる可能性がある。   The steam changes to a liquid when the temperature is lower than the saturated steam temperature, and moisture is generated. For this reason, when steam is circulated when the bearing atmosphere temperature of the first magnetic bearing 1 and the second magnetic bearing 2 is equal to or lower than the saturated steam temperature, moisture is generated and droplets (drains) can accumulate in the magnetic bearing. There is sex.

液滴が発生すると、ロータ内に進入してアンバランスとなって、過大な軸振動を誘発したり、また、液滴が主流の蒸気中に流出して、蒸気に同伴されて圧縮機の翼に衝突し、エロージョンを発生させる可能性もある。   When droplets are generated, they enter the rotor and become unbalanced, inducing excessive shaft vibrations, or the droplets flow into the mainstream steam and are entrained in the steam, causing the compressor blades to flow. May cause erosion.

本実施例では、第1磁気軸受1,第2磁気軸受2内部の雰囲気温度を監視して、蒸気による液滴が発生しない温度まで内部温度が上昇した時に弁21,22を開き、冷却蒸気を磁気軸受内に流通させる。   In the present embodiment, the ambient temperature inside the first magnetic bearing 1 and the second magnetic bearing 2 is monitored, and when the internal temperature rises to a temperature at which no droplets are generated by the steam, the valves 21 and 22 are opened to supply the cooling steam. Circulate in the magnetic bearing.

1段圧縮機33,2段圧縮機32,弁21,弁22,第1磁気軸受1,第2磁気軸受2,蒸発器42廻りにおける、上記の制御手順を、以下に時系列的に説明する。   The above-described control procedure around the first-stage compressor 33, the second-stage compressor 32, the valve 21, the valve 22, the first magnetic bearing 1, the second magnetic bearing 2, and the evaporator 42 will be described below in time series. .

まず、1段圧縮機33,2段圧縮機32を起動する前は、弁21,弁22は閉止されている。次に、1段圧縮機33,2段圧縮機32を起動する。第1磁気軸受1,第2磁気軸受2は起動直後は温度が低く、機器の設置場所の雰囲気温度と同等の温度となっている。   First, before starting the first-stage compressor 33 and the second-stage compressor 32, the valves 21 and 22 are closed. Next, the first stage compressor 33 and the second stage compressor 32 are started. The temperature of the first magnetic bearing 1 and the second magnetic bearing 2 is low immediately after startup, and is equal to the ambient temperature of the installation location of the equipment.

1段圧縮機33,2段圧縮機32を起動すると、ロータ回転のため、第1磁気軸受1,第2磁気軸受2の内部は徐々に温度が上昇する。ここで、第1磁気軸受1,第2磁気軸受2内部の温度が供給する蒸気の飽和蒸気温度以上となった時に、弁21,弁22を開く。実施例4において磁気軸受へ供給する蒸気は、蒸発器42内部の蒸気36であり、ヒートポンプの一例によると蒸気36の飽和蒸気温度は60℃程度である。   When the first-stage compressor 33 and the second-stage compressor 32 are started, the temperature inside the first magnetic bearing 1 and the second magnetic bearing 2 gradually increases due to the rotation of the rotor. Here, when the temperature inside the first magnetic bearing 1 and the second magnetic bearing 2 becomes equal to or higher than the saturated steam temperature of the supplied steam, the valves 21 and 22 are opened. The steam supplied to the magnetic bearing in the fourth embodiment is the steam 36 inside the evaporator 42. According to an example of the heat pump, the saturated steam temperature of the steam 36 is about 60 ° C.

上記の制御では、飽和蒸気温度(60℃)に達する前は、弁21,22を閉じて、磁気軸受1,2に冷却蒸気を流通させないこととなるが、磁気軸受は一般的に150℃程度の耐熱温度であるため、問題ない。   In the above control, before reaching the saturated steam temperature (60 ° C.), the valves 21 and 22 are closed so that the cooling steam does not flow through the magnetic bearings 1 and 2, but the magnetic bearing is generally about 150 ° C. No problem because of the heat resistant temperature.

また、磁気軸受内部の温度が、供給する飽和蒸気温度以上となったときに、弁21,
22を開いて、第1磁気軸受1,第2磁気軸受2に冷却蒸気を流通させるため、軸受内部における蒸気の凝縮による液滴の発生を抑制することができる。
When the temperature inside the magnetic bearing becomes equal to or higher than the saturated steam temperature to be supplied, the valve 21,
Since the cooling steam is circulated through the first magnetic bearing 1 and the second magnetic bearing 2 by opening 22, it is possible to suppress the generation of droplets due to the condensation of the steam inside the bearing.

次に、圧縮機を停止する際の制御手順を時系列的に説明する。   Next, a control procedure for stopping the compressor will be described in time series.

まず、圧縮機の回転を停止させる。この際、回転の停止に伴って、磁気軸受の温度は徐々に低下する。   First, the rotation of the compressor is stopped. At this time, as the rotation stops, the temperature of the magnetic bearing gradually decreases.

磁気軸受内部の温度を監視し、温度が磁気軸受の耐熱温度以下となった時点で弁21,弁22を閉止する。軸受の耐熱温度は一般的に150℃程度である為、弁を閉止する直前の雰囲気温度は、飽和蒸気温度以上である。この為、磁気軸受内部における蒸気の凝縮による液滴の発生を抑制することができる。   The temperature inside the magnetic bearing is monitored, and the valves 21 and 22 are closed when the temperature falls below the heat resistant temperature of the magnetic bearing. Since the heat-resistant temperature of the bearing is generally about 150 ° C., the ambient temperature immediately before closing the valve is equal to or higher than the saturated steam temperature. For this reason, generation | occurrence | production of the droplet by the condensation of the vapor | steam inside a magnetic bearing can be suppressed.

上記の制御によれば、磁気軸受内部における液滴の発生を抑制でき、過大な軸振動の発生や、圧縮機翼のエロージョンの発生を抑制することができる。   According to said control, generation | occurrence | production of the droplet within a magnetic bearing can be suppressed, generation | occurrence | production of an excessive shaft vibration and generation | occurrence | production of the erosion of a compressor blade can be suppressed.

なお、本実施例における弁21,弁22は、実施例2に対する例として説明したが、実施例3のヒートポンプにも、蒸気の流路13,流路14に弁を設けることによって、同様の効果を得ることができる。   In addition, although the valve 21 and the valve 22 in the present embodiment have been described as an example with respect to the second embodiment, the same effect can be obtained by providing the heat pump of the third embodiment with a valve in the steam flow path 13 and the flow path 14. Can be obtained.

この際、磁気軸受に供給する冷却蒸気は、1段圧縮機出口の蒸気である為、冷却蒸気の飽和蒸気温度は実施例2とは異なる。この為、蒸気の流路13,14に設けた弁は、1段圧縮機出口の飽和蒸気温度以上となった時に開くこととなる。なお、ヒートポンプの一例によると、1段圧縮機出口の飽和蒸気温度は100℃である。   At this time, since the cooling steam supplied to the magnetic bearing is the steam at the outlet of the first stage compressor, the saturated steam temperature of the cooling steam is different from that of the second embodiment. For this reason, the valves provided in the steam flow paths 13 and 14 are opened when the temperature becomes equal to or higher than the saturated steam temperature at the outlet of the first stage compressor. According to an example of the heat pump, the saturated steam temperature at the outlet of the first stage compressor is 100 ° C.

(実施例5)
図6を用い、本発明の他の実施例を説明する。実施例5のヒートポンプ装置は、第1磁気軸受1内部の水分を外部へ取り出す為の、ドレン配管23、第2磁気軸受2内部の水分を外部へ取り出す為のドレン配管24を有している。
(Example 5)
Another embodiment of the present invention will be described with reference to FIG. The heat pump device according to the fifth embodiment has a drain pipe 23 for taking out moisture inside the first magnetic bearing 1 to the outside, and a drain pipe 24 for taking out moisture inside the second magnetic bearing 2 to the outside.

本実施例のヒートポンプ装置は、第1磁気軸受1,第2磁気軸受2を蒸気にて冷却する為、運転停止時に磁気軸受内部の温度が低下した際、磁気軸受内部の蒸気が凝縮して液滴が発生する可能性がある。   In the heat pump device of the present embodiment, the first magnetic bearing 1 and the second magnetic bearing 2 are cooled by steam, so that when the temperature inside the magnetic bearing decreases during operation stop, the steam inside the magnetic bearing condenses and liquids. Drops can occur.

液滴が発生すると、磁気軸受内部に錆が発生すると言う問題や、液滴が残ったまま運転すると、液滴がロータ内に進入してアンバランスとなって、過大な軸振動を誘発したり、また、液滴が主流の蒸気中に流出して、蒸気に同伴されて圧縮機の翼に衝突し、エロージョンを発生させる可能性もある。   If droplets are generated, the problem is that rust is generated inside the magnetic bearing, and if the droplets are left running, the droplets enter the rotor and become unbalanced, causing excessive shaft vibration. In addition, there is a possibility that the droplets flow out into the mainstream steam and are accompanied by the steam and collide with the blades of the compressor to generate erosion.

本実施例では、磁気軸受内部の水分を外部へ取り出す為のドレン配管23,24を有する為、液滴が発生しても、外部へ除去することができる。   In the present embodiment, since the drain pipes 23 and 24 for taking out moisture inside the magnetic bearing to the outside are provided, even if droplets are generated, they can be removed to the outside.

この為、磁気軸受内部の液滴による、過大な軸振動の発生や、圧縮機翼のエロージョンの発生を抑制することができる。   For this reason, generation | occurrence | production of the excessive shaft vibration and the erosion of a compressor blade | wing by the droplet inside a magnetic bearing can be suppressed.

なお、本実施例におけるドレン配管23,24は、実施例2に対する例として説明したが、実施例3のヒートポンプにも、第1磁気軸受1,第2磁気軸受2にドレン配管を設けることによって、同様の効果を得ることができる。   In addition, although drain piping 23 and 24 in a present Example was demonstrated as an example with respect to Example 2, by providing a drain piping in the 1st magnetic bearing 1 and the 2nd magnetic bearing 2 also in the heat pump of Example 3, Similar effects can be obtained.

本発明の実施例1であるヒートポンプ装置のシステム構成図を示す。The system block diagram of the heat pump apparatus which is Example 1 of this invention is shown. 本発明の実施例1であるヒートポンプ装置の磁気軸受の構成図を示す。The block diagram of the magnetic bearing of the heat pump apparatus which is Example 1 of this invention is shown. 本発明の実施例1であるヒートポンプ装置のシステム構成図を示す。The system block diagram of the heat pump apparatus which is Example 1 of this invention is shown. 本発明の実施例1であるヒートポンプ装置のシステム構成図を示す。The system block diagram of the heat pump apparatus which is Example 1 of this invention is shown. 本発明の実施例1であるヒートポンプ装置のシステム構成図を示す。The system block diagram of the heat pump apparatus which is Example 1 of this invention is shown. 本発明の実施例1であるヒートポンプ装置のシステム構成図を示す。The system block diagram of the heat pump apparatus which is Example 1 of this invention is shown.

符号の説明Explanation of symbols

1…第1磁気軸受、2…第2磁気軸受、3…回転中心軸、6,7,8,9,13,14…流路、11…冷却媒体供給設備、12…分岐点、17…駆動源、20…熱利用設備、
21,22,39…弁、23,24…ドレン配管、31…給水系統、32…2段圧縮機、33…1段圧縮機、35…液水、36…蒸気、40…温水系統、42…蒸発器、61…電磁石、62a,62b…変位センサ、63…ロータ、64…制御装置、65…回路、66…回転方向。
DESCRIPTION OF SYMBOLS 1 ... 1st magnetic bearing, 2 ... 2nd magnetic bearing, 3 ... Center axis of rotation, 6, 7, 8, 9, 13, 14 ... Flow path, 11 ... Cooling medium supply equipment, 12 ... Branch point, 17 ... Drive Source, 20 ... heat utilization equipment,
21, 22, 39 ... valve, 23, 24 ... drain piping, 31 ... water supply system, 32 ... two-stage compressor, 33 ... one-stage compressor, 35 ... liquid water, 36 ... steam, 40 ... hot water system, 42 ... Evaporator, 61 ... electromagnet, 62a, 62b ... displacement sensor, 63 ... rotor, 64 ... control device, 65 ... circuit, 66 ... rotational direction.

Claims (11)

水蒸気を作動流体とし該水蒸気を圧縮するターボ式の圧縮機,熱源から熱を回収して液水を蒸発させ水蒸気を生成する蒸発器とを備えたヒートポンプ装置であって、
該圧縮機の回転軸の軸受を磁気軸受とすることを特徴とするヒートポンプ装置。
A heat pump device comprising a turbo-type compressor that uses water vapor as a working fluid and compresses the water vapor, an evaporator that recovers heat from a heat source and evaporates liquid water to generate water vapor,
A heat pump apparatus characterized in that a bearing of a rotary shaft of the compressor is a magnetic bearing.
水蒸気を作動流体とし該水蒸気を圧縮するターボ式の圧縮機,熱源から熱を回収して液水を蒸発させ水蒸気を生成する蒸発器とを備えたヒートポンプ装置であって、
該圧縮機の回転軸の軸受を磁気軸受とし、
前記磁気軸受を冷却する冷却媒体を磁気軸受へ供給する冷却媒体供給装置を有することを特徴とするヒートポンプ装置。
A heat pump device comprising a turbo-type compressor that uses water vapor as a working fluid and compresses the water vapor, an evaporator that recovers heat from a heat source and evaporates liquid water to generate water vapor,
The rotary shaft bearing of the compressor is a magnetic bearing,
A heat pump device comprising a cooling medium supply device for supplying a cooling medium for cooling the magnetic bearing to the magnetic bearing.
水蒸気を作動流体とするターボ式の圧縮機,圧縮機を駆動する駆動機,熱源から熱を回収して液水を蒸発させる蒸発器を備えたヒートポンプ装置において、
該圧縮機の軸受を磁気軸受とし、
該磁気軸受に蒸気が通過する流路を設け、該流路を通して蒸気を磁気軸受内へ流通する構造を備えることを特徴とするヒートポンプ装置。
In a heat pump device equipped with a turbo-type compressor using steam as a working fluid, a drive for driving the compressor, and an evaporator for recovering heat from a heat source and evaporating liquid water,
The bearing of the compressor is a magnetic bearing,
A heat pump device comprising: a flow path through which steam passes in the magnetic bearing; and a structure for flowing the steam into the magnetic bearing through the flow path.
水蒸気を作動流体とするターボ式の圧縮機,該圧縮機を駆動する駆動機,熱源から熱を回収して液水を蒸発させる蒸発器を備えたヒートポンプ装置において、
該圧縮機の軸受を磁気軸受とし、
該磁気軸受と該蒸発器とを連通する流路を設け、該流路を通して該蒸発器内の蒸気を該磁気軸受内部に供給することを特徴とするヒートポンプ装置。
In a heat pump device comprising a turbo compressor using water vapor as a working fluid, a drive for driving the compressor, an evaporator for recovering heat from a heat source and evaporating liquid water,
The bearing of the compressor is a magnetic bearing,
A heat pump apparatus comprising: a flow path communicating with the magnetic bearing and the evaporator; and supplying the vapor in the evaporator through the flow path into the magnetic bearing.
請求項4に記載のヒートポンプ装置において、
該磁気軸受と該圧縮機の入口部を連通する流路を設け、該流路を通して該磁気軸受内の蒸気を該圧縮機の入口部に供給する構造とすることを特徴とするヒートポンプ装置。
The heat pump device according to claim 4,
A heat pump device comprising a flow path that communicates between the magnetic bearing and an inlet portion of the compressor, and configured to supply steam in the magnetic bearing to the inlet portion of the compressor through the flow path.
水蒸気を作動流体とするターボ式の圧縮機,該圧縮機を駆動する駆動機,熱源から熱を回収して液水を蒸発させる蒸発器を備えたヒートポンプ装置において、
圧縮機の軸受を磁気軸受とし、
該磁気軸受と圧縮機出口部を連通させる流路を設け、該流路を通して該圧縮機の出口部の蒸気を該磁気軸受に供給する構造とすることを特徴とするヒートポンプ装置。
In a heat pump device comprising a turbo compressor using water vapor as a working fluid, a drive for driving the compressor, an evaporator for recovering heat from a heat source and evaporating liquid water,
The compressor bearing is a magnetic bearing,
A heat pump device comprising a flow path for communicating the magnetic bearing and a compressor outlet, and supplying steam from the outlet of the compressor to the magnetic bearing through the flow path.
請求項6に記載のヒートポンプ装置において、
該磁気軸受と該圧縮機の入口部を連通させる流路を設け、該流路を通して該磁気軸受内の蒸気を該圧縮機の入口部に供給する構造とすることを特徴とするヒートポンプ装置。
In the heat pump device according to claim 6,
A heat pump device comprising a flow path for communicating the magnetic bearing and an inlet portion of the compressor, and supplying the vapor in the magnetic bearing to the inlet portion of the compressor through the flow path.
請求項3〜請求項7のいずれかに記載のヒートポンプ装置において、
蒸気を該磁気軸受へ流通させる経路に弁を設け、
該弁を制御することによって該磁気軸受への蒸気の流通を制御することを特徴とするヒートポンプ装置。
In the heat pump device according to any one of claims 3 to 7,
A valve is provided in a path for circulating steam to the magnetic bearing,
A heat pump device that controls the flow of steam to the magnetic bearing by controlling the valve.
請求項1〜請求項8のいずれかに記載のヒートポンプ装置において、
該磁気軸受内の水分を外部へ取り出すための、ドレンを設けることを特徴とするヒートポンプ装置。
In the heat pump device according to any one of claims 1 to 8,
A heat pump device comprising a drain for taking out moisture in the magnetic bearing to the outside.
水蒸気を生成する蒸発器と、生成された水蒸気を作動流体として該水蒸気を圧縮する圧縮機と、該圧縮機で圧縮された水蒸気を熱利用設備に供給可能な供給系統とを備え、該圧縮機の回転軸の軸受を磁気軸受とすることを特徴とするヒートポンプ装置。   An evaporator for generating water vapor, a compressor for compressing the water vapor using the generated water vapor as a working fluid, and a supply system capable of supplying the water vapor compressed by the compressor to a heat utilization facility. A heat pump apparatus characterized in that the bearing of the rotating shaft is a magnetic bearing. 水蒸気を生成する蒸発器と、生成された水蒸気を作動流体として該水蒸気を圧縮する圧縮機と、該圧縮機で圧縮された水蒸気を熱利用設備に供給可能な供給系統とを備えたヒートポンプ装置の制御方法であって、該圧縮機の回転軸の軸受を磁気軸受とし、回転軸の変位センサの測定値に基づき該磁気軸受の電磁力を制御することを特徴とするヒートポンプ装置の制御方法。


A heat pump apparatus comprising: an evaporator that generates water vapor; a compressor that compresses the water vapor using the generated water vapor as a working fluid; and a supply system that can supply the water vapor compressed by the compressor to heat utilization equipment A control method for a heat pump apparatus, wherein the bearing of the rotary shaft of the compressor is a magnetic bearing, and the electromagnetic force of the magnetic bearing is controlled based on a measured value of a displacement sensor of the rotary shaft.


JP2006040112A 2006-02-17 2006-02-17 Heat pump device and control method thereof Pending JP2007218507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006040112A JP2007218507A (en) 2006-02-17 2006-02-17 Heat pump device and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006040112A JP2007218507A (en) 2006-02-17 2006-02-17 Heat pump device and control method thereof

Publications (1)

Publication Number Publication Date
JP2007218507A true JP2007218507A (en) 2007-08-30

Family

ID=38496010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006040112A Pending JP2007218507A (en) 2006-02-17 2006-02-17 Heat pump device and control method thereof

Country Status (1)

Country Link
JP (1) JP2007218507A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037197A (en) * 2010-08-11 2012-02-23 Miura Co Ltd Heat pump type steam generator
JP2012037196A (en) * 2010-08-11 2012-02-23 Miura Co Ltd Heat pump type steam generator
JP2016514241A (en) * 2013-02-21 2016-05-19 ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company Lubrication and cooling system
CN115822988A (en) * 2023-02-14 2023-03-21 浙江镕达永能压缩机有限公司 Centrifugal compressor and inlet temperature control method of centrifugal compressor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037197A (en) * 2010-08-11 2012-02-23 Miura Co Ltd Heat pump type steam generator
JP2012037196A (en) * 2010-08-11 2012-02-23 Miura Co Ltd Heat pump type steam generator
JP2016514241A (en) * 2013-02-21 2016-05-19 ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company Lubrication and cooling system
US10197316B2 (en) 2013-02-21 2019-02-05 Johnson Controls Technology Company Lubrication and cooling system
US10941967B2 (en) 2013-02-21 2021-03-09 Johnson Controls Technology Company Lubrication and cooling system
CN115822988A (en) * 2023-02-14 2023-03-21 浙江镕达永能压缩机有限公司 Centrifugal compressor and inlet temperature control method of centrifugal compressor

Similar Documents

Publication Publication Date Title
JP6259473B2 (en) Lubrication and cooling system
JP5151014B2 (en) HEAT PUMP DEVICE AND HEAT PUMP OPERATION METHOD
JP6093856B2 (en) Equipment that generates electrical energy using the circulation flow of the organic Rankine cycle
JP7266707B2 (en) Power generation system and method of generating power by operation of such power generation system
US5329771A (en) Method for securing the lubrication of bearings in a hermetic high-speed machine
JP4457138B2 (en) Compressor and heat pump system
KR101325350B1 (en) Power generating apparatus
EP1985946B1 (en) Heat pump system and method for operating a heat pump system
JP5866819B2 (en) Waste heat generator
JP4714099B2 (en) Bearing lubricator for compression refrigerator
US11585231B2 (en) Device and method for operating volumetric expansion machines
JP4779741B2 (en) Heat pump system, shaft sealing method of heat pump system, modification method of heat pump system
JP2008082622A (en) Compression type refrigerating device
JP2005345084A (en) Exhaust heat recovering refrigeration air conditioning system
JP2008082623A (en) Compression type refrigerating device
JP2007218507A (en) Heat pump device and control method thereof
JP2004044954A (en) Turbo refrigerating machine comprising compressor with gas bearing and its operating method
JP2008014533A (en) Oil recovering device of compression type refrigerating machine
JP2010060202A (en) Cooling structure in motor for refrigerator
JP6004004B2 (en) Turbo refrigerator
JP2008164204A (en) Heat pump system
JPH11107709A (en) Binary power generating system
BE1027172B1 (en) Power generation system and method of generating power using such power generation system
JP2014231820A (en) Binary driving device