JP4714099B2 - Bearing lubricator for compression refrigerator - Google Patents

Bearing lubricator for compression refrigerator Download PDF

Info

Publication number
JP4714099B2
JP4714099B2 JP2006186744A JP2006186744A JP4714099B2 JP 4714099 B2 JP4714099 B2 JP 4714099B2 JP 2006186744 A JP2006186744 A JP 2006186744A JP 2006186744 A JP2006186744 A JP 2006186744A JP 4714099 B2 JP4714099 B2 JP 4714099B2
Authority
JP
Japan
Prior art keywords
lubricating oil
refrigerant
condenser
bearing
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006186744A
Other languages
Japanese (ja)
Other versions
JP2008014577A (en
Inventor
修行 井上
修一郎 本田
淳 金子
忠司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2006186744A priority Critical patent/JP4714099B2/en
Publication of JP2008014577A publication Critical patent/JP2008014577A/en
Application granted granted Critical
Publication of JP4714099B2 publication Critical patent/JP4714099B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は圧縮式冷凍機の軸受潤滑装置に関するものである。   The present invention relates to a bearing lubrication device for a compression refrigerator.

従来、圧縮式冷凍機(蒸気圧縮式冷凍機)は、電動機によって駆動される圧縮機と凝縮器と蒸発器とを冷媒配管で連結して構成されている。また圧縮式冷凍機は潤滑が必要で、例えば上記圧縮機及び電動機の軸受を潤滑する潤滑油を供給する潤滑油タンクが設置されている。潤滑油は冷媒と相溶性のあるものを用いており、軸受の潤滑系から漏れ出した潤滑油は、運転中、冷媒サイクルに溶け込むが、潤滑油中にも冷媒が溶け込むことになる。軸受潤滑に供給する潤滑油は、適正な粘性を保持する必要があり、現実的には潤滑油の温度と濃度(冷媒と潤滑油の溶液)を調整することになる。   Conventionally, a compression refrigerator (vapor compression refrigerator) is configured by connecting a compressor driven by an electric motor, a condenser, and an evaporator with a refrigerant pipe. Further, the compression refrigerator needs lubrication. For example, a lubricating oil tank for supplying lubricating oil for lubricating the compressor and the motor bearing is installed. The lubricating oil that is compatible with the refrigerant is used, and the lubricating oil leaked from the bearing lubrication system dissolves in the refrigerant cycle during operation, but the refrigerant also dissolves in the lubricating oil. The lubricating oil supplied to the bearing lubrication needs to maintain an appropriate viscosity, and in reality, the temperature and concentration of the lubricating oil (refrigerant and lubricating oil solution) are adjusted.

一方潤滑油は軸受の冷却をも兼ねており、機械損失による発熱分を除去し、潤滑油自身は温度上昇している。この熱量を潤滑油系から除去するため、油冷却器を設置し、従来はこの熱量を(即ち油冷却器を冷却して蒸発した冷媒蒸気を)蒸発器に戻しており、蒸発器の負荷となっていた。   On the other hand, the lubricating oil also serves as cooling of the bearing, removes the heat generated by mechanical loss, and the lubricating oil itself rises in temperature. In order to remove this amount of heat from the lubricating oil system, an oil cooler is installed, and conventionally, this amount of heat (i.e., the refrigerant vapor evaporated by cooling the oil cooler) is returned to the evaporator. It was.

圧縮機は、電動機、軸受、増速ギアを含めて密閉化しており、上述のように潤滑油は冷媒蒸気を吸収して冷媒との混合溶液になっている。一方、軸受或いは増速ギア部から少量の潤滑油が漏れ出て冷媒中に混入する。長期間の潤滑油漏出により、潤滑油系統の油不足による循環不能が生じるので、冷媒液中から潤滑油を濃縮して回収し、潤滑油系統に戻す操作もしている。この際、潤滑油と共に冷媒が潤滑油系統に入るが、過剰な冷媒は蒸発して、潤滑油タンクから均圧管を通して、蒸発器に戻される。   The compressor is hermetically sealed including an electric motor, a bearing, and a speed increasing gear. As described above, the lubricating oil absorbs the refrigerant vapor and becomes a mixed solution with the refrigerant. On the other hand, a small amount of lubricating oil leaks out from the bearing or the speed increasing gear and is mixed into the refrigerant. Since long-term leakage of lubricating oil causes inability to circulate due to insufficient oil in the lubricating oil system, the lubricating oil is concentrated and recovered from the refrigerant liquid and returned to the lubricating oil system. At this time, the refrigerant enters the lubricating oil system together with the lubricating oil, but the excess refrigerant evaporates and is returned from the lubricating oil tank to the evaporator through the pressure equalizing pipe.

冷凍機の起動時には、蒸発器圧力、温度が急激に低下する(常温から冷水を冷却する蒸発温度に変化する。空調条件で言えば、夏期の外気温30℃付近から蒸発温度6℃に変化する。)。この際、潤滑油中に溶け込んでいる冷媒が蒸発してきて、粘性の高い潤滑油中に気泡となって現れる。即ちフォーミングが生じる。フォーミングにより、潤滑油の見かけの体積が急膨張し、潤滑油タンクから流出したり、或いは潤滑油ポンプでの油圧が上昇しないなど悪影響が生じる。このフォーミング現象を抑えるため、停止中はヒーターで潤滑油の温度を上げ(60〜65℃程度)、潤滑油が冷媒を吸収するのを抑え、潤滑油中の冷媒濃度を低く保持している。しかし停止中の温度が高い分、放熱が増え、ヒーターの電力が無駄になる。また前記蒸発器圧力などの急変を避けるため、潤滑油タンクの圧力を徐々に低下させるように構成したりしている。しかしながらそうすると、圧縮式冷凍機起動時の立ち上がり時間が長くなってしまう。
実開平3−73869号公報
At start-up of the refrigerator, the evaporator pressure and temperature drop rapidly (changes from normal temperature to the evaporation temperature that cools cold water. In terms of air conditioning conditions, the evaporation temperature changes from around 30 ° C in the summer to an evaporation temperature of 6 ° C. .) At this time, the refrigerant dissolved in the lubricating oil evaporates and appears as bubbles in the highly viscous lubricating oil. That is, forming occurs. Due to the forming, the apparent volume of the lubricating oil rapidly expands, causing adverse effects such as outflow from the lubricating oil tank or an increase in hydraulic pressure at the lubricating oil pump. In order to suppress this forming phenomenon, the temperature of the lubricating oil is raised by a heater (about 60 to 65 ° C.) during stoppage to prevent the lubricating oil from absorbing the refrigerant, and the refrigerant concentration in the lubricating oil is kept low. However, the higher the temperature during stoppage, the more heat dissipation, and the heater power is wasted. In order to avoid a sudden change in the evaporator pressure or the like, the pressure in the lubricating oil tank is gradually decreased. However, if it does so, the rise time at the time of a compression type refrigerator start will become long.
Japanese Utility Model Publication No. 3-73869

本発明は上述の点に鑑みてなされたものでありその目的は、潤滑油の適正な粘度を保持することができるとともに、冷凍機への負荷を増大させない圧縮式冷凍機の軸受潤滑装置を提供することにある。   The present invention has been made in view of the above points, and an object thereof is to provide a bearing lubrication device for a compression type refrigerator that can maintain an appropriate viscosity of the lubricating oil and does not increase the load on the refrigerator. There is to do.

また本発明は、冷凍機運転中にフォーミング等による潤滑油の供給不能な状態を避けることができる圧縮式冷凍機の軸受潤滑装置を提供することにある。   It is another object of the present invention to provide a bearing lubrication device for a compression type refrigerator that can avoid a state in which lubricating oil cannot be supplied due to forming or the like during operation of the refrigerator.

本願請求項1に記載の発明は、圧縮機と、凝縮器と、蒸発器とを冷媒を循環する冷媒配管によって連結するとともに、上記圧縮機の軸受を潤滑する潤滑油が貯留されている潤滑油タンクを具備してなる圧縮式冷凍機において、前記潤滑油タンク内の潤滑油を油ポンプで軸受に供給するとともに軸受を潤滑した潤滑油を潤滑油タンクに戻す潤滑油循環系を設け、潤滑油タンクを凝縮器の圧力と均圧になるように結び、前記潤滑油循環系に前記冷媒によって潤滑油を冷却する油冷却手段を設けると共に、この油冷却手段に用いる冷媒が凝縮器から供給されて凝縮器に戻されることを特徴とする圧縮式冷凍機の軸受潤滑装置にある。
上記圧縮機の軸受は、圧縮機を駆動する電動機の両側など、複数個であっても良い。潤滑油タンク内には、潤滑油液面が存在し、上部は冷媒蒸気、下部は潤滑油と冷媒の混合溶液となる。油冷却手段の設置場所は、潤滑油タンク内、或いは潤滑油供給系の配管中が好ましい。なお、この油冷却手段は、凝縮器から供給される冷媒液を、直接潤滑油に混入して蒸発熱にて冷却し、蒸発冷媒を凝縮器に戻しても良い。
According to the first aspect of the present invention, a compressor, a condenser, and an evaporator are connected by a refrigerant pipe that circulates a refrigerant, and a lubricating oil that lubricates a bearing of the compressor is stored. In the compression type refrigerator having a tank, a lubricating oil circulation system is provided for supplying the lubricating oil in the lubricating oil tank to the bearing with an oil pump and returning the lubricating oil lubricated to the bearing to the lubricating oil tank. An oil cooling means for cooling the lubricating oil by the refrigerant is provided in the lubricating oil circulation system, and the refrigerant used for the oil cooling means is supplied from the condenser. It is in the bearing lubrication device of the compression type refrigerator which is returned to the condenser.
There may be a plurality of bearings for the compressor, such as both sides of an electric motor that drives the compressor. In the lubricating oil tank, there is a lubricating oil level, the upper part being refrigerant vapor and the lower part being a mixed solution of lubricating oil and refrigerant. The installation location of the oil cooling means is preferably in the lubricating oil tank or in the piping of the lubricating oil supply system. The oil cooling means may mix the refrigerant liquid supplied from the condenser directly into the lubricating oil and cool it with heat of evaporation, and return the evaporated refrigerant to the condenser.

本願請求項2に記載の発明は、前記軸受を軸受室で囲み、圧縮機吐出側圧力部及び圧縮機を駆動する駆動機のロータの回転雰囲気からラビリンス或いは狭い隙間で分離すると共に、この軸受室を潤滑油タンクと均圧になるように結んだことを特徴とする請求項1に記載の圧縮式冷凍機の軸受潤滑装置にある。   According to the second aspect of the present invention, the bearing is surrounded by a bearing chamber, separated from the rotating atmosphere of the compressor discharge side pressure section and the rotor of the driving machine that drives the compressor by a labyrinth or a narrow gap, and the bearing chamber 2. The bearing lubrication device for a compression refrigeration machine according to claim 1, wherein the pressure is connected to the lubricating oil tank so as to have a uniform pressure.

本願請求項3に記載の発明は、潤滑油温度と、凝縮温度或いは凝縮温度に関連する物理量とを関連付けたデータを用いて油冷却手段を制御する制御手段を有することを特徴とする請求項1又は2に記載の圧縮式冷凍機の軸受潤滑装置にある。
凝縮温度に関連する物理量とは、例えば凝縮圧力、冷却水温度等である。
The invention according to claim 3 of the present application has a control means for controlling the oil cooling means using data relating the lubricating oil temperature and the condensation temperature or the physical quantity related to the condensation temperature. Or it exists in the bearing lubrication apparatus of the compression type refrigerator of Claim 2.
The physical quantity related to the condensation temperature is, for example, a condensation pressure, a cooling water temperature, or the like.

本願請求項4に記載の発明は、冷却水を直列に供給する複数の凝縮器を持つ圧縮式冷凍機であって、冷却水を最初に供給する凝縮器に潤滑油タンクを均圧させることを特徴とする請求項1又は2又は3に記載の圧縮式冷凍機の軸受潤滑装置にある。   The invention according to claim 4 of the present application is a compression type refrigerator having a plurality of condensers that supply cooling water in series, wherein the lubricating oil tank is pressure-equalized by the condenser that first supplies the cooling water. The bearing lubrication device for a compression type refrigerator according to claim 1, 2, or 3.

本願請求項5に記載の発明は、油冷却手段を冷媒と熱交換を行う熱交換器にすると共に、熱交換器からの冷媒の戻しを、凝縮器と蒸発器と選択的に変更するか、あるいは凝縮器とエコノマイザーと選択的に変更する切替え手段を設けたことを特徴とする請求項1乃至4の内の何れかに記載の圧縮式冷凍機の軸受潤滑装置にある。
冷媒は、圧縮式冷凍機起動時と運転中は凝縮器に戻し、停止時は蒸発器に戻すことが好適である。
The invention according to claim 5 of the present invention uses the oil cooling means as a heat exchanger that exchanges heat with the refrigerant, and selectively changes the return of the refrigerant from the heat exchanger between the condenser and the evaporator, Alternatively, there is provided a bearing lubrication device for a compression type refrigerator according to any one of claims 1 to 4, further comprising switching means for selectively changing between a condenser and an economizer.
It is preferable to return the refrigerant to the condenser when the compression refrigerator is started and during operation, and to the evaporator when the refrigerant is stopped.

本願請求項6に記載の発明は、冷凍機停止時、圧縮機の吸込みベーンを徐々に閉止すると共に、羽根車回転速度も徐々に低下させながら停止させる制御手段を有することを特徴とする請求項1乃至5の内の何れかに記載の圧縮式冷凍機の軸受潤滑装置にある。
即ち凝縮温度の急変を避けるような圧縮式冷凍機の運転を行う。凝縮温度の急変は圧縮式冷凍機停止時がもっとも激しい。
The invention according to claim 6 of the present invention has control means for gradually closing the suction vane of the compressor when the refrigerator is stopped, and stopping the compressor while gradually reducing the impeller rotational speed. It exists in the bearing lubrication apparatus of the compression-type refrigerator in any one of 1 thru | or 5.
That is, the compression refrigerator is operated so as to avoid a sudden change in the condensation temperature. The sudden change in condensation temperature is most severe when the compression refrigerator is stopped.

請求項1に記載の発明によれば、潤滑油タンクを凝縮器の圧力と均圧になるように結ぶとともに、油冷却手段に用いる冷媒を凝縮器から供給して凝縮器に戻すことで軸受の機械損失分を凝縮器経由で冷却水に放熱したので、潤滑油の温度と濃度を適正な値に容易に調整でき、また損失を出さずに省エネルギー化を図ることができる。   According to the first aspect of the present invention, the lubricating oil tank is tied so as to equalize the pressure of the condenser, and the refrigerant used for the oil cooling means is supplied from the condenser and returned to the condenser to return the bearing to the bearing. Since the mechanical loss is dissipated to the cooling water via the condenser, the temperature and concentration of the lubricating oil can be easily adjusted to an appropriate value, and energy can be saved without causing loss.

請求項2に記載の発明によれば、軸受室がほぼ凝縮器の圧力となり、圧縮機の吐出圧或いは電動機の内圧とほぼ同等で圧力差があまりなくなり、冷媒蒸気の出入は僅かになる。従って軸受室の境を簡単なラビリンス或いは小さな隙間の隔壁として簡易化することができる。   According to the second aspect of the present invention, the bearing chamber is almost at the pressure of the condenser, and is almost equal to the discharge pressure of the compressor or the internal pressure of the electric motor. Therefore, the boundary of the bearing chamber can be simplified as a simple labyrinth or a partition wall with a small gap.

請求項3に記載の発明によれば、例えば図8を用いて、潤滑油(冷媒との混合溶液)の温度を冷媒露点(凝縮温度)と関連付けることで、冷媒濃度を略一定に制御することができる。即ち潤滑油の温度を冷媒露点に対応する濃度一定の溶液温度線に追従させれば、冷媒濃度変化は生じないので、フォーミングを防ぐことができる。   According to the third aspect of the present invention, the refrigerant concentration is controlled to be substantially constant by associating the temperature of the lubricating oil (mixed solution with the refrigerant) with the refrigerant dew point (condensation temperature) using, for example, FIG. Can do. That is, if the temperature of the lubricating oil is made to follow a solution temperature line having a constant concentration corresponding to the refrigerant dew point, the refrigerant concentration does not change, so that forming can be prevented.

請求項4に記載の発明によれば、負荷による凝縮温度の変化が少ない冷却水入口側の凝縮器に潤滑油タンクを均圧させたので、凝縮器露点の急激な温度低下に潤滑油温度が追従できないときに生じる恐れのあるフォーミングを防止できる。   According to the fourth aspect of the present invention, since the lubricating oil tank is pressure-equalized in the condenser on the cooling water inlet side where the change in the condensing temperature due to the load is small, the lubricating oil temperature is reduced due to the rapid temperature drop of the condenser dew point. Forming that may occur when it cannot follow is prevented.

請求項5に記載の発明によれば、潤滑油タンクの液面よりも下部で潤滑油温度を低下させておけば、液面より下では蒸気に接触せず、気液平衡関係はないので、温度を下げても冷媒濃度が上昇することはなく、圧力低下時に冷媒蒸気の発生は抑えられ、フォーミングを防ぐことができる。また凝縮器露点が急激に温度低下する際、油冷却手段から戻す冷媒を凝縮器から蒸発器(又はエコノマイザー)に導くように変更することで、蒸発器温度(又はエコノマイザー温度)相当で冷媒を冷却することができ、潤滑油タンク液面より下の潤滑油の温度を効果的に下げることができ、フォーミングを防止できる。つまり油冷却手段の冷却能力を急激に上げて対応することができる。   According to the invention described in claim 5, if the lubricating oil temperature is lowered below the liquid level of the lubricating oil tank, the vapor does not come into contact below the liquid level and there is no gas-liquid equilibrium relationship. Even if the temperature is lowered, the refrigerant concentration does not increase, and the generation of refrigerant vapor is suppressed when the pressure is reduced, and forming can be prevented. In addition, when the condenser dew point suddenly drops in temperature, the refrigerant returned from the oil cooling means is changed so as to be guided from the condenser to the evaporator (or economizer), so that the refrigerant is equivalent to the evaporator temperature (or economizer temperature). Can be cooled, the temperature of the lubricating oil below the surface of the lubricating oil tank can be effectively lowered, and forming can be prevented. That is, the cooling capacity of the oil cooling means can be increased rapidly to cope with it.

凝縮温度の急変は冷凍機停止時がもっとも激しいが、請求項6に記載の発明によれば、冷凍機停止時における凝縮温度の急変を避ける圧縮式冷凍機の運転を行うことができ、フォーミングの防止ができる。   The sudden change in the condensation temperature is most severe when the refrigerator is stopped. However, according to the invention described in claim 6, the compression refrigerator can be operated to avoid the sudden change in the condensation temperature when the refrigerator is stopped. It can be prevented.

以下、本発明の実施形態を図面を参照して詳細に説明する。
〔第1実施形態〕
図1は本発明の第1実施形態を用いて構成される圧縮式冷凍機1−1の全体概略構成図である。同図に示すように圧縮式冷凍機1−1は、蒸気圧縮式の冷凍サイクルを行う圧縮式冷凍機であって、冷媒を封入したクローズドシステムで構成され、具体的に言えば、冷水(被冷却流体)から熱を奪って冷媒が蒸発し冷凍効果を発揮する蒸発器11と、電動機(駆動機)15によって回転駆動されて前記冷媒蒸気を圧縮して高圧蒸気にする圧縮機13と、高圧蒸気を冷却水(冷却流体)で冷却して凝縮させる凝縮器17と、前記凝縮した冷媒を減圧して膨張させて蒸発器11に送る膨張機19とを、冷媒を循環する冷媒配管21によって連結して構成されている。さらにこの圧縮式冷凍機1−1は、電動機15や各種ポンプの駆動制御や、各種開閉・切替え手段の開閉・切替え制御等を行う図示しない制御機器(制御手段)を具備している。圧縮機13と電動機15の軸は軸受23により回転自在に支持されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[First Embodiment]
FIG. 1 is an overall schematic configuration diagram of a compression refrigerator 1-1 configured by using the first embodiment of the present invention. As shown in the figure, the compression refrigerator 1-1 is a compression refrigerator that performs a vapor compression refrigeration cycle, and includes a closed system in which a refrigerant is sealed. An evaporator 11 that removes heat from the cooling fluid) and evaporates the refrigerant to exert a refrigeration effect; a compressor 13 that is rotationally driven by an electric motor (driver) 15 to compress the refrigerant vapor into high-pressure vapor; A condenser 17 that cools and condenses steam with cooling water (cooling fluid) and an expander 19 that decompresses and expands the condensed refrigerant and sends it to the evaporator 11 are connected by a refrigerant pipe 21 that circulates the refrigerant. Configured. The compression refrigerator 1-1 further includes a control device (control means) (not shown) that performs drive control of the electric motor 15 and various pumps, and opening / closing / switching control of various opening / closing / switching means. The shafts of the compressor 13 and the electric motor 15 are rotatably supported by bearings 23.

この圧縮式冷凍機1−1は、圧縮機13の軸受23を潤滑する潤滑油を貯留している潤滑油タンク25を具備している。軸受23はこの実施形態では電動機15の両側に設置されている。潤滑油タンク25には、油ポンプ27を介して軸受23に潤滑油を供給する配管29aと、軸受23を潤滑した潤滑油を潤滑油タンク25に戻す配管29bとが取り付けられ、これら配管29a,29bと潤滑油タンク25と油ポンプ27によって潤滑油循環系が構成されている。なお軸受23を転がり軸受とすれば、従来のすべり軸受よりも、潤滑油の許容粘性範囲を広く取ることができ、潤滑油管理が容易になる。   The compression refrigerator 1-1 includes a lubricating oil tank 25 that stores lubricating oil that lubricates the bearings 23 of the compressor 13. In this embodiment, the bearings 23 are installed on both sides of the electric motor 15. A pipe 29a for supplying lubricating oil to the bearing 23 via the oil pump 27 and a pipe 29b for returning the lubricating oil that lubricated the bearing 23 to the lubricating oil tank 25 are attached to the lubricating oil tank 25. 29b, the lubricating oil tank 25 and the oil pump 27 constitute a lubricating oil circulation system. If the bearing 23 is a rolling bearing, the allowable viscosity range of the lubricating oil can be made wider than that of the conventional sliding bearing, and management of the lubricating oil becomes easy.

潤滑油タンク25内には潤滑油液面が存在し、その上部は冷媒蒸気、下部は潤滑油と冷媒の溶液(以下場合に応じて「混合溶液」又は「潤滑油」という)となっている。そして配管29aは潤滑油タンク25の下部に接続されることで潤滑油タンク25内の潤滑油と冷媒の混合溶液が油ポンプ27によって軸受23に送られ、配管29bは潤滑油タンク25の上部に接続されることで軸受23から戻ってきた混合溶液を潤滑油タンク25の冷媒蒸気空間に導入する。潤滑油タンク25内には、油冷却手段として熱交換器(以下「油冷却器」という)33が設置されている。この油冷却器33は冷媒によって潤滑油を冷却するものであり、油冷却器33に用いる冷媒は凝縮器17の出口側から供給されて凝縮器17の入口側に戻される配管34によって接続されている。なお凝縮器17から油冷却器33に向かう配管34中にはポンプ35が設置され、またポンプ35の下流側で油冷却器33に向かう配管34が分岐され、分岐した側の配管36を電動機15に接続し、これによってポンプ35を駆動すれば、凝縮器17の出口からの冷媒が油冷却器33と電動機15とに供給され、両者を冷却した後、蒸気となって凝縮器17の入口側に戻される構成となっている。   In the lubricating oil tank 25, there is a lubricating oil liquid level, the upper part of which is refrigerant vapor, and the lower part is a solution of lubricating oil and refrigerant (hereinafter referred to as “mixed solution” or “lubricating oil” depending on the case). . The piping 29 a is connected to the lower portion of the lubricating oil tank 25, so that the mixed solution of lubricating oil and refrigerant in the lubricating oil tank 25 is sent to the bearing 23 by the oil pump 27, and the piping 29 b is connected to the upper portion of the lubricating oil tank 25. The mixed solution returned from the bearing 23 by being connected is introduced into the refrigerant vapor space of the lubricating oil tank 25. A heat exchanger (hereinafter referred to as “oil cooler”) 33 is installed in the lubricating oil tank 25 as oil cooling means. The oil cooler 33 cools the lubricating oil with a refrigerant, and the refrigerant used in the oil cooler 33 is connected from a pipe 34 that is supplied from the outlet side of the condenser 17 and returned to the inlet side of the condenser 17. Yes. A pump 35 is installed in the pipe 34 from the condenser 17 to the oil cooler 33, and the pipe 34 going to the oil cooler 33 is branched on the downstream side of the pump 35, and the branched pipe 36 is connected to the motor 15. When the pump 35 is driven by this, the refrigerant from the outlet of the condenser 17 is supplied to the oil cooler 33 and the electric motor 15, and after cooling both, it becomes steam and becomes the inlet side of the condenser 17. It is configured to be returned to.

即ち電動機15に供給された冷媒液は電動機15を冷却した後蒸気となった再び凝縮器17に戻される。一方潤滑油は、潤滑油タンク25内の油冷却器33にて、凝縮器17からの冷媒液で冷却され、冷媒液は蒸発して凝縮器17に戻り、冷却熱量を凝縮器17(冷却水)に放出する。またこの潤滑油タンク25には油ポンプ27の下流側の配管29aに潤滑油タンク25に潤滑油を戻す油逃し配管37が接続され、配管37中には圧力調整用の油逃し弁39が接続されている。油逃し弁39で潤滑油タンク25に所定圧力以上となった潤滑油を戻す場合は、潤滑油タンク25中の潤滑油の液面の下に戻すのが望ましい。なお油冷却器33は潤滑油タンク25の外に設けても良く、その場合、油ポンプ27の吐出口から油逃し弁39への分岐点の間に油冷却器33を設けるのが良い。   That is, the refrigerant liquid supplied to the electric motor 15 is returned to the condenser 17 that has become steam after the electric motor 15 is cooled. On the other hand, the lubricating oil is cooled by the refrigerant liquid from the condenser 17 in the oil cooler 33 in the lubricating oil tank 25, the refrigerant liquid evaporates and returns to the condenser 17, and the amount of cooling heat is reduced to the condenser 17 (cooling water). ). The lubricating oil tank 25 is connected with an oil relief pipe 37 for returning the lubricating oil to the lubricating oil tank 25 to a pipe 29 a on the downstream side of the oil pump 27, and an oil relief valve 39 for adjusting the pressure is connected to the piping 37. Has been. In the case where the lubricating oil that has become a predetermined pressure or higher is returned to the lubricating oil tank 25 by the oil relief valve 39, it is desirable to return it below the level of the lubricating oil in the lubricating oil tank 25. The oil cooler 33 may be provided outside the lubricating oil tank 25. In this case, the oil cooler 33 is preferably provided between the branch point from the discharge port of the oil pump 27 to the oil relief valve 39.

この実施形態では圧縮機13の軸受23をころがり軸受で構成している。そして軸受23がころがり軸受の場合、ボール或いはローラーに潤滑油を噴射或いは流下させて潤滑し、潤滑油タンク25に戻す。潤滑油中の冷媒の一部は軸受23内の空間では冷媒蒸気になっており、潤滑油タンク25と下記する軸受室70との間に図示しない均圧管71(図10参照)を接続して均圧をとるのが潤滑油戻しの点から好ましい。   In this embodiment, the bearing 23 of the compressor 13 is constituted by a rolling bearing. When the bearing 23 is a rolling bearing, the lubricating oil is sprayed or flowed down on the balls or rollers to be lubricated and returned to the lubricating oil tank 25. Part of the refrigerant in the lubricating oil becomes refrigerant vapor in the space in the bearing 23, and a pressure equalizing pipe 71 (see FIG. 10) (not shown) is connected between the lubricating oil tank 25 and the bearing chamber 70 described below. It is preferable to take a uniform pressure from the viewpoint of returning the lubricating oil.

潤滑油タンク25と凝縮器17とは均圧管31によって連結されている。従って潤滑油タンク25内では、空間が凝縮器17に均圧しており、軸受23から戻ってきた潤滑油が潤滑油タンク25の上部から流下していく間に、冷媒蒸気空間に暴露され、ほぼ気液平衡関係で潤滑油の冷媒濃度が決まる。ここで図7〜図9は潤滑油(混合溶液)の特性例を示す図であり、図7は混合溶液の各温度における冷媒濃度と冷媒圧力の関係を示す図、図8は各冷媒濃度における冷媒露点(冷媒圧力を飽和温度に換算したもの)と、混合溶液温度との関係を示す図、図9は潤滑油の粘性を示す図である。そして例えば凝縮温度35℃、混合溶液温度55℃で定常運転していると、図8から混合溶液の冷媒濃度は約20%であることが分かる。潤滑油タンク25内の潤滑油溜まり部は、凝縮器17からの冷媒で冷却され、例えば40℃になって軸受23に供給される。軸受23の機械損失分で混合溶液温度が上昇し、先ほどの55℃になって潤滑油タンク25に戻る。つまり例えば図8に示す混合溶液の温度を露点と関連付けたデータを用いて油冷却器25を制御手段で制御することで、冷媒濃度をほぼ一定にすることも可能である。逆に混合溶液の温度を露点に追従させれば、冷媒濃度変化は生じない。即ちフォーミングを防ぐことができる。このように潤滑油(混合溶液)を簡易な構成で容易に適正な粘度(温度と濃度)に保持することができる。   The lubricating oil tank 25 and the condenser 17 are connected by a pressure equalizing pipe 31. Therefore, in the lubricating oil tank 25, the space is equalized in the condenser 17, and the lubricating oil returned from the bearing 23 is exposed to the refrigerant vapor space while flowing down from the upper part of the lubricating oil tank 25. The refrigerant concentration of the lubricating oil is determined by the vapor-liquid equilibrium relationship. 7 to 9 are diagrams showing characteristic examples of the lubricating oil (mixed solution). FIG. 7 is a diagram showing the relationship between the refrigerant concentration and the refrigerant pressure at each temperature of the mixed solution. FIG. FIG. 9 is a diagram showing the relationship between the refrigerant dew point (the refrigerant pressure converted into the saturation temperature) and the mixed solution temperature, and FIG. 9 is a diagram showing the viscosity of the lubricating oil. Then, for example, when the steady operation is performed at a condensation temperature of 35 ° C. and a mixed solution temperature of 55 ° C., it can be seen from FIG. 8 that the refrigerant concentration of the mixed solution is about 20%. The lubricating oil reservoir in the lubricating oil tank 25 is cooled by the refrigerant from the condenser 17 and is supplied to the bearing 23 at 40 ° C., for example. The mixed solution temperature rises due to the mechanical loss of the bearing 23, reaches 55 ° C., and returns to the lubricating oil tank 25. That is, for example, it is possible to make the refrigerant concentration substantially constant by controlling the oil cooler 25 by the control means using data relating the temperature of the mixed solution shown in FIG. 8 with the dew point. Conversely, if the temperature of the mixed solution is made to follow the dew point, the refrigerant concentration does not change. That is, forming can be prevented. Thus, the lubricating oil (mixed solution) can be easily maintained at an appropriate viscosity (temperature and concentration) with a simple configuration.

図10は電動機15及び軸受23部分の詳細図である。軸受23の部分は、電動機15内と、電動機15と圧縮機13(吐出側)の間にある。軸受23は軸受室70で囲まれ、圧縮機13吐出側圧力部及び電動機15のロータ15aの回転雰囲気からラビリンス或いは狭い隙間Lで分離されている。軸受室70は、前述のように均圧管71によって潤滑油タンク25と均圧が取られているので、ほぼ凝縮器17の圧力であり、圧縮機13の吐出圧或いは電動機15の内圧とほぼ同等であり、圧力差はあまりなく、冷媒蒸気の出入は僅かである。なお従来の軸受室は、蒸発器11に均圧を取っていたので、冷媒蒸気が圧縮機13及び電動機15から入り込む形になっており、この蒸気が蒸発器11に入っていくので、効率低下を招いていた。この実施形態の場合はこのようなことがないので、軸受室70の境は簡単なラビリンス或いは狭い隙間Lの隔壁とすることができ、簡易化を可能としている。   FIG. 10 is a detailed view of the motor 15 and the bearing 23 portion. The portion of the bearing 23 is in the electric motor 15 and between the electric motor 15 and the compressor 13 (discharge side). The bearing 23 is surrounded by a bearing chamber 70, and is separated by a labyrinth or a narrow gap L from the rotating atmosphere of the compressor 13 discharge side pressure portion and the rotor 15 a of the electric motor 15. Since the bearing chamber 70 is equalized with the lubricating oil tank 25 by the pressure equalizing pipe 71 as described above, it is almost the pressure of the condenser 17 and substantially equal to the discharge pressure of the compressor 13 or the internal pressure of the electric motor 15. Therefore, there is not much pressure difference, and the refrigerant vapor enters and exits very little. In the conventional bearing chamber, since the pressure is equalized in the evaporator 11, the refrigerant vapor enters from the compressor 13 and the electric motor 15, and this vapor enters the evaporator 11, so that the efficiency decreases. Was invited. Since this is not the case in this embodiment, the boundary of the bearing chamber 70 can be a simple labyrinth or a partition wall with a narrow gap L, and simplification is possible.

圧縮式冷凍機1−1を運転すると、蒸発器11から潤滑油分を含んだ冷媒ミストが圧縮機13の吸込部の液溜まり部a1に溜まってくる。そしてこの冷媒を潤滑油の濃度を上げて(あるいはそのまま)配管45及び配管45に接続したポンプ43によって潤滑油タンク25に回収する。60は凝縮器17から蒸発器11に向かう配管62中の加熱手段であり、潤滑油の濃度を上げる。この実施形態では、潤滑油タンク25内に設置した液面センサー41によって潤滑油の液面を測定し、所定の液面の範囲になるようポンプ43の駆動を制御する。潤滑油タンク25と液溜まり部a1には圧力差があるので、電磁ポンプ等の小容量のポンプ43を用いている。潤滑油タンク25は均圧管31によって凝縮圧力の系統に均圧しており、冷媒系統に漏れ出した潤滑油を潤滑油濃度を上げて潤滑油系統(圧縮機13の吸込部の液溜まり部a1から潤滑油タンク25)に回収するが、回収潤滑油の冷媒濃度は高く、一部の冷媒は油冷却の効果を出しながら蒸発する。蒸発した冷媒蒸気を潤滑油タンク25の均圧管31を通して凝縮系統(凝縮器17)に導く構成となっている。なお、潤滑油中の余分な冷媒は、蒸発して油を冷却することができる。従って、油冷却手段としては、凝縮器から供給される冷媒液を、直接潤滑油に混入して蒸発熱にて冷却し、蒸発冷媒を凝縮器に戻してもよい。   When the compression refrigerator 1-1 is operated, the refrigerant mist containing the lubricating oil from the evaporator 11 is accumulated in the liquid reservoir a1 of the suction portion of the compressor 13. Then, the refrigerant is collected in the lubricating oil tank 25 by increasing the concentration of the lubricating oil (or as it is) by the pipe 45 and the pump 43 connected to the pipe 45. Reference numeral 60 denotes a heating means in the pipe 62 from the condenser 17 toward the evaporator 11 and increases the concentration of the lubricating oil. In this embodiment, the liquid level of the lubricating oil is measured by the liquid level sensor 41 installed in the lubricating oil tank 25, and the drive of the pump 43 is controlled so as to be within a predetermined liquid level range. Since there is a pressure difference between the lubricating oil tank 25 and the liquid reservoir a1, a small capacity pump 43 such as an electromagnetic pump is used. The lubricating oil tank 25 is pressure-equalized into a condensing pressure system by means of a pressure equalizing pipe 31, and the lubricating oil leaked into the refrigerant system is increased in lubricating oil concentration (from the reservoir a1 of the suction portion of the compressor 13). Although the refrigerant is recovered in the lubricating oil tank 25), the refrigerant concentration of the recovered lubricating oil is high, and a part of the refrigerant evaporates while exerting an oil cooling effect. The evaporated refrigerant vapor is guided to the condensing system (condenser 17) through the pressure equalizing pipe 31 of the lubricating oil tank 25. In addition, the excess refrigerant | coolant in lubricating oil can evaporate and can cool oil. Therefore, as the oil cooling means, the refrigerant liquid supplied from the condenser may be directly mixed into the lubricating oil and cooled by the evaporation heat, and the evaporated refrigerant may be returned to the condenser.

以上のようにこの実施形態においては、軸受23の機械損失分の熱を、凝縮器17経由で冷却水に放熱したので、従来のように蒸発器11に戻す場合に比べ、省エネルギー化を図ることができる。   As described above, in this embodiment, the heat for the mechanical loss of the bearing 23 is radiated to the cooling water via the condenser 17, so that energy saving can be achieved as compared with the case of returning to the evaporator 11 as in the prior art. Can do.

なお図1の配管54は、液溜まり部a1中に溜まった冷媒液が多くなった場合にこれを蒸発器11にオーバーフローさせるもので、配管54の途中に液シール部56を設け、冷媒の逆流を防いでいる。また44は逆止弁である。   Note that the pipe 54 in FIG. 1 overflows the evaporator 11 when the refrigerant liquid accumulated in the liquid pool part a1 increases, and a liquid seal part 56 is provided in the middle of the pipe 54 so that the refrigerant flows backward. Is preventing. Reference numeral 44 denotes a check valve.

ところでフォーミングを防止する方策の一つとして、急激な凝縮温度の低下(露点低下)をさせない運転をすることも重要である。このためこの実施形態では制御手段によって、この圧縮式冷凍機1−1の停止時に、吸込みベーン13aを徐々に閉止すると共に、羽根車13bの回転速度も徐々に低下させながら停止させることとした。凝縮温度の急変は圧縮式冷凍機1−1の停止時がもっとも激しいので、このような圧縮式冷凍機1−1の停止時における凝縮温度の急変を避ける圧縮式冷凍機1−1の運転を行うことで、フォーミングを効果的に防止することができる。   By the way, as one of the measures for preventing the forming, it is also important to perform an operation that does not cause a sudden decrease in the condensing temperature (dew point). For this reason, in this embodiment, when the compression type refrigerator 1-1 is stopped by the control means, the suction vane 13a is gradually closed and the rotational speed of the impeller 13b is also gradually decreased. Since the sudden change in the condensation temperature is most severe when the compression refrigerator 1-1 is stopped, the operation of the compression refrigerator 1-1 to avoid such a sudden change in the condensation temperature when the compression refrigerator 1-1 is stopped. By doing so, forming can be effectively prevented.

〔第2実施形態〕
図2は本発明の第2実施形態を用いて構成される圧縮式冷凍機1−2の全体概略構成図である。同図に示す圧縮式冷凍機1−2において、前記図1に示す圧縮式冷凍機1−1と同一又は相当部分には同一符号を付す。なお以下で説明する事項以外の事項については、前記図1に示す実施形態と同じである。同図に示す圧縮式冷凍機1−2において前記圧縮式冷凍機1−1と相違する点は、蒸発器11の冷媒から潤滑油を回収し、潤滑油タンク25に戻す油回収手段を付け加えている点と、油冷却器33出口の配管に冷媒を凝縮器17か蒸発器11に選択的に切替え可能とする切替え手段53を設けている点である。
[Second Embodiment]
FIG. 2 is an overall schematic configuration diagram of a compression type refrigerator 1-2 configured using the second embodiment of the present invention. In the compression refrigeration machine 1-2 shown in the figure, the same or corresponding parts as those in the compression refrigeration machine 1-1 shown in FIG. Items other than those described below are the same as those in the embodiment shown in FIG. The difference between the compression type refrigerator 1-2 shown in the figure and the compression type refrigerator 1-1 is that an oil recovery means for recovering the lubricating oil from the refrigerant of the evaporator 11 and returning it to the lubricating oil tank 25 is added. And a switching means 53 that allows the refrigerant to be selectively switched to the condenser 17 or the evaporator 11 in the piping at the outlet of the oil cooler 33.

油回収手段は、蒸発器11内の潤滑油を含有している冷媒を油回収熱交換器47を経由して圧縮機13の吸込部の液溜まり部a1に導くように配管48を接続するとともに、油回収熱交換器47を通る前記冷媒を、凝縮器17から蒸発器11へ向かう配管50中の冷媒にて加熱するように構成されている。即ち凝縮器17から配管50を通して蒸発器11に導入される冷媒により、配管48中の潤滑油の混入した冷媒を加熱し、加熱されて蒸発した冷媒は圧縮機13に吸引され、一方ミストとなった油は液溜まり部a1に溜まり、回収される。蒸発器11から油回収熱交換器47への冷媒流量は、蒸発後の過熱度を過熱度検出手段49で検出し、バルブ51の開度を制御することで、所定の流量になるように調節される。その際配管50を通して蒸発器11に導入される冷媒は冷却される(熱量同一)ので、蒸発した冷媒と同熱量は蒸発器11で冷凍効果を発揮したと同じことになる。   The oil recovery means connects the pipe 48 so as to guide the refrigerant containing the lubricating oil in the evaporator 11 to the liquid reservoir a1 of the suction portion of the compressor 13 via the oil recovery heat exchanger 47. The refrigerant passing through the oil recovery heat exchanger 47 is heated by the refrigerant in the pipe 50 from the condenser 17 toward the evaporator 11. That is, the refrigerant introduced into the evaporator 11 from the condenser 17 through the pipe 50 heats the refrigerant mixed with the lubricating oil in the pipe 48, and the heated and evaporated refrigerant is sucked into the compressor 13 and becomes mist. The oil collected in the liquid reservoir a1 is collected. The refrigerant flow rate from the evaporator 11 to the oil recovery heat exchanger 47 is adjusted to a predetermined flow rate by detecting the degree of superheat after evaporation by the superheat degree detection means 49 and controlling the opening degree of the valve 51. Is done. At this time, since the refrigerant introduced into the evaporator 11 through the pipe 50 is cooled (the same amount of heat), the same amount of heat as that of the evaporated refrigerant is the same as when the refrigeration effect is exhibited in the evaporator 11.

一方切替え手段53は、図示しない制御手段によって、通常は油冷却器33出口の冷媒蒸気を凝縮器17に導いているが、冷媒の凝縮温度の低下速度を検出し、検出した低下速度が所定の速度以上であれば、これを切替えて油冷却器33出口の冷媒蒸気を蒸発器11に導き、これによって蒸発温度レベルで潤滑油の冷却を行い、油冷却器33出口の冷媒蒸気を凝縮器17に導いた場合に比べて、潤滑油温度を低下させる。潤滑油温度が凝縮器17の露点の急激な温度低下に追従しきれないときにフォーミングが起きる可能性がある(急激な露点の温度上昇に対してはフォーミングは起きない)。そして潤滑油タンク25の液面よりも下部で、潤滑油温度を低下させておけば、蒸気の発生は抑えられ、フォーミングを防ぐことができる。液面より下では気液平衡はないので、温度を下げても冷媒濃度が上昇することはない(液面を含め、液面上部で気液平衡関係が出てくる)。そこで本実施形態では切替え手段53によって、冷媒の凝縮温度の急変が生じつつあるときは油冷却器33の冷却能力を急激に上げて対応している。即ち、通常凝縮温度で潤滑油を冷却している(即ち油冷却器33の蒸発蒸気を凝縮器17に導いている)が、冷媒蒸気を蒸発器11に導くように変更することで、蒸発器温度相当で潤滑油を冷却し、潤滑油タンク25内の液面より下の潤滑油の温度を下げ、フォーミングを防止するようにしている。即ちこの実施形態では、油冷却器33に凝縮温度系蒸発温度系の二系統を持たせ、通常は凝縮系とし、急変時には蒸発系としている。なお急変時には凝縮系と蒸発系を併用しても良い。   On the other hand, the switching means 53 normally guides the refrigerant vapor at the outlet of the oil cooler 33 to the condenser 17 by a control means (not shown). However, the switching means 53 detects the rate of decrease in the condensation temperature of the refrigerant, and the detected rate of decrease is a predetermined value. If it exceeds the speed, this is switched and the refrigerant vapor at the outlet of the oil cooler 33 is led to the evaporator 11, thereby cooling the lubricating oil at the evaporation temperature level, and the refrigerant vapor at the outlet of the oil cooler 33 is converted into the condenser 17. Compared to the case where it is led to, the lubricating oil temperature is lowered. Forming may occur when the lubricating oil temperature cannot fully follow the rapid temperature drop of the dew point of the condenser 17 (forming does not occur for a rapid temperature increase of the dew point). If the lubricating oil temperature is lowered below the liquid level of the lubricating oil tank 25, the generation of steam can be suppressed and forming can be prevented. Since there is no vapor-liquid equilibrium below the liquid level, the refrigerant concentration does not increase even if the temperature is lowered (the vapor-liquid equilibrium relationship appears above the liquid level, including the liquid level). Therefore, in the present embodiment, when the change of the refrigerant condensing temperature is suddenly caused by the switching means 53, the cooling capacity of the oil cooler 33 is rapidly increased. That is, the lubricating oil is cooled at the normal condensing temperature (that is, the evaporated vapor of the oil cooler 33 is led to the condenser 17), but the refrigerant vapor is changed to be led to the evaporator 11, thereby changing the evaporator. The lubricating oil is cooled at an equivalent temperature, and the temperature of the lubricating oil below the liquid level in the lubricating oil tank 25 is lowered to prevent forming. In other words, in this embodiment, the oil cooler 33 is provided with two systems of a condensation temperature system and an evaporation temperature system, which is normally a condensation system, and an evaporation system at the time of sudden change. Note that a condensing system and an evaporating system may be used at the time of sudden change.

なおこの実施形態の切替え手段53は、油冷却器33出口からの冷媒の戻りを凝縮器17か蒸発器11に選択的に切替え可能とするものであるが、例えば凝縮器17と蒸発器11の間の配管21にエコノマイザーを設置した場合は、蒸発器11の代りにエコノマイザーに油冷却器33出口からの冷媒を戻してもよい。   The switching means 53 of this embodiment can selectively switch the return of the refrigerant from the outlet of the oil cooler 33 to the condenser 17 or the evaporator 11. For example, the switching means 53 of the condenser 17 and the evaporator 11 can be switched. When an economizer is installed in the intermediate pipe 21, the refrigerant from the outlet of the oil cooler 33 may be returned to the economizer instead of the evaporator 11.

一方圧縮式冷凍機1−2が圧縮機13の吸込みベーン13aを閉止しないで緊急停止するような場合、凝縮器17から蒸発器11に冷媒蒸気が逆流し、凝縮器圧力が蒸発器圧力付近まで低下することがある。この対策のために、凝縮圧力急変の際に閉止する弁を潤滑油タンク25と凝縮器17の均圧ライン(均圧管31)中に設け、潤滑油タンク25の急激な圧力低下を防いでも良い。   On the other hand, in the case where the compression refrigerator 1-2 makes an emergency stop without closing the suction vane 13a of the compressor 13, the refrigerant vapor flows backward from the condenser 17 to the evaporator 11, and the condenser pressure reaches the vicinity of the evaporator pressure. May decrease. As a countermeasure, a valve that closes when the condensation pressure changes suddenly may be provided in the pressure equalization line (equal pressure equalization pipe 31) between the lubricating oil tank 25 and the condenser 17 to prevent a sudden pressure drop in the lubricating oil tank 25. .

〔第3実施形態〕
図3は本発明の第3実施形態を用いて構成される圧縮式冷凍機1−3の全体概略構成図である。同図に示す圧縮式冷凍機1−3において、前記図1に示す圧縮式冷凍機1−1と同一又は相当部分には同一符号を付す。なお以下で説明する事項以外の事項については、前記図1に示す実施形態と同じである。同図に示す圧縮式冷凍機1−3において前記圧縮式冷凍機1−1と相違する点は、圧縮式冷凍機1−1では圧縮機13の吸込み部の潤滑油を潤滑油タンク25に戻すのにポンプ43を用いているが、圧縮式冷凍機1−3では圧縮機13の吸込み部と潤滑油タンク25間を連結する配管45の途中に潤滑油を溜めるタンク55と、タンク55に蒸発器11(圧縮機13の吸込み部)と凝縮器17とを切替えて接続する切替え手段57とを取り付け、切替え手段57によってタンク55内に供給する圧力を蒸発器圧力と凝縮器圧力に切替えできるように構成している点である。このように構成すれば、潤滑油タンク25にタンク55内の潤滑油を戻す際には、切替え手段57を切り替えることでタンク55を凝縮器17に接続すれば、タンク55内が凝縮圧となり、均圧管31によって凝縮器圧力と同等とされている潤滑油タンク25への潤滑油の移送が行われる。切替え手段57によって潤滑油タンク25への潤滑油の移送を行うか否かは、第1実施形態のポンプ43の駆動操作と同様に、潤滑油タンク25内に設置した液面センサー41によって潤滑油の液面を測定し、所定の液面の範囲になるよう切替え手段57を切替え制御する。
[Third Embodiment]
FIG. 3 is an overall schematic configuration diagram of a compression refrigerator 1-3 configured using the third embodiment of the present invention. In the compression refrigeration machine 1-3 shown in the same figure, the same or corresponding parts as those of the compression refrigeration machine 1-1 shown in FIG. Items other than those described below are the same as those in the embodiment shown in FIG. In the compression type refrigerator 1-3 shown in the figure, the difference from the compression type refrigerator 1-1 is that in the compression type refrigerator 1-1, the lubricating oil in the suction portion of the compressor 13 is returned to the lubricating oil tank 25. However, in the compression refrigerator 1-3, the tank 55 for storing lubricating oil in the middle of the pipe 45 connecting the suction portion of the compressor 13 and the lubricating oil tank 25, and the tank 55 evaporates. A switching means 57 for switching and connecting the condenser 11 (the suction part of the compressor 13) and the condenser 17 is attached so that the pressure supplied into the tank 55 can be switched between the evaporator pressure and the condenser pressure by the switching means 57. It is the point which comprises. If comprised in this way, when returning the lubricating oil in the tank 55 to the lubricating oil tank 25, if the tank 55 is connected to the condenser 17 by switching the switching means 57, the inside of the tank 55 becomes the condensation pressure, Lubricating oil is transferred to the lubricating oil tank 25 which is made equal to the condenser pressure by the pressure equalizing pipe 31. Whether or not to transfer the lubricating oil to the lubricating oil tank 25 by the switching means 57 is determined by the liquid level sensor 41 installed in the lubricating oil tank 25 as in the driving operation of the pump 43 of the first embodiment. The liquid level is measured, and the switching means 57 is switched and controlled so that it falls within a predetermined liquid level range.

〔第4実施形態〕
図4は本発明の第4実施形態を用いて構成される圧縮式冷凍機1−4の全体概略構成図である。同図に示す圧縮式冷凍機1−4において、前記図1に示す圧縮式冷凍機1−1と同一又は相当部分には同一符号を付す(但し二重化した部分については「−1」「−2」の符号を付し、共用した部分については前記符号は付けない)。なお以下で説明する事項以外の事項については、前記図1に示す実施形態と同じである。
[Fourth Embodiment]
FIG. 4 is an overall schematic configuration diagram of a compression refrigerator 1-4 configured using the fourth embodiment of the present invention. In the compression chiller 1-4 shown in the figure, the same or corresponding parts as those in the compression chiller 1-1 shown in FIG. 1 are denoted by the same reference numerals (however, “-1”, “−2” for the duplicated parts). ”Is attached, and the common part is not attached with the above sign). Items other than those described below are the same as those in the embodiment shown in FIG.

この圧縮式冷凍機1−4は、冷媒を封入した2つのクローズドシステムで二重化した冷凍サイクルを行う冷凍機に本発明を適用したものであり、蒸発器11−1,11−2と、電動機(駆動機)15によって駆動される圧縮機13−1,13−2と、凝縮器17−1,17−2と、膨張機19−1,19−2とを、冷媒を循環する冷媒配管21−1,21−2によって連結して構成されている。   This compression refrigeration machine 1-4 applies the present invention to a refrigeration machine that performs a refrigeration cycle that is duplicated by two closed systems filled with refrigerant, and includes evaporators 11-1 and 11-2, Refrigerant piping 21- that circulates refrigerant through compressors 13-1, 13-2, condensers 17-1, 17-2, and expanders 19-1, 19-2 driven by a drive unit 15). 1, 21-2 are connected to each other.

そして、電動機15、潤滑油タンク25、油ポンプ27、均圧管31、油冷却器33、ポンプ35、ポンプ43等は、両冷凍サイクルに共用している。2つの凝縮器17−1,17−2には冷却水が直列に供給されており、同様に2つの蒸発器11−1,11−2には冷水が直列に供給されている。その際、均圧管31は冷却水入口側(即ち冷却水を最初に供給する側)の凝縮器17−1に接続され、潤滑油タンク25の圧力は、冷却水入口側の凝縮器17−1に均圧を取っている。また油冷却器33に供給する冷媒、及び電動機15を冷却する冷媒も、冷却水入口側の凝縮器17−1のものを用いている。また両圧縮機13−1,13−2の吸込み部の液溜まり部a1−1,a1−2の溜まり液は、圧力のより低い圧縮機13−1側に集められ、潤滑油タンク25に戻すように構成している。   The electric motor 15, the lubricating oil tank 25, the oil pump 27, the pressure equalizing pipe 31, the oil cooler 33, the pump 35, the pump 43, and the like are shared by both refrigeration cycles. The two condensers 17-1 and 17-2 are supplied with cooling water in series, and similarly, the two evaporators 11-1 and 11-2 are supplied with cold water in series. At that time, the pressure equalizing pipe 31 is connected to the condenser 17-1 on the cooling water inlet side (that is, the side where the cooling water is first supplied), and the pressure in the lubricating oil tank 25 is changed to the condenser 17-1 on the cooling water inlet side. Is taking pressure evenly. Moreover, the refrigerant | coolant supplied to the oil cooler 33 and the refrigerant | coolant which cools the electric motor 15 also use the thing of the condenser 17-1 by the side of a cooling water inlet. Further, the liquid pools a1-1 and a1-2 in the suction sections of the compressors 13-1 and 13-2 are collected on the compressor 13-1 side having a lower pressure and returned to the lubricating oil tank 25. It is configured as follows.

全負荷時の冷却水の温度上昇を5℃とした場合、単一サイクルでは、全負荷から無負荷に変化すると、冷却水出口温度は5℃低下し、凝縮温度は5〜6℃程度変化することになる。これに対して二重化した冷凍サイクルでは、冷却水入口側の凝縮器17−1の冷却水温度変化は約2.5℃であり、凝縮温度の変化は2.5〜3.5℃と変化が少なくなり、冷凍機停止時の凝縮温度の急変を緩和することができる。   If the temperature rise of the cooling water at full load is 5 ° C, in a single cycle, when changing from full load to no load, the cooling water outlet temperature decreases by 5 ° C and the condensing temperature changes by about 5-6 ° C. It will be. On the other hand, in the double refrigeration cycle, the change in the cooling water temperature of the condenser 17-1 on the cooling water inlet side is about 2.5 ° C., and the change in the condensation temperature is 2.5 to 3.5 ° C. As a result, the sudden change in the condensation temperature when the refrigerator is stopped can be mitigated.

またこの圧縮式冷凍機1−4のように、冷却水を直列に供給する凝縮器17−1,17−2を複数持つ場合に、冷却水を最初に供給する凝縮器17−1に潤滑油タンク25を均圧させたのは、冷却水入口側の凝縮器17−1の方が負荷による凝縮温度の変化が少なく、これによって凝縮器露点の急激な温度低下に潤滑油温度が追従できないときに生じる恐れのあるフォーミングを防止するためである。   In addition, in the case where a plurality of condensers 17-1 and 17-2 that supply cooling water in series are provided as in this compression refrigerator 1-4, lubricating oil is supplied to the condenser 17-1 that supplies cooling water first. The pressure in the tank 25 is equalized when the condenser 17-1 on the cooling water inlet side has less change in the condensation temperature due to the load, so that the lubricating oil temperature cannot follow the sudden temperature drop of the condenser dew point. This is to prevent forming that may occur.

〔第5実施形態〕
図5は本発明の第5実施形態を用いて構成される圧縮式冷凍機1−5の全体概略構成図である。同図に示す圧縮式冷凍機1−5において、前記図1に示す圧縮式冷凍機1−1と同一又は相当部分には同一符号を付す。なお以下で説明する事項以外の事項については、前記図1に示す実施形態と同じである。この圧縮式冷凍機1−5において、前記圧縮式冷凍機1−1と相違する点は、油タンク用凝縮器59を別途設けた点である。即ちこの油タンク用凝縮器59は、均圧管31を接続すると共に、凝縮した冷媒を膨張弁61を介して蒸発器11側の配管21に接続している。この油タンク用凝縮器59には凝縮器17に導入される前の冷却水が供給される。
[Fifth Embodiment]
FIG. 5 is an overall schematic configuration diagram of a compression refrigerator 1-5 configured using the fifth embodiment of the present invention. In the compression refrigeration machine 1-5 shown in the figure, the same or corresponding parts as those of the compression refrigeration machine 1-1 shown in FIG. Items other than those described below are the same as those in the embodiment shown in FIG. The compression refrigerator 1-5 is different from the compression refrigerator 1-1 in that an oil tank condenser 59 is separately provided. In other words, the oil tank condenser 59 is connected to the pressure equalizing pipe 31 and the condensed refrigerant is connected to the pipe 21 on the evaporator 11 side through the expansion valve 61. The oil tank condenser 59 is supplied with cooling water before being introduced into the condenser 17.

潤滑油タンク25の圧力が急激に低下すると、潤滑油中に溶け込んでいる冷媒が蒸発し、フォーミンクが生じる。本実施形態では前記油タンク用凝縮器59を設けることで、前記急激な圧力低下を避けるようにしたものである。また冷却水の供給入口温度を利用する油タンク用凝縮器59を設けたので、負荷による凝縮温度変化を抑えることもできる。   When the pressure in the lubricating oil tank 25 is drastically reduced, the refrigerant dissolved in the lubricating oil evaporates, resulting in forming. In the present embodiment, the abrupt pressure drop is avoided by providing the oil tank condenser 59. In addition, since the oil tank condenser 59 using the cooling water supply inlet temperature is provided, a change in the condensation temperature due to the load can be suppressed.

圧縮式冷凍機1−5が吸込みベーン13aを閉止しないで緊急停止するような場合、凝縮器17から蒸発器11に冷媒蒸気が逆流し、凝縮器圧力が蒸発器圧力付近まで低下することがある。しかし油タンク用凝縮器59は蒸発器17には接続されておらず、冷却水温度変化の影響を受けるだけであり、前記緊急停止時の圧力の急変を避けることができる。従ってフォーミングを防止することができる。   When the compression refrigerator 1-5 makes an emergency stop without closing the suction vane 13a, the refrigerant vapor may flow backward from the condenser 17 to the evaporator 11, and the condenser pressure may drop to near the evaporator pressure. . However, the oil tank condenser 59 is not connected to the evaporator 17 and is only affected by a change in the cooling water temperature, and a sudden change in pressure during the emergency stop can be avoided. Therefore, forming can be prevented.

この実施形態では冷却水全量を油タンク用凝縮器59に流すように記載しているが、流路面積を考慮し、その一部をバイパスしても差し支えない。また、軸受室70(図10参照)を潤滑油タンク25に均圧をとっておくことにより、軸受23に供給した潤滑油の潤滑油タンク25への戻りがスムーズになるようにしても良い。なおこの実施形態の方式は、この実施形態のような単一冷凍サイクルにも、前記圧縮式冷凍機1−4のような二重冷凍サイクルにも同様に適用できる。   In this embodiment, it is described that the entire amount of the cooling water flows to the oil tank condenser 59, but in consideration of the flow path area, a part of the cooling water may be bypassed. Alternatively, the bearing chamber 70 (see FIG. 10) may have a uniform pressure in the lubricating oil tank 25 so that the lubricating oil supplied to the bearing 23 can be smoothly returned to the lubricating oil tank 25. In addition, the system of this embodiment can be similarly applied to a single refrigeration cycle as in this embodiment and a double refrigeration cycle such as the compression refrigerator 1-4.

〔第6実施形態〕
図6は本発明の第6実施形態を用いて構成される圧縮式冷凍機1−6の全体概略構成図である。同図に示す圧縮式冷凍機1−6において、前記図1に示す圧縮式冷凍機1−1と同一又は相当部分には同一符号を付す。なお以下で説明する事項以外の事項については、前記図1に示す実施形態と同じである。この圧縮式冷凍機1−6において、前記圧縮式冷凍機1−1と相違する点は、膨張機19の代りに動力回収装置63を設置した点である。
[Sixth Embodiment]
FIG. 6 is an overall schematic configuration diagram of a compression refrigerator 1-6 configured using the sixth embodiment of the present invention. In the compression refrigerator 1-6 shown in the figure, the same reference numerals are given to the same or corresponding parts as those of the compression refrigerator 1-1 shown in FIG. Items other than those described below are the same as those in the embodiment shown in FIG. The compression refrigerator 1-6 differs from the compression refrigerator 1-1 in that a power recovery device 63 is installed in place of the expander 19.

この実施形態で用いている動力回収装置63は凝縮器17から蒸発器11への冷媒の流れが持つエネルギーを回収する回転式の動力回収膨張機であり、内部にノズルとタービンとを持ち、ノズルで凝縮器17からの冷媒液の流速を高めると共に旋回流とし、この液流をタービンに当ててタービンに回転力を与えている。動力回収装置63は発電機(動力回収機)65を具備し、この発電機65によって前記冷媒の流れが持つエネルギーを電力として回収する。回収した電力を電動機15に供給して圧縮仕事の一部に利用すれば、その分外部からの投入電力(投入動力)を減少させることができる。また凝縮器17から蒸発器11に入る冷媒から動力を回収しているので、蒸発器11に入る冷媒のエンタルピーが低下しており、従って蒸発器11の冷凍能力も増大し、冷凍効果が増大する。   The power recovery device 63 used in this embodiment is a rotary power recovery expander that recovers the energy of the refrigerant flow from the condenser 17 to the evaporator 11, and has a nozzle and a turbine inside. Thus, the flow rate of the refrigerant liquid from the condenser 17 is increased and a swirling flow is applied, and this liquid flow is applied to the turbine to give a rotational force to the turbine. The power recovery device 63 includes a generator (power recovery machine) 65, and the generator 65 recovers the energy of the refrigerant flow as electric power. If the recovered electric power is supplied to the electric motor 15 and used for a part of the compression work, the input electric power (input power) from the outside can be reduced accordingly. Further, since the power is recovered from the refrigerant entering the evaporator 11 from the condenser 17, the enthalpy of the refrigerant entering the evaporator 11 is lowered, and thus the refrigerating capacity of the evaporator 11 is increased and the refrigeration effect is increased. .

以上本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。なお直接明細書及び図面に記載がない何れの形状や構造であっても、本願発明の作用・効果を奏する以上、本願発明の技術的思想の範囲内である。例えば、上記実施形態では電動機と羽根車を直結するように記載しているが、電動機の回転をギアで増速して羽根車を駆動する冷凍機であっても良い。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea described in the claims and the specification and drawings. Is possible. Note that any shape or structure not directly described in the specification and drawings is within the scope of the technical idea of the present invention as long as the effects and advantages of the present invention are achieved. For example, although the electric motor and the impeller are described as being directly connected in the above embodiment, a refrigerator that drives the impeller by increasing the rotation of the electric motor with a gear may be used.

なお上記各実施形態では、潤滑油を冷却する油冷却手段として、油冷却器を設けたが、その代りに、潤滑油循環系に冷媒液を導入する、あるいは潤滑油循環系の潤滑油よりも冷媒含有率の高い潤滑油を潤滑油循環系に導入する、構成の油冷却手段を用いても良い。冷媒系から潤滑油を回収してくる場合、冷媒含有率が高めの潤滑油が回収されることが多く、これを利用できる。   In each of the above embodiments, an oil cooler is provided as an oil cooling means for cooling the lubricating oil. Instead, a refrigerant liquid is introduced into the lubricating oil circulation system, or more than the lubricating oil in the lubricating oil circulation system. You may use the oil cooling means of the structure which introduce | transduces lubricating oil with a high refrigerant | coolant content rate into a lubricating oil circulation system. When recovering lubricating oil from the refrigerant system, lubricating oil having a high refrigerant content is often recovered and can be used.

圧縮式冷凍機1−1の全体概略構成図である。1 is an overall schematic configuration diagram of a compression refrigerator 1-1. 圧縮式冷凍機1−2の全体概略構成図である。It is a whole schematic block diagram of the compression type refrigerator 1-2. 圧縮式冷凍機1−3の全体概略構成図である。It is a whole schematic block diagram of the compression refrigerator 1-3. 圧縮式冷凍機1−4の全体概略構成図である。It is a whole schematic block diagram of the compression refrigerator 1-4. 圧縮式冷凍機1−5の全体概略構成図である。It is a whole schematic block diagram of the compression refrigerator 1-5. 圧縮式冷凍機1−6の全体概略構成図である。It is a whole schematic block diagram of the compression refrigerator 1-6. 冷媒濃度と冷媒圧力と混合溶液(冷媒+潤滑油)温度の関係の1例を示す図である。It is a figure which shows one example of the relationship of a refrigerant | coolant density | concentration, a refrigerant | coolant pressure, and mixed solution (refrigerant + lubricating oil) temperature. 混合溶液温度と冷媒露点と冷媒濃度の関係の1例を示す図である。It is a figure which shows one example of the relationship between mixed solution temperature, a refrigerant | coolant dew point, and a refrigerant | coolant concentration. 潤滑油の温度に対する粘性(動粘度)の1例を示す図である。It is a figure which shows one example of the viscosity (kinematic viscosity) with respect to the temperature of lubricating oil. 電動機15及び軸受23部分の詳細図である。It is detail drawing of the electric motor 15 and the bearing 23 part.

符号の説明Explanation of symbols

1−1 圧縮式冷凍機
11 蒸発器
13 圧縮機
13a 吸込みベーン
13b 羽根車
15 電動機(駆動機)
17 凝縮器
19 膨張機
21 冷媒配管
23 軸受
25 潤滑油タンク(潤滑油循環系)
27 油ポンプ(潤滑油循環系)
29a,29b 配管(潤滑油循環系)
31 均圧管
33 油冷却器(油冷却手段)
35 ポンプ
43 ポンプ
1−2 圧縮式冷凍機
53 切替え手段
1−3 圧縮式冷凍機
55 タンク
57 切替え手段
1−4 圧縮式冷凍機
1−5 圧縮式冷凍機
59 油タンク用凝縮器
1−6 圧縮式冷凍機
63 動力回収装置
70 軸受室
L ラビリンス或いは狭い隙間
1-1 Compression Refrigerator 11 Evaporator 13 Compressor 13a Suction Vane 13b Impeller 15 Electric Motor (Driver)
17 Condenser 19 Expander 21 Refrigerant Piping 23 Bearing 25 Lubricating Oil Tank (Lubricating Oil Circulation System)
27 Oil pump (lubricating oil circulation system)
29a, 29b Piping (Lubricating oil circulation system)
31 Pressure equalizing pipe 33 Oil cooler (oil cooling means)
35 Pump 43 Pump 1-2 Compression refrigeration machine 53 Switching means 1-3 Compression refrigeration machine 55 Tank 57 Switching means 1-4 Compression refrigeration machine 1-5 Compression refrigeration machine 59 Oil tank condenser 1-6 Compression Type refrigerator 63 Power recovery device 70 Bearing chamber L Labyrinth or narrow gap

Claims (6)

圧縮機と、凝縮器と、蒸発器とを冷媒を循環する冷媒配管によって連結するとともに、上記圧縮機の軸受を潤滑する潤滑油が貯留されている潤滑油タンクを具備してなる圧縮式冷凍機において、
前記潤滑油タンク内の潤滑油を油ポンプで軸受に供給するとともに軸受を潤滑した潤滑油を潤滑油タンクに戻す潤滑油循環系を設け、
潤滑油タンクを凝縮器の圧力と均圧になるように結び、
前記潤滑油循環系に前記冷媒によって潤滑油を冷却する油冷却手段を設けると共に、この油冷却手段に用いる冷媒が凝縮器から供給されて凝縮器に戻されることを特徴とする圧縮式冷凍機の軸受潤滑装置。
A compressor-type refrigerator having a lubricating oil tank in which a compressor, a condenser, and an evaporator are connected by a refrigerant pipe that circulates a refrigerant and in which lubricating oil for lubricating a bearing of the compressor is stored. In
A lubricating oil circulation system is provided in which the lubricating oil in the lubricating oil tank is supplied to the bearing with an oil pump and the lubricating oil that has lubricated the bearing is returned to the lubricating oil tank.
Connect the lubricating oil tank so that it is equal to the pressure of the condenser,
An oil cooling means for cooling the lubricating oil with the refrigerant is provided in the lubricating oil circulation system, and the refrigerant used for the oil cooling means is supplied from the condenser and returned to the condenser. Bearing lubrication device.
前記軸受を軸受室で囲み、圧縮機吐出側圧力部及び圧縮機を駆動する駆動機のロータの回転雰囲気からラビリンス或いは狭い隙間で分離すると共に、この軸受室を潤滑油タンクと均圧になるように結んだことを特徴とする請求項1に記載の圧縮式冷凍機の軸受潤滑装置。   The bearing is surrounded by a bearing chamber, separated from the rotating atmosphere of the compressor discharge side pressure section and the rotor of the driving machine that drives the compressor by a labyrinth or a narrow gap, and the bearing chamber is equalized with the lubricating oil tank. The bearing lubrication device for a compression type refrigerator according to claim 1, wherein 潤滑油温度と、凝縮温度或いは凝縮温度に関連する物理量とを関連付けたデータを用いて油冷却手段を制御する制御手段を有することを特徴とする請求項1又は2に記載の圧縮式冷凍機の軸受潤滑装置。   3. The compression refrigerator according to claim 1, further comprising a control unit that controls the oil cooling unit using data in which the lubricating oil temperature is associated with a condensation temperature or a physical quantity related to the condensation temperature. Bearing lubrication device. 冷却水を直列に供給する複数の凝縮器を持つ圧縮式冷凍機であって、冷却水を最初に供給する凝縮器に潤滑油タンクを均圧させることを特徴とする請求項1又は2又は3に記載の圧縮式冷凍機の軸受潤滑装置。   4. A compression type refrigerator having a plurality of condensers that supply cooling water in series, wherein the lubricating oil tank is pressure-equalized by the condenser that first supplies the cooling water. A bearing lubrication device for a compression refrigerator as described in 1. 油冷却手段を冷媒と熱交換を行う熱交換器にすると共に、
熱交換器からの冷媒の戻しを、凝縮器と蒸発器と選択的に変更するか、あるいは凝縮器とエコノマイザーと選択的に変更する切替え手段を設けたことを特徴とする請求項1乃至4の内の何れかに記載の圧縮式冷凍機の軸受潤滑装置。
While making the oil cooling means a heat exchanger that exchanges heat with the refrigerant,
5. A switching means for selectively changing the return of the refrigerant from the heat exchanger between the condenser and the evaporator or selectively changing between the condenser and the economizer is provided. A bearing lubrication device for a compression refrigerator according to any one of the above.
冷凍機停止時、圧縮機の吸込みベーンを徐々に閉止すると共に、羽根車回転速度も徐々に低下させながら停止させる制御手段を有することを特徴とする請求項1乃至5の内の何れかに記載の圧縮式冷凍機の軸受潤滑装置。   6. The apparatus according to claim 1, further comprising a control unit that gradually closes the suction vanes of the compressor when the refrigerator is stopped and stops the compressor while gradually reducing the impeller rotational speed. Lubricating bearing lubrication device
JP2006186744A 2006-07-06 2006-07-06 Bearing lubricator for compression refrigerator Active JP4714099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006186744A JP4714099B2 (en) 2006-07-06 2006-07-06 Bearing lubricator for compression refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006186744A JP4714099B2 (en) 2006-07-06 2006-07-06 Bearing lubricator for compression refrigerator

Publications (2)

Publication Number Publication Date
JP2008014577A JP2008014577A (en) 2008-01-24
JP4714099B2 true JP4714099B2 (en) 2011-06-29

Family

ID=39071761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006186744A Active JP4714099B2 (en) 2006-07-06 2006-07-06 Bearing lubricator for compression refrigerator

Country Status (1)

Country Link
JP (1) JP4714099B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4798145B2 (en) * 2008-02-01 2011-10-19 ダイキン工業株式会社 Turbo refrigerator
JP5091015B2 (en) * 2008-06-09 2012-12-05 荏原冷熱システム株式会社 Compression refrigerator
IT1401425B1 (en) * 2010-06-24 2013-07-26 Nuovo Pignone Spa TURBOESPANSORE AND METHOD FOR USING MOBILE INPUT PALLETS FOR A COMPRESSOR
JP2013072564A (en) * 2011-09-27 2013-04-22 Hitachi Appliances Inc Refrigerator
JP5522288B2 (en) * 2011-09-30 2014-06-18 ダイキン工業株式会社 Refrigeration equipment
JP5240392B2 (en) * 2011-09-30 2013-07-17 ダイキン工業株式会社 Refrigeration equipment
US10234175B2 (en) 2013-06-04 2019-03-19 Daikin Industries, Ltd. Turbo refrigerator
JP6643711B2 (en) * 2016-02-04 2020-02-12 パナソニックIpマネジメント株式会社 Refrigeration cycle apparatus and cooling method
CN111854231A (en) 2019-04-26 2020-10-30 荏原冷热系统(中国)有限公司 Oil tank for centrifugal refrigerator and centrifugal refrigerator
CN115628566B (en) * 2022-12-19 2023-03-17 山东赛斯特冷冻系统有限公司 Cold and hot synchronous screw type water chilling unit

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5621271B2 (en) * 1973-10-19 1981-05-18
JPH04350468A (en) * 1991-04-23 1992-12-04 Asahi Breweries Ltd Liquid cooler
JP3306958B2 (en) * 1993-03-01 2002-07-24 ダイキン工業株式会社 Lubricating oil adjusting device for refrigerator
JPH10220885A (en) * 1997-01-31 1998-08-21 Mitsubishi Heavy Ind Ltd Refrigerating machine
US6067804A (en) * 1999-08-06 2000-05-30 American Standard Inc. Thermosiphonic oil cooler for refrigeration chiller
JP4035064B2 (en) * 2003-01-30 2008-01-16 松下電器産業株式会社 Heat pump water heater
JP4140406B2 (en) * 2003-03-14 2008-08-27 株式会社日立プラントテクノロジー Turbo fluid machine
JP2005256752A (en) * 2004-03-12 2005-09-22 Ebara Corp Power generating device

Also Published As

Publication number Publication date
JP2008014577A (en) 2008-01-24

Similar Documents

Publication Publication Date Title
JP4714099B2 (en) Bearing lubricator for compression refrigerator
JP5091015B2 (en) Compression refrigerator
US10941967B2 (en) Lubrication and cooling system
JP2008082622A (en) Compression type refrigerating device
WO2002066872A1 (en) Self-contained regulating valve, and compression type refrigerating machine having the same
JP2008082623A (en) Compression type refrigerating device
JP2007285675A (en) Refrigerating appliance
JP2014190614A (en) Turbo refrigerator
JP2000230760A (en) Refrigerating machine
JP2008014533A (en) Oil recovering device of compression type refrigerating machine
JP2015190662A (en) turbo refrigerator
JP5543093B2 (en) Compressive refrigerator and operation method thereof
JP2009257684A (en) Compression refrigerating machine and method for recovering lubricating oil for the same
CN209341637U (en) Coolant circulating system
WO2018180225A1 (en) Refrigeration machine
JP6094080B2 (en) Air conditioner
KR101360224B1 (en) Oil cooling for centrifugal chiller
JP2007218507A (en) Heat pump device and control method thereof
CN108072198A (en) Compressor assembly, control method thereof and refrigerating/heating system
JP2015183979A (en) turbo refrigerator
JP2009236427A (en) Compression type refrigerating machine
JP3799550B2 (en) Absorption chiller / hot water unit with expander
WO2024077250A1 (en) Refrigeration system with reduced compressor thrust load
JP2013139897A (en) Refrigerating device
JP3434282B2 (en) Absorption refrigerator

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110325

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250