JP3799550B2 - Absorption chiller / hot water unit with expander - Google Patents

Absorption chiller / hot water unit with expander Download PDF

Info

Publication number
JP3799550B2
JP3799550B2 JP2002245024A JP2002245024A JP3799550B2 JP 3799550 B2 JP3799550 B2 JP 3799550B2 JP 2002245024 A JP2002245024 A JP 2002245024A JP 2002245024 A JP2002245024 A JP 2002245024A JP 3799550 B2 JP3799550 B2 JP 3799550B2
Authority
JP
Japan
Prior art keywords
expander
absorption
hot water
refrigerant
refrigerant vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002245024A
Other languages
Japanese (ja)
Other versions
JP2004085039A (en
Inventor
修行 井上
崇雄 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002245024A priority Critical patent/JP3799550B2/en
Publication of JP2004085039A publication Critical patent/JP2004085039A/en
Application granted granted Critical
Publication of JP3799550B2 publication Critical patent/JP3799550B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • Y02B30/625Absorption based systems combined with heat or power generation [CHP], e.g. trigeneration

Description

【0001】
【発明の属する技術分野】
本発明は、吸収冷温水装置に係り、特に、ガスタービン、エンジン等の外部からの排熱を熱源として、吸収冷温水機を運転すると共に、吸収冷温水機内に組込んだ冷媒蒸気を駆動源とする膨張機で仕事を取出し、あるいは膨張機で発電機を駆動して発電をも行うコージェネレーションシステムに関するものである。
【0002】
【従来の技術】
排熱を用いて冷温水を製造する装置、あるいは排熱を用いて発電をする装置など、どちらか一方を目的にした装置が、従来から用いられてきた。
排熱を用いて冷温水を製造し、冷暖房をする場合、中間期には、冷温水負荷がほとんどなくなり、排熱が有効利用できなくなる。
一方、排熱を用いて仕事あるいは発電をする装置(以下発電を主に説明する)は、一年中、排熱の利用はできるが、発電効率は低い。冷暖房が必要な時期は、発電した電気で冷凍機あるいはヒートポンプを運転するよりも、排熱で吸収冷温水機を直接駆動した方が利用効率が高くできることが多い。
【0003】
年間を通して、排熱を有効利用して冷暖房発電をしょうとすると、両装置が必要で、複雑になってくる。
一方、両装置を兼用するために、膨張機を吸収冷凍装置に組込もうとすると、膨張機の軸受けの回転速度が速いので、潤滑が問題となる。即ち、吸収冷温水機の冷媒ポンプや溶液ポンプのように、冷媒液あるいは吸収溶液などを膨張機軸受けの潤滑剤として用いると、粘性不足で焼付けなどを起こしてしまう。
一方、メカニカルシールで軸受け部を分離し、潤滑油を用いると、メカニカルシールから潤滑油が吸収冷凍サイクル系に漏れた場合、冷媒が蒸発し難くなり、また、冷媒を吸収し難くなるという問題が生じる。その他の回転系の潤滑にも、同様の問題がある。
【0004】
【発明が解決しようとする課題】
本発明は、上記従来技術の問題点を解消し、冷温水製造と共に発電が可能で、また、冷暖房負荷が無い時には、発電単独の運転が可能な装置で、膨張機(タービン、スクリュー、スクロール)の軸受けの潤滑問題を解消する簡易な構成の膨張機を組込んだ吸収冷温水装置を提供することを課題とする。
【0005】
【課題を解決するための手段】
上記課題を解決するために、本発明では、冷媒と吸収剤と界面活性剤とを含んだ媒体を用いて吸収冷凍サイクルを構成する吸収冷温水機に、該吸収冷凍サイクルで発生する冷媒蒸気で稼動する膨張機又は発電機と膨張機を組込んだ吸収冷温水装置であって、前記膨張機が、軸受けの潤滑に、前記吸収冷凍サイクルに用いる媒体に含まれるものと同じ界面活性剤を用いることを特徴とする膨張機を組込んだ吸収冷温水装置としたものである。
前記吸収冷温水装置において、膨張機が、スクリュー型であり、スクリューロータを回転させるタイミングギアの潤滑に、前記吸収冷凍サイクルに用いる媒体に含まれるものと同じ界面活性剤を用いることができ、該膨張機は、スクリュー又はスクロール歯形間の液シールとして、吸収冷凍サイクルに用いる冷媒液を用いることができ、また、前記膨張機が、スクリュー型であり、スクリュー歯形間の液シール及びスクリュー歯形間の潤滑に、前記吸収冷凍サイクルに用いる媒体に含まれるものと同じ界面活性剤を用いることができ、さらに、前記吸収冷温水機には、蒸発器及び/又は凝縮器出口に、界面活性剤分離器を設けることができる。
【0006】
【発明の実施の形態】
発電機のボイラと冷凍装置の再生器とは、蒸気を発生させる機能が同一であり、また、発電装置の凝縮器と冷凍装置の凝縮器とは、蒸気を凝縮させる機能が同一であるなど、発電装置と吸収冷凍装置とでは兼用できる機器が多く、本発明では、吸収冷温水機に膨張機を組込んで、コンパクトな装置で、年間を通して排熱利用で冷暖房負荷あるいは発電を可能としている。
また、膨張機など回転系には、潤滑油が必要であるが、油の種類を、吸収冷凍サイクルに用いる界面活性剤と同じ物を使用する。それにより、メカニカルシールから潤滑油である界面活性剤が吸収冷凍サイクル系に漏れても、全く問題はない。
膨張機としては、タービン型、スクリュー型、スクロール型等各種型式があり、主に、蒸気の容積流量で型式選択を行うことが多い。
また、膨張機にスクリュー型を用いる時、ローター間からの蒸気吹き抜けが問題になるが、ロータ間の液シール剤として、冷媒、界面活性剤などを用いる。
また、膨張機にスクリュー型を用いた場合に対し、スクリューロータ間の潤滑、あるいはタイミングギア付膨張機に対するタイミングギアの潤滑など、膨張機の潤滑、液シールに界面活性剤を用いる。
【0007】
次に、本発明を、図1〜図3の本発明の膨張機を組込んだ吸収冷温水装置のフロー構成図を用いて説明する。
図において、Aは吸収器、GHは熱源再生器、GLXは低熱源再生器、Gは低温再生器、Cは凝縮器、Eは蒸発器、Xは溶液熱交換器、XHは高温熱交換器、SPは溶液ポンプ、RPは冷媒ポンプ、V1〜V5は弁、1は膨張機、2は発電機、3と4は冷却水、5は熱源、6は冷温水であり、また、7は分離機、8はオイルタンク、9はオイルポンプ、10はオイルクーラー、11〜17は溶液流路、18〜25は冷媒流路である。
このように、図1では、吸収器A、蒸発器E、凝縮器Cを、図2及び図3では、さらに、低温再生器Gを、吸収剤に無機塩類、冷媒に水を用いる組合わせで、圧力があまり高くないとして一つの角型缶胴に収め、また、この缶胴とは別に、熱源5を加熱源とする熱源再生器GH、GLXと溶液熱交換器X、XH及び膨張機1と発電機2とが配備されている。そして、この缶胴の吸収器A及び凝縮器C又は低温再生器Gと、熱源再生器GH、GLX及び膨張機1とは、溶液流路11、12及び冷媒流路20〜25でそれぞれ接続されている。
【0008】
図1は、単効用サイクルの例を示し、(a)は全体図、(b)は膨張機部分の部分構成図であり、吸収剤に無機塩類、冷媒に水を用いる場合、界面活性剤としてオクチルアルコールを入れて、伝熱、吸収性能の改善を行う。
図1(a)を用いた冷房運転について説明すると、蒸発器Eで冷媒蒸気が蒸発して、冷水6(又はブライン)を冷却する。蒸発した冷媒蒸気は、吸収器Aにて、冷却水3で冷却されている吸収溶液に吸収される。
吸収器Aの溶液は、溶液ポンプSPで、溶液熱交換器Xの被加熱側を通って流路11から熱源再生器GHに送られる。
熱源再生器GHで熱源によって加熱され、冷媒蒸気を発生し、溶液は吸収剤が濃縮された状態になる。濃縮溶液は、流路12から溶液熱交換器Xの加熱側を通って吸収器Aに戻り、吸収器伝熱面に散布される。
【0009】
再熱源生器GHで発生した冷媒蒸気は、冷媒蒸気膨張機1で仕事をして低圧になり、流路22から凝縮器Cに入り、冷却水4で冷却されて凝縮し、冷媒液となって蒸発器Eに戻る。冷却水温度が高くなり、凝縮圧が高くなって冷凍機出力が不足する場合、あるいは熱源温度が低く冷凍機出力が不足するような場合、弁V1を開として、あるいは調節して凝縮能力を高めて、冷凍機出力を増大させる。
冷水負荷があまり無く、冷凍出力がオーバーになる時は、熱源が排熱の場合、熱源を最大限使用して発電量を多く確保し、一方、冷水(冷房)出力調整のため、冷媒蒸気膨張機1からの冷媒蒸気の一部を流路24から吸収器Aに導き、凝縮器Cで凝縮する冷媒量を減少させて負荷調節を行う(弁V2を利用)。凝縮器Cの負荷が小さくなると、凝縮圧力が低下し、膨張機1出力は若干であるが増加する。別の調整法として、蒸発器Eの冷媒液を吸収器Aに戻し吸収能力を低下させるなどの方法もある。
なお、熱源が排熱ではなく、熱源コストが問題になる場合は、発電量と冷凍出力の効果を考慮して調整する必要がある。
【0010】
次に、暖房運転について説明すると、暖房時には、基本的には吸収器Aと凝縮器Cに冷却水を流さず、吸収溶液を蒸発器E伝熱面に散布して温水を製造する。
熱源再生器GHで発生した冷媒蒸気は、冷媒蒸気膨張機1で仕事をし、低圧冷媒蒸気となって、吸収器A又は蒸発器Eに入り、流路17から弁V3を通り、蒸発器E伝熱面に散布されている吸収溶液に吸収される。
温水負荷があまり無く出力オーバーになる時は、熱源を最大限使用して発電量を確保し、一方、温水(暖房)出力調整のため、冷却水を流し、余分な温熱を冷却水に捨てる。この際、冷却水は温度を調整あるいは流量を調整して、温水の容量制御をすることになる。温水負荷が多く、発電量よりも温熱出力を重視する場合、熱源再生器GHで発生した冷媒蒸気を弁V1を通して、直接蒸発器Eに導き、温熱を多くしてもよい。
【0011】
また、発電単独運転について説明すると、基本的には吸収器Aに吸収溶液を散布すると共に冷却水3を流し、冷媒蒸気膨張機1出口の蒸気を吸収器Aに導いて吸収させる。(弁V2全開)
凝縮器Cには、冷却水を流さなくてもよいが、流れていても差し支えない。
熱源再生器GHで発生した冷媒蒸気は、冷媒蒸気膨張機1で仕事をし、低圧冷媒蒸気となって、吸収器Aで吸収溶液に吸収される。
潤滑系統については、図1(b)に示すように、潤滑油系統は、オイルタンク8、オイルポンプ9、オイルクーラー10等からなり、この系統にオクチルアルコールを充填し、オイルポンプ9で軸受けにオクチルアルコールを供給する。
オイルクーラー10でオクチルアルコールを冷却し、温度の制御を行うのであるが、冷却媒体として、吸収サイクル系の吸収溶液、例えば吸収器出口の溶液を用いることができる。
【0012】
なお、オクチルアルコール量が減少してきた場合、吸収サイクル系でオクチルアルコールが溜まってくる位置、例えば、凝縮器C出口あるいは蒸発器E液溜めからオクチルアルコールを回収し、潤滑油系統に戻す(図示していないが、自動でも、手動でも可)。図1(a)では、凝縮器C出口にオクチルアルコール分離器7を設け、オクチルアルコールの比重が軽く、冷媒の上に浮くことを利用して分離している。
蒸気タービンの場合は、タービン、発電機を含めた軸受けの潤滑だけであるが、スクリュー型の場合、タイミングギア付はタイミングギアの潤滑、タイミングギア無しではローター間の潤滑も必要であり、スクロールの場合は、旋回スクロール部の潤滑等も必要になる。
さらに、容積型膨張機のスクリュー型、スクロール型などでは、スクリュー間あるいはスクロール間のシール部の漏れを防ぐため、潤滑油あるいは冷媒液をシール液として用いることもできる。
吸収冷温水機には、単効用、二重効用、一二重効用等各種サイクルが存在するが、構成機器間で温度差があり、蒸気圧力に高低差をつけられる場合は、その機器間に冷媒蒸気膨張機1を設けることもできる。
【0013】
図2は、二重効用サイクルの例を示す本発明の吸収冷温水装置のフロー構成図である。
冷房運転については、蒸発器Eで冷媒蒸気が蒸発して、冷水(又はブライン)を冷却する。蒸発した冷媒蒸気は、吸収器Aにて、冷却水で冷却されている吸収溶液に吸収される。
吸収器Aの溶液の一部は、溶液熱交換器X及び高温熱交換器XHの被加熱側を通って流路11から熱源再生器GHに送られる。熱源再生器GHでは、熱源によって溶液が加熱されて、冷媒蒸気を発生し、吸収溶液が濃縮された状態になり、高温熱交換器XHの加熱側を経由して流路12から低温再生器Gからの濃縮溶液に合流して吸収器Aに送られる。吸収器Aの溶液の残部は、、溶液熱交換器Xの被加熱側を通って分岐され、流路13から低温再生器Gに送られ、熱源再生器GHからの冷媒蒸気により加熱濃縮されて、流路14から流路12に合流して流路15から吸収器Aに送られる。
【0014】
冷房出力及び発電をするとき、膨張機1側の弁V5を開、低温再生器G側の弁V1を閉とする。なお、若干の冷媒蒸気漏れはあるが、弁V5を省略し、弁V1だけで制御してもよい。
発生した冷媒蒸気は、冷媒蒸気膨張機1で仕事をし、低圧蒸気となって凝縮器Cに入り、凝縮して蒸発器Eに戻る。
冷水負荷があまり無く、冷房出力オーバーになる時は、熱源が排熱の場合には、熱源を最大限使用して発電量を多く確保し、一方、冷水(冷房)出力調整のため冷媒蒸気膨張機1からの冷媒蒸気の一部を弁V2を通して吸収器Aに導き、凝縮器Cで凝縮する冷媒量を減少させて負荷調節を行う。凝縮器Cの負荷が小さくなると、凝縮圧力が低下し、膨張機1出力は若干であるが増加する。
【0015】
また、熱源が排熱ではなく、熱源コストが問題になる場合は、発電量と冷凍出力の効果を考慮して調整する必要がある。
発電よりも冷房優先のときは、膨張機1側の弁V5を閉、低温再生器G側の弁V1を開とする。
発生した冷媒蒸気は、低温再生器Gの熱源となり、低温再生器Gの溶液を加熱濃縮し、自らは凝縮液となり凝縮器Cに入る。一方、低温再生器Gで溶液から発生する冷媒蒸気は凝縮器Cで凝縮し、先程の凝縮液と共に蒸発器Eに戻る。
膨張機1側の弁V5と、低温再生器G側の弁V1とを調節して、冷媒蒸気量を分配し、発電と冷凍出力を調節することもできる。
【0016】
暖房運転については、暖房時には、基本的には吸収器A、凝縮器Cに冷却水を流さず、吸収溶液を流路17から蒸発器E伝熱面に散布して温水を製造する。
熱源再生器GHで発生した冷媒蒸気は、冷媒蒸気膨張機1で仕事をし、低圧冷媒蒸気となって、吸収器A又は蒸発器Eに入り、蒸発器E伝熱面に散布されている吸収溶液に吸収される。
温水負荷があまり無く出力オーバーになる時は、熱源を最大限使用して発電量を確保し、一方、温水(暖房)出力調整のため、冷却水を流し、余分な温熱を冷却水に捨てる。この際冷却水は、温度を調整あるいは流量を調整して、温水の容量制御をすることになる。
発電単独運転については、基本的には吸収器Aに吸収溶液を散布すると共に冷却水を流し、冷媒蒸気膨張機1出口の蒸気を吸収器Aに導いて吸収させる。
凝縮器Cには冷却水を流さなくてよいが、流れていても差し支えない。
熱源再生器GHで発生した冷媒蒸気は、冷媒蒸気膨張機1で仕事をし、低圧冷媒蒸気となって、吸収器Aで吸収溶液に吸収される。
図2は、パラレルフローで示しているが、シリーズフローあるいはリバースフローと呼ばれる各種フローにも利用できる。
【0017】
図3は、一二重効用サイクルの可能な本発明の吸収冷温水装置を示す。熱源再生器GHに高温側熱源流体を、低熱源再生器GLXに低温側熱源流体を投入する。
熱源再生器GHの発生蒸気は、冷媒蒸気膨張機1に導くと発電ができ、一方、低温再生器Gに導いて加熱源として利用すれば、冷凍能力を増加させることができる。
低熱源再生器GLXで発生した冷媒蒸気は、凝縮器Cに導く。低熱源温度が高ければ、発生冷媒を冷媒蒸気膨張機1の低圧部あるいは低圧段を経由して凝縮器Cに導いてもよい。また冷媒蒸気膨張機1と凝縮器Cとに切替選択導入などとしてもよい。
凝縮器Cと吸収器Aとを弁V2を有する配管で結び、冷媒蒸気膨張機1から出る低圧冷媒蒸気を凝縮器Cで凝縮させるか、吸収器Aに吸収させるか調節あるいは選択できる。
【0018】
冷房運転においては、熱源再生器GHからの冷媒蒸気は、冷房負荷が多く冷房主体で運転する場合は、低温再生器Gに導いて溶液の加熱濃縮に利用(二重効用サイクル)し、冷房負荷が高負荷でなく、発電主体で運転する場合は、冷媒蒸気膨張機1に導いて発電し、膨張後の冷媒を凝縮させて冷房に利用する。
低熱源再生器GLXからの冷媒蒸気は、冷房中は基本的には凝縮器Cに導く。
冷水負荷があまり無く出力オーバーになる時は、凝縮器Cと吸収器Aとの間の弁V2を開とし、冷媒蒸気膨張機1出口から吸収器Aに入る蒸気量を調節する。
蒸発器Eで冷媒蒸気が蒸発して、冷水(又はブライン)を冷却する等は図1と同じである。
溶液の循環は、吸収冷温水機のシリーズフロー、パラレルフロー、リバースフロー、これらの混合したフロー等各種あり、本発明はいずれにも適用できる。
【0019】
暖房運転については、暖房時には、吸収器A、凝縮器Cに冷却水を流さず、吸収溶液を蒸発器E伝熱面に散布して温水を製造する。
熱源再生器GHで発生した冷媒蒸気は、冷媒蒸気膨張機1にて仕事をした後、低熱源再生器GLXで発生した冷媒蒸気と共に吸収器A又は蒸発器Eに入り、蒸発器E伝熱面に散布されている吸収溶液に吸収され、蒸発器Eを流れる温水を加熱する。
温水負荷があまり無く出力オーバーになる時は、冷却水を流して調節する。
発電単独運転については、熱源再生器GHで発生した冷媒蒸気は冷媒蒸気膨張機1に導き、膨張機1で仕事をした後吸収器Aの吸収溶液に吸収される。
低熱源再生器GLXで発生した冷媒蒸気は、吸収器Aにて吸収溶液に吸収される。なお、低熱源再生器GLXで発生した冷媒蒸気を冷媒蒸気膨張機1の低圧段に導く構成の場合には、膨張機1で仕事をした後、吸収器Aにて吸収される。
【0020】
【発明の効果】
本発明によれば、冷温水製造と共に発電が可能で、また冷暖房負荷がない時には、発電単独の運転が可能な膨張機を組込んだ吸収冷温水装置において、膨張機(タービン、スクリュー、スクロール)の軸受けの潤滑問題である粘性不足で起きる焼付けや、漏れた場合に冷媒に及ぼす影響を解消することができた。
【図面の簡単な説明】
【図1】本発明の膨張機を組込んだ吸収冷温水装置の例を示すフロー構成図で、(a)全体図、(b)膨張機部分の部分構成図。
【図2】本発明の膨張機を組込んだ吸収冷温水装置の他の例を示すフロー構成図。
【図3】本発明の膨張機を組込んだ吸収冷温水装置の他の例を示すフロー構成図。
【符号の説明】
A:吸収器、G:低温再生器、GH:熱源再生器、GLX:低熱源再生器、C:凝縮器、E:蒸発器、X:溶液熱交換器、XH:高温熱交換器、SP:溶液ポンプ、RP:冷媒ポンプ、V1〜V5:弁、1:膨張機、2:発電機、3、4:冷却水、5:熱源、6:冷温水、7:分離器、8:オイルタンク、9:オイルポンプ、10:オイルクーラー、11〜17:溶液流路、18〜25:冷媒流路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an absorption chiller / heater, and in particular, operates an absorption chiller / heater using exhaust heat from the outside of a gas turbine, an engine, etc. as a heat source, and a refrigerant vapor incorporated in the absorption chiller / heater as a drive source. It is related with the cogeneration system which takes out work with an expander and drives a generator with an expander and also generates electricity.
[0002]
[Prior art]
Conventionally, a device for either one of them, such as a device for producing cold / hot water using waste heat or a device for generating power using waste heat, has been used.
When cold / hot water is produced using exhaust heat and air-conditioning is performed, there is almost no cold / hot water load in the intermediate period, and exhaust heat cannot be effectively used.
On the other hand, a device that uses exhaust heat to work or generate electricity (hereinafter, power generation is mainly described) can use exhaust heat throughout the year, but has low power generation efficiency. When air conditioning is required, the efficiency of use can often be increased by driving the absorption chiller / heater directly with exhaust heat rather than operating the refrigerator or heat pump with the generated electricity.
[0003]
Throughout the year, both devices are necessary and complicated when trying to generate heat and cooling using exhaust heat effectively.
On the other hand, if the expander is to be incorporated into the absorption refrigeration apparatus in order to use both devices, lubrication becomes a problem because the rotational speed of the bearing of the expander is high. That is, when a refrigerant liquid or an absorbing solution is used as a lubricant for an expander bearing, like a refrigerant pump or a solution pump of an absorption chiller / hot water machine, seizure or the like occurs due to insufficient viscosity.
On the other hand, if the bearing part is separated by a mechanical seal and lubricating oil is used, if the lubricating oil leaks from the mechanical seal to the absorption refrigeration cycle system, the refrigerant is difficult to evaporate and the refrigerant is difficult to absorb. Arise. There are similar problems with lubrication of other rotating systems.
[0004]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems of the prior art, can generate power together with the production of cold / hot water, and is an apparatus capable of operating alone when there is no cooling / heating load. An expander (turbine, screw, scroll) It is an object of the present invention to provide an absorption chilled / hot water device incorporating an expander with a simple configuration that solves the problem of lubrication of the bearing.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, in the present invention, an absorption chiller / heater constituting an absorption refrigeration cycle using a medium containing a refrigerant, an absorbent, and a surfactant is supplied with refrigerant vapor generated in the absorption refrigeration cycle. Absorbing chilled / hot water device incorporating an expander or generator and expander in operation, wherein the expander uses the same surfactant as that contained in the medium used in the absorption refrigeration cycle for lubrication of the bearing This is an absorption cold / hot water device incorporating an expander characterized by the above.
In the absorption cold / hot water apparatus, the expander is a screw type, and the same surfactant as that contained in the medium used in the absorption refrigeration cycle can be used for lubrication of a timing gear that rotates the screw rotor, The expander can use the refrigerant liquid used in the absorption refrigeration cycle as a liquid seal between the screw or scroll tooth profile, and the expander is a screw type, and the liquid seal between the screw tooth profile and the screw tooth profile. The same surfactant as that contained in the medium used in the absorption refrigeration cycle can be used for lubrication. Further, the absorption chiller / heater has a surfactant separator at the evaporator and / or condenser outlet. Can be provided.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The generator boiler and the refrigerating device regenerator have the same function of generating steam, and the power generating device condenser and the refrigerating device condenser have the same function of condensing steam, etc. There are many devices that can be used both as a power generation device and an absorption refrigeration device. In the present invention, an expansion machine is incorporated in an absorption chiller / hot water machine, and a compact device enables cooling / heating loads or power generation using exhaust heat throughout the year.
In addition, the rotating system such as an expander requires lubricating oil, but the same type of oil as the surfactant used in the absorption refrigeration cycle is used. Thereby, even if the surfactant, which is lubricating oil, leaks from the mechanical seal to the absorption refrigeration cycle system, there is no problem.
There are various types of expanders such as a turbine type, a screw type, a scroll type, and the type is often selected mainly by the volumetric flow rate of steam.
Further, when a screw type is used for the expander, steam blow-off from between the rotors becomes a problem, but a refrigerant, a surfactant, or the like is used as a liquid sealant between the rotors.
In contrast to the case where a screw type is used for the expander, a surfactant is used for lubrication of the expander and liquid sealing such as lubrication between the screw rotors or timing gear for the expander with timing gear.
[0007]
Next, this invention is demonstrated using the flow block diagram of the absorption cold / hot water apparatus incorporating the expander of this invention of FIGS. 1-3.
In the figure, A is an absorber, GH is a heat source regenerator, GLX is a low heat source regenerator, G is a low temperature regenerator, C is a condenser, E is an evaporator, X is a solution heat exchanger, and XH is a high temperature heat exchanger. , SP is a solution pump, RP is a refrigerant pump, V1 to V5 are valves, 1 is an expander, 2 is a generator, 3 and 4 are cooling water, 5 is a heat source, 6 is cold / hot water, and 7 is separated. 8 is an oil tank, 9 is an oil pump, 10 is an oil cooler, 11 to 17 are solution channels, and 18 to 25 are refrigerant channels.
Thus, in FIG. 1, the absorber A, the evaporator E, and the condenser C are combined, and in FIGS. 2 and 3, the low-temperature regenerator G is combined with inorganic salts as the absorbent and water as the refrigerant. In addition to the can body, the heat source regenerators GH and GLX, the solution heat exchangers X and XH, and the expander 1 which use the heat source 5 as a heating source are provided. And a generator 2 are provided. The absorber A and the condenser C or the low temperature regenerator G of the can body are connected to the heat source regenerators GH and GLX and the expander 1 through the solution flow paths 11 and 12 and the refrigerant flow paths 20 to 25, respectively. ing.
[0008]
FIG. 1 shows an example of a single effect cycle, (a) is an overall view, (b) is a partial configuration diagram of an expander part, and when using an inorganic salt as an absorbent and water as a refrigerant, as a surfactant Add octyl alcohol to improve heat transfer and absorption performance.
The cooling operation using FIG. 1A will be described. The refrigerant vapor evaporates in the evaporator E, and the cold water 6 (or brine) is cooled. The evaporated refrigerant vapor is absorbed by the absorber A into the absorption solution cooled by the cooling water 3.
The solution in the absorber A is sent from the flow path 11 to the heat source regenerator GH through the heated side of the solution heat exchanger X by the solution pump SP.
The refrigerant is heated by the heat source in the heat source regenerator GH to generate refrigerant vapor, and the solution is in a state where the absorbent is concentrated. The concentrated solution returns from the flow path 12 to the absorber A through the heating side of the solution heat exchanger X, and is spread on the heat transfer surface of the absorber.
[0009]
The refrigerant vapor generated in the reheat source generator GH works at the refrigerant vapor expander 1 to become a low pressure, enters the condenser C from the flow path 22, is cooled by the cooling water 4, is condensed, and becomes a refrigerant liquid. To return to the evaporator E. If the cooling water temperature is high and the condensing pressure is high and the refrigerator output is insufficient, or if the heat source temperature is low and the refrigerator output is insufficient, the valve V1 is opened or adjusted to increase the condensation capacity. Increase the output of the refrigerator.
When there is not much chilled water load and the refrigeration output is over, if the heat source is exhaust heat, the heat source is used as much as possible to secure a large amount of power generation, while the chilled water (cooling) output is adjusted to expand the refrigerant vapor A part of the refrigerant vapor from the machine 1 is guided from the flow path 24 to the absorber A, and the load is adjusted by reducing the amount of refrigerant condensed in the condenser C (using the valve V2). When the load on the condenser C decreases, the condensing pressure decreases, and the output of the expander 1 increases slightly. As another adjustment method, there is a method of returning the refrigerant liquid of the evaporator E to the absorber A and reducing the absorption capacity.
If the heat source is not waste heat and the cost of the heat source becomes a problem, it is necessary to adjust the power generation amount and the effect of the refrigeration output.
[0010]
Next, the heating operation will be described. During heating, basically, cooling water is not allowed to flow through the absorber A and the condenser C, but the absorbing solution is sprayed on the evaporator E heat transfer surface to produce hot water.
The refrigerant vapor generated in the heat source regenerator GH works in the refrigerant vapor expander 1, becomes low-pressure refrigerant vapor, enters the absorber A or the evaporator E, passes through the valve V3 from the flow path 17, and passes through the evaporator E. Absorbed in absorbent solution spread on heat transfer surface.
When there is not too much hot water load and the output is over, the heat source is used as much as possible to secure the amount of power generation. At this time, the temperature of the cooling water is adjusted or the flow rate is adjusted to control the capacity of the hot water. When the hot water load is large and the thermal output is more important than the amount of power generation, the refrigerant vapor generated in the heat source regenerator GH may be directly led to the evaporator E through the valve V1 to increase the heat.
[0011]
Further, the power generation independent operation will be described. Basically, the absorbing solution is sprayed on the absorber A and the cooling water 3 is flowed to guide the vapor at the outlet of the refrigerant vapor expander 1 to the absorber A for absorption. (Valve V2 fully open)
The condenser C does not need to flow cooling water, but may flow.
The refrigerant vapor generated in the heat source regenerator GH works in the refrigerant vapor expander 1, becomes low-pressure refrigerant vapor, and is absorbed by the absorbent solution in the absorber A.
As for the lubrication system, as shown in FIG. 1 (b), the lubrication oil system is composed of an oil tank 8, an oil pump 9, an oil cooler 10, and the like, and this system is filled with octyl alcohol, and the oil pump 9 serves as a bearing. Supply octyl alcohol.
The octyl alcohol is cooled by the oil cooler 10 to control the temperature. As the cooling medium, an absorption solution of an absorption cycle system, for example, a solution at the outlet of the absorber can be used.
[0012]
When the amount of octyl alcohol decreases, octyl alcohol is recovered from the position where octyl alcohol is accumulated in the absorption cycle system, for example, the outlet of condenser C or the evaporator E liquid reservoir, and is returned to the lubricating oil system (shown) Not automatic, but can be automatic or manual). In FIG. 1A, an octyl alcohol separator 7 is provided at the outlet of the condenser C, and the octyl alcohol has a low specific gravity and is separated by utilizing the fact that it floats on the refrigerant.
In the case of a steam turbine, only lubrication of the bearing including the turbine and generator is required, but in the case of the screw type, lubrication of the timing gear is necessary with the timing gear, and lubrication between the rotors is necessary without the timing gear. In this case, lubrication of the orbiting scroll part is also necessary.
Furthermore, in the screw type, scroll type, etc. of the positive displacement expander, lubricating oil or refrigerant liquid can be used as the sealing liquid in order to prevent leakage of the seal portion between the screws or between the scrolls.
Absorption chiller / heaters have various cycles such as single effect, double effect, single double effect, etc., but there is a temperature difference between the components, and if the steam pressure can be varied in height, there is a difference between the devices. A refrigerant vapor expander 1 can also be provided.
[0013]
FIG. 2 is a flow configuration diagram of the absorption chilled / hot water device of the present invention showing an example of a double effect cycle.
In the cooling operation, the refrigerant vapor evaporates in the evaporator E to cool the cold water (or brine). The evaporated refrigerant vapor is absorbed by the absorber A into the absorption solution that is cooled with cooling water.
A part of the solution of the absorber A is sent from the flow path 11 to the heat source regenerator GH through the heated side of the solution heat exchanger X and the high temperature heat exchanger XH. In the heat source regenerator GH, the solution is heated by the heat source to generate refrigerant vapor, and the absorption solution is concentrated, and the low temperature regenerator G is discharged from the flow path 12 via the heating side of the high temperature heat exchanger XH. The concentrated solution is fed to the absorber A. The remainder of the solution in the absorber A is branched through the heated side of the solution heat exchanger X, sent from the flow path 13 to the low temperature regenerator G, and heated and concentrated by the refrigerant vapor from the heat source regenerator GH. The flow path 14 joins the flow path 12 and is sent from the flow path 15 to the absorber A.
[0014]
When the cooling output and power generation are performed, the valve V5 on the expander 1 side is opened, and the valve V1 on the low temperature regenerator G side is closed. In addition, although there is some refrigerant vapor leakage, the valve V5 may be omitted and the control may be performed only by the valve V1.
The generated refrigerant vapor works in the refrigerant vapor expander 1, becomes low-pressure vapor, enters the condenser C, condenses, and returns to the evaporator E.
When there is not much chilled water load and the cooling output is over, if the heat source is exhaust heat, use the heat source as much as possible to secure a large amount of power generation, while the refrigerant vapor expansion for adjusting the chilled water (cooling) output A part of the refrigerant vapor from the machine 1 is guided to the absorber A through the valve V2, and the load is adjusted by reducing the amount of refrigerant condensed in the condenser C. When the load on the condenser C decreases, the condensing pressure decreases, and the output of the expander 1 increases slightly.
[0015]
In addition, when the heat source is not exhaust heat and the heat source cost becomes a problem, it is necessary to adjust in consideration of the power generation amount and the effect of the refrigeration output.
When cooling is prioritized over power generation, the valve V5 on the expander 1 side is closed and the valve V1 on the low temperature regenerator G side is opened.
The generated refrigerant vapor becomes a heat source of the low temperature regenerator G, heats and concentrates the solution of the low temperature regenerator G, and enters itself into a condenser C as a condensate. On the other hand, the refrigerant vapor generated from the solution in the low temperature regenerator G is condensed in the condenser C, and returns to the evaporator E together with the condensate.
It is also possible to adjust the power generation and the refrigeration output by adjusting the valve V5 on the expander 1 side and the valve V1 on the low temperature regenerator G side to distribute the refrigerant vapor amount.
[0016]
About heating operation, at the time of heating, basically, cooling water is not allowed to flow through the absorber A and the condenser C, but the absorbing solution is sprayed from the flow path 17 to the evaporator E heat transfer surface to produce hot water.
The refrigerant vapor generated in the heat source regenerator GH works in the refrigerant vapor expander 1, becomes low-pressure refrigerant vapor, enters the absorber A or the evaporator E, and is absorbed on the heat transfer surface of the evaporator E. Absorbed in solution.
When there is not much hot water load and the output is over, use the heat source as much as possible to secure the amount of power generation. On the other hand, to adjust the output of the hot water (heating), flow cooling water and throw away excess heat into the cooling water. At this time, the capacity of the cooling water is controlled by adjusting the temperature or the flow rate.
For power generation single operation, basically, the absorbing solution is sprayed on the absorber A and the cooling water is allowed to flow, and the vapor at the outlet of the refrigerant vapor expander 1 is guided to the absorber A to be absorbed.
The condenser C does not need to flow cooling water, but may flow.
The refrigerant vapor generated in the heat source regenerator GH works in the refrigerant vapor expander 1, becomes low-pressure refrigerant vapor, and is absorbed by the absorbent solution in the absorber A.
Although FIG. 2 shows a parallel flow, it can also be used for various flows called a series flow or a reverse flow.
[0017]
FIG. 3 shows an absorption chilled and hot water apparatus of the present invention capable of a single dual effect cycle. A high temperature side heat source fluid is charged into the heat source regenerator GH, and a low temperature side heat source fluid is charged into the low heat source regenerator GLX.
The generated steam of the heat source regenerator GH can generate electricity when it is led to the refrigerant vapor expander 1, while the refrigerating capacity can be increased if it is led to the low temperature regenerator G and used as a heating source.
The refrigerant vapor generated in the low heat source regenerator GLX is guided to the condenser C. If the low heat source temperature is high, the generated refrigerant may be led to the condenser C via the low-pressure part or the low-pressure stage of the refrigerant vapor expander 1. Moreover, it is good also as switching selection introduction | transduction etc. to the refrigerant | coolant vapor | steam expander 1 and the condenser C.
The condenser C and the absorber A are connected by a pipe having a valve V2, and it is possible to adjust or select whether the low-pressure refrigerant vapor from the refrigerant vapor expander 1 is condensed by the condenser C or absorbed by the absorber A.
[0018]
In the cooling operation, the refrigerant vapor from the heat source regenerator GH is led to the low temperature regenerator G and used for heating and concentrating the solution (double effect cycle) when operating with a large cooling load and mainly cooling. In the case where the engine is operated with a main power generation rather than a high load, the refrigerant vapor expander 1 is led to generate electric power, and the expanded refrigerant is condensed and used for cooling.
The refrigerant vapor from the low heat source regenerator GLX is basically guided to the condenser C during cooling.
When there is not much chilled water load and the output is over, the valve V2 between the condenser C and the absorber A is opened, and the amount of steam entering the absorber A from the refrigerant vapor expander 1 outlet is adjusted.
The refrigerant vapor evaporates in the evaporator E and the cold water (or brine) is cooled, etc., is the same as in FIG.
There are various kinds of circulation of the solution such as a series flow, a parallel flow, a reverse flow, and a mixed flow of the absorption chiller / heater, and the present invention can be applied to any of them.
[0019]
About heating operation, at the time of heating, it does not flow cooling water to absorber A and condenser C, but sprays absorption solution on the evaporator E heat-transfer surface, and manufactures warm water.
The refrigerant vapor generated in the heat source regenerator GH works in the refrigerant vapor expander 1 and then enters the absorber A or the evaporator E together with the refrigerant vapor generated in the low heat source regenerator GLX. The hot water flowing through the evaporator E is absorbed by the absorbing solution sprayed on.
When there is not much hot water load and the output is over, adjust by flowing cooling water.
In the power generation single operation, the refrigerant vapor generated in the heat source regenerator GH is guided to the refrigerant vapor expander 1 and is absorbed by the absorbing solution in the absorber A after working in the expander 1.
The refrigerant vapor generated in the low heat source regenerator GLX is absorbed by the absorbing solution in the absorber A. In the case of a configuration in which the refrigerant vapor generated in the low heat source regenerator GLX is guided to the low pressure stage of the refrigerant vapor expander 1, it is absorbed by the absorber A after working on the expander 1.
[0020]
【The invention's effect】
According to the present invention, an expansion machine (turbine, screw, scroll) is provided in an absorption cold / hot water apparatus incorporating an expander capable of generating electricity together with the production of cold / hot water and having no cooling / heating load. It was possible to eliminate the effects of the seizure caused by insufficient viscosity, which is a lubrication problem on the bearings, and the effect on the refrigerant when leaked.
[Brief description of the drawings]
FIG. 1 is a flow configuration diagram showing an example of an absorption chilled / hot water device incorporating an expander of the present invention, (a) an overall view, (b) a partial configuration diagram of an expander portion.
FIG. 2 is a flow configuration diagram showing another example of an absorption chilled / hot water device incorporating the expander of the present invention.
FIG. 3 is a flow configuration diagram showing another example of the absorption chilled / hot water device incorporating the expander of the present invention.
[Explanation of symbols]
A: Absorber, G: Low temperature regenerator, GH: Heat source regenerator, GLX: Low heat source regenerator, C: Condenser, E: Evaporator, X: Solution heat exchanger, XH: High temperature heat exchanger, SP: Solution pump, RP: refrigerant pump, V1 to V5: valve, 1: expander, 2: generator, 3, 4: cooling water, 5: heat source, 6: cold / hot water, 7: separator, 8: oil tank, 9: Oil pump, 10: Oil cooler, 11-17: Solution flow path, 18-25: Refrigerant flow path

Claims (5)

冷媒と吸収剤と界面活性剤とを含んだ媒体を用いて吸収冷凍サイクルを構成する吸収冷温水機に、該吸収冷凍サイクルで発生する冷媒蒸気で稼動する膨張機又は発電機と膨張機を組込んだ吸収冷温水装置であって、前記膨張機が、軸受けの潤滑に、前記吸収冷凍サイクルに用いる媒体に含まれるものと同じ界面活性剤を用いることを特徴とする膨張機を組込んだ吸収冷温水装置。Combined with an absorption chiller / heater that forms an absorption refrigeration cycle using a medium containing a refrigerant, an absorbent, and a surfactant, an expander or a generator and an expander that are operated by refrigerant vapor generated in the absorption refrigeration cycle. Absorbing cold / hot water apparatus, wherein the expander uses the same surfactant as that contained in the medium used for the absorption refrigeration cycle to lubricate the bearing. Cold and hot water equipment. 前記膨張機が、スクリュー型であり、スクリューロータを回転させるタイミングギアの潤滑に、前記吸収冷凍サイクルに用いる媒体に含まれるものと同じ界面活性剤を用いることを特徴とする請求項1記載の膨張機を組込んだ吸収冷温水装置。2. The expansion according to claim 1, wherein the expander is of a screw type, and the same surfactant as that contained in the medium used in the absorption refrigeration cycle is used for lubricating a timing gear for rotating the screw rotor. Absorption chilled / hot water equipment with built-in machine. 前記膨張機は、スクリュー又はスクロール歯形間の液シールとして、前記吸収冷凍サイクルに用いる冷媒液を用いることを特徴とする請求項2記載の膨張機を組込んだ吸収冷温水装置。The absorption chiller / heater device incorporating the expander according to claim 2, wherein the expander uses a refrigerant liquid used in the absorption refrigeration cycle as a liquid seal between the screw or scroll tooth profile. 前記膨張機が、スクリュー型であり、スクリュー歯形間の液シール及びスクリュー歯形間の潤滑に、前記吸収冷凍サイクルに用いる媒体に含まれるものと同じ界面活性剤を用いることを特徴とする請求項1記載の膨張機を組込んだ吸収冷温水装置。The expander is a screw type, and the same surfactant as that contained in the medium used in the absorption refrigeration cycle is used for liquid sealing between screw tooth profiles and lubrication between screw tooth profiles. Absorption chilled and hot water device incorporating the described expander. 前記吸収冷温水機には、蒸発器及び/又は凝縮器出口に、界面活性剤分離器を設けたことを特徴とする請求項1〜4のいずれか1項記載の膨張機を組込んだ吸収冷温水装置。The absorption incorporating the expander according to any one of claims 1 to 4, wherein the absorption chiller / heater is provided with a surfactant separator at an outlet of an evaporator and / or a condenser. Cold and hot water equipment.
JP2002245024A 2002-08-26 2002-08-26 Absorption chiller / hot water unit with expander Expired - Fee Related JP3799550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002245024A JP3799550B2 (en) 2002-08-26 2002-08-26 Absorption chiller / hot water unit with expander

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002245024A JP3799550B2 (en) 2002-08-26 2002-08-26 Absorption chiller / hot water unit with expander

Publications (2)

Publication Number Publication Date
JP2004085039A JP2004085039A (en) 2004-03-18
JP3799550B2 true JP3799550B2 (en) 2006-07-19

Family

ID=32053337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002245024A Expired - Fee Related JP3799550B2 (en) 2002-08-26 2002-08-26 Absorption chiller / hot water unit with expander

Country Status (1)

Country Link
JP (1) JP3799550B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101520254B (en) * 2009-03-26 2011-07-20 上海交通大学 Adsorption type low temperature heat resource power generation and refrigeration device

Also Published As

Publication number Publication date
JP2004085039A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
JP4714099B2 (en) Bearing lubricator for compression refrigerator
JP2008082622A (en) Compression type refrigerating device
JP5730028B2 (en) Heat source system
JP2008014533A (en) Oil recovering device of compression type refrigerating machine
CN205382966U (en) Recovery waste heat power generation system is united to low -quality waste gas waste liquid
JP3799550B2 (en) Absorption chiller / hot water unit with expander
CN1075883C (en) Direct-burning type lithium bromide absorption type heat pump set system
JPH10274010A (en) Binary power generating system
US5765380A (en) Air-conditioning apparatus using radiation heat control system and method for stable air-conditioning operation
JP4152140B2 (en) Waste heat absorption refrigerator
JP4301666B2 (en) Waste heat absorption refrigerator
CA2251351A1 (en) Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump
JP2004301344A (en) Ammonia absorption heat pump
JP2008014598A (en) Bleeder for compression type refrigerating machine
JP3830141B2 (en) Power generation and absorption cold / hot water equipment
JP3821286B2 (en) Refrigeration system combining absorption type and compression type and its operating method
JP3830140B2 (en) Power generation and absorption cold / hot water equipment
CN1460826A (en) Absorption type refrigerator
JP3862631B2 (en) Power generation and absorption cold / hot water equipment
JP4265714B2 (en) Waste heat absorption refrigerator
JP2000018757A (en) Cooler
JPS6022253B2 (en) absorption refrigerator
JP3986633B2 (en) Heat utilization system
JP2004028374A (en) Refrigerating equipment combined with absorption type and compression type
JP2009115065A (en) Energy conversion system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees