JP2004028374A - Refrigerating equipment combined with absorption type and compression type - Google Patents

Refrigerating equipment combined with absorption type and compression type Download PDF

Info

Publication number
JP2004028374A
JP2004028374A JP2002181671A JP2002181671A JP2004028374A JP 2004028374 A JP2004028374 A JP 2004028374A JP 2002181671 A JP2002181671 A JP 2002181671A JP 2002181671 A JP2002181671 A JP 2002181671A JP 2004028374 A JP2004028374 A JP 2004028374A
Authority
JP
Japan
Prior art keywords
condenser
compressor
compression
absorption
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002181671A
Other languages
Japanese (ja)
Other versions
JP3871207B2 (en
Inventor
Osayuki Inoue
井上 修行
Izumi Hashimoto
橋本 泉
Kiichi Irie
入江 毅一
Tetsuya Endo
遠藤 哲也
Atsushi Aoyama
青山 淳
Tomoyuki Uchimura
内村 知行
Yukihiro Fukuzumi
福住 幸大
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002181671A priority Critical patent/JP3871207B2/en
Publication of JP2004028374A publication Critical patent/JP2004028374A/en
Application granted granted Critical
Publication of JP3871207B2 publication Critical patent/JP3871207B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • F25B2400/0751Details of compressors or related parts with parallel compressors the compressors having different capacities

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating equipment that can be used for an air conditioner, economically and efficiently operated by selecting the optimal operation mode of a compression freezer. <P>SOLUTION: This freezing equipment is constituted by combining an absorption freezer RA having an evaporator E and the compression freezer RP constituted of a compressor M, a first condenser C1 and a second condenser C2, cooling by outside air or cooling water, and a use side evaporator Ec providing a freezing effect. The evaporator E of the absorption freezer RA has heat exchange relation with the second condenser C2 of the compression freezer RP, or it uses the second condenser C2 at the same time. A circuit 1 by-passing the first condenser C1 is provided to the compression freezer, and a control valve 10 is provided to the circuit 1. A circuit by-passing the compressor M is provided to the compression freezer RP. The by-pass circuit can be provided with a check valve V1 or a control valve, and the compressor M can be provided with a high-head compressor and a low-head compressor. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、冷凍装置に係り、特に、エンジン、タービン、各種プラント等からの排熱を熱源とする吸収冷凍機又は吸収冷温水機からの冷凍効果を、圧縮冷凍機と組合せて有効利用する空気調和装置として使用することができる冷凍装置に関する。
【0002】
【従来の技術】
一般にコージェネレーションシステムでは、発電に伴って排気ガスや温水等の形で熱が排出される。これら排熱は温度があまり高くないことから、低ポテンシャルエネルギに分類され、給湯又は暖房に利用されることが多い。最近では排熱で吸収冷凍機を運転して、冷房に利用することも多くなってきている。
コージェネレーションシステムの中で、この排熱は、ガスタービンやエンジンの排気ガス及び冷却水、あるいは、燃料電池の冷却水から得られる。排熱だけで吸収冷凍機を運転する場合もあるが、複合冷房装置として、排熱を高ポテンシャルエネルギと共に用いることで、運転に要する高ポテンシャルエネルギの量を節約する使い方が提案され、採用されはじめている。
【0003】
ところで、排熱は発電量に応じて変化するため、その供給量は不安定であり、排熱だけで吸収冷凍機を運転する場合、冷房負荷に応じた能力を取り出すことは困難である。これを解決するために、吸収冷凍機の冷熱を圧縮冷凍機の放熱源として用いて、循環冷媒を冷却する冷凍装置が知られている。
しかし、この冷凍装置の圧縮冷凍機では、圧縮機で圧縮した冷媒蒸気を熱源側熱交換器(凝縮器)で凝縮させ、この凝縮液を、吸収冷凍機の蒸発器で過冷却させており、吸収冷凍効果は、冷房負荷に関係なく、常に圧縮冷凍機を運転した状態で利用する必要があり、また過冷却分だけで利用しているので、吸収冷凍効果の比率(圧縮冷凍効果に対する比率)を大きくすることができず、圧縮機を駆動する電動機の消費電力を大幅には削減ができないという問題があった。
【0004】
【発明が解決しようとする課題】
本発明では、上記従来技術の問題点を解消し、供給される排熱の量や冷房負荷に応じて、圧縮冷凍機の運転モードを最適なものに切替えることにより、経済的で効率の良い運転ができる空気調和装置として使用することができる冷凍装置を提供する。
【0005】
【課題を解決するための手段】
上記課題を解決するために、本発明では、蒸発器を有する吸収冷凍機と、圧縮機、外気又は冷却水で冷却する第一凝縮器、第二凝縮器及び冷凍効果を発揮する利用側蒸発器を有する圧縮冷凍機とを組合せた冷凍装置であって、前記吸収冷凍機の蒸発器が、前記圧縮冷凍機の第二凝縮器と熱交換関係にあるか、又は該第二凝縮器を兼用していると共に、前記圧縮冷凍機には、第一凝縮器をバイパスする回路を設け、該バイパス回路には制御弁を設けていることを特徴とする冷凍装置としたものである。
前記冷凍装置において、圧縮冷凍機には、圧縮機をバイパスする回路を設け、該バイパス回路には逆止弁又は制御弁を有することができ、前記圧縮冷凍機は、高ヘッド圧縮機と、低ヘッド圧縮機とを有していてもよい。
【0006】
また、本発明では、前記冷凍装置の運転方法において、前記圧縮冷凍機は、次の(a)〜(d)の運転モード、(a)圧縮機を運転し、第一凝縮器のバイパス回路を閉止し、第一凝縮器で凝縮させ、第二凝縮器では過冷却しない運転モード、(b)圧縮機を運転し、第一凝縮器のバイパス回路を閉止し、第一凝縮器で凝縮させ、第二凝縮器では第一凝縮器からの冷媒液を過冷却又は凝縮させる運転モード、(c)圧縮機を運転し、第一凝縮器のバイパス回路を開方向とし、第二凝縮器で冷媒蒸気を凝縮させる運転モード、(d)圧縮機を停止し、第一凝縮器のバイパス回路を開方向とし、第二凝縮器で冷媒蒸気を凝縮させる運転モード、のうちの少なくとも2種類以上の運転モードで運転することを特徴とする冷凍装置の運転方法としたものである。
【0007】
【発明の実施の形態】
本発明では、圧縮冷凍機の凝縮熱の放出先として、吸収冷凍機(コジェネ排熱で駆動もよいが、しなくてもよい)を利用するもので、特に、冷房負荷及び吸収冷凍機運転状態(吸収冷凍効果への負荷状態など)に応じて、圧縮冷凍機の室外凝縮器(第一凝縮器)をバイパスできるようにしたものである。凝縮器バイパス、圧縮機発停等の組合せによる各種運転モードができ、負荷に応じて、これら運転モードを切替えることにより、圧縮機停止あるいは圧縮機の所要動力(ヘッド)の低減等、エネルギ節約を図っている。
【0008】
次に、本発明を図面を用いて詳細に説明する。
図1及び図2は、本発明の冷凍装置の圧縮冷凍機側の構成機器の接続例を示すフロー構成図であり、図3は、図1を用いた各運転モードのモリエ線図である。図において、RAは吸収冷凍機、RPは圧縮冷凍機、Mは圧縮機、M1は高ヘッド圧縮機、M2は低高ヘッド圧縮機、Ecは蒸発器、C1は第一凝縮器、C2は第二凝縮器、V1は逆止弁、V2は制御弁(膨張弁)、V3は膨張弁(絞り装置)、1はバイパス回路、2は制御器、3〜6は温度又は圧力センサー、7は液ポンプ、8は逆止弁、9は媒体流路、10は制御弁であり、各機器は、温度又は圧力センサーからの信号により、運転、停止を制御するように構成されている。
【0009】
次に、図1と図3を用いて本発明の冷凍装置の運転について説明する。
本発明では、凝縮器バイパス、圧縮機発停等の組合せによる各種運転モード(下記▲1▼〜▲4▼)ができ、負荷に応じて、これら運転モードを切替えることにより、圧縮機停止あるいは圧縮機の所要動力(ヘッド)の低減等、エネルギ節約を図っている。
▲1▼モード1(第一凝縮器単独モード)は、吸収冷凍機RAが停止している場合など、第二凝縮器C2に吸収冷凍効果搬送媒体(冷水など)が供給されない時の運転モードで、通常の圧縮冷凍機と同様な運転となる。
冷媒は、圧縮機Mで圧縮され〔図3(a)モリエ線図の11→12〕、次に第一凝縮器(空冷凝縮器)C1で凝縮・過冷却する(線図12→13)。このモードでは,制御弁10は閉じて、冷媒がバイパス回路1を流れないようにしている。液化した冷媒は、第二凝縮器C2を通過(ここでは熱交換は行われない)した後、絞り装置V3で膨張する(線図13→14)。続いて蒸発器Ecで被冷却媒体の熱を奪って蒸発・過熱した(線図14→11)冷媒は、再び圧縮機Mに吸込まれ、冷凍サイクルを形成している。
【0010】
▲2▼モード2(第一・第二凝縮器併用モード)は、上述のモード1において、吸収冷凍機RAから第二凝縮器C2に吸収冷凍効果搬送媒体(冷水など)が供給され、ここで冷媒と熱交換が行われる運転モードで、吸収冷凍機RAで得られた冷熱を、冷媒の過冷却に用いる。
第一凝縮器C1で凝縮・過冷却した冷媒(線図22→23)は、第二凝縮器C2で、吸収冷凍効果で過冷却される(線図23→24)。このモードでも制御弁10は閉じて、冷媒がバイパス回路1を流れないようにしている。続いて冷媒は絞り装置V3で膨張し(線図24→25)、蒸発器Ecで熱を奪って蒸発・過熱する(線図25→26→21)。
このモードでは、排熱で吸収冷凍機を運転して得られた冷熱を、冷媒の過冷却に用いることで(線図23→24)、同量の冷熱を蒸発器Ecで利用できる(線図25→26)。
【0011】
▲3▼モード3(第二凝縮器単独モード)では、制御弁10を開き、第一凝縮器C1を使わずに、吸収冷凍機RAで得られた冷熱だけで、冷媒を凝縮・過冷却する。第一凝縮器C1の冷却媒体温度が、吸収冷凍効果搬送媒体の温度と同程度の場合、第一凝縮器C1で冷媒蒸気の一部が凝縮することもある(このとき、冷却媒体の流量調節をしてもよい)。
吸収冷凍効果搬送媒体(冷水など)は、冷却媒体温度より低くできるため、冷媒の凝縮圧力は低下する。すなわち、このモードでは、圧縮機Mの所要ヘッドを、空冷凝縮器C1を使用した場合(線図31→33)より、低くすることができる(線図31→32)。
圧縮機Mで圧縮された冷媒は、バイパス回路1及び制御弁10を通過して、第二凝縮器C2に入り、吸収冷凍効果で、冷媒は凝縮・過冷却する(線図32→34)。以後同じである。
吸収冷凍効果搬送媒体の温度が、冷却媒体温度より高い場合はこのモードを利用しないのが望ましい。
【0012】
▲4▼モード4(第二凝縮器直接凝縮モード)は、吸収冷凍機RAで得られる冷熱が充分な時に、圧縮機Mを停止し、冷媒を自然循環、又は液ポンプ7により循環させる。
逆止弁V1(又は制御弁を開)を通過した冷媒(線図41→42)は、バイパス回路1及び制御弁10を通過して、第二凝縮器C2に入る。第二凝縮器C2には、吸収冷凍効果が供給されており、これと熱交換することで、冷媒は凝縮・過冷却する(線図42→43)。続いて冷媒は、液ポンプ7で加圧され(線図43→44)た後、絞り装置V3で膨張し(線図44→45)、蒸発器4で熱を奪って蒸発・過熱する(線図45→41)。
このモードでは、圧縮機Mを運転しないため、所要電力を大幅に削減することができる。なお、吸収冷凍機RAが建物の屋上に設置されるなど、第二凝縮器C2が高い位置にあり、充分な液ヘッドが得られる場合は、液ポンプ7を省略して、冷媒を自然循環させることもできる。
【0013】
▲2▼’モード2’(第一、第二凝縮器併用モード)は、制御弁10は閉止のまま、第一凝縮器C1の冷媒出口の膨張弁V2を開方向にし、冷媒蒸気と凝縮液の二相状態で第二凝縮器C2に冷媒を導いてもよい。このとき、第一凝縮器C1内の冷媒流動が活発になり、また凝縮冷媒液による伝熱悪化も解消され、伝熱が非常によくなり、凝縮圧力は著しく低下し、圧縮動力の低減ができる。
モード2とモード3の中間的な運転となる。
▲3▼’モード3’(第一・第二凝縮器併用モード)は、制御弁10を調節し、冷媒蒸気の一部をバイパスさせて第二凝縮器C2で凝縮、残部を第一凝縮器C1で凝縮させ、凝縮液を第二凝縮器C2に導く。
第一凝縮器C1圧力を、全量凝縮の場合よりも低下させることができ、若干動力低減ができる。吸収冷凍効果が余っている場合に利用できる。
モード2とモード3の中間的な運転となる。
【0014】
▲4▼’モード4’(第一凝縮器直接凝縮モード)は、吸収冷凍機RAで得られる冷水温より、外気温が低い時に、吸収冷凍機RA及び圧縮機Mを停止し、冷媒を第一凝縮器C1で凝縮させて自然循環、又は液ポンプ7により循環させる。
このモードでは、逆止弁V1(または制御弁を開)を通過した冷媒(線図41→42)は、第一凝縮器C1で外気と熱交換することで、凝縮・過冷却する(線図42→43)。
続いて冷媒は、液ポンプ7で加圧され(線図43→44)た後、絞り装置V3で膨張し(線図44→45)、蒸発器Ecで熱を奪って蒸発・過熱する(線図45→41)。
【0015】
次に、各運転モード間の切替例について説明する。
吸収冷凍機RAからの冷凍効果供給停止(吸収冷凍機停止)又は吸収冷凍効果搬送媒体温度>第一凝縮器冷却媒体(冷却水、外気)温度又は吸収冷凍効果搬送媒体温度>第一凝縮器出口冷媒温度(3)のとき、モード1の運転とし、モード4又は4’の運転は、圧縮機M停止状態で、圧縮機M吸込み側圧力6が所定値以下のときに続行し、圧縮機吸込み側圧力6が下がり過ぎる時、制御弁10を絞り、圧力調整してもよく、また、圧縮機M運転状態(圧縮機可変速度の場合は最小回転速度)で、圧縮機M吸込み側圧力が下がり過ぎる時、モード4に移行することができる。
圧縮機M吸込み側圧力6が上がり過ぎる時に、圧縮機M運転(モード2又は3)に移行し、吸込み圧力6で圧縮機M関係を制御しているが、蒸発器Ecの被冷却媒体の目標温度と検出温度との差を基に、制御しても差支えない(目標温度<検出温度で圧縮機運転)。
また、外気温が吸収冷凍機RAの冷水温より低い時は、吸収冷凍機RAを停止し、第一凝縮器C1に外気を供給するモード4’で運転してもよい。
【0016】
次に、圧縮機Mと吸収冷凍機RAを運転するモード2、2’、3、3’では、モード2の運転で、吸収冷凍効果搬送媒体の第二凝縮器C2出口温度4又は圧縮冷凍機冷媒の第二凝縮器C2出口温度5が所定値以下の時、制御弁10を開き、モード3にする。
モード3の運転で、吸収冷凍効果搬送媒体の第二凝縮器C2出口温度4又は圧縮冷凍機冷媒の第二凝縮器C2出口温度5が所定値以上の時、制御弁10を閉じ、モード2にする。移行の際、温度にディファレンシャルを持たせ、頻繁な移行を阻止する。
なお、2と3との間に、所定値にするように制御弁10を調整してもよい(モード3’)し、また、2と3との間に、所定値にするように膨張弁V2を調整してもよい(モード2’)。
【0017】
図2は、図1において、圧縮機を2台並列に設けた場合(高ヘッド圧縮機M1と低ヘッド圧縮機M2)であり、運転モードは、上述の図1とぼぼ同じであるが、モード1又は2で、外気温が低い時、及び、モード3の時に、高ヘッド圧縮機M1を停止して、低ヘッド圧縮機M2を運転する。
低ヘッド圧縮機M2の方が消費電力が小さく省エネルギーになる。
なお、図1の圧縮機1台の場合であっても、スクリュウ圧縮機、スクロール圧縮機等で圧縮比を変えて運転する方法も、省エネに対し有効である。
吸収冷凍機は、単効用、二重効用、一二重効用等、特に限定はなく、また吸収冷凍機の作動媒体による限定もない。熱源の形態も、温水、水蒸気、燃料あるいは排ガスなど特に限定はないし、また、排熱に限定せず、安価な燃料などを熱源とする吸収冷凍機であってもよい。1台の圧縮冷凍機を構成する各機器は複数器であっても差支えない。
圧縮冷凍機として説明しているが、配管切替でヒートポンプによる暖房運転とする形態をとってもよい。そのとき、吸収冷凍機を冷温水機として温熱をヒートポンプに与え、あるいは、排熱源を直接ヒートポンプに与えても良い。
【0018】
【発明の効果】
本発明では、圧縮冷凍機の第一凝縮機及び圧縮機にバイパス回路を設けていて、負荷に応じて冷媒フロー(運転モード)を切替えることにより、吸収冷凍機からの冷熱を有効に利用して、圧縮機の消費電力を削減することができる。
【図面の簡単な説明】
【図1】本発明の冷凍装置の圧縮冷凍機の接続例の一例を示すフロー構成図。
【図2】本発明の冷凍装置の圧縮冷凍機の接続例の他の例を示すフロー構成図。
【図3】図1の装置を用いた各運転モードのモリエ線図。
【符号の説明】
RA:吸収冷凍機、RP:圧縮冷凍機、M:圧縮機、M1:高ヘッド圧縮機、M2:低高ヘッド圧縮機、Ec:蒸発器、C1:第一凝縮器、C2:第二凝縮器、V1:逆止弁、V2:制御弁(膨張弁)、V3:膨張弁(絞り装置)、1:バイパス回路、2:制御器、3〜6:温度又は圧力センサー、7:液ポンプ、8:逆止弁、9:媒体流路、10:制御弁
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a refrigerating apparatus, and in particular, air that effectively utilizes a refrigerating effect from an absorption refrigerator or an absorption chiller / heater using exhaust heat from an engine, a turbine, various plants or the like as a heat source in combination with a compression refrigerator. The present invention relates to a refrigeration device that can be used as a harmony device.
[0002]
[Prior art]
Generally, in a cogeneration system, heat is discharged in the form of exhaust gas, hot water, or the like, along with power generation. Since the exhaust heat is not so high in temperature, it is classified as low potential energy and is often used for hot water supply or heating. Recently, absorption chillers have been operated with waste heat and used for cooling.
In the cogeneration system, the exhaust heat is obtained from exhaust gas and cooling water of a gas turbine or an engine, or cooling water of a fuel cell. In some cases, an absorption refrigerator is operated using only exhaust heat. However, as a combined cooling system, a method of saving the amount of high potential energy required for operation by using exhaust heat together with high potential energy has been proposed and adopted for the first time. I have.
[0003]
By the way, since the amount of exhaust heat changes according to the amount of power generation, the amount of supply is unstable, and it is difficult to take out the capacity according to the cooling load when operating the absorption refrigerator with only the exhaust heat. In order to solve this, a refrigerating apparatus that cools a circulating refrigerant by using cold heat of an absorption refrigerator as a heat radiation source of a compression refrigerator is known.
However, in the compression refrigerator of this refrigerator, the refrigerant vapor compressed by the compressor is condensed by a heat source side heat exchanger (condenser), and the condensate is supercooled by an evaporator of an absorption refrigerator. Regarding the absorption refrigeration effect, it is necessary to always use it while the compression chiller is running, regardless of the cooling load, and since it is used only for the subcooling, the ratio of the absorption refrigeration effect (ratio to the compression refrigeration effect) Therefore, there has been a problem that the power consumption of the motor driving the compressor cannot be significantly reduced.
[0004]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems of the prior art, and switches the operation mode of the compression refrigerator to an optimum one according to the amount of supplied exhaust heat and the cooling load, thereby achieving economical and efficient operation. Provided is a refrigeration apparatus that can be used as an air conditioner that can perform cooling.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, in the present invention, an absorption refrigerator having an evaporator, a compressor, a first condenser cooled by outside air or cooling water, a second condenser, and a utilization side evaporator exhibiting a refrigeration effect are provided. Wherein the evaporator of the absorption refrigerator is in a heat exchange relationship with the second condenser of the compression refrigerator or serves also as the second condenser. And a circuit for bypassing the first condenser is provided in the compression refrigerator, and a control valve is provided in the bypass circuit.
In the refrigerating apparatus, the compression refrigerator may be provided with a circuit that bypasses the compressor, and the bypass circuit may include a check valve or a control valve. The compression refrigerator may include a high-head compressor and a low-pressure compressor. It may have a head compressor.
[0006]
Further, in the present invention, in the operation method of the refrigeration apparatus, the compression chiller operates in the following operation modes (a) to (d), (a) operates the compressor, and operates the bypass circuit of the first condenser. Closed, condensed in the first condenser, not supercooled in the second condenser, (b) operating the compressor, closing the bypass circuit of the first condenser, condensing in the first condenser, In the second condenser, an operation mode in which the refrigerant liquid from the first condenser is supercooled or condensed, (c) the compressor is operated, the bypass circuit of the first condenser is opened, and the refrigerant vapor is passed through the second condenser. Operating modes in which at least two types of operation modes are selected: (d) an operation mode in which the compressor is stopped, the bypass circuit of the first condenser is opened, and refrigerant vapor is condensed in the second condenser. Operating method of a refrigeration system characterized by operating in a refrigerator A.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, an absorption refrigerator (which may be driven by cogeneration exhaust heat, but need not be driven) is used as a destination of the condensation heat of the compression refrigerator. In particular, the cooling load and the operation state of the absorption refrigerator are used. The outdoor condenser (first condenser) of the compression refrigerator can be bypassed in accordance with (such as the load on the absorption refrigeration effect). Various operation modes can be set by a combination of condenser bypass, compressor start / stop, etc., and by switching these operation modes according to the load, energy saving such as compressor stop or reduction of required power (head) of the compressor can be achieved. I'm trying.
[0008]
Next, the present invention will be described in detail with reference to the drawings.
1 and 2 are flow configuration diagrams showing connection examples of components on the compression refrigerator side of the refrigeration apparatus of the present invention, and FIG. 3 is a Mollier diagram in each operation mode using FIG. In the figure, RA is an absorption refrigerator, RP is a compression refrigerator, M is a compressor, M1 is a high head compressor, M2 is a low and high head compressor, Ec is an evaporator, C1 is a first condenser, and C2 is a second condenser. Two condensers, V1 is a check valve, V2 is a control valve (expansion valve), V3 is an expansion valve (throttle device), 1 is a bypass circuit, 2 is a controller, 3 to 6 are temperature or pressure sensors, and 7 is a liquid. A pump, 8 is a check valve, 9 is a medium flow path, and 10 is a control valve, and each device is configured to control operation and stop by a signal from a temperature or pressure sensor.
[0009]
Next, the operation of the refrigeration apparatus of the present invention will be described with reference to FIGS.
In the present invention, various operation modes ((1) to (4) below) can be performed by a combination of a condenser bypass, a compressor start / stop, and the like. By switching these operation modes according to the load, the compressor is stopped or the compressor is stopped. Energy saving is achieved by reducing the required power (head) of the machine.
{Circle around (1)} Mode 1 (first condenser single mode) is an operation mode when the absorption refrigeration effect transfer medium (such as cold water) is not supplied to the second condenser C2, such as when the absorption refrigerator RA is stopped. The operation is similar to that of a normal compression refrigerator.
The refrigerant is compressed by the compressor M [11 → 12 in the Mollier diagram in FIG. 3 (a)], and then condensed and supercooled in the first condenser (air-cooled condenser) C1 (diagram 12 → 13). In this mode, the control valve 10 is closed to prevent refrigerant from flowing through the bypass circuit 1. The liquefied refrigerant passes through the second condenser C2 (here, no heat exchange is performed) and then expands in the expansion device V3 (diagrams 13 to 14). Subsequently, the refrigerant which has evaporated and overheated by removing the heat of the medium to be cooled by the evaporator Ec (diagram 14 → 11) is sucked into the compressor M again to form a refrigeration cycle.
[0010]
{Circle around (2)} In mode 2 (first and second condenser combined mode), in the above-described mode 1, the absorption refrigeration effect transfer medium (such as cold water) is supplied from the absorption refrigerator RA to the second condenser C2. In the operation mode in which heat exchange is performed with the refrigerant, the cold heat obtained by the absorption refrigerator RA is used for supercooling the refrigerant.
The refrigerant condensed and supercooled in the first condenser C1 (diagrams 22 to 23) is supercooled by the absorption refrigeration effect in the second condenser C2 (diagrams 23 to 24). Also in this mode, the control valve 10 is closed to prevent the refrigerant from flowing through the bypass circuit 1. Subsequently, the refrigerant expands in the expansion device V3 (diagrams 24 → 25), and takes heat in the evaporator Ec to evaporate and overheat (diagrams 25 → 26 → 21).
In this mode, the same amount of cold heat can be used in the evaporator Ec by using the cold heat obtained by operating the absorption refrigerator with the exhaust heat for supercooling the refrigerant (diagram 23 → 24) (diagram). 25 → 26).
[0011]
{Circle around (3)} In mode 3 (second condenser alone mode), the control valve 10 is opened, and the refrigerant is condensed and supercooled only by the cold heat obtained by the absorption refrigerator RA without using the first condenser C1. . When the temperature of the cooling medium of the first condenser C1 is almost equal to the temperature of the absorption refrigeration effect transfer medium, a part of the refrigerant vapor may be condensed in the first condenser C1 (at this time, the flow rate of the cooling medium is adjusted). May be used).
Since the absorption refrigeration transfer medium (such as cold water) can be lower than the cooling medium temperature, the condensation pressure of the refrigerant decreases. That is, in this mode, the required head of the compressor M can be made lower (diagrams 31 → 32) than when the air-cooled condenser C1 is used (diagrams 31 → 33).
The refrigerant compressed by the compressor M passes through the bypass circuit 1 and the control valve 10, enters the second condenser C2, and is condensed and supercooled by the absorption refrigeration effect (diagram 32 → 34). The same applies hereinafter.
If the temperature of the absorption refrigeration effect transfer medium is higher than the cooling medium temperature, it is desirable not to use this mode.
[0012]
{Circle around (4)} In mode 4 (second condenser direct condensation mode), when the cooling heat obtained by the absorption refrigerator RA is sufficient, the compressor M is stopped and the refrigerant is circulated naturally or circulated by the liquid pump 7.
The refrigerant (diagram 41 → 42) that has passed through the check valve V1 (or the control valve is opened) passes through the bypass circuit 1 and the control valve 10, and enters the second condenser C2. An absorption refrigeration effect is supplied to the second condenser C2, and the refrigerant is condensed and supercooled by exchanging heat with the absorption refrigeration effect (diagram 42 → 43). Subsequently, the refrigerant is pressurized by the liquid pump 7 (diagram 43 → 44), expanded by the expansion device V3 (diagram 44 → 45), and takes heat in the evaporator 4 to evaporate and overheat (diagram 44 → 45). FIG. 45 → 41).
In this mode, since the compressor M is not operated, the required power can be greatly reduced. When the second condenser C2 is at a high position and a sufficient liquid head is obtained, for example, when the absorption refrigerator RA is installed on the roof of a building, the liquid pump 7 is omitted and the refrigerant is naturally circulated. You can also.
[0013]
(2) In 'Mode 2' (first and second condenser combined mode), the control valve 10 is kept closed and the expansion valve V2 at the refrigerant outlet of the first condenser C1 is opened, so that the refrigerant vapor and the condensate The refrigerant may be guided to the second condenser C2 in the two-phase state. At this time, the refrigerant flow in the first condenser C1 becomes active, and the heat transfer deterioration due to the condensed refrigerant liquid is also eliminated, the heat transfer becomes very good, the condensing pressure is remarkably reduced, and the compression power can be reduced. .
The operation is intermediate between mode 2 and mode 3.
(3) 'Mode 3' (first and second condenser combined mode) adjusts the control valve 10 so that a part of the refrigerant vapor is bypassed and condensed in the second condenser C2, and the remainder is dispersed in the first condenser. Condensed at C1, and the condensate is led to a second condenser C2.
The pressure of the first condenser C1 can be made lower than that in the case of full condensation, and the power can be slightly reduced. It can be used when there is excess absorption refrigeration effect.
The operation is intermediate between mode 2 and mode 3.
[0014]
(4) 'Mode 4' (first condenser direct condensation mode) is to stop the absorption chiller RA and the compressor M when the outside air temperature is lower than the chilled water temperature obtained by the absorption chiller RA, and to stop the refrigerant. Condensed in one condenser C1 and circulated by natural circulation or liquid pump 7.
In this mode, the refrigerant (diagram 41 → 42) passing through the check valve V1 (or the control valve is opened) is condensed and supercooled by exchanging heat with the outside air in the first condenser C1 (diagram). 42 → 43).
Subsequently, the refrigerant is pressurized by the liquid pump 7 (diagram 43 → 44), then expanded by the expansion device V3 (diagram 44 → 45), and takes heat in the evaporator Ec to evaporate and overheat (diagram 44 → 45). FIG. 45 → 41).
[0015]
Next, an example of switching between the operation modes will be described.
Stopping supply of refrigeration effect from absorption chiller RA (stop absorption chiller) or absorption refrigeration effect transfer medium temperature> First condenser cooling medium (cooling water, outside air) temperature or absorption refrigeration transfer medium temperature> First condenser outlet When the refrigerant temperature is (3), the operation is in the mode 1 and the operation in the mode 4 or 4 'is continued when the compressor M is stopped and the pressure M on the suction side of the compressor M is equal to or lower than a predetermined value. When the side pressure 6 is too low, the control valve 10 may be throttled to adjust the pressure. Also, in the compressor M operating state (minimum rotation speed in the case of the variable compressor speed), the compressor M suction side pressure decreases. If it has passed, a transition can be made to mode 4.
When the compressor M suction side pressure 6 rises too much, the compressor M shifts to the operation of the compressor M (mode 2 or 3), and the compressor M relation is controlled by the suction pressure 6, but the target of the cooling medium of the evaporator Ec is changed. Control may be performed based on the difference between the temperature and the detected temperature (compressor operation at target temperature <detected temperature).
When the outside air temperature is lower than the cold water temperature of the absorption chiller RA, the absorption chiller RA may be stopped and the operation may be performed in the mode 4 'for supplying outside air to the first condenser C1.
[0016]
Next, in modes 2, 2 ', 3 and 3' in which the compressor M and the absorption refrigerator RA are operated, in the operation in mode 2, the outlet temperature of the second condenser C2 of the absorption refrigeration effect transfer medium 4 or the compression refrigerator. When the outlet temperature 5 of the second condenser C2 of the refrigerant is equal to or lower than a predetermined value, the control valve 10 is opened to set the mode 3.
In the mode 3 operation, when the second condenser C2 outlet temperature 4 of the absorption refrigeration effect transfer medium or the second condenser C2 outlet temperature 5 of the compression refrigeration refrigerant is equal to or higher than a predetermined value, the control valve 10 is closed, and the mode 2 is set. I do. During the transition, the temperature is differentiated to prevent frequent transitions.
The control valve 10 may be adjusted so as to have a predetermined value between 2 and 3 (mode 3 ′), or the expansion valve may be adjusted so as to have a predetermined value between 2 and 3. V2 may be adjusted (mode 2 ').
[0017]
FIG. 2 shows a case where two compressors are provided in parallel in FIG. 1 (high-head compressor M1 and low-head compressor M2), and the operation mode is almost the same as that of FIG. In 1 or 2, when the outside air temperature is low and in the mode 3, the high head compressor M1 is stopped and the low head compressor M2 is operated.
The low-head compressor M2 consumes less power and saves energy.
In addition, even in the case of one compressor in FIG. 1, a method of operating with a different compression ratio using a screw compressor, a scroll compressor, or the like is also effective for energy saving.
The absorption refrigerator is not particularly limited, such as single-effect, double-effect, and single-effect, and is not limited by the working medium of the absorption refrigerator. The form of the heat source is not particularly limited, such as hot water, steam, fuel, or exhaust gas, and is not limited to exhaust heat, and may be an absorption refrigerator using an inexpensive fuel as a heat source. Each device constituting one compression refrigerator may be a plurality of devices.
Although described as a compression refrigerator, a mode in which heating operation is performed by a heat pump by switching pipes may be employed. At this time, heat may be supplied to the heat pump using the absorption refrigerator as a chiller / heater, or an exhaust heat source may be supplied directly to the heat pump.
[0018]
【The invention's effect】
In the present invention, a bypass circuit is provided in the first condenser and the compressor of the compression refrigerator, and the refrigerant flow (operation mode) is switched according to the load, thereby effectively utilizing the cold heat from the absorption refrigerator. Thus, the power consumption of the compressor can be reduced.
[Brief description of the drawings]
FIG. 1 is a flow configuration diagram showing an example of a connection example of a compression refrigerator of a refrigerator of the present invention.
FIG. 2 is a flow configuration diagram showing another example of the connection example of the compression refrigerator of the refrigeration apparatus of the present invention.
FIG. 3 is a Mollier diagram in each operation mode using the apparatus of FIG. 1;
[Explanation of symbols]
RA: absorption refrigerator, RP: compression refrigerator, M: compressor, M1: high head compressor, M2: low and high head compressor, Ec: evaporator, C1: first condenser, C2: second condenser , V1: check valve, V2: control valve (expansion valve), V3: expansion valve (throttle device), 1: bypass circuit, 2: controller, 3-6: temperature or pressure sensor, 7: liquid pump, 8 : Check valve, 9: medium flow path, 10: control valve

Claims (4)

蒸発器を有する吸収冷凍機と、圧縮機、外気又は冷却水で冷却する第一凝縮器、第二凝縮器及び冷凍効果を発揮する利用側蒸発器を有する圧縮冷凍機とを組合せた冷凍装置であって、前記吸収冷凍機の蒸発器が、前記圧縮冷凍機の第二凝縮器と熱交換関係にあるか、又は該第二凝縮器を兼用していると共に、前記圧縮冷凍機には、第一凝縮器をバイパスする回路を設け、該バイパス回路には制御弁を設けていることを特徴とする冷凍装置。A refrigerating apparatus combining an absorption refrigerator having an evaporator, a compressor, a first condenser for cooling with outside air or cooling water, a second condenser, and a compression refrigerator having a utilization side evaporator exhibiting a refrigerating effect. The evaporator of the absorption refrigerator has a heat exchange relationship with the second condenser of the compression refrigerator, or also serves as the second condenser. A refrigeration apparatus comprising: a circuit for bypassing one condenser; and a control valve in the bypass circuit. 前記圧縮冷凍機には、圧縮機をバイパスする回路を設け、該バイパス回路には逆止弁又は制御弁を有していることを特徴とする請求項1に記載の冷凍装置。The refrigeration apparatus according to claim 1, wherein the compression chiller is provided with a circuit that bypasses the compressor, and the bypass circuit has a check valve or a control valve. 前記圧縮冷凍機は、高ヘッド圧縮機と、低ヘッド圧縮機とを有していることを特徴とする請求項1又は2に記載の冷凍装置。The refrigeration apparatus according to claim 1, wherein the compression refrigerator has a high-head compressor and a low-head compressor. 請求項1、2又は3に記載の冷凍装置の運転方法において、前記圧縮冷凍機は、次の(a)〜(d)の運転モード、(a)圧縮機を運転し、第一凝縮器のバイパス回路を閉止し、第一凝縮器で凝縮させ、第二凝縮器では過冷却しない運転モード、(b)圧縮機を運転し、第一凝縮器のバイパス回路を閉止し、第一凝縮器で凝縮させ、第二凝縮器では第一凝縮器からの冷媒液を過冷却又は凝縮させる運転モード、(c)圧縮機を運転し、第一凝縮器のバイパス回路を開方向とし、第二凝縮器で冷媒蒸気を凝縮させる運転モード、(d)圧縮機を停止し、第一凝縮器のバイパス回路を開方向とし、第二凝縮器で冷媒蒸気を凝縮させる運転モード、のうちの少なくとも2種類以上の運転モードで運転することを特徴とする冷凍装置の運転方法。4. The method of operating a refrigeration system according to claim 1, 2, or 3, wherein the compression chiller operates in the following operation modes (a) to (d); An operation mode in which the bypass circuit is closed, the first condenser is condensed, and the second condenser is not supercooled, (b) the compressor is operated, the bypass circuit of the first condenser is closed, and the first condenser is closed. An operation mode in which the refrigerant is condensed and the refrigerant liquid from the first condenser is supercooled or condensed in the second condenser, (c) the compressor is operated, the bypass circuit of the first condenser is opened, and the second condenser is opened. And (d) an operation mode in which the compressor is stopped, the bypass circuit of the first condenser is opened, and the refrigerant vapor is condensed in the second condenser. An operation method of a refrigeration apparatus, wherein the operation method is operated in an operation mode.
JP2002181671A 2002-06-21 2002-06-21 Refrigeration system combining absorption and compression Expired - Fee Related JP3871207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002181671A JP3871207B2 (en) 2002-06-21 2002-06-21 Refrigeration system combining absorption and compression

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002181671A JP3871207B2 (en) 2002-06-21 2002-06-21 Refrigeration system combining absorption and compression

Publications (2)

Publication Number Publication Date
JP2004028374A true JP2004028374A (en) 2004-01-29
JP3871207B2 JP3871207B2 (en) 2007-01-24

Family

ID=31178449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002181671A Expired - Fee Related JP3871207B2 (en) 2002-06-21 2002-06-21 Refrigeration system combining absorption and compression

Country Status (1)

Country Link
JP (1) JP3871207B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243079A (en) * 2009-04-07 2010-10-28 Daikin Ind Ltd Refrigerating device
JP2010243080A (en) * 2009-04-07 2010-10-28 Daikin Ind Ltd Refrigerating device
JP2012097963A (en) * 2010-11-02 2012-05-24 Ihi Corp Heat pump and method for controlling the same
IT201800007379A1 (en) * 2018-07-20 2020-01-20 SYSTEM FOR MODULATING THE RECOVERY OF HEAT IN A LIQUID CHILLER

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243079A (en) * 2009-04-07 2010-10-28 Daikin Ind Ltd Refrigerating device
JP2010243080A (en) * 2009-04-07 2010-10-28 Daikin Ind Ltd Refrigerating device
JP2012097963A (en) * 2010-11-02 2012-05-24 Ihi Corp Heat pump and method for controlling the same
IT201800007379A1 (en) * 2018-07-20 2020-01-20 SYSTEM FOR MODULATING THE RECOVERY OF HEAT IN A LIQUID CHILLER

Also Published As

Publication number Publication date
JP3871207B2 (en) 2007-01-24

Similar Documents

Publication Publication Date Title
US4471630A (en) Cooling system having combination of compression and absorption type units
CN108759138B (en) Operation method and system of secondary throttling middle incomplete cooling refrigerating system
JP4690935B2 (en) Heat source system and control method thereof
JP4317793B2 (en) Cooling system
JP2005233557A (en) Refrigeration system and its operating method
JP2009236441A (en) Heat pump type refrigerating device
JP3871207B2 (en) Refrigeration system combining absorption and compression
JP2003336929A (en) Absorbing and compression type refrigerator and method of operating the refrigerator
JP3821286B2 (en) Refrigeration system combining absorption type and compression type and its operating method
JP3434281B2 (en) Absorption refrigerator
JP4152140B2 (en) Waste heat absorption refrigerator
JP2002061980A (en) Compression type heat pump air conditioner and method for operating the same
JP3370501B2 (en) Cooling system
JP3871206B2 (en) Refrigeration system combining absorption and compression
KR20030082822A (en) The Combined Cooling and Heating Ice Regenerative System
JP2003207223A (en) Exhaust heat recovery-type refrigerating device
JP3918980B2 (en) Refrigeration equipment
JP2003004330A (en) Exhaust heat recovery air conditioner
JP3874262B2 (en) Refrigeration system combining absorption and compression
JPH10311614A (en) Heat storage type cooling device
JPH09250837A (en) Refrigerator
JP3874263B2 (en) Refrigeration system combining absorption and compression
CN108716785B (en) Primary throttling intermediate full cooling refrigeration system with intermediate temperature evaporator
JP4595129B2 (en) Package device for process cooling and air conditioning and its heat source supply method
JP2006162086A (en) Heat pump water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061012

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees