JPH09250837A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPH09250837A
JPH09250837A JP8086040A JP8604096A JPH09250837A JP H09250837 A JPH09250837 A JP H09250837A JP 8086040 A JP8086040 A JP 8086040A JP 8604096 A JP8604096 A JP 8604096A JP H09250837 A JPH09250837 A JP H09250837A
Authority
JP
Japan
Prior art keywords
pressure side
regenerator
absorber
high pressure
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8086040A
Other languages
Japanese (ja)
Inventor
Shinji Yosomiya
眞次 四十宮
Yasuo Ogawa
康夫 小川
Shu Susami
周 須佐美
Arefueruto Georuku
アレフェルト ゲオルク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP8086040A priority Critical patent/JPH09250837A/en
Publication of JPH09250837A publication Critical patent/JPH09250837A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectually utilize even a relatively low temperature heating fluid and ensure stable operation even with a heating source where the amount of waste treat is varied by constructing a freezer such that a regenerator has two or more regenerators of a high pressure side one and a low pressure side one, and the heating fluid of the regenerator heats each regenerator. SOLUTION: High temperature water is supplied to a waste heat recovery apparatus 2 with a pump 3, and heat is recovered from waste gas, etc., supplied from a nozzle 4. The waste gas is cooled and discharged from a piping 5 to the outside. Heated warm water is parallely sent to a high pressure side regenerator 7 and a low pressure side regenerator 8 through branch pipes 6, 6', and the solution is heated in the respective regenerators to vaporize the refrigerant. Vapor is produced in the high pressure side regenerator 7, and the remaining weak solution absorbs the vapor in a high pressure side absorber 14. However, refrigerant gas absorbed by the high pressure side absorber 14 is the sum total of vapor produced in the low pressure side regenerator 8 and refrigerant gas sent from a compressor high pressure stage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍機に係り、特
に吸収式と圧縮式とを結合したハイブリッド冷凍機に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerator, and more particularly to a hybrid refrigerator combining an absorption type and a compression type.

【0002】[0002]

【従来の技術】最近、電力不足と地球温暖化の観点よ
り、動力や電力を取り出した後の廃熱だけで駆動される
「廃熱駆動吸収冷凍機」の使用が提唱されている。しか
しながら、廃熱だけでは増大する冷熱需要をカバーでき
ないので、設備に余裕のある深夜電力と組み合わせた吸
収・圧縮式ハイブリッド型冷凍機の利用が現実的と思わ
れる。
2. Description of the Related Art Recently, from the viewpoint of power shortage and global warming, it has been proposed to use a "waste heat driven absorption refrigerator" which is driven only by waste heat after taking out power or power. However, since it is not possible to cover the increasing cold demand with waste heat alone, it seems practical to use an absorption / compression hybrid refrigerator combined with late-night power with ample equipment.

【0003】この現実的な吸収・圧縮式ハイブリッド型
冷凍機として図4のi(エンタルピー)−ξ(濃度)線
図に示される冷凍サイクルの冷凍機が特許出願(特願平
3−45832号)にて提案されている。即ち、図にお
いて101→102で示される再生器過程で冷媒蒸気が
発生し、弱溶液となる。その後、低圧側吸収器内に減圧
され、この内部で冷媒ガスを吸収して103→104の
ように濃度が変化し、中間濃度液となる。そしてこの溶
液はポンプにより高圧側吸収器に送られ更に冷媒ガスを
吸収して105→106と濃度が変化し強溶液となる。
その後ポンプにより再び106→101と再生器に送ら
れる。
As this practical absorption / compression hybrid refrigerator, a refrigeration cycle refrigerator shown in the i (enthalpy) -ξ (concentration) diagram of FIG. 4 is applied for a patent (Japanese Patent Application No. 3-45832). Have been proposed in. That is, in the regenerator process indicated by 101 → 102 in the figure, the refrigerant vapor is generated and becomes a weak solution. After that, the pressure is reduced in the low-pressure side absorber, the refrigerant gas is absorbed inside the absorber, and the concentration changes as in 103 → 104 to form an intermediate concentration liquid. Then, this solution is sent to the high-pressure side absorber by the pump and further absorbs the refrigerant gas to change its concentration from 105 to 106 to become a strong solution.
After that, the pump again sends 106 → 101 to the regenerator.

【0004】なお、この冷凍機では蒸発器で蒸発した冷
媒蒸気は圧縮機低圧段側で圧縮され、その一部の冷媒ガ
スは前述103→104の低圧側吸収器に送られ残りの
ガスは更に圧縮機高圧段で圧縮され、前述105→10
6の高圧側吸収器に送られる。即ち、このサイクルは吸
収器が異なる圧力で作動する2つ以上の吸収器を装備す
ることにより性能向上を図っている。
In this refrigerating machine, the refrigerant vapor evaporated in the evaporator is compressed on the low pressure side of the compressor, a part of the refrigerant gas is sent to the low pressure side absorber 103 to 104, and the remaining gas is further Compressed in the high pressure stage of the compressor, the above 105 → 10
6 to the high-pressure side absorber. That is, this cycle is designed to improve performance by equipping the absorber with two or more absorbers operating at different pressures.

【0005】しかしながら、上述の圧縮・吸収ハイブリ
ッド冷凍機は下記のような2つの大きな問題点がある。
第1の問題点は再生器を加熱する加熱流体の入口温度が
高いということである。即ち、図4において、例えばア
ンモニア/水系の場合、凝縮温度35℃とし、濃度幅を
25%とする場合、加熱流体の温度が84℃となり、か
なり高温となる。
However, the above compression / absorption hybrid refrigerator has the following two major problems.
The first problem is that the inlet temperature of the heating fluid that heats the regenerator is high. That is, in FIG. 4, for example, in the case of an ammonia / water system, when the condensation temperature is 35 ° C. and the concentration width is 25%, the temperature of the heating fluid is 84 ° C., which is a considerably high temperature.

【0006】第2の問題点は再生器の加熱源である廃熱
量の変動によって、安定した運転が難しく、冷凍機容量
を適切に予測、設定するのが難しいということである。
即ち、吸収冷凍機の能力は温度条件を一定にした場合、
再生器加熱量で決まるが、廃熱量は冷凍機に無関係な外
的条件によって変動し、冷凍機で必要な熱量と必ずしも
一致しない。例えば冷凍機容量に比して廃熱量が少ない
場合には期待されるだけの冷熱出力が得られず、一方、
廃熱量が過剰な場合には冷凍機容量どおりの冷熱出力は
得られるものの、利用可能なエネルギーを十分に回収せ
ず捨てていることになる。
The second problem is that stable operation is difficult due to fluctuations in the amount of waste heat that is the heating source of the regenerator, and it is difficult to properly predict and set the refrigerator capacity.
That is, if the temperature condition is constant, the capacity of the absorption refrigerator is
Although it is determined by the heating amount of the regenerator, the waste heat amount fluctuates due to external conditions unrelated to the refrigerator, and does not necessarily match the heat amount required for the refrigerator. For example, when the amount of waste heat is smaller than the refrigerator capacity, the expected cold heat output cannot be obtained, while
If the amount of waste heat is excessive, the cold heat output will be equal to the capacity of the refrigerator, but the usable energy will be discarded without being sufficiently recovered.

【0007】また、廃熱量を予測し、冷凍機容量を決定
する際にも難しい点がある。廃熱量を少なく予測する
と、決定される冷凍機容量は小さくなり、十分な熱回収
ができないことになる。また決定された冷凍機容量が必
要な冷凍機容量より小さい場合、不足分の補助冷凍機を
つけることになるが、これは実際には不要であるが、少
なくともより小さいものでよく、過剰な設備となる。逆
に、廃熱量を多く予測すると、決定される冷凍機容量は
大きくなるが、実際の廃熱量に応じた以上の冷熱出力は
得られず、それ以上の分は、無駄な設備となる。さら
に、決定された冷凍機容量が必要な冷凍機容量より大き
な場合には、補助冷凍機は不要であるが、実際に得られ
る冷熱出力は、必要量に満たない可能性もある。
There is also a difficulty in predicting the amount of waste heat and determining the refrigerator capacity. If the amount of waste heat is predicted to be small, the refrigerator capacity to be determined will be small, and sufficient heat recovery will not be possible. If the determined refrigerator capacity is smaller than the required refrigerator capacity, a shortage of auxiliary refrigerators will be added, but this is not actually necessary, but at least smaller ones are sufficient, and excess equipment is required. Becomes On the contrary, if a large amount of waste heat is predicted, the capacity of the refrigerator to be determined becomes large, but a cold heat output more than that corresponding to the actual amount of waste heat cannot be obtained. Further, when the determined refrigerator capacity is larger than the required refrigerator capacity, the auxiliary refrigerator is not necessary, but the actually obtained cold heat output may be less than the required amount.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記問題点
を解決したものであって、比較的低い温度の加熱流体で
も有効に利用でき、また廃熱量の変動する加熱源でも安
定した運転のできる冷凍機を提供することを課題とす
る。
DISCLOSURE OF THE INVENTION The present invention has solved the above-mentioned problems, and can be effectively used even with a heating fluid having a relatively low temperature, and can be operated stably even with a heating source whose waste heat amount fluctuates. It is an object to provide a refrigerator that can be used.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、吸収器と溶液ポンプと再生器とを有
し、これらを結んだ溶液循環経路と、凝縮器と膨脹装置
と蒸発器とを有し、これらを結んだ冷媒経路と、再生器
から凝縮器に至る高圧冷媒ガス通路と、蒸発器から吸収
器に至る低圧冷媒ガス通路とを有し、前記低圧冷媒ガス
通路に圧縮機を有し、且つ前記吸収器が高圧側吸収器と
低圧側吸収器の二つ以上の吸収器を有し、前記圧縮機が
高圧側圧縮段と低圧側圧縮段の2段以上の圧縮段を有す
ると共に、前記吸収器と圧縮機とを低圧側圧縮段と低圧
側吸収器を結び、高圧側圧縮段と高圧側吸収器を結ぶよ
うに冷媒ガス通路を設けた冷凍機において、前記再生器
は高圧側再生器と低圧側再生器の2つ以上の再生器を有
し、再生器の加熱流体が各再生器をそれぞれ加熱するよ
うに構成されている。
In order to solve the above-mentioned problems, the present invention has an absorber, a solution pump and a regenerator, a solution circulation path connecting them, a condenser, an expansion device and an evaporator. And a refrigerant path connecting them, a high pressure refrigerant gas passage extending from the regenerator to the condenser, and a low pressure refrigerant gas passage extending from the evaporator to the absorber, and compressed to the low pressure refrigerant gas passage. Compressor, and the absorber has two or more absorbers of a high-pressure side absorber and a low-pressure side absorber, and the compressor has two or more compression stages of a high-pressure side compression stage and a low-pressure side compression stage. A refrigerator having a refrigerant gas passage connecting the low pressure side compression stage and the low pressure side absorber between the absorber and the compressor, and connecting the high pressure side compression stage and the high pressure side absorber together with the regenerator. Has two or more regenerators, a high-pressure side regenerator and a low-pressure side regenerator. There has been configured to heat the regenerator, respectively.

【0010】また、前記冷凍機において、再生器の加熱
量関連物理量に応じて、前記低圧側圧縮段出口の分流比
を調整する制御装置を設けるのがよい。
Further, in the refrigerator, it is preferable to provide a control device for adjusting the diversion ratio of the low pressure side compression stage outlet in accordance with the heating amount related physical quantity of the regenerator.

【0011】[0011]

【発明の実施の形態】本発明の圧縮・吸収式ハイブリッ
ド冷凍機は上記の構成を採ることにより、下記の作用を
有する。 (1)本発明の冷凍機の作用を図2のエンタルピー−濃
度線図及び図3のデューリング線図で説明する。図2、
図3において、111→112の高圧側再生器で蒸気を
発生させ、残りの弱溶液(冷媒が蒸発して濃度が低下し
た溶液をいう)は113→114の高圧側吸収器で蒸気
を吸収し、114からポンプで再び111の再生器に戻
る。
BEST MODE FOR CARRYING OUT THE INVENTION The compression / absorption type hybrid refrigerator of the present invention has the following effects by adopting the above configuration. (1) The operation of the refrigerator of the present invention will be described with reference to the enthalpy-concentration diagram of FIG. 2 and the Duhring diagram of FIG. FIG.
In FIG. 3, steam is generated by the high pressure side regenerator of 111 → 112, and the remaining weak solution (meaning a solution in which the refrigerant has evaporated to reduce the concentration) absorbs the steam by the high pressure side absorber of 113 → 114. , 114 to pump again to the regenerator 111.

【0012】但し、高圧側吸収器で吸収する冷媒ガスは
低圧側再生器で発生する蒸気と圧縮機高圧段から送られ
る冷媒ガスの合計流量である。この低圧側再生器で発生
する蒸気は図の115→116の温度条件で行われる。
即ち、最高温度は約66℃程度であり、図4の場合の8
4℃に比べて約20℃低くすることができる。これは低
温の廃熱でも利用できることを示す。なお、低圧側再生
器を出た弱溶液は117→118の低圧側吸収器で蒸気
を吸収し、ポンプで再び115に戻される。
However, the refrigerant gas absorbed in the high-pressure side absorber is the total flow rate of the vapor generated in the low-pressure side regenerator and the refrigerant gas sent from the compressor high-pressure stage. The steam generated in the low pressure side regenerator is performed under the temperature condition of 115 → 116 in the figure.
That is, the maximum temperature is about 66 ° C., which is 8 ° in the case of FIG.
It can be about 20 ° C lower than 4 ° C. This indicates that it can be used with low-temperature waste heat. The weak solution discharged from the low pressure side regenerator absorbs vapor in the low pressure side absorber 117 → 118 and is returned to 115 again by the pump.

【0013】また、本発明の冷凍機は、廃熱源の熱供給
可能量に応じて、電力と廃熱の負荷バランスを制御して
運転することができる。即ち、蒸発器から低圧側圧縮段
を経由して、高圧側吸収器に到る冷媒経路には、高圧側
圧縮段による電力利用のものと、低圧側吸収器と低圧側
再生器を通る廃熱を主として利用するものとの2通りが
あり、これらの流量比は低圧側圧縮段の出口で調整する
ことができる。
The refrigerator of the present invention can be operated by controlling the load balance between the electric power and the waste heat according to the heat supplyable amount of the waste heat source. That is, the refrigerant path from the evaporator to the high-pressure side absorber via the low-pressure side compression stage uses the power from the high-pressure side compression stage and the waste heat passing through the low-pressure side absorber and the low-pressure side regenerator. There are two types, that is, those that mainly utilize the above, and the flow rate ratio of these can be adjusted at the outlet of the low pressure side compression stage.

【0014】例えば、廃熱量が十分にあるときは、高圧
側圧縮段を停止して、低圧側吸収器に冷媒全量を送っ
て、廃熱の利用度を高め電力消費量を節約することがで
きる。また、高圧側再生器で必要なだけの廃熱量があれ
ば、高圧側圧縮段に全量を流すことにより、冷凍容量1
00%での運転が可能となる。その中間の廃熱量の場
合、高圧側圧縮段の流量を増減する等の方法により、廃
熱エネルギーによる冷媒流量と電力による冷媒流量との
比を変えることにより、必要最小限の電力で冷凍機の運
転を行うことができる。
For example, when the amount of waste heat is sufficient, it is possible to stop the high pressure side compression stage and send the entire amount of refrigerant to the low pressure side absorber to increase the utilization of waste heat and save power consumption. . Also, if there is an amount of waste heat required for the high-pressure side regenerator, the entire refrigerating capacity 1
Operation at 00% is possible. In the case of an intermediate amount of waste heat, by changing the ratio of the refrigerant flow rate due to waste heat energy and the refrigerant flow rate due to electric power, such as by increasing or decreasing the flow rate of the high pressure side compression stage, the refrigerator power can be used with the minimum required electric power. You can drive.

【0015】[0015]

【実施例】以下、本発明を実施例により図面を用いて具
体的に説明するが、本発明はこれに限定されるものでは
ない。 実施例1 図1は、本発明の冷凍機を示すフロー構成図である。図
1において、1は圧縮・吸収式ハイブリッド冷凍機であ
る。即ち、この冷凍機は、通常、夜間に廃熱駆動吸収冷
凍機と深夜電力駆動圧縮式冷凍機とのハイブリッドシス
テムとなっている。2は廃熱回収装置であり、廃熱とし
ては例えば、ガスエンジン駆動冷凍機の廃熱や燃料電池
廃ガスなどの通常廃棄されているものが使用される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the accompanying drawings, but the present invention is not limited thereto. Example 1 FIG. 1 is a flow configuration diagram showing a refrigerator of the present invention. In FIG. 1, reference numeral 1 is a compression / absorption type hybrid refrigerator. That is, this refrigerator is usually a hybrid system of a waste heat driven absorption refrigerator and a night power driven compression refrigerator at night. Reference numeral 2 denotes a waste heat recovery device, and as the waste heat, for example, waste heat of a gas engine driven refrigerator or fuel cell waste gas which is normally discarded is used.

【0016】この廃熱回収装置には高温水がポンプ3に
より供給され、ノズル4から供給される廃ガスなどから
熱回収する。廃ガスは、冷却され配管5より外部に放出
される。加熱された温水は分岐間6、6′により、高圧
側再生器7、低圧側再生器8にパラレルに送られそれぞ
れの再生器で溶液を加熱して冷媒を蒸発させる。
High-temperature water is supplied to this waste heat recovery device by a pump 3 and heat is recovered from waste gas supplied from a nozzle 4. The waste gas is cooled and discharged to the outside through the pipe 5. The heated hot water is sent in parallel to the high-pressure side regenerator 7 and the low-pressure side regenerator 8 by the branches 6 and 6 ', and the solution is heated in each regenerator to evaporate the refrigerant.

【0017】高圧側再生器7で蒸発した冷媒蒸気は、高
圧側分縮器9で冷媒純度を高めた後に、配管10から凝
縮器11へ吐出される。また、冷媒が蒸発して濃度が低
下した溶液(以下、高圧弱溶液という。また、高圧側で
冷媒濃度の高い溶液を高圧強溶液、低圧側で冷媒濃度の
高い溶液を低圧強溶液、冷媒濃度の低下した溶液を低圧
弱溶液という)は配管12、13から高圧側吸収器14
に流入し、配管15から流入する冷却水によりチューブ
16伝熱面で冷却し、ノズル17からの冷媒蒸気を吸収
して、高圧強溶液となる。そしてノズル18からポンプ
19により配管20、21高圧側分縮器9、配管21を
経由して、高圧側発生器に流入する。
The refrigerant vapor evaporated in the high pressure side regenerator 7 is discharged to the condenser 11 from the pipe 10 after the refrigerant purity is increased in the high pressure side dephlegmator 9. A solution in which the refrigerant has evaporated and its concentration has decreased (hereinafter referred to as a high pressure weak solution. A solution having a high refrigerant concentration on the high pressure side is a high pressure strong solution, and a solution having a high refrigerant concentration on the low pressure side is a low pressure strong solution, a refrigerant concentration. The solution with reduced pressure is referred to as a low pressure weak solution) from the pipes 12 and 13 to the high pressure side absorber 14
Is cooled by the heat transfer surface of the tube 16 by the cooling water flowing in from the pipe 15 to absorb the refrigerant vapor from the nozzle 17 to form a high-pressure strong solution. Then, it flows from the nozzle 18 to the high-pressure side generator by the pump 19 via the pipes 20 and 21 high-pressure side dephlegmator 9 and the pipe 21.

【0018】一方、低圧側再生器で発生した蒸気は、低
圧側分縮器22で冷媒純度を高めた後に、配管23から
ノズル17を経由して高圧側吸収器に吐出され高圧弱溶
液に接触吸収される。また冷媒蒸発後の低圧弱溶液は、
配管24から低圧側吸収器25に流入し、配管26から
流入する冷却水によりチューブ27伝熱面で冷却し配管
28からの冷媒蒸気を吸収して低圧強溶液となる。そし
てノズル29からポンプ30により配管31、低圧側分
縮器22を経由して配管32から低圧側発生器に流入す
る。一方、再生器により冷却された温水はノズル33、
34から流出し、35で合流して配管36から前述の熱
回収装置2に流入する。なお、冷却される廃ガス中の凝
縮水分は配管37より廃水処理装置38を経由して外部
に放出される。
On the other hand, the vapor generated in the low-pressure side regenerator is discharged to the high-pressure side absorber via the pipe 23 through the nozzle 17 after contacting with the high-pressure weak solution after the refrigerant purity is increased in the low-pressure side dephlegmator 22. Be absorbed. In addition, the low pressure weak solution after evaporation of the refrigerant is
The cooling water flowing from the pipe 24 into the low pressure side absorber 25 is cooled by the cooling water flowing from the pipe 26 on the heat transfer surface of the tube 27 to absorb the refrigerant vapor from the pipe 28 to form a low pressure strong solution. Then, it flows from the nozzle 29 into the low pressure side generator from the pipe 32 through the pipe 31 and the low pressure side dephlegmator 22 by the pump 30. On the other hand, the hot water cooled by the regenerator is the nozzle 33,
It flows out from 34, merges at 35, and flows into the heat recovery device 2 from the pipe 36. The condensed water in the cooled waste gas is discharged to the outside from the pipe 37 via the waste water treatment device 38.

【0019】吸収器で加熱された冷却水は、配管39を
経由し、前記凝縮器11で冷媒を凝縮し、配管40を経
由し放熱器41で冷却され、ポンプ42により、配管4
3を経由して再び低圧側吸収器25、高圧側吸収器14
に送られる。一方、凝縮した冷媒は配管44、膨張装置
45を経由して、蒸発器46に送られる。蒸発器で蒸発
した冷媒蒸気は低圧側圧縮段49で圧縮され、その一部
が配管51を経由して、低圧側吸収器25に送られる。
また、その残りの冷媒ガスは高圧側圧縮段50で再び圧
縮され、高圧側吸収器14に吐出される。
The cooling water heated in the absorber passes through the pipe 39, condenses the refrigerant in the condenser 11, passes through the pipe 40, is cooled by the radiator 41, and is pumped by the pump 42 into the pipe 4.
Low pressure side absorber 25, high pressure side absorber 14 again via 3
Sent to On the other hand, the condensed refrigerant is sent to the evaporator 46 via the pipe 44 and the expansion device 45. The refrigerant vapor evaporated in the evaporator is compressed in the low pressure side compression stage 49, and a part thereof is sent to the low pressure side absorber 25 via the pipe 51.
Further, the remaining refrigerant gas is compressed again in the high pressure side compression stage 50 and is discharged to the high pressure side absorber 14.

【0020】本装置は昼間時は、圧縮機49、50は運
転されない。即ちバルブ52、52′が開けられ、バル
ブ53、53′、54が閉じられる。従って凝縮した冷
媒は44→52→配管55→膨張弁56を通り、高温蒸
発器57で、冷水を冷却して蒸発し、バルブ52′よ
り、高圧側吸収器14に送られ廃熱だけで溶液中の冷媒
を蒸発させる。溶液ポンプとしては19だけが運転さ
れ、30は運転されない。高温蒸発器57には冷水が送
られ、冷却され、冷却された冷水は冷水槽60に蓄えら
れる。
In this device, the compressors 49 and 50 are not operated during the daytime. That is, the valves 52, 52 'are opened and the valves 53, 53', 54 are closed. Therefore, the condensed refrigerant passes through 44 → 52 → pipe 55 → expansion valve 56, cools and evaporates the cold water in the high temperature evaporator 57, and sends it to the high pressure side absorber 14 through the valve 52 ′, and the waste heat alone produces the solution. Evaporate the refrigerant inside. As the solution pump, only 19 are operated, 30 is not operated. Cold water is sent to the high temperature evaporator 57, cooled, and the cooled cold water is stored in the cold water tank 60.

【0021】なお、廃熱がなく、冷水槽60に冷熱が蓄
えられているときは、この冷水を冷却水として、「圧縮
式モード」で運転される。即ち、バルブ52′、5
3′、54、53が閉じられ、バルブ61が開けられ
る。従って、凝縮器として高温側蒸発器57が用いら
れ、凝縮した冷媒液はチェッキ弁63→膨張弁64→蒸
発器46→圧縮機49、50→バルブ61→高温側蒸発
器兼凝縮器57と流れ、低温側蒸発器46で、ブライン
や氷を冷却する。
When there is no waste heat and cold heat is stored in the cold water tank 60, the cold water is used as cooling water to operate in the "compression mode". That is, the valves 52 ', 5
3 ', 54, 53 are closed and valve 61 is opened. Therefore, the high temperature side evaporator 57 is used as a condenser, and the condensed refrigerant liquid flows to the check valve 63 → expansion valve 64 → evaporator 46 → compressors 49, 50 → valve 61 → high temperature side evaporator / condenser 57. In the low temperature side evaporator 46, brine and ice are cooled.

【0022】また、省エネモードのときは、バイパスバ
ルブ65を開け、バルブ67、61、52′を閉め、水
側バルブ66、66′、66″、67、67′、67″
を切替え、圧縮機の運転を停止し、冷水冷却による廃熱
駆動冷凍機として運転する。即ち、冷媒は10→11→
44→53→45→46→65→17と流れ46でブラ
インや氷を冷却する。また冷水は60→66→15→2
6→16,27→39→11→40→67→60と流れ
吸収冷凍サイクルを冷却する。なお、圧縮機は通常2段
の分流型圧縮機が用いられるが、低段側圧縮機と高段側
圧縮機の2台の圧縮機を用いてもよい。
In the energy saving mode, the bypass valve 65 is opened, the valves 67, 61 and 52 'are closed, and the water side valves 66, 66', 66 ", 67, 67 'and 67" are opened.
, The operation of the compressor is stopped, and the compressor is operated as a waste heat driven refrigerator by cooling with cold water. That is, the refrigerant is 10 → 11 →
Cool the brine and ice in a flow 46 of 44 → 53 → 45 → 46 → 65 → 17. Cold water is 60 → 66 → 15 → 2
The flow absorption refrigeration cycle is cooled in the order of 6 → 16, 27 → 39 → 11 → 40 → 67 → 60. A two-stage split-flow compressor is usually used as the compressor, but two compressors, a low-stage compressor and a high-stage compressor, may be used.

【0023】[0023]

【発明の効果】本発明によれば、再生器を高圧側と低圧
側の2つ以上設け、それぞれに加熱流体を通すように構
成したことにより、加熱流体としてより温度の低い廃熱
でも有効に利用できるようになった。また、再生器への
廃熱源の熱供給可能量に応じて、圧縮機の低圧側と高圧
側への分流比を調整することによって、電力と廃熱の負
荷バランスを制御して運転することができ、廃熱エネル
ギーを最大限に利用でき、必要最小限の電力で冷凍機が
運転できるようになった。
According to the present invention, two or more regenerators are provided on the high pressure side and the low pressure side, and the heating fluid is passed through each of the regenerators, so that waste heat having a lower temperature can be effectively used as the heating fluid. Now available. In addition, by adjusting the diversion ratio between the low pressure side and the high pressure side of the compressor according to the heat supply amount of the waste heat source to the regenerator, it is possible to operate by controlling the load balance between electric power and waste heat. It is possible to maximize the use of waste heat energy and operate the refrigerator with the minimum required power.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の冷凍機を示すフロー構成図。FIG. 1 is a flow configuration diagram showing a refrigerator of the present invention.

【図2】エンタルピー−濃度線図。FIG. 2 is an enthalpy-concentration diagram.

【図3】デューリング線図。FIG. 3 is a Duhring diagram.

【図4】公知の吸収・圧縮式ハイブリッド型冷凍機のエ
ンタルピー−濃度線図。
FIG. 4 is an enthalpy-concentration diagram of a known absorption / compression hybrid refrigerator.

【符号の説明】[Explanation of symbols]

1:吸収・圧縮式ハイブリッド冷凍機、2:廃熱回収装
置、3、19、30、42:ポンプ、4:廃熱ノズル、
5:放出配管、6、6′:温水分岐管、7:高圧側再生
器、8:低圧側再生器、9:高圧側分縮器、11:凝縮
器、14:高圧側吸収器、22:低圧側分縮器、25:
低圧側吸収器、38:廃水処理装置、41:放熱器、4
5、64:膨張装置、46:蒸発器、49:低圧側圧縮
段、50:高圧側圧縮段、57:高温蒸発器、60:冷
水槽、63:チェッキ弁
1: Absorption / compression hybrid refrigerator, 2: Waste heat recovery device, 3, 19, 30, 42: Pump, 4: Waste heat nozzle,
5: discharge pipe, 6, 6 ': hot water branch pipe, 7: high pressure side regenerator, 8: low pressure side regenerator, 9: high pressure side dephlegmator, 11: condenser, 14: high pressure side absorber, 22: Low-pressure side dephlegmator, 25:
Low-pressure side absorber, 38: wastewater treatment device, 41: radiator, 4
5, 64: expansion device, 46: evaporator, 49: low pressure side compression stage, 50: high pressure side compression stage, 57: high temperature evaporator, 60: cold water tank, 63: check valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ゲオルク アレフェルト ドイツ連邦共和国デー8000 ミュンヘン40 ヨーゼフ ラップス シュトラーセ3 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Georg Arefelt Day 8000 Germany 40 Munich 40 Josef Wrapsstrasse 3

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 吸収器と溶液ポンプと再生器とを有し、
これらを結んだ溶液循環経路と、凝縮器と膨脹装置と蒸
発器とを有し、これらを結んだ冷媒経路と、再生器から
凝縮器に至る高圧冷媒ガス通路と、蒸発器から吸収器に
至る低圧冷媒ガス通路とを有し、前記低圧冷媒ガス通路
に圧縮機を有し、且つ前記吸収器が高圧側吸収器と低圧
側吸収器の二つ以上の吸収器を有し、前記圧縮機が高圧
側圧縮段と低圧側圧縮段の2段以上の圧縮段を有すると
共に、前記吸収器と圧縮機とを低圧側圧縮段と低圧側吸
収器を結び、高圧側圧縮段と高圧側吸収器を結ぶように
冷媒ガス通路を設けた冷凍機において、前記再生器は高
圧側再生器と低圧側再生器の2つ以上の再生器を有し、
再生器の加熱流体が各再生器をそれぞれ加熱するように
構成されていることを特徴とする冷凍機。
1. An absorber, a solution pump, and a regenerator are provided,
It has a solution circulation path connecting them, a condenser, an expansion device, and an evaporator, and a refrigerant path connecting them, a high-pressure refrigerant gas passage from the regenerator to the condenser, and an evaporator to the absorber. A low pressure refrigerant gas passage, having a compressor in the low pressure refrigerant gas passage, and the absorber has two or more absorbers of a high pressure side absorber and a low pressure side absorber, the compressor is It has two or more compression stages, a high-pressure side compression stage and a low-pressure side compression stage, and connects the low-pressure side compression stage and the low-pressure side absorber to the absorber and the compressor, thereby forming a high-pressure side compression stage and a high-pressure side absorber. In the refrigerator in which the refrigerant gas passages are connected to each other, the regenerator has two or more regenerators of a high pressure side regenerator and a low pressure side regenerator,
A refrigerator characterized in that the heating fluid of the regenerator is configured to heat each regenerator.
【請求項2】 前記冷凍機には、再生器の加熱量関連物
理量に応じて、前記低圧側圧縮段出口の分流比を調整す
る制御装置を設けたことを特徴とする請求項1記載の冷
凍機。
2. The refrigerating machine according to claim 1, wherein the refrigerating machine is provided with a control device for adjusting a diversion ratio of the low pressure side compression stage outlet in accordance with a heating quantity related physical quantity of the regenerator. Machine.
JP8086040A 1996-03-15 1996-03-15 Refrigerator Pending JPH09250837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8086040A JPH09250837A (en) 1996-03-15 1996-03-15 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8086040A JPH09250837A (en) 1996-03-15 1996-03-15 Refrigerator

Publications (1)

Publication Number Publication Date
JPH09250837A true JPH09250837A (en) 1997-09-22

Family

ID=13875573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8086040A Pending JPH09250837A (en) 1996-03-15 1996-03-15 Refrigerator

Country Status (1)

Country Link
JP (1) JPH09250837A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165520A (en) * 1999-12-03 2001-06-22 Mitsubishi Heavy Ind Ltd Absorption refrigerating machine
EP1265042A2 (en) * 2001-06-05 2002-12-11 Martin Dipl.-Ing. Hadlauer Refrigeration system, using a two or more component mixture, with at least one compressor unit
WO2003046449A1 (en) * 2001-11-30 2003-06-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for solar thermal refrigeration
CN104567090B (en) * 2015-01-20 2016-09-07 浙江大学 A kind of trans critical cycle provides two-stage absorption cycle that the composite refrigeration system of heat occurs

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165520A (en) * 1999-12-03 2001-06-22 Mitsubishi Heavy Ind Ltd Absorption refrigerating machine
EP1265042A2 (en) * 2001-06-05 2002-12-11 Martin Dipl.-Ing. Hadlauer Refrigeration system, using a two or more component mixture, with at least one compressor unit
EP1265042A3 (en) * 2001-06-05 2003-06-25 Martin Dipl.-Ing. Hadlauer Refrigeration system, using a two or more component mixture, with at least one compressor unit
WO2003046449A1 (en) * 2001-11-30 2003-06-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for solar thermal refrigeration
CN104567090B (en) * 2015-01-20 2016-09-07 浙江大学 A kind of trans critical cycle provides two-stage absorption cycle that the composite refrigeration system of heat occurs

Similar Documents

Publication Publication Date Title
AU2001286333B2 (en) Method and arrangement for defrosting a vapor compression system
US7441589B2 (en) Absorption heat-transfer system
CN106969523B (en) A kind of single-stage/overlapping double-standard high temperature heat pump system for selecting natural refrigerant
JP4471992B2 (en) Multi-source heat pump steam / hot water generator
CN102032706B (en) Absorbing type refrigerator
CN101776353A (en) Cooling tower-based solution type cold and hot water unit
KR102173814B1 (en) Cascade heat pump system
CN101413739A (en) Double-effect heat pump circulation three-effect heat exchanger
JP4885467B2 (en) Absorption heat pump
KR200246301Y1 (en) Refrigerator suppling hot and cold water
JP5240040B2 (en) Refrigeration equipment
JPH09250837A (en) Refrigerator
KR102257601B1 (en) Energy saving refrigeration and defrost system that exchanges refrigerant condensation heat and brine in plate heat exchanger
KR100634843B1 (en) Refrigerating mechine
JP3821286B2 (en) Refrigeration system combining absorption type and compression type and its operating method
JP2003121025A (en) Heating-cooling combination appliance
KR100634842B1 (en) Refrigerating mechine
KR20030082822A (en) The Combined Cooling and Heating Ice Regenerative System
JP3871207B2 (en) Refrigeration system combining absorption and compression
KR100827569B1 (en) Absorption refrigerating apparatus with heat pump
JP2687080B2 (en) Refrigerator and its operating method
JP2000018757A (en) Cooler
JP3434283B2 (en) Absorption refrigerator and how to start it
CN213362912U (en) Air source heat pump system
JP3434279B2 (en) Absorption refrigerator and how to start it