JP2003262411A - Refrigerating device - Google Patents

Refrigerating device

Info

Publication number
JP2003262411A
JP2003262411A JP2002062051A JP2002062051A JP2003262411A JP 2003262411 A JP2003262411 A JP 2003262411A JP 2002062051 A JP2002062051 A JP 2002062051A JP 2002062051 A JP2002062051 A JP 2002062051A JP 2003262411 A JP2003262411 A JP 2003262411A
Authority
JP
Japan
Prior art keywords
liquid
evaporator
refrigerant
oil
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002062051A
Other languages
Japanese (ja)
Other versions
JP4028994B2 (en
Inventor
Koji Kishimoto
好司 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002062051A priority Critical patent/JP4028994B2/en
Publication of JP2003262411A publication Critical patent/JP2003262411A/en
Application granted granted Critical
Publication of JP4028994B2 publication Critical patent/JP4028994B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating device capable of preventing refrigerator oil from remaining in an evaporator in a large amount having adverse affect on cooling performance, at reduced running cost. <P>SOLUTION: The refrigerating device 1 has a circulating fluid passage 8 which communicates with a suction opening 2b of a compressor 2 from a discharge opening 2a of the compressor 2 to constitute a refrigerating cycle, with an oil separator 3, a condenser 4, a liquid receiver 5, an expansion valve 6, and an evaporator 7 mounted in the fluid circulation passage 8 in that order. A discharge port 7a through which to discharge the internal liquid is provided in the shell of the evaporator 7 and communicated with the circulating fluid passage 8 via a liquid return line 10 in which a flow control valve 11, a flowmeter 12, and a selector valve 13 are inserted, to return the liquid in the evaporator 7 to the compressor 2. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍装置の改善に
係り、より詳しくは、蒸発器に大量の冷凍機油が滞留す
るのを防止して、安定的に冷凍性能を発揮することを可
能ならしめるようにした冷凍装置の技術分野に属するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a refrigerating apparatus, and more particularly, to a large amount of refrigerating machine oil which can be prevented from accumulating in an evaporator and stably exhibit refrigerating performance. The present invention belongs to the technical field of refrigerating devices.

【0002】[0002]

【従来の技術】圧縮機として、油冷式スクリュ式圧縮機
を備えてなる冷凍装置にあっては、この油冷式スクリュ
圧縮機から冷凍機油を含む冷媒が吐出される。冷媒中に
冷凍機油が含まれていると冷却性能に悪影響を及ぼすた
め、油冷式スクリュ圧縮機と凝縮器との間に油分離器を
介装して、この油分離器により冷凍機油を除去した冷媒
を凝縮器に送給するようにしている。
2. Description of the Related Art In a refrigerating apparatus having an oil-cooled screw compressor as a compressor, a refrigerant containing refrigerating machine oil is discharged from the oil-cooled screw compressor. If refrigerating machine oil is contained in the refrigerant, it will adversely affect the cooling performance.Therefore, an oil separator is installed between the oil-cooled screw compressor and the condenser, and the refrigerating machine oil is removed by this oil separator. The refrigerant is sent to the condenser.

【0003】ところが、油分離器だけでは冷媒中の冷凍
機油を完全に分離することができない。そのため、蒸発
器に滞留する冷凍機油が次第に多くなって、蒸発器の熱
交換効率が低下してしまうので、所期の冷凍性能を発揮
することができなくなるという問題があった。このよう
な問題を解決するために、油分離器を経た冷媒から微量
の油分を除去する油戻し機構を備えた冷凍装置が、例え
ば冷凍空調便覧(日本冷凍協会)基礎編第5版(平成5年)
において提案されている。以下、提案されている2例の
概要を説明する。
However, the oil separator alone cannot completely separate the refrigerating machine oil in the refrigerant. Therefore, the refrigerating machine oil that accumulates in the evaporator gradually increases, and the heat exchange efficiency of the evaporator decreases, so that the desired refrigeration performance cannot be exhibited. In order to solve such a problem, a refrigerating apparatus provided with an oil return mechanism for removing a small amount of oil from the refrigerant that has passed through an oil separator is, for example, the Refrigeration and Air Conditioning Handbook (Japan Refrigeration Association), 5th edition (Basic Edition). Year)
Have been proposed in. The outlines of the two proposed examples will be described below.

【0004】従来例1に係る冷凍装置は、その模式的系
統図の図3に示すように、低圧受液器中の冷媒液の一部
を連続的に抽出し、この低圧受液器に流す高圧液と熱交
換器にて熱交換させ、高圧液の過冷却度を大きくすると
共に、抽出した冷媒液を蒸発させる。そして、分離させ
た冷凍機油を吸込ガス速度により吸込ラインを介して圧
縮機に戻すように構成されている。なお、この冷凍装置
では、冷媒として潤滑油を良く溶解するフロンを使用す
るものである。例えば、R22では低温下で油の溶解度
が異なり2種類の液に分れ、比重差により冷凍機油が多
く溶解している液は上層に集まり易いから、同図に示す
ように、低圧受液器内の液の液面近くから冷媒液を抽出
するようにしている。
As shown in FIG. 3 of the schematic system diagram, the refrigerating apparatus according to the conventional example 1 continuously extracts a part of the refrigerant liquid in the low-pressure receiver and supplies it to the low-pressure receiver. The high-pressure liquid is heat-exchanged with a heat exchanger to increase the degree of supercooling of the high-pressure liquid and evaporate the extracted refrigerant liquid. The separated refrigerating machine oil is then returned to the compressor via the suction line at the suction gas velocity. In addition, in this refrigerating apparatus, Freon which dissolves lubricating oil well is used as a refrigerant. For example, in R22, the solubility of oil is different at low temperatures and it is divided into two types of liquid, and the liquid in which a large amount of refrigerating machine oil is dissolved due to the difference in specific gravity tends to collect in the upper layer, so as shown in FIG. The refrigerant liquid is extracted from near the liquid surface of the liquid inside.

【0005】従来例2に係る冷凍装置は、その模式的系
統図の図4に示すように、低圧受液機に溜まった油分を
含む冷媒を油溜めタンクに落とし込み、この油溜めタン
ク内の油分を含む冷媒をヒータで過熱する。そして、冷
媒を蒸発させて圧縮機に吸込ませる一方、油だけを油ポ
ンプにより圧縮機に戻すようにしたものである。なお、
この油溜めタンクでは油中の冷媒を完全に追い出すため
に40℃程度の温度になるように加熱する。従って、油
溜めタンクから戻る冷媒蒸気の過熱除去のために、低圧
受液器中の液状冷媒の一部が蒸発することとなる。
In the refrigerating apparatus according to the conventional example 2, as shown in FIG. 4 of the schematic system diagram, the refrigerant containing the oil component accumulated in the low pressure receiver is dropped into the oil reservoir tank, and the oil component in the oil reservoir tank is dropped. The refrigerant containing is overheated by the heater. Then, while the refrigerant is evaporated and sucked into the compressor, only the oil is returned to the compressor by an oil pump. In addition,
In this oil sump tank, in order to completely expel the refrigerant in the oil, it is heated to a temperature of about 40 ° C. Therefore, a part of the liquid refrigerant in the low-pressure receiver is evaporated to remove the superheat of the refrigerant vapor returning from the oil sump tank.

【0006】[0006]

【発明が解決しようとする課題】上記従来例1、または
2に係る冷凍装置は、何れもそれなりに有用であると考
えられる。しかしながら、低圧受液器内の液から完全に
冷凍機油を除去することができないから、微量の冷凍機
油を含有する冷媒が蒸発器に流入する。冷凍機油と冷媒
との沸点の相違により、冷媒が蒸発するにもかかわら
ず、冷凍機油は蒸発しないので、蒸発器内において冷凍
機油の油量が時間の経過につれて次第に増大し、やはり
初期の冷凍性能を発揮できない事態となる可能性があ
る。
It is considered that the refrigerating apparatus according to the above-mentioned conventional example 1 or 2 is useful as such. However, since the refrigerating machine oil cannot be completely removed from the liquid in the low pressure receiver, the refrigerant containing a small amount of refrigerating machine oil flows into the evaporator. Due to the difference in the boiling points of the refrigerating machine oil and the refrigerant, the refrigerating machine oil does not evaporate even though the refrigerant evaporates.Therefore, the amount of the refrigerating machine oil in the evaporator gradually increases with the passage of time, and the initial refrigeration performance is also increased. There is a possibility that the situation will not be achieved.

【0007】また、従来例1に係る冷凍装置では、低圧
受液器から抽出される冷媒液の量も、受液器からの高圧
液の量も、負荷状態等の様々な要因により変化するた
め、お互いの交換する熱量も変化することがある。その
ため、所望の熱交換を行わせるには冷凍装置の運転状況
に応じた微妙な調整が必要になってしまう。所望の熱交
換が達成できず、熱交換器を出た冷媒が完全に気化でき
なければ、いわゆる液バック状態で圧縮機に冷媒が供給
され、圧縮機に機械的な不具合が生じる事態を招きかね
ない。
Further, in the refrigerating apparatus according to the conventional example 1, both the amount of the refrigerant liquid extracted from the low pressure receiver and the amount of the high pressure liquid from the receiver change depending on various factors such as the load condition. , The amount of heat exchanged by each other may also change. Therefore, in order to perform the desired heat exchange, delicate adjustment according to the operating condition of the refrigeration system is required. If the desired heat exchange cannot be achieved and the refrigerant exiting the heat exchanger cannot be completely vaporized, the refrigerant is supplied to the compressor in a so-called liquid back state, which may cause a mechanical failure of the compressor. Absent.

【0008】従来例2に係る冷凍装置では、ヒータに電
力を供給しなければならないから、冷凍装置のランニン
グコストに関して不利になるという経済上の問題もあ
る。また、このヒータが電気ヒ―タである場合、この電
気ヒータ自体に不具合を及ぼすような必要以上の過熱の
虞がある。また、このヒータがスチームヒ―タである場
合、長期的な使用に伴うスチーム水による腐食の虞があ
る。つまり、種々の不具合を回避し得る、信頼性の高い
冷凍装置が望まれているのである。
In the refrigerating apparatus according to the second conventional example, since electric power must be supplied to the heater, there is an economical problem that the refrigerating apparatus has a disadvantage in terms of running cost. Further, when this heater is an electric heater, there is a risk of excessive heating that may cause a malfunction to the electric heater itself. If this heater is a steam heater, there is a risk of corrosion due to steam water due to long-term use. In other words, a highly reliable refrigeration system that can avoid various problems is desired.

【0009】従って、本発明の目的は、冷却性能に悪影
響を及ぼすほどの冷凍機油が蒸発器に滞留するのを防止
して初期の冷凍性能を発揮させることができ、しかもラ
ンニングコストが安価で信頼性の高い冷凍装置を提供す
ることである。
Therefore, an object of the present invention is to prevent the refrigerating machine oil from having a bad influence on the cooling performance from accumulating in the evaporator so that the initial refrigerating performance can be exhibited, and the running cost is inexpensive and reliable. It is to provide a refrigerating apparatus having high property.

【0010】[0010]

【課題を解決するための手段】本発明は、上記実情に鑑
みてなされたものであって、従って上記課題を解決する
ために、本発明の請求項1に係る冷凍装置が採用した手
段は、圧縮機の吐出口から吸込口に連通し、冷凍サイク
ルを構成する流体循環流路を備え、この流体循環流路
に、油分離器、凝縮機、受液器、膨張手段、蒸発器がこ
の順に介装されてなる冷凍装置において、前記蒸発器の
胴部に内部の液を排出する排出ポートを設け、この排出
ポートを、少なくとも開閉弁が介装されてなる液戻しラ
インを介して前記圧縮機の吸込口に連通させたことを特
徴とするものである。
The present invention has been made in view of the above circumstances, and therefore, in order to solve the above problems, the means adopted by the refrigerating apparatus according to claim 1 of the present invention is as follows. The discharge port of the compressor communicates with the suction port, and a fluid circulation flow path that constitutes a refrigeration cycle is provided. In the installed refrigeration system, a discharge port for discharging the internal liquid is provided in the body of the evaporator, and the compressor is provided with the discharge port through a liquid return line in which at least an on-off valve is installed. It is characterized in that it is connected to the suction port of.

【0011】本発明の請求項2に係る冷凍装置が採用し
た手段は、請求項1に記載の冷凍装置において、前記排
出ポートは、前記蒸発器内の液の液面より下位位置に設
けられてなることを特徴とするものである。
The means adopted by the refrigerating apparatus according to claim 2 of the present invention is the refrigerating apparatus according to claim 1, wherein the discharge port is provided at a position lower than the liquid surface of the liquid in the evaporator. It is characterized by becoming.

【0012】本発明の請求項3に係る冷凍装置が採用し
た手段は、請求項1または2のうちの何れか一つの項に
記載の冷凍装置において、前記液戻しラインには、流量
計が介装されると共に、この流量計により検出される液
の流量が一定になるように調節される流量調節弁が介装
されてなることを特徴とするものである。
The means adopted by the refrigerating apparatus according to claim 3 of the present invention is the refrigerating apparatus according to any one of claims 1 and 2, wherein a flow meter is provided in the liquid return line. It is characterized in that it is provided with a flow rate control valve which is controlled so that the flow rate of the liquid detected by the flow meter becomes constant.

【0013】本発明の請求項4に係る冷凍装置が採用し
た手段は、圧縮機の吐出口から吸込口に連通し、冷凍サ
イクルを構成する流体循環流路を備え、この流体循環流
路に、油分離器、凝縮機、受液器、膨張手段、蒸発器が
この順に介装され、冷媒としてCO2またはNH3の何れ
かを用いると共に、冷凍機油として前記冷媒に対し相溶
性のある油を用いる冷凍装置であって、前記流体循環流
路の前記膨張手段と前記蒸発器との間に低圧受液器を介
装し、前記流体循環流路の前記低圧受液器の液溜まり部
と前記蒸発器との間を、少なくとも開閉弁が介装されて
なる液戻しラインを介して前記圧縮機の吸込口に連通さ
せたことを特徴とするものである。
The means adopted by the refrigerating apparatus according to the fourth aspect of the present invention comprises a fluid circulation passage which communicates from the discharge port of the compressor to the suction port and constitutes a refrigeration cycle. An oil separator, a condenser, a liquid receiver, an expansion means, and an evaporator are provided in this order, and either CO 2 or NH 3 is used as a refrigerant, and an oil compatible with the refrigerant is used as a refrigerating machine oil. A refrigeration apparatus to be used, wherein a low-pressure liquid receiver is interposed between the expansion means of the fluid circulation flow path and the evaporator, and the liquid pool portion of the low-pressure liquid receiver of the fluid circulation flow path and the It is characterized in that the evaporator and the evaporator are communicated with the suction port of the compressor through a liquid return line having at least an opening / closing valve.

【0014】本発明の請求項5に係る冷凍装置が採用し
た手段は、請求項4に記載の冷凍装置において、前記冷
凍機油は、前記冷媒がCO2である場合にあってはポリ
オルエステル油、前記冷媒がNH3である場合にあって
はポリアルキレングリコール油であることを特徴とする
ものである。
The means adopted by the refrigerating apparatus according to claim 5 of the present invention is the refrigerating apparatus according to claim 4, wherein the refrigerating machine oil is a polyol ester oil when the refrigerant is CO 2 . When the refrigerant is NH 3 , it is a polyalkylene glycol oil.

【0015】本発明の請求項6に係る冷凍装置が採用し
た手段は、請求項4に記載の冷凍装置において、前記液
戻しラインには、流量計が介装されると共に、この流量
計により検出される液の流量が一定になるように調節さ
れる流量調節弁が介装されてなることを特徴とするもの
である。
The means adopted by the refrigerating apparatus according to claim 6 of the present invention is the refrigerating apparatus according to claim 4, wherein a flow meter is provided in the liquid return line and detection is performed by this flow meter. It is characterized in that a flow rate adjusting valve for adjusting the flow rate of the liquid to be kept constant is interposed.

【0016】本発明の請求項7に係る冷凍装置が採用し
た手段は、請求項4乃至6のうちの何れか一つの項に記
載の冷凍装置において、前記流体循環流路の前記蒸発器
と前記吸込口との間は、前記低圧受液器の気体空間を介
してなることを特徴とするものである。
The means adopted by the refrigerating apparatus according to the seventh aspect of the present invention is the refrigerating apparatus according to any one of the fourth to sixth aspects, wherein the evaporator and the evaporator in the fluid circulation passage are provided. It is characterized in that a space between the suction port and the low pressure liquid receiver is provided.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態1に係
る冷凍装置を、その圧縮機が油冷式スクリュ圧縮機であ
り、冷媒としてCO2を用いると共に、冷凍機油として
ポリオルエステルを用いる場合を例として、添付図面を
参照しながら説明する。図1(a)は、冷凍装置の模式的
系統図であり、図1(b)は、蒸発器への液戻しラインの
取付位置説明図である。
BEST MODE FOR CARRYING OUT THE INVENTION A refrigerating apparatus according to Embodiment 1 of the present invention will be described below, in which the compressor is an oil-cooled screw compressor, CO 2 is used as a refrigerant, and polyol ester is used as a refrigerating machine oil. A case will be described with reference to the accompanying drawings. FIG. 1 (a) is a schematic system diagram of the refrigerating apparatus, and FIG. 1 (b) is an explanatory view of the mounting position of the liquid return line to the evaporator.

【0018】図1(a)に示す符号1は、本実施の形態1
に係る冷凍装置である。この冷凍装置1は、油冷式スク
リュ圧縮機(以下、圧縮機という。)2の吐出口2aから
吸込口2bに連通する、冷凍サイクルを形成する流体循
環流路8を備えている。この流体循環流路8には、前記
吐出口2aから吸込口2bに向かって順に、油分離器
3、凝縮器4、受液器5、膨張手段である膨張弁6、お
よび蒸発器7が介装されている。前記油分離器3は、前
記圧縮機2から吐出される冷媒と飛沫状の冷凍機油とか
らなる混合流体から冷凍機油を分離すると共に回収し、
冷凍機油除去後の冷媒を凝縮器4に流入させる働きをす
るものである。
Reference numeral 1 shown in FIG. 1A indicates the first embodiment.
It is a refrigerating device according to. This refrigeration system 1 is provided with a fluid circulation flow path 8 that forms a refrigeration cycle, which communicates from a discharge port 2a of an oil-cooled screw compressor (hereinafter referred to as a compressor) 2 to a suction port 2b. An oil separator 3, a condenser 4, a liquid receiver 5, an expansion valve 6 as an expansion means, and an evaporator 7 are sequentially provided in the fluid circulation flow path 8 from the discharge port 2a toward the suction port 2b. It is equipped. The oil separator 3 separates and collects the refrigerating machine oil from a mixed fluid composed of the refrigerant discharged from the compressor 2 and the refrigerating machine oil in the form of droplets,
It serves to allow the refrigerant after removing the refrigerating machine oil to flow into the condenser 4.

【0019】ところで、前記油分離器3により分離され
た冷凍機油は、この油分離器3内下方に形成されてなる
油溜まり部3aに一旦溜められる。そして、この油溜ま
り部3aに溜められた冷凍機油は、図示しない油供給路
を介して、前記圧縮機2の図示しない圧縮空間、雌雄一
対のスクリュロータの軸を支持する軸受部、および軸封
部に供給されるように構成されている。
By the way, the refrigerating machine oil separated by the oil separator 3 is temporarily stored in an oil reservoir 3a formed below the oil separator 3. The refrigerating machine oil stored in the oil sump 3a is supplied to a compression space (not shown) of the compressor 2, a bearing portion that supports the shafts of a pair of male and female screw rotors, and a shaft seal via an oil supply passage (not shown). Is configured to be supplied to the section.

【0020】前記油分離器3から流出したガス状の冷媒
は、前記凝縮器4に流入して冷却液との熱交換により冷
却されて凝縮して、液状の冷媒となる。この凝縮器4か
ら流出した液状の冷媒は受液器5に溜められ、この受液
器5から流出した液状の冷媒は膨張弁6により膨張さ
れ、過冷却されて蒸発器7に流入する。この蒸発器7に
流入した過冷却後の冷媒は、図示しない冷却負荷(いわ
ゆる冷凍庫等)を冷却する被冷却流体と熱交換して蒸発
し、ガス状の冷媒となって蒸発器7から流出する。そし
て、蒸発器7から流出したガス状の冷媒は、吸込口2a
から圧縮機2内の圧縮空間に吸込まれて圧縮されるとい
うように、前記流体循環流路8を循環して冷凍機能を発
揮するように構成されている。
The gaseous refrigerant flowing out of the oil separator 3 flows into the condenser 4, is cooled by heat exchange with the cooling liquid, is condensed, and becomes a liquid refrigerant. The liquid refrigerant flowing out of the condenser 4 is stored in the liquid receiver 5, and the liquid refrigerant flowing out of the liquid receiver 5 is expanded by the expansion valve 6, supercooled and flows into the evaporator 7. The supercooled refrigerant that has flowed into the evaporator 7 exchanges heat with a fluid to be cooled that cools a cooling load (not shown) (not shown), evaporates, and becomes a gaseous refrigerant and flows out of the evaporator 7. . The gaseous refrigerant flowing out from the evaporator 7 is sucked into the suction port 2a.
Is sucked into the compression space in the compressor 2 and compressed, so as to circulate in the fluid circulation flow path 8 to exert a refrigerating function.

【0021】さらに、前記蒸発器7の胴部には、この蒸
発器7内の液、つまり液状の冷媒を排出する排出ポート
7aが設けられている。この排出ポート7aが設けられ
る位置は、図1(b)に示すように、この蒸発器7内の冷
媒の液面よりも下位位置であり、冷媒の液ヘッド差によ
り蒸発器7内の液状の冷媒がこの排出ポート7aから排
出されるように構成されている。
Further, the body of the evaporator 7 is provided with a discharge port 7a for discharging the liquid in the evaporator 7, that is, the liquid refrigerant. As shown in FIG. 1B, the position where the discharge port 7a is provided is lower than the liquid level of the refrigerant inside the evaporator 7, and the liquid head inside the evaporator 7 is changed by the difference in the liquid head of the refrigerant. The refrigerant is configured to be discharged from the discharge port 7a.

【0022】前記蒸発器7の排出ポート7aから、冷凍
機油の含有率が高い冷媒を排出することができる。この
蒸発器7内の冷媒中に多量の冷凍機油が含まれているの
は、下記の理由による。即ち、上記のとおり、前記蒸発
器7には油回収器3から冷媒が流入するが、油分離器3
から流出する冷媒中には極く微量の冷凍機油、具体的に
は、通常100〜200ppmの微量の冷凍機油が含ま
れている。冷凍機油と冷媒ガスとが非相溶性で分離する
ため、蒸発器7内において冷凍機油の滞留量が次第に多
くなるからである。
From the discharge port 7a of the evaporator 7, it is possible to discharge a refrigerant having a high refrigerating machine oil content. The refrigerant in the evaporator 7 contains a large amount of refrigerating machine oil for the following reason. That is, as described above, the refrigerant flows from the oil recovery device 3 into the evaporator 7, but the oil separator 3
The refrigerant flowing out from the tank contains a very small amount of refrigerating machine oil, specifically, a very small amount of refrigerating machine oil of usually 100 to 200 ppm. This is because the refrigerating machine oil and the refrigerant gas are incompatible and are separated from each other, so that the amount of refrigerating machine oil accumulated in the evaporator 7 gradually increases.

【0023】冷媒中の冷凍機油の含有割合が4%を超え
ると、蒸発器7の冷却性能が低下することが知られてい
る。そのため、本実施の形態1に係る冷凍装置1の場合
には、冷凍機油の含有率が2%以下になるように、10
0〜200ppmの冷凍機油を含有する冷媒を補充しな
がら、冷凍機油を含んだ冷媒液を排出するようにしてい
る。ところで、油分離器3から流出する冷媒中の冷凍機
油の含有量は、上記のとおり、分っている。従って、蒸
発器7内における冷媒中の冷凍機油の含有割合は、冷凍
装置の稼働時間と蒸発器7内の冷媒の容量と液抜き量と
から、冷凍機油の含有率を導出することができる。
It is known that when the content ratio of refrigerating machine oil in the refrigerant exceeds 4%, the cooling performance of the evaporator 7 deteriorates. Therefore, in the case of the refrigerating apparatus 1 according to the first embodiment, the refrigerating machine oil content is set to 10% or less so as to be 2% or less.
Refrigerant liquid containing refrigerating machine oil is discharged while supplementing the refrigerant containing 0 to 200 ppm of refrigerating machine oil. By the way, the content of the refrigerating machine oil in the refrigerant flowing out from the oil separator 3 is known as described above. Therefore, the content ratio of the refrigerating machine oil in the refrigerant in the evaporator 7 can be derived from the operating time of the refrigerating apparatus, the capacity of the refrigerant in the evaporator 7 and the drainage amount.

【0024】さらに、前記排出ポート7aから前記流体
循環流路8の前記蒸発器7と圧縮機2の吸込口2bとの
間に液戻しライン10が介装されている。この液戻しラ
イン10には、排出ポート7a側から前記流体循環流路
8との連通部側に向かって順に、流量調節弁11、流量
計12、および開閉弁13が介装されている。前記流量
調節弁11の開度は、前記流量計12により検出される
液の流量が一定になるように、図示しない制御器により
制御されるものである。また、前記開閉弁13は電気信
号により開閉されるものである。
Further, a liquid return line 10 is provided between the discharge port 7a and the evaporator 7 of the fluid circulation passage 8 and the suction port 2b of the compressor 2. The liquid return line 10 is provided with a flow rate control valve 11, a flow meter 12, and an opening / closing valve 13 in this order from the discharge port 7a side toward the communication section side with the fluid circulation flow path 8. The opening degree of the flow rate control valve 11 is controlled by a controller (not shown) so that the flow rate of the liquid detected by the flow meter 12 becomes constant. The on-off valve 13 is opened and closed by an electric signal.

【0025】なお、本実施の形態1に係る冷凍装置1の
場合には、液戻しライン10を流体循環流路8に連通さ
せているが、圧縮機2の吸込口2bに直接連通させるよ
うにしても良い。また、この液戻しライン10に液の流
れを監視する覗き窓(サイトグラス)を設け、この覗き窓
から液戻しライン10を流れる液の流れ状況を監視し得
る構成にするのがより好ましい。
In the case of the refrigeration system 1 according to the first embodiment, the liquid return line 10 is connected to the fluid circulation flow path 8, but it should be connected directly to the suction port 2b of the compressor 2. May be. Further, it is more preferable that a peep window (site glass) for monitoring the flow of the liquid is provided in the liquid return line 10 so that the flow condition of the liquid flowing through the liquid return line 10 can be monitored through the peep window.

【0026】以下、本実施の形態1に係る冷凍装置1の
使用態様を説明すると、この冷凍装置1の運転時間の経
過に連れて、冷凍機油と冷媒との沸点の相違により、蒸
発器7内における冷媒中の冷凍機油の含有率が次第に上
昇する。さらなる運転の継続により、蒸発器7内におけ
る冷媒中の冷凍機油の含有率が2%になると、蒸発器7
内における冷凍機油の含有率が2%を超えることのない
冷媒の排出量が決められ、開閉弁13が開弁される。開
閉弁13が開弁されると、冷凍装置1の運転中を継続し
て、蒸発器7内の冷媒の液ヘッド差により排出ポート7
aから流出する冷媒の流量が流量計12により検出され
る。
The use mode of the refrigerating apparatus 1 according to the first embodiment will be described below. As the operating time of the refrigerating apparatus 1 elapses, the inside of the evaporator 7 is changed due to the difference in the boiling points of the refrigerating machine oil and the refrigerant. The content rate of the refrigerating machine oil in the refrigerant is gradually increased. When the content of the refrigerating machine oil in the refrigerant in the evaporator 7 becomes 2% due to the continued operation, the evaporator 7
The discharge amount of the refrigerant within which the content rate of the refrigerating machine oil does not exceed 2% is determined, and the opening / closing valve 13 is opened. When the on-off valve 13 is opened, the operation of the refrigeration system 1 is continued and the discharge port 7 is changed due to the difference in the liquid heads of the refrigerant in the evaporator 7.
The flow rate of the refrigerant flowing out from a is detected by the flow meter 12.

【0027】そして、流量計12で検出される冷媒の流
量が前記排出量になるように流量調節弁11の開度が制
御され、液戻しライン10を介して時間当たり一定量の
冷凍機油を含有する冷媒が圧縮機2の吸込口2bに戻さ
れ続ける。このような冷媒の排出中においては、蒸発器
7内の冷媒の液面レベルが一定になるように、受液器5
から、100〜200ppmの冷凍機油を含有する冷媒
が供給され続ける。なお、この冷凍装置1の運転が停止
された場合には、この冷凍装置1を保護するために開閉
弁13が閉弁され、圧縮機2の吸込口への冷媒の供給が
停止されるものである。
The opening of the flow rate control valve 11 is controlled so that the flow rate of the refrigerant detected by the flow meter 12 is equal to the discharge amount, and a constant amount of refrigerating machine oil is contained per hour via the liquid return line 10. The refrigerant to be discharged continues to be returned to the suction port 2b of the compressor 2. During such discharge of the refrigerant, the liquid receiver 5 is controlled so that the liquid level of the refrigerant in the evaporator 7 becomes constant.
Therefore, the refrigerant containing 100 to 200 ppm of refrigerating machine oil is continuously supplied. When the operation of the refrigeration system 1 is stopped, the on-off valve 13 is closed to protect the refrigeration system 1 and the supply of the refrigerant to the suction port of the compressor 2 is stopped. is there.

【0028】本実施の形態1に係る冷凍装置1によれ
ば、上記のとおり、蒸発器7から圧縮機2の吸込口2b
に、冷凍機油を含んだ冷媒液を単位時間当たり一定量ず
つ戻すことができる。そして、蒸発器7内における冷媒
中の冷凍機油の含有率が2%以上になるのを防止するこ
とができる。従って、本実施の形態1に係る冷凍装置1
によれば、下記のとおりの効果を得ることができる。 蒸発器7内における冷媒中の冷凍機油の含有率が2
%以下に維持され続け、冷却性能の低下を来す4%以上
になるようなことがないから、所期の冷却性能を発揮し
続けることができる。 従来例のように熱交換器やヒータを設ける必要がな
く液戻しラインの構成がシンプルであるから、信頼性が
向上するのに加えて、冷凍装置のランニングコストに関
しても有利である。
According to the refrigerating apparatus 1 according to the first embodiment, as described above, the evaporator 7 is connected to the suction port 2b of the compressor 2.
In addition, a constant amount of the refrigerant liquid containing the refrigerating machine oil can be returned per unit time. Then, it is possible to prevent the content rate of the refrigerating machine oil in the refrigerant in the evaporator 7 from becoming 2% or more. Therefore, the refrigeration apparatus 1 according to the first embodiment
According to the above, the following effects can be obtained. Refrigerant oil content in the refrigerant in the evaporator 7 is 2
% Or less, and the cooling performance is not lowered to 4% or more, so that the desired cooling performance can be continued. Unlike the conventional example, it is not necessary to provide a heat exchanger or a heater, and the structure of the liquid return line is simple. Therefore, the reliability is improved and the running cost of the refrigerating apparatus is also advantageous.

【0029】次に、本発明の実施の形態2に係る冷凍装
置を、上記実施の形態1に係る冷凍装置の場合と同様
に、圧縮機が油冷式スクリュ圧縮機である場合を例とし
て、その模式的系統図の図2を参照しながら説明する。
ところで、構成に関して、本実施の形態2が上記実施の
形態1と相違するところは、低圧受液器が設けられてい
る点と、液戻しラインの基端部の接続位置が相違する点
にある。従って、上記実施の形態1と同一のもの、並び
に同一機能を有するものに同一符号を付して、その相違
する点について説明する。
Next, as in the case of the refrigerating apparatus according to the first embodiment, the refrigerating apparatus according to the second embodiment of the present invention will be described with an example in which the compressor is an oil-cooled screw compressor. It will be described with reference to FIG. 2 of the schematic system diagram.
With respect to the configuration, the difference between the second embodiment and the first embodiment is that the low-pressure liquid receiver is provided and the connection position of the base end of the liquid return line is different. . Therefore, the same components as those in the first embodiment and components having the same functions are designated by the same reference numerals, and different points will be described.

【0030】本実施の形態2に係る冷凍装置1もまた、
冷媒としてCO2を用いると共に、冷凍機油としてCO2
に対して相溶性があるポリオルエステルを用いるものを
示す。この冷凍装置1では、流体循環流路8の膨張手段
である膨張弁6と蒸発器7との間に低圧受液器14が介
装されている。また、前記流体循環流路8の低圧受液器
14と蒸発器7との間に液ポンプ15が介装されると共
に、この流体循環流路8の前記蒸発器7と圧縮機2の吸
込口2bとの間は、前記低圧受液器14の気体空間14
bを介している。なお、この低圧受液器14の気体空間
14bは、図示しない流路を介して流体循環流路8に連
通させるように構成しても良い。
The refrigerating apparatus 1 according to the second embodiment also has
The CO 2 with use as a refrigerant, CO 2 as refrigerating machine oil
It shows the one using a polyester which is compatible with. In this refrigeration system 1, a low-pressure liquid receiver 14 is provided between the evaporator 7 and the expansion valve 6 which is the expansion means of the fluid circulation flow path 8. Further, a liquid pump 15 is provided between the low pressure liquid receiver 14 and the evaporator 7 of the fluid circulation flow path 8, and the evaporator 7 of the fluid circulation flow path 8 and the suction port of the compressor 2 are installed. 2b and the gas space 14 of the low pressure receiver 14
via b. The gas space 14b of the low-pressure liquid receiver 14 may be configured to communicate with the fluid circulation flow path 8 via a flow path (not shown).

【0031】そして、前記流体循環流路8の前記液ポン
プ15と蒸発器7との間は、液戻しライン10を介して
前記流体循環流路8の前記蒸発器7と圧縮機2の吸込口
2bとの間に連通している。前記液戻しライン10に
は、上記実施の形態1の場合と同様に、流量調節弁1
1、流量計12、および開閉弁13が介装されている。
Between the liquid pump 15 and the evaporator 7 in the fluid circulation flow path 8 is a suction port of the evaporator 7 and the compressor 2 in the fluid circulation flow path 8 via a liquid return line 10. It communicates with 2b. In the liquid return line 10, as in the case of the first embodiment, the flow rate control valve 1
1, a flow meter 12, and an open / close valve 13 are provided.

【0032】この実施の形態2に係る冷凍装置1の作用
態様を説明する。即ち、前記低圧受液器14の液溜まり
部14aに、冷凍機油を含む過冷却された冷媒が溜ま
る。この場合、冷媒はCO2であり、そして冷凍機油は
CO2に対して相溶性があるポリオルエステルであるか
ら、このポリオルエステルはCO2に均一に溶解してい
る。このような冷媒が液ポンプ15の駆動により蒸発器
7に供給される一方、液戻しライン10を介して所定量
ずつ圧縮機2に戻され続け、運転中を通じてポリオルエ
ステルが所定量ずつ回収され続ける。
The mode of operation of the refrigerating apparatus 1 according to the second embodiment will be described. That is, the supercooled refrigerant containing the refrigerating machine oil is collected in the liquid pool portion 14a of the low-pressure liquid receiver 14. In this case, the refrigerant is CO 2, and the refrigerating machine oil from poliovirus ester which is compatible with respect to CO 2, the polio ester are uniformly dissolved in CO 2. While such a refrigerant is supplied to the evaporator 7 by driving the liquid pump 15, the refrigerant is continuously returned to the compressor 2 in a predetermined amount via the liquid return line 10, and the polyol ester is continuously recovered in a predetermined amount throughout the operation. .

【0033】そのため、蒸発器7に、ポリオルエステル
が低濃度のCO2が供給されるのに加えて、非相溶性の
冷凍機油のようにCO2と分離して蒸発器に溜まるよう
なことがない。従って、ポリオルエステルによって蒸発
器7の熱交換性能が低下するようなことがないから、本
実施の形態2は、冷却性能の安定維持等に関して上記実
施の形態1と同等の効果がある。さらに、自然界に存在
するCO2を冷媒として用いるのであるから、環境問
題、特に脱フロンという社会的な要請に応えることがで
きるという優れた効果を期待することができる。
Therefore, in addition to the CO 2 having a low concentration of polyester being supplied to the evaporator 7, it may be separated from CO 2 and accumulated in the evaporator as in the case of an incompatible refrigerating machine oil. Absent. Therefore, since the heat exchange performance of the evaporator 7 is not deteriorated by the polyester, the second embodiment has the same effect as the first embodiment with respect to the stable maintenance of the cooling performance and the like. Furthermore, since CO 2 existing in nature is used as a refrigerant, it is possible to expect an excellent effect that it can respond to environmental problems, especially social demands such as dechlorofluorocarbon.

【0034】なお、本実施の形態1および2では、ポリ
オルエステルと相溶性があるCO2を冷媒として用いる
場合の例を説明したが、NH3を冷媒として用い、それ
に対して相溶性がある油、例えばポリアルキレングリコ
ールを冷凍機油として用いても良い。
In the first and second embodiments, an example in which CO 2 compatible with polyester is used as a refrigerant has been described, but NH 3 is used as a refrigerant and an oil compatible with it is used. For example, polyalkylene glycol may be used as refrigerating machine oil.

【0035】[0035]

【発明の効果】以上詳述したように、本発明の請求項1
乃至7に係る冷凍装置によれば、蒸発器内において冷媒
中の冷凍機油の含有率が高くなるようなことがなく、ま
た冷凍機油の分離のために、従来例のように熱交換器や
ヒータを用いる必要がない。従って、所期の冷却性能を
発揮し続けることができ、また液戻しラインの構成がシ
ンプルであるから、信頼性が向上するのに加えて、冷凍
装置のランニングコストに関して有利になる。
As described in detail above, the first aspect of the present invention
According to the refrigerating apparatus according to any one of 7 to 7, the content of the refrigerating machine oil in the refrigerant does not increase in the evaporator, and for separating the refrigerating machine oil, the heat exchanger and the heater unlike the conventional example. Need not be used. Therefore, the desired cooling performance can be continuously exerted, and the structure of the liquid return line is simple, so that the reliability is improved and the running cost of the refrigeration system is improved.

【0036】さらに、本発明の請求項4乃至7に係る冷
凍装置によれば、上記効果に加えて、さらに自然界に存
在するCO2やオゾン層を破壊せず、温暖化に対する寄
与も小さいNH3を冷媒として用いるので、環境問題、
特に脱フロンという社会的な要請に応えることができる
という優れた効果を期待することができる。
Further, according to the refrigerating apparatus according to the fourth to seventh aspects of the present invention, in addition to the above effects, NH 3 which does not further destroy CO 2 and the ozone layer existing in nature and contributes little to global warming is NH 3. Because it uses as a refrigerant, environmental problems,
In particular, it can be expected to have an excellent effect of being able to meet the social demand for dechlorofluorocarbons.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態1に係り、図1(a)は冷凍
装置の模式的系統図、図1(b)は蒸発器への液戻しライ
ンの取付位置説明図である。
1 is a schematic system diagram of a refrigerating apparatus according to Embodiment 1 of the present invention, and FIG. 1 (b) is an explanatory view of a mounting position of a liquid return line to an evaporator.

【図2】本発明の実施の形態2に係る冷凍装置の模式的
系統図である。
FIG. 2 is a schematic system diagram of a refrigerating apparatus according to Embodiment 2 of the present invention.

【図3】従来例1に係る冷凍装置の模式的系統図であ
る。
FIG. 3 is a schematic system diagram of a refrigeration apparatus according to Conventional Example 1.

【図4】従来例2に係る冷凍装置の模式的系統図であ
る。
FIG. 4 is a schematic system diagram of a refrigerating apparatus according to Conventional Example 2.

【符号の説明】[Explanation of symbols]

1…冷凍装置、2…圧縮機(油冷式スクリュ圧縮機)、2
a…吐出口、2b…吸込口、3…油分離器、3a…油溜
まり部、4…凝縮器、5…受液器、6…膨張弁、7…蒸
発器、7a…排出ポート、8…流体循環流路 10…液戻しライン、11…流量調節弁、12…流量
計、13…開閉弁、14…低圧受液器、14a…液溜ま
り部、14b…気体空間、15…液ポンプ
1 ... Refrigerating device, 2 ... Compressor (oil-cooled screw compressor), 2
a ... Discharge port, 2b ... Suction port, 3 ... Oil separator, 3a ... Oil sump, 4 ... Condenser, 5 ... Liquid receiver, 6 ... Expansion valve, 7 ... Evaporator, 7a ... Discharge port, 8 ... Fluid circulation flow path 10 ... Liquid return line, 11 ... Flow control valve, 12 ... Flow meter, 13 ... Open / close valve, 14 ... Low pressure receiver, 14a ... Liquid reservoir, 14b ... Gas space, 15 ... Liquid pump

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機の吐出口から吸込口に連通し、冷
凍サイクルを構成する流体循環流路を備え、この流体循
環流路に、油分離器、凝縮機、受液器、膨張手段、蒸発
器がこの順に介装されてなる冷凍装置において、前記蒸
発器の胴部に内部の液を排出する排出ポートを設け、こ
の排出ポートを、少なくとも開閉弁が介装されてなる液
戻しラインを介して前記圧縮機の吸込口に連通させたこ
とを特徴とする冷凍装置。
1. A fluid circulation flow path, which communicates from a discharge port of a compressor to a suction port and constitutes a refrigeration cycle, is provided with an oil separator, a condenser, a liquid receiver, an expansion means, In a refrigeration system in which an evaporator is installed in this order, a discharge port for discharging the internal liquid is provided in the body of the evaporator, and the discharge port is provided with a liquid return line including at least an on-off valve. A refrigeration system characterized in that the refrigeration system is communicated with the suction port of the compressor.
【請求項2】 前記排出ポートは、前記蒸発器内の液の
液面より下位位置に設けられてなることを特徴とする請
求項1に記載の冷凍装置。
2. The refrigerating apparatus according to claim 1, wherein the discharge port is provided at a position lower than a liquid surface of the liquid in the evaporator.
【請求項3】 前記液戻しラインには、流量計が介装さ
れると共に、この流量計により検出される液の流量が一
定になるように調節される流量調節弁が介装されてなる
ことを特徴とする請求項1または2のうちの何れか一つ
の項に記載の冷凍装置。
3. The liquid return line is provided with a flow meter and a flow rate control valve which is adjusted so that the flow rate of the liquid detected by the flow meter is constant. The refrigerating apparatus according to any one of claims 1 and 2, characterized in that.
【請求項4】 圧縮機の吐出口から吸込口に連通し、冷
凍サイクルを構成する流体循環流路を備え、この流体循
環流路に、油分離器、凝縮機、受液器、膨張手段、蒸発
器がこの順に介装され、冷媒としてCO2またはNH3
何れかを用いると共に、冷凍機油として前記冷媒に対し
相溶性のある油を用いる冷凍装置であって、前記流体循
環流路の前記膨張手段と前記蒸発器との間に低圧受液器
を介装し、前記流体循環流路の前記低圧受液器の液溜ま
り部と前記蒸発器との間を、少なくとも開閉弁が介装さ
れてなる液戻しラインを介して前記圧縮機の吸込口に連
通させたことを特徴とする冷凍装置。
4. A fluid circulation flow path, which communicates from a discharge port of the compressor to a suction port and constitutes a refrigeration cycle, is provided with an oil separator, a condenser, a liquid receiver, an expansion means, An evaporator is interposed in this order, and either CO 2 or NH 3 is used as a refrigerant, and an oil compatible with the refrigerant is used as a refrigerating machine oil. A low-pressure liquid receiver is interposed between the expansion means and the evaporator, and at least an on-off valve is interposed between the liquid reservoir of the low-pressure liquid receiver of the fluid circulation channel and the evaporator. A refrigeration system characterized in that it is connected to the suction port of the compressor through a liquid return line.
【請求項5】 前記冷凍機油は、前記冷媒がCO2であ
る場合にあってはポリオルエステル油、前記冷媒がNH
3である場合にあってはポリアルキレングリコール油で
あることを特徴とする請求項4に記載の冷凍装置。
5. The refrigerating machine oil is a polyester oil when the refrigerant is CO 2 , and the refrigerant is NH 3.
When it is 3 , it is polyalkylene glycol oil, The refrigerating device of Claim 4 characterized by the above-mentioned.
【請求項6】 前記液戻しラインには、流量計が介装さ
れると共に、この流量計により検出される液の流量が一
定になるように調節される流量調節弁が介装されてなる
ことを特徴とする請求項4に記載の冷凍装置。
6. The liquid return line is provided with a flow meter and a flow rate control valve that is adjusted so that the flow rate of the liquid detected by the flow meter is constant. The refrigerating apparatus according to claim 4, wherein
【請求項7】 前記流体循環流路の前記蒸発器と前記吸
込口との間は、前記低圧受液器の気体空間を介してなる
ことを特徴とする請求項4乃至6うちの何れか一つの項
に記載の冷凍装置。
7. The gas space of the low-pressure liquid receiver is provided between the evaporator and the suction port of the fluid circulation flow path, according to any one of claims 4 to 6. Refrigerating apparatus according to one of the items.
JP2002062051A 2002-03-07 2002-03-07 Refrigeration equipment Expired - Lifetime JP4028994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002062051A JP4028994B2 (en) 2002-03-07 2002-03-07 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002062051A JP4028994B2 (en) 2002-03-07 2002-03-07 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2003262411A true JP2003262411A (en) 2003-09-19
JP4028994B2 JP4028994B2 (en) 2008-01-09

Family

ID=29196017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002062051A Expired - Lifetime JP4028994B2 (en) 2002-03-07 2002-03-07 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP4028994B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032100A (en) * 2008-07-28 2010-02-12 Denso Corp Vapor compression refrigerating cycle
JP2022003868A (en) * 2018-05-18 2022-01-11 ダイキン工業株式会社 Refrigeration cycle apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032100A (en) * 2008-07-28 2010-02-12 Denso Corp Vapor compression refrigerating cycle
JP2022003868A (en) * 2018-05-18 2022-01-11 ダイキン工業株式会社 Refrigeration cycle apparatus

Also Published As

Publication number Publication date
JP4028994B2 (en) 2008-01-09

Similar Documents

Publication Publication Date Title
KR100353232B1 (en) Refrigerant circulation device, Refrigerant circuit assembly method
JP3743861B2 (en) Refrigeration air conditioner
JP2007071505A (en) Refrigerating plant
KR101220583B1 (en) Freezing device
JP3984489B2 (en) Refrigeration equipment
JP6264688B2 (en) Refrigeration equipment
CN103968588A (en) Refrigerator and refrigeration equipment using the same
KR101220741B1 (en) Freezing device
WO2007123085A1 (en) Refrigeration device
JP5412193B2 (en) Turbo refrigerator
JP4317793B2 (en) Cooling system
JP5783783B2 (en) Heat source side unit and refrigeration cycle apparatus
JP3852591B2 (en) Refrigeration cycle
JP2005214443A (en) Refrigerator
JP2000088431A (en) Brine cooler
ES2807850T3 (en) Compressor capacity switching procedure
KR20110074709A (en) Freezing device
JP6388260B2 (en) Refrigeration equipment
KR20110097367A (en) Chiller
JP2009257684A (en) Compression refrigerating machine and method for recovering lubricating oil for the same
JP2005214575A (en) Refrigerator
JP2005214444A (en) Refrigerator
JP2008121926A (en) Refrigeration air conditioner
JP2008128570A (en) Refrigerating apparatus
JP2018204805A (en) Refrigeration unit, refrigeration system and control method for refrigerant circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4028994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

EXPY Cancellation because of completion of term