JP4028994B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP4028994B2
JP4028994B2 JP2002062051A JP2002062051A JP4028994B2 JP 4028994 B2 JP4028994 B2 JP 4028994B2 JP 2002062051 A JP2002062051 A JP 2002062051A JP 2002062051 A JP2002062051 A JP 2002062051A JP 4028994 B2 JP4028994 B2 JP 4028994B2
Authority
JP
Japan
Prior art keywords
liquid
evaporator
refrigerant
oil
fluid circulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002062051A
Other languages
Japanese (ja)
Other versions
JP2003262411A (en
Inventor
好司 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002062051A priority Critical patent/JP4028994B2/en
Publication of JP2003262411A publication Critical patent/JP2003262411A/en
Application granted granted Critical
Publication of JP4028994B2 publication Critical patent/JP4028994B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Lubricants (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷凍装置の改善に係り、より詳しくは、蒸発器に大量の冷凍機油が滞留するのを防止して、安定的に冷凍性能を発揮することを可能ならしめるようにした冷凍装置の技術分野に属するものである。
【0002】
【従来の技術】
圧縮機として、油冷式スクリュ圧縮機を備えてなる冷凍装置にあっては、この油冷式スクリュ圧縮機から冷凍機油を含む冷媒が吐出される。冷媒中に冷凍機油が含まれていると冷却性能に悪影響を及ぼすため、油冷式スクリュ圧縮機と凝縮器との間に油分離器を介装して、この油分離器により冷凍機油を除去した冷媒を凝縮器に送給するようにしている。
【0003】
ところが、油分離器だけでは冷媒中の冷凍機油を完全に分離することができない。そのため、蒸発器に滞留する冷凍機油が次第に多くなって、蒸発器の熱交換効率が低下してしまうので、所期の冷凍性能を発揮することができなくなるという問題があった。このような問題を解決するために、油分離器を経た冷媒から微量の油分を除去する油戻し機構を備えた冷凍装置が、例えば冷凍空調便覧(日本冷凍協会)基礎編第5版(平成5年)において提案されている。以下、提案されている2例の概要を説明する。
【0004】
従来例1に係る冷凍装置は、その模式的系統図の図3に示すように、低圧受液器中の冷媒液の一部を連続的に抽出し、この低圧受液器に流す高圧液と熱交換器にて熱交換させ、高圧液の過冷却度を大きくすると共に、抽出した冷媒液を蒸発させる。そして、分離させた冷凍機油を吸込ガス速度により吸込ラインを介して圧縮機に戻すように構成されている。なお、この冷凍装置では、冷媒として潤滑油を良く溶解するフロンを使用するものである。例えば、R22では低温下で油の溶解度が異な2種類の液に分れ、比重差により冷凍機油が多く溶解している液は上層に集まり易いから、同図に示すように、低圧受液器内の液の液面近くから冷媒液を抽出するようにしている。
【0005】
従来例2に係る冷凍装置は、その模式的系統図の図4に示すように、低圧受液に溜まった油分を含む冷媒を油溜めタンクに落とし込み、この油溜めタンク内の油分を含む冷媒をヒータで過熱する。そして、冷媒を蒸発させて圧縮機に吸込ませる一方、油だけを油ポンプにより圧縮機に戻すようにしたものである。なお、この油溜めタンクでは油中の冷媒を完全に追い出すために40℃程度の温度になるように加熱する。従って、油溜めタンクから戻る冷媒蒸気の過熱除去のために、低圧受液器中の液状冷媒の一部が蒸発することとなる。
【0006】
【発明が解決しようとする課題】
上記従来例1、または2に係る冷凍装置は、何れもそれなりに有用であると考えられる。しかしながら、低圧受液器内の液から完全に冷凍機油を除去することができないから、微量の冷凍機油を含有する冷媒が蒸発器に流入する。冷凍機油と冷媒との沸点の相違により、冷媒が蒸発するにもかかわらず、冷凍機油は蒸発しないので、蒸発器内において冷凍機油の油量が時間の経過につれて次第に増大し、やはり初期の冷凍性能を発揮できない事態となる可能性がある。
【0007】
また、従来例1に係る冷凍装置では、低圧受液器から抽出される冷媒液の量も、受液器からの高圧液の量も、負荷状態等の様々な要因により変化するため、お互いの交換する熱量も変化することがある。そのため、所望の熱交換を行わせるには冷凍装置の運転状況に応じた微妙な調整が必要になってしまう。所望の熱交換が達成できず、熱交換器を出た冷媒が完全に気化できなければ、いわゆる液バック状態で圧縮機に冷媒が供給され、圧縮機に機械的な不具合が生じる事態を招きかねない。
【0008】
従来例2に係る冷凍装置では、ヒータに電力を供給しなければならないから、冷凍装置のランニングコストに関して不利になるという経済上の問題もある。また、このヒータが電気ヒ―タである場合、この電気ヒータ自体に不具合を及ぼすような必要以上の過熱の虞がある。また、このヒータがスチームヒ―タである場合、長期的な使用に伴うスチーム水による腐食の虞がある。つまり、種々の不具合を回避し得る、信頼性の高い冷凍装置が望まれているのである。
【0009】
従って、本発明の目的は、冷却性能に悪影響を及ぼすほどの冷凍機油が蒸発器に滞留するのを防止して初期の冷凍性能を発揮させることができ、しかもランニングコストが安価で信頼性の高い冷凍装置を提供することである。
【0010】
【課題を解決するための手段】
本発明は、上記実情に鑑みてなされたものであって、従って上記課題を解決するために、本発明の請求項1に係る冷凍装置が採用した手段は、圧縮機の吐出口から吸込口に連通し、冷凍サイクルを構成する流体循環流路を備え、この流体循環流路に、油分離器、凝縮機、受液器、膨張手段、蒸発器がこの順に介装されてなる冷凍装置において、前記蒸発器の胴部であって、かつこの蒸発器内の液の液面より下位位置に、この蒸発器の内部の液を排出する排出ポートを設け、この排出ポートを、開閉弁、流量計、およびこの流量計により検出される液の流量が一定になるように調節する流量調節弁が介装されてなる液戻しラインを介して前記圧縮機の吸込口に連通させたことを特徴とするものである。
【0011】
本発明の請求項2に係る冷凍装置が採用した手段は、圧縮機の吐出口から吸込口に連通し、冷凍サイクルを構成する流体循環流路を備え、この流体循環流路に、油分離器、凝縮機、受液器、膨張手段、蒸発器がこの順に介装され、冷媒としてCO またはNH の何れかを用いると共に、冷凍機油として前記冷媒に対して相溶性のある油を用いる冷凍装置であって、前記流体循環流路の前記膨張手段と前記蒸発器との間に低圧受液器を介装し、前記流体循環流路の前記低圧受液器の液溜まり部と前記蒸発器との間を、開閉弁、流量計、およびこの流量計により検出される液の流量が一定になるように調節する流量調節弁が 介装されてなる液戻しラインを介して前記圧縮機の吸込口に連通させたことを特徴とするものである。
【0012】
本発明の請求項3に係る冷凍装置が採用した手段は、請求項2に記載の冷凍装置において、前記流体循環流路の前記蒸発器と前記吸込口との間は、前記低圧受液器の気体空間を介してなることを特徴とするものである。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態1に係る冷凍装置を、その圧縮機が油冷式スクリュ圧縮機であり、冷媒としてCOを用いると共に、冷凍機油としてポリオルエステルを用いる場合を例として、添付図面を参照しながら説明する。図1(a)は、冷凍装置の模式的系統図であり、図1(b)は、蒸発器への液戻しラインの取付位置説明図である。
【0014】
図1(a)に示す符号1は、本実施の形態1に係る冷凍装置である。この冷凍装置1は、油冷式スクリュ圧縮機(以下、圧縮機という。)2の吐出口2aから吸込口2bに連通する、冷凍サイクルを形成する流体循環流路8を備えている。この流体循環流路8には、前記吐出口2aから吸込口2bに向かって順に、油分離器3、凝縮器4、受液器5、膨張手段である膨張弁6、および蒸発器7が介装されている。前記油分離器3は、前記圧縮機2から吐出される冷媒と飛沫状の冷凍機油とからなる混合流体から冷凍機油を分離すると共に回収し、冷凍機油除去後の冷媒を凝縮器4に流入させる働きをするものである。
【0015】
ところで、前記油分離器3により分離された冷凍機油は、この油分離器3内下方に形成されてなる油溜まり部3aに一旦溜められる。そして、この油溜まり部3aに溜められた冷凍機油は、図示しない油供給路を介して、前記圧縮機2の図示しない圧縮空間、雌雄一対のスクリュロータの軸を支持する軸受部、および軸封部に供給されるように構成されている。
【0016】
前記油分離器3から流出したガス状の冷媒は、前記凝縮器4に流入して冷却液との熱交換により冷却されて凝縮して、液状の冷媒となる。この凝縮器4から流出した液状の冷媒は受液器5に溜められ、この受液器5から流出した液状の冷媒は膨張弁6により膨張され、過冷却されて蒸発器7に流入する。この蒸発器7に流入した過冷却後の冷媒は、図示しない冷却負荷(いわゆる冷凍庫等)を冷却する被冷却流体と熱交換して蒸発し、ガス状の冷媒となって蒸発器7から流出する。そして、蒸発器7から流出したガス状の冷媒は、吸込口2aから圧縮機2内の圧縮空間に吸込まれて圧縮されるというように、前記流体循環流路8を循環して冷凍機能を発揮するように構成されている。
【0017】
さらに、前記蒸発器7の胴部には、この蒸発器7内の液、つまり液状の冷媒を排出する排出ポート7aが設けられている。この排出ポート7aが設けられる位置は、図1(b)に示すように、この蒸発器7内の冷媒の液面よりも下位位置であり、冷媒の液ヘッド差により蒸発器7内の液状の冷媒がこの排出ポート7aから排出されるように構成されている。
【0018】
前記蒸発器7の排出ポート7aから、冷凍機油の含有率が高い冷媒を排出することができる。この蒸発器7内の冷媒中に多量の冷凍機油が含まれているのは、下記の理由による。即ち、上記のとおり、前記蒸発器7には油回収器3から冷媒が流入するが、油分離器3から流出する冷媒中には極微量の冷凍機油、具体的には、通常100〜200ppmの微量の冷凍機油が含まれている。冷凍機油と冷媒ガスとが非相溶性で分離するため、蒸発器7内において冷凍機油の滞留量が次第に多くなるからである。
【0019】
冷媒中の冷凍機油の含有割合が4%を超えると、蒸発器7の冷却性能が低下することが知られている。そのため、本実施の形態1に係る冷凍装置1の場合には、冷凍機油の含有率が2%以下になるように、100〜200ppmの冷凍機油を含有する冷媒を補充しながら、冷凍機油を含んだ冷媒液を排出するようにしている。ところで、油分離器3から流出する冷媒中の冷凍機油の含有量は、上記のとおり、分っている。従って、蒸発器7内における冷媒中の冷凍機油の含有割合は、冷凍装置の稼働時間と蒸発器7内の冷媒の容量と液抜き量とから、冷凍機油の含有率を導出することができる。
【0020】
さらに、前記排出ポート7aから前記流体循環流路8の前記蒸発器7と圧縮機2の吸込口2bとの間に液戻しライン10が介装されている。この液戻しライン10には、排出ポート7a側から前記流体循環流路8との連通部側に向かって順に、流量調節弁11、流量計12、および開閉弁13が介装されている。前記流量調節弁11の開度は、前記流量計12により検出される液の流量が一定になるように、図示しない制御器により制御されるものである。また、前記開閉弁13は電気信号により開閉されるものである。
【0021】
なお、本実施の形態1に係る冷凍装置1の場合には、液戻しライン10を流体循環流路8に連通させているが、圧縮機2の吸込口2bに直接連通させるようにしても良い。また、この液戻しライン10に液の流れを監視する覗き窓(サイトグラス)を設け、この覗き窓から液戻しライン10を流れる液の流れ状況を監視し得る構成にするのがより好ましい。
【0022】
以下、本実施の形態1に係る冷凍装置1の使用態様を説明すると、この冷凍装置1の運転時間の経過に連れて、冷凍機油と冷媒との沸点の相違により、蒸発器7内における冷媒中の冷凍機油の含有率が次第に上昇する。さらなる運転の継続により、蒸発器7内における冷媒中の冷凍機油の含有率が2%になると、蒸発器7内における冷凍機油の含有率が2%を超えることのない冷媒の排出量が決められ、開閉弁13が開弁される。開閉弁13が開弁されると、冷凍装置1の運転中を継続して、蒸発器7内の冷媒の液ヘッド差により排出ポート7aから流出する冷媒の流量が流量計12により検出される。
【0023】
そして、流量計12で検出される冷媒の流量が前記排出量になるように流量調節弁11の開度が制御され、液戻しライン10を介して時間当たり一定量の冷凍機油を含有する冷媒が圧縮機2の吸込口2bに戻され続ける。このような冷媒の排出中においては、蒸発器7内の冷媒の液面レベルが一定になるように、受液器5から、100〜200ppmの冷凍機油を含有する冷媒が供給され続ける。なお、この冷凍装置1の運転が停止された場合には、この冷凍装置1を保護するために開閉弁13が閉弁され、圧縮機2の吸込口への冷媒の供給が停止されるものである。
【0024】
本実施の形態1に係る冷凍装置1によれば、上記のとおり、蒸発器7から圧縮機2の吸込口2bに、冷凍機油を含んだ冷媒液を単位時間当たり一定量ずつ戻すことができる。そして、蒸発器7内における冷媒中の冷凍機油の含有率が2%以上になるのを防止することができる。従って、本実施の形態1に係る冷凍装置1によれば、下記のとおりの効果を得ることができる。
(1)蒸発器7内における冷媒中の冷凍機油の含有率が2%以下に維持され続け、冷却性能の低下を来す4%以上になるようなことがないから、所期の冷却性能を発揮し続けることができる。
(2)従来例のように熱交換器やヒータを設ける必要がなく液戻しラインの構成がシンプルであるから、信頼性が向上するのに加えて、冷凍装置のランニングコストに関しても有利である。
【0025】
次に、本発明の実施の形態2に係る冷凍装置を、上記実施の形態1に係る冷凍装置の場合と同様に、圧縮機が油冷式スクリュ圧縮機である場合を例として、その模式的系統図の図2を参照しながら説明する。ところで、構成に関して、本実施の形態2が上記実施の形態1と相違するところは、低圧受液器が設けられている点と、液戻しラインの基端部の接続位置が相違する点にある。従って、上記実施の形態1と同一のもの、並びに同一機能を有するものに同一符号を付して、その相違する点について説明する。
【0026】
本実施の形態2に係る冷凍装置1もまた、冷媒としてCOを用いると共に、冷凍機油としてCOに対して相溶性があるポリオルエステルを用いるものを示す。この冷凍装置1では、流体循環流路8の膨張手段である膨張弁6と蒸発器7との間に低圧受液器14が介装されている。また、前記流体循環流路8の低圧受液器14と蒸発器7との間に液ポンプ15が介装されると共に、この流体循環流路8の前記蒸発器7と圧縮機2の吸込口2bとの間は、前記低圧受液器14の気体空間14bを介している。なお、この低圧受液器14の気体空間14bは、図示しない流路を介して流体循環流路8に連通させるように構成しても良い。
【0027】
そして、前記流体循環流路8の前記液ポンプ15と蒸発器7との間は、液戻しライン10を介して前記流体循環流路8の前記蒸発器7と圧縮機2の吸込口2bとの間に連通している。前記液戻しライン10には、上記実施の形態1の場合と同様に、流量調節弁11、流量計12、および開閉弁13が介装されている。
【0028】
この実施の形態2に係る冷凍装置1の作用態様を説明する。即ち、前記低圧受液器14の液溜まり部14aに、冷凍機油を含む過冷却された冷媒が溜まる。この場合、冷媒はCOであり、そして冷凍機油はCOに対して相溶性があるポリオルエステルであるから、このポリオルエステルはCOに均一に溶解している。このような冷媒が液ポンプ15の駆動により蒸発器7に供給される一方、液戻しライン10を介して所定量ずつ圧縮機2に戻され続け、運転中を通じてポリオルエステルが所定量ずつ回収され続ける。
【0029】
そのため、蒸発器7に、ポリオルエステルが低濃度のCOが供給されるのに加えて、非相溶性の冷凍機油のようにCOと分離して蒸発器に溜まるようなことがない。従って、ポリオルエステルによって蒸発器7の熱交換性能が低下するようなことがないから、本実施の形態2は、冷却性能の安定維持等に関して上記実施の形態1と同等の効果がある。
さらに、自然界に存在するCOを冷媒として用いるのであるから、環境問題、特に脱フロンという社会的な要請に応えることができるという優れた効果を期待することができる。
【0030】
なお、本実施の形態1および2では、ポリオルエステルと相溶性があるCOを冷媒として用いる場合の例を説明したが、NHを冷媒として用い、それに対して相溶性がある油、例えばポリアルキレングリコールを冷凍機油として用いても良い。
【0031】
【発明の効果】
以上詳述したように、本発明の請求項1乃至に係る冷凍装置によれば、蒸発器内において冷媒中の冷凍機油の含有率が高くなるようなことがなく、また冷凍機油の分離のために、従来例のように熱交換器やヒータを用いる必要がない。従って、所期の冷却性能を発揮し続けることができ、また液戻しラインの構成がシンプルであるから、信頼性が向上するのに加えて、冷凍装置のランニングコストに関して有利になる。
【0032】
さらに、本発明の請求項2または3に係る冷凍装置によれば、上記効果に加えて、さらに自然界に存在するCOやオゾン層を破壊せず、温暖化に対する寄与も小さいNHを冷媒として用いるので、環境問題、特に脱フロンという社会的な要請に応えることができるという優れた効果を期待することができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1に係り、図1(a)は冷凍装置の模式的系統図、図1(b)は蒸発器への液戻しラインの取付位置説明図である。
【図2】 本発明の実施の形態2に係る冷凍装置の模式的系統図である。
【図3】 従来例1に係る冷凍装置の模式的系統図である。
【図4】 従来例2に係る冷凍装置の模式的系統図である。
【符号の説明】
1…冷凍装置、2…圧縮機(油冷式スクリュ圧縮機)、2a…吐出口、2b…吸込口、3…油分離器、3a…油溜まり部、4…凝縮器、5…受液器、6…膨張弁、7…蒸発器、7a…排出ポート、8…流体循環流路
10…液戻しライン、11…流量調節弁、12…流量計、13…開閉弁、14…低圧受液器、14a…液溜まり部、14b…気体空間、15…液ポンプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement of a refrigeration apparatus. More specifically, the present invention relates to a refrigeration apparatus that prevents a large amount of refrigeration oil from accumulating in an evaporator and enables stable refrigeration performance. It belongs to the technical field.
[0002]
[Prior art]
As a compressor, in the refrigerating device including a oil-cooled subscription Interview compressors, refrigerant containing refrigerating machine oil from the oil-cooled type screw compressor is discharged. If the refrigerant contains refrigeration oil, the cooling performance will be adversely affected, so an oil separator is interposed between the oil-cooled screw compressor and the condenser, and this oil separator removes the refrigeration oil. The refrigerant is sent to the condenser.
[0003]
However, the refrigeration oil in the refrigerant cannot be completely separated only by the oil separator. For this reason, the amount of refrigerating machine oil staying in the evaporator gradually increases and the heat exchange efficiency of the evaporator decreases, so that there is a problem that the intended refrigeration performance cannot be exhibited. In order to solve such a problem, a refrigeration apparatus equipped with an oil return mechanism that removes a small amount of oil from a refrigerant that has passed through an oil separator is, for example, a refrigeration air conditioning manual (Japan Refrigeration Association) Basic Edition 5th edition (1993). Year). The outline of the two proposed examples will be described below.
[0004]
As shown in FIG. 3 of the schematic system diagram of the refrigeration apparatus according to Conventional Example 1, a part of the refrigerant liquid in the low-pressure receiver is continuously extracted, and the high-pressure liquid flowing into the low-pressure receiver Heat is exchanged in a heat exchanger to increase the degree of supercooling of the high-pressure liquid and evaporate the extracted refrigerant liquid. And it is comprised so that the isolate | separated refrigeration oil may be returned to a compressor via a suction line by suction gas speed. In this refrigeration apparatus, chlorofluorocarbon that dissolves lubricating oil well is used as a refrigerant. For example, divided into two types of liquid solubility of the oil that Do different at low temperatures in R22, because the liquid tends gather in the upper layer which is dissolved a number refrigerating machine oil by the difference in specific gravity, as shown in the figure, the low pressure receiver The refrigerant liquid is extracted from near the liquid level of the liquid in the vessel.
[0005]
Refrigerant refrigeration system according to the conventional example 2, as shown in FIG. 4 of the schematic system diagram, darken the sump tank refrigerant containing oil collected in the low pressure receiver, including oil in the oil reservoir tank Overheat with a heater. The refrigerant is evaporated and sucked into the compressor, while only the oil is returned to the compressor by the oil pump. In addition, in this oil sump tank, in order to expel the refrigerant | coolant in oil completely, it heats so that it may become a temperature of about 40 degreeC. Therefore, part of the liquid refrigerant in the low-pressure receiver is evaporated in order to remove the superheated refrigerant vapor returning from the oil reservoir tank.
[0006]
[Problems to be solved by the invention]
Any of the refrigeration apparatuses according to the conventional examples 1 and 2 is considered to be useful as such. However, since the refrigerating machine oil cannot be completely removed from the liquid in the low-pressure receiver, the refrigerant containing a small amount of the refrigerating machine oil flows into the evaporator. Even though the refrigerant evaporates due to the difference in boiling point between the refrigerating machine oil and the refrigerant, the refrigerating machine oil does not evaporate. There is a possibility that will not be able to demonstrate.
[0007]
Further, in the refrigeration apparatus according to Conventional Example 1, the amount of refrigerant liquid extracted from the low-pressure receiver and the amount of high-pressure liquid from the receiver also change depending on various factors such as the load state. The amount of heat exchanged may also change. Therefore, in order to perform desired heat exchange, delicate adjustments according to the operating conditions of the refrigeration apparatus are required. If the desired heat exchange cannot be achieved and the refrigerant exiting the heat exchanger cannot be completely vaporized, the refrigerant is supplied to the compressor in a so-called liquid back state, which may cause a mechanical failure in the compressor. Absent.
[0008]
In the refrigeration apparatus according to Conventional Example 2, since power must be supplied to the heater, there is an economic problem that the running cost of the refrigeration apparatus is disadvantageous. Further, when this heater is an electric heater, there is a risk of overheating that is more than necessary, which would cause problems with the electric heater itself. Further, when this heater is a steam heater, there is a risk of corrosion due to steam water associated with long-term use. That is, a highly reliable refrigeration apparatus that can avoid various problems is desired.
[0009]
Therefore, the object of the present invention is to prevent the refrigerating machine oil that has an adverse effect on the cooling performance from staying in the evaporator and to exert the initial refrigerating performance, and at a low running cost and high in reliability. It is to provide a refrigeration apparatus.
[0010]
[Means for Solving the Problems]
The present invention has been made in view of the above circumstances. Therefore, in order to solve the above problems, the means adopted by the refrigeration apparatus according to claim 1 of the present invention is from the discharge port of the compressor to the suction port. In a refrigeration system comprising a fluid circulation flow path composing a refrigeration cycle, and an oil separator, a condenser, a liquid receiver, an expansion means, and an evaporator interposed in this fluid circulation flow path in this order. a body of the evaporator, and a lower position than the liquid level of the liquid in the evaporator is provided with a discharge port for discharging the internal liquid of the evaporator, the discharge port, opening closed, the flow rate And a fluid return line in which a flow rate adjusting valve for adjusting the flow rate of the liquid detected by the flow meter to be constant is communicated with the suction port of the compressor. To do.
[0011]
The means adopted by the refrigeration apparatus according to claim 2 of the present invention includes a fluid circulation passage that communicates from the discharge port of the compressor to the suction port and forms a refrigeration cycle, and an oil separator is provided in the fluid circulation passage. , A condenser, a liquid receiver, an expansion means, and an evaporator are disposed in this order, and one of CO 2 and NH 3 is used as a refrigerant, and an oil having compatibility with the refrigerant is used as a refrigerator oil. A low-pressure receiver is interposed between the expansion means of the fluid circulation channel and the evaporator, and the reservoir of the low-pressure receiver of the fluid circulation channel and the evaporator And the suction of the compressor through a liquid return line in which an on-off valve, a flow meter, and a flow rate adjusting valve for adjusting the flow rate of the liquid detected by the flow meter to be constant are interposed. It is characterized by having communicated with the mouth .
[0012]
Means for refrigeration system is adopted according to claim 3 of the present invention is the refrigeration apparatus of the mounting serial to claim 2, between the evaporator and the inlet of the fluid circulation passage, said low pressure receiver It is characterized by being formed through the gas space .
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the refrigeration apparatus according to Embodiment 1 of the present invention will be described with reference to an example in which the compressor is an oil-cooled screw compressor, CO 2 is used as a refrigerant, and polyol ester is used as refrigeration oil. Will be described with reference to FIG. FIG. 1 (a) is a schematic system diagram of the refrigeration apparatus, and FIG. 1 (b) is an explanatory view of the attachment position of the liquid return line to the evaporator.
[0014]
Reference numeral 1 shown in FIG. 1A is a refrigeration apparatus according to the first embodiment. The refrigeration apparatus 1 includes a fluid circulation channel 8 that forms a refrigeration cycle and communicates from a discharge port 2a of an oil-cooled screw compressor (hereinafter referred to as a compressor) 2 to a suction port 2b. The fluid circulation channel 8 includes an oil separator 3, a condenser 4, a liquid receiver 5, an expansion valve 6 as an expansion means, and an evaporator 7 in that order from the discharge port 2a to the suction port 2b. It is disguised. The oil separator 3 separates and collects refrigerating machine oil from a mixed fluid composed of the refrigerant discharged from the compressor 2 and splashed refrigerating machine oil, and causes the refrigerant after removing the refrigerating machine oil to flow into the condenser 4. It works.
[0015]
By the way, the refrigerating machine oil separated by the oil separator 3 is temporarily stored in an oil reservoir 3a formed in the oil separator 3 and below. The refrigerating machine oil stored in the oil reservoir 3a is supplied to a compression space (not shown) of the compressor 2, a bearing portion that supports the shafts of a pair of male and female screw rotors, and a shaft seal via an oil supply path (not shown). It is comprised so that it may be supplied to a part.
[0016]
The gaseous refrigerant that has flowed out of the oil separator 3 flows into the condenser 4 and is cooled and condensed by heat exchange with the cooling liquid to become a liquid refrigerant. The liquid refrigerant flowing out of the condenser 4 is stored in the liquid receiver 5, and the liquid refrigerant flowing out of the liquid receiver 5 is expanded by the expansion valve 6, is supercooled, and flows into the evaporator 7. The supercooled refrigerant that has flowed into the evaporator 7 is evaporated by exchanging heat with a fluid to be cooled that cools a cooling load (not shown) such as a freezer, and flows out from the evaporator 7 as a gaseous refrigerant. . The gaseous refrigerant that has flowed out of the evaporator 7 is circulated through the fluid circulation flow path 8 so as to exhibit a refrigeration function such that the refrigerant is sucked into the compression space in the compressor 2 through the suction port 2a and compressed. Is configured to do.
[0017]
Further, a discharge port 7 a for discharging the liquid in the evaporator 7, that is, a liquid refrigerant, is provided in the body portion of the evaporator 7. As shown in FIG. 1B, the position where the discharge port 7a is provided is a lower position than the liquid level of the refrigerant in the evaporator 7, and the liquid state in the evaporator 7 due to the liquid head difference of the refrigerant. The refrigerant is discharged from the discharge port 7a.
[0018]
A refrigerant having a high content of refrigerating machine oil can be discharged from the discharge port 7a of the evaporator 7. The reason why the refrigerant in the evaporator 7 contains a large amount of refrigerating machine oil is as follows. That is, as described above, wherein at the refrigerant from the oil recovery unit 3 to the evaporator 7 flows, the refrigeration oil of trace during refrigerant flowing from the oil separator 3, specifically, the usual 100~200ppm Contains a small amount of refrigerating machine oil. This is because the refrigerating machine oil and the refrigerant gas are separated from each other in an incompatible manner, so that the amount of refrigerating machine oil gradually increases in the evaporator 7.
[0019]
It is known that when the content of the refrigerating machine oil in the refrigerant exceeds 4%, the cooling performance of the evaporator 7 decreases. Therefore, in the case of the refrigerating apparatus 1 according to Embodiment 1, the refrigerating machine oil is included while replenishing the refrigerant containing 100 to 200 ppm of refrigerating machine oil so that the content of the refrigerating machine oil is 2% or less. The refrigerant liquid is discharged. By the way, the content of the refrigerating machine oil in the refrigerant flowing out from the oil separator 3 is known as described above. Therefore, the content rate of the refrigerating machine oil in the refrigerant in the evaporator 7 can be derived from the operating time of the refrigerating apparatus, the capacity of the refrigerant in the evaporator 7 and the liquid drainage amount.
[0020]
Further, a liquid return line 10 is interposed between the discharge port 7 a and the evaporator 7 of the fluid circulation channel 8 and the suction port 2 b of the compressor 2. In the liquid return line 10, a flow rate adjusting valve 11, a flow meter 12, and an opening / closing valve 13 are interposed in order from the discharge port 7 a side toward the communicating portion side with the fluid circulation channel 8. The opening degree of the flow rate control valve 11 is controlled by a controller (not shown) so that the flow rate of the liquid detected by the flow meter 12 is constant. The on-off valve 13 is opened and closed by an electric signal.
[0021]
In the case of the refrigeration apparatus 1 according to the first embodiment, the liquid return line 10 is communicated with the fluid circulation channel 8, but may be directly communicated with the suction port 2 b of the compressor 2. . Further, it is more preferable to provide a configuration in which a viewing window (sight glass) for monitoring the flow of the liquid is provided in the liquid return line 10 and the flow state of the liquid flowing through the liquid return line 10 can be monitored from the viewing window.
[0022]
Hereinafter, the usage mode of the refrigeration apparatus 1 according to the first embodiment will be described. As the operation time of the refrigeration apparatus 1 elapses, due to the difference in boiling point between the refrigerating machine oil and the refrigerant, The content of refrigeration oil gradually increases. When the content of the refrigeration oil in the refrigerant in the evaporator 7 becomes 2% due to further continuation of the operation, the refrigerant discharge amount that the content of the refrigeration oil in the evaporator 7 does not exceed 2% is determined. The on-off valve 13 is opened. When the on-off valve 13 is opened, the flow rate of the refrigerant flowing out from the discharge port 7a is detected by the flow meter 12 due to the liquid head difference of the refrigerant in the evaporator 7 while the refrigeration apparatus 1 is in operation.
[0023]
Then, the opening degree of the flow control valve 11 is controlled so that the flow rate of the refrigerant detected by the flow meter 12 becomes the discharge amount, and the refrigerant containing a certain amount of refrigerating machine oil per hour is passed through the liquid return line 10. It continues to be returned to the suction port 2b of the compressor 2. During discharge of such a refrigerant, the refrigerant containing 100 to 200 ppm of refrigerating machine oil is continuously supplied from the liquid receiver 5 so that the liquid level of the refrigerant in the evaporator 7 is constant. When the operation of the refrigeration apparatus 1 is stopped, the on-off valve 13 is closed to protect the refrigeration apparatus 1, and the supply of refrigerant to the suction port of the compressor 2 is stopped. is there.
[0024]
According to the refrigeration apparatus 1 according to the first embodiment, as described above, the refrigerant liquid containing the refrigeration oil can be returned from the evaporator 7 to the suction port 2b of the compressor 2 by a certain amount per unit time. And it can prevent that the content rate of the refrigerating machine oil in the refrigerant | coolant in the evaporator 7 becomes 2% or more. Therefore, according to the refrigeration apparatus 1 according to Embodiment 1, the following effects can be obtained.
(1) Since the content of the refrigerating machine oil in the refrigerant in the evaporator 7 continues to be maintained at 2% or less and does not become 4% or more which causes a decrease in cooling performance, the expected cooling performance is reduced. Can continue to demonstrate.
(2) Since it is not necessary to provide a heat exchanger or a heater as in the conventional example and the configuration of the liquid return line is simple, the reliability is improved and the running cost of the refrigeration apparatus is advantageous.
[0025]
Next, the refrigeration apparatus according to Embodiment 2 of the present invention is schematically illustrated by taking the case where the compressor is an oil-cooled screw compressor as in the case of the refrigeration apparatus according to Embodiment 1 described above. This will be described with reference to FIG. 2 of the system diagram. By the way, regarding the configuration, the second embodiment is different from the first embodiment in that the low-pressure liquid receiver is provided and the connection position of the base end portion of the liquid return line is different. . Accordingly, the same components as those in the first embodiment and the components having the same functions are denoted by the same reference numerals, and different points will be described.
[0026]
The refrigeration apparatus 1 according to Embodiment 2 also uses CO 2 as the refrigerant and uses a polyol ester that is compatible with CO 2 as the refrigerating machine oil. In this refrigeration apparatus 1, a low-pressure liquid receiver 14 is interposed between an expansion valve 6 that is an expansion means of the fluid circulation channel 8 and the evaporator 7. A liquid pump 15 is interposed between the low-pressure receiver 14 and the evaporator 7 in the fluid circulation channel 8, and the evaporator 7 and the suction port of the compressor 2 in the fluid circulation channel 8. 2b is interposed through the gas space 14b of the low-pressure receiver 14. The gas space 14b of the low-pressure receiver 14 may be configured to communicate with the fluid circulation channel 8 via a channel (not shown).
[0027]
And between the liquid pump 15 and the evaporator 7 in the fluid circulation channel 8, the evaporator 7 in the fluid circulation channel 8 and the suction port 2 b of the compressor 2 are connected via a liquid return line 10. Communicating between. As in the case of the first embodiment, the liquid return line 10 is provided with a flow rate adjusting valve 11, a flow meter 12, and an on-off valve 13.
[0028]
An operation mode of the refrigeration apparatus 1 according to the second embodiment will be described. That is, the supercooled refrigerant containing the refrigerating machine oil accumulates in the liquid reservoir 14a of the low-pressure receiver 14. In this case, the refrigerant is CO 2, and the refrigerating machine oil from poliovirus ester which is compatible with respect to CO 2, the polio ester are uniformly dissolved in CO 2. While such a refrigerant is supplied to the evaporator 7 by driving the liquid pump 15, it continues to be returned to the compressor 2 by a predetermined amount via the liquid return line 10, and the polyol ester is continuously recovered by a predetermined amount throughout the operation. .
[0029]
Therefore, in addition to the low concentration of CO 2 being supplied to the evaporator 7 as a polyol ester, it does not separate from CO 2 and accumulate in the evaporator unlike incompatible refrigerating machine oil. Therefore, since the heat exchange performance of the evaporator 7 is not lowered by the polyol ester, the second embodiment has the same effect as the first embodiment with respect to the stable maintenance of the cooling performance.
Furthermore, since CO 2 existing in the natural world is used as a refrigerant, it is possible to expect an excellent effect of being able to respond to environmental problems, in particular, social demands for defluorocarbons.
[0030]
In the first and second embodiments, an example in which CO 2 compatible with a polyol ester is used as a refrigerant has been described. However, an oil that uses NH 3 as a refrigerant and is compatible with the refrigerant, for example, poly Alkylene glycol may be used as the refrigerating machine oil.
[0031]
【The invention's effect】
As described above in detail, according to the refrigeration apparatus according to claims 1 to 3 of the present invention, the content of the refrigerating machine oil in the refrigerant is not increased in the evaporator, and the refrigerating machine oil is separated. Therefore, it is not necessary to use a heat exchanger or a heater as in the conventional example. Therefore, the desired cooling performance can be continuously exhibited, and the configuration of the liquid return line is simple, so that the reliability is improved and the running cost of the refrigeration apparatus is advantageous.
[0032]
Furthermore, according to the refrigeration apparatus according to claim 2 or 3 of the present invention, in addition to the above-described effects, NH 3 that does not destroy the CO 2 and ozone layers existing in the natural world and has a small contribution to global warming is used as a refrigerant. Therefore, it is possible to expect an excellent effect of being able to respond to environmental problems, in particular, social demands for chlorofluorocarbon removal.
[Brief description of the drawings]
FIG. 1 relates to Embodiment 1 of the present invention, FIG. 1 (a) is a schematic system diagram of a refrigeration apparatus, and FIG. 1 (b) is an explanatory view of an attachment position of a liquid return line to an evaporator.
FIG. 2 is a schematic system diagram of a refrigeration apparatus according to Embodiment 2 of the present invention.
FIG. 3 is a schematic system diagram of a refrigeration apparatus according to Conventional Example 1.
FIG. 4 is a schematic system diagram of a refrigeration apparatus according to Conventional Example 2.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Refrigeration apparatus, 2 ... Compressor (oil-cooled screw compressor), 2a ... Discharge port, 2b ... Suction port, 3 ... Oil separator, 3a ... Oil reservoir part, 4 ... Condenser, 5 ... Liquid receiver , 6 ... expansion valve, 7 ... evaporator, 7a ... discharge port, 8 ... fluid circulation channel, 10 ... liquid return line, 11 ... flow control valve, 12 ... flow meter, 13 ... open / close valve, 14 ... low pressure receiver , 14a ... Liquid reservoir, 14b ... Gas space, 15 ... Liquid pump

Claims (3)

圧縮機の吐出口から吸込口に連通し、冷凍サイクルを構成する流体循環流路を備え、この流体循環流路に、油分離器、凝縮機、受液器、膨張手段、蒸発器がこの順に介装されてなる冷凍装置において、前記蒸発器の胴部であって、かつこの蒸発器内の液の液面より下位位置に、この蒸発器の内部の液を排出する排出ポートを設け、この排出ポートを、開閉弁、流量計、およびこの流量計により検出される液の流量が一定になるように調節する流量調節弁が介装されてなる液戻しラインを介して前記圧縮機の吸込口に連通させたことを特徴とする冷凍装置。A fluid circulation passage that communicates from the discharge port of the compressor to the suction port and constitutes a refrigeration cycle is provided. In this fluid circulation passage, an oil separator, a condenser, a liquid receiver, an expansion means, and an evaporator are arranged in this order. In the interposing refrigeration apparatus, a discharge port for discharging the liquid inside the evaporator is provided at a position lower than the liquid level of the liquid in the evaporator at the body portion of the evaporator. the discharge port, opening closed, flow meter, and suction of the compressor flow rate adjusting valve the flow rate of the liquid to be detected is controlled to be constant through the interposed has been made liquid return line by the flow meter A refrigeration apparatus characterized by communicating with a mouth. 圧縮機の吐出口から吸込口に連通し、冷凍サイクルを構成する流体循環流路を備え、この流体循環流路に、油分離器、凝縮機、受液器、膨張手段、蒸発器がこの順に介装され、冷媒としてCO またはNH の何れかを用いると共に、冷凍機油として前記冷媒に対して相溶性のある油を用いる冷凍装置であって、前記流体循環流路の前記膨張手段と前記蒸発器との間に低圧受液器を介装し、前記流体循環流路の前記低圧受液器の液溜まり部と前記蒸発器との間を、開閉弁、流量計、およびこの流量計により検出される液の流量が一定になるように調節する流量調節弁が介装されてなる液戻しラインを介して前記圧縮機の吸込口に連通させたことを特徴とする冷凍装置。 A fluid circulation passage that communicates from the discharge port of the compressor to the suction port and constitutes a refrigeration cycle is provided. In this fluid circulation passage, an oil separator, a condenser, a liquid receiver, an expansion means, and an evaporator are arranged in this order. A refrigerating apparatus that uses either CO 2 or NH 3 as a refrigerant and uses oil that is compatible with the refrigerant as a refrigerating machine oil, the expansion means of the fluid circulation channel and the A low-pressure receiver is interposed between the evaporator and an opening / closing valve, a flow meter, and the flow meter between the liquid reservoir of the low-pressure receiver of the fluid circulation channel and the evaporator. refrigerating apparatus flow rate of the liquid to be detected characterized in that communicates with the suction port of the compressor via the liquid return line modulate the flow control valve is being interposed so as to be constant. 前記流体循環流路の前記蒸発器と前記吸込口との間は、前記低圧受液器の気体空間を介してなることを特徴とする請求項2に記載の冷凍装置。Wherein between said evaporator and said inlet of the fluid circulation passage is serial mounting of the refrigeration apparatus to claim 2, characterized in that through the gas space of the low pressure receiver.
JP2002062051A 2002-03-07 2002-03-07 Refrigeration equipment Expired - Lifetime JP4028994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002062051A JP4028994B2 (en) 2002-03-07 2002-03-07 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002062051A JP4028994B2 (en) 2002-03-07 2002-03-07 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2003262411A JP2003262411A (en) 2003-09-19
JP4028994B2 true JP4028994B2 (en) 2008-01-09

Family

ID=29196017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002062051A Expired - Lifetime JP4028994B2 (en) 2002-03-07 2002-03-07 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP4028994B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5401857B2 (en) * 2008-07-28 2014-01-29 株式会社デンソー Vapor compression refrigeration cycle
EP3795925A4 (en) * 2018-05-18 2022-03-02 Daikin Industries, Ltd. Refrigeration cycle device

Also Published As

Publication number Publication date
JP2003262411A (en) 2003-09-19

Similar Documents

Publication Publication Date Title
KR101782485B1 (en) Lubrication and cooling system
WO2007123088A1 (en) Refrigerating apparatus
JP3984489B2 (en) Refrigeration equipment
JP5091015B2 (en) Compression refrigerator
JP4714099B2 (en) Bearing lubricator for compression refrigerator
JP6264688B2 (en) Refrigeration equipment
WO2007123087A1 (en) Refrigerating apparatus
CN102859195A (en) Freezing machine
WO2007123085A1 (en) Refrigeration device
JP2008082622A (en) Compression type refrigerating device
JP4317793B2 (en) Cooling system
JP5412193B2 (en) Turbo refrigerator
JP2008082623A (en) Compression type refrigerating device
JP2004116794A (en) Refrigeration cycle
KR102189168B1 (en) Compressor assembly and its control method and cooling/heating system
JP2015218911A (en) Refrigeration device
JP2009257684A (en) Compression refrigerating machine and method for recovering lubricating oil for the same
JP4028994B2 (en) Refrigeration equipment
JP2008014533A (en) Oil recovering device of compression type refrigerating machine
JP2008128570A (en) Refrigerating apparatus
CN103175346B (en) Oil injection type split-compressor and heat pump
JP3986487B2 (en) Refrigeration equipment
JP2008014598A (en) Bleeder for compression type refrigerating machine
JP2012017881A (en) Refrigerator
KR100378531B1 (en) coolant and oil separating/ collecting device of turbo chiller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4028994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

EXPY Cancellation because of completion of term