JPH06323687A - Refrigerator and operation thereof - Google Patents

Refrigerator and operation thereof

Info

Publication number
JPH06323687A
JPH06323687A JP13523493A JP13523493A JPH06323687A JP H06323687 A JPH06323687 A JP H06323687A JP 13523493 A JP13523493 A JP 13523493A JP 13523493 A JP13523493 A JP 13523493A JP H06323687 A JPH06323687 A JP H06323687A
Authority
JP
Japan
Prior art keywords
evaporator
low
condenser
absorber
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13523493A
Other languages
Japanese (ja)
Other versions
JP2687080B2 (en
Inventor
Yasuo Ogawa
康夫 小川
Shinji Nomichi
伸治 野路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP13523493A priority Critical patent/JP2687080B2/en
Publication of JPH06323687A publication Critical patent/JPH06323687A/en
Application granted granted Critical
Publication of JP2687080B2 publication Critical patent/JP2687080B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To provide a refrigerator which can be operated efficiently by utilizing a low temperature waste heat. CONSTITUTION:A refrigerator has a solution circulation path formed of at least absorbers 23 and 24, solution pumps 28 and 38 and a reproducer 6, a refrigerant gas circulation path formed of at least a condenser 12, an expanding device 45, and evaporators 46 and 57, a high pressure refrigerant gas passage 11 leading from the reproducer 6 to the condenser 12, and a low pressure refrigerant gas passage 37 leading from the evaporators 46 and 57 to the absorbers 23 and 24, and compressors 49 and 50 are provided in the low pressure refrigerant gas passage 37. The evaporator is formed of a low temperature evaporator 46 and a high temperature evaporator 57. These two evaporator 46 and 57 have means 52 and 53 respectively to switch the refrigerant circulation circuit and the low pressure refrigerant gas passage, and also a means to circulate refrigerant between the evaporators through the compressor 49. In addition, the abosorber has at least two or more abosorbers, one a high pressure side absorber 34 and the other a low pressure side absorber 23, and these two absorbers are connected to a compressing means of the compressors 49 and 50 correspondingly.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷凍機に係り、特に吸
収式と圧縮式とを結合したハイブリッド冷凍機に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerator, and more particularly to a hybrid refrigerator combining an absorption type and a compression type.

【0002】[0002]

【従来の技術】最近、電力不足と地球温暖化の観点よ
り、動力や電力を取り出した後の廃熱だけで駆動される
「廃熱駆動吸収冷凍機」の使用が提唱されている。しか
しながら、廃熱だけでは増大する冷熱需要をカバーでき
ないので、設備に余裕のある深夜電力と組み合わせた吸
収・圧縮式ハイブリッド型冷凍機の利用が現実的と思わ
れる。
2. Description of the Related Art Recently, from the viewpoint of power shortage and global warming, it has been proposed to use a "waste heat driven absorption refrigerator" which is driven only by waste heat after taking out power or power. However, since it is not possible to cover the increasing cold demand with waste heat alone, it seems practical to use an absorption / compression hybrid refrigerator combined with late-night power with ample equipment.

【0003】図4〜6はこのハイブリッド型冷凍機の概
念を説明するためのそれぞれの説明図である。いずれも
エネルギーを「量」と「質」の両面から理解し易いよう
に、エネルギー「量」を「水量」として、エネルギーの
「質」を「ヘッド」にたとえて、冷凍機を「水車」駆動
の「ポンプ」として、説明した概念説明図である。図4
は圧縮式冷凍機の場合である。
4 to 6 are explanatory diagrams for explaining the concept of the hybrid refrigerator. In both cases, the energy "quantity" is defined as "water quantity", the energy "quality" is compared to the "head", and the refrigerator is driven by the "turbine" so that energy can be easily understood from both "quantity" and "quality". FIG. 3 is a conceptual explanatory diagram described as a “pump” of FIG. Figure 4
Is the case of a compression refrigerator.

【0004】この場合駆動力は高位(111)と環境温
度に相当する水位(112)との水位差により駆動され
る水車(113)動力(冷凍機では通常、電動機による
電力)であり、この水車によりポンプ(114)が駆動
され、例えば−10℃の温度レベルから、環境温度まで
熱を汲み上げるようになっている。図から分かるよう
に、汲み上げる温度レベルが低いほど水車の動力(冷凍
機の場合は電力)が大きくなるが、水位の低いところか
らでも汲み上げ可能である。
In this case, the driving force is the power of the water turbine (113) driven by the water level difference between the high level (111) and the water level (112) corresponding to the ambient temperature (usually electric power in a refrigerator). Drives a pump (114) to pump heat from a temperature level of, for example, -10 ° C to ambient temperature. As can be seen from the figure, the lower the pumping temperature level, the greater the power of the turbine (electric power in the case of a refrigerator), but pumping is possible even from a low water level.

【0005】図5は廃熱駆動吸収冷凍機の場合である。
吸収冷凍機は溶液の吸収能力で、蒸発器内の冷媒蒸気を
吸入することにより「冷熱」を得る冷凍機である。即
ち、冷媒蒸気を吸入する能力は蒸発圧力と溶液の種類と
濃度により決まるので、冷媒蒸気を吸収して冷媒濃度が
濃くなると飽和してしまう。そのため、再生器により加
熱し、冷媒蒸気を蒸発させ、凝縮器で凝縮させ冷媒濃度
を薄くするわけであるが、この場合の加熱温度は、凝縮
圧力により影響を受けるので、かなり高くする必要があ
る。
FIG. 5 shows the case of a waste heat driven absorption refrigerator.
An absorption chiller is a chiller that obtains "cold heat" by sucking the refrigerant vapor in the evaporator with the absorption capacity of the solution. That is, since the ability of sucking the refrigerant vapor is determined by the evaporation pressure, the type and the concentration of the solution, when the refrigerant vapor is absorbed and the refrigerant concentration becomes high, it becomes saturated. Therefore, the regenerator heats the vapor of the refrigerant to evaporate it, and the condenser condenses it to dilute the refrigerant concentration, but the heating temperature in this case is affected by the condensing pressure, so it is necessary to raise it considerably. .

【0006】この概念を図5で説明する。前述のように
冷媒蒸気を吸収する能力は濃度差(115)により得ら
れるが、この濃度差は、環境温度(112)が与えられ
ると廃熱回収温度(113)と汲み上げ温度(114)
により決まり、例えば、図の場合、廃熱温度が80℃の
場合ある程度の濃度差が得られる汲み上げ温度は、5℃
程度である。即ち、廃熱温度が低いと、図4のように低
温を得ることができない。
This concept will be described with reference to FIG. As described above, the ability to absorb the refrigerant vapor is obtained by the concentration difference (115), and this concentration difference, when given the ambient temperature (112), is the waste heat recovery temperature (113) and the pumping temperature (114).
For example, in the case of the figure, when the waste heat temperature is 80 ° C, a certain difference in concentration can be obtained. The pumping temperature is 5 ° C.
It is a degree. That is, when the waste heat temperature is low, the low temperature cannot be obtained as shown in FIG.

【0007】そのため、図6のように吸収式と圧縮式の
ハイブリッド冷凍機が効果的となる。即ち、図のよう
に、小容量の水車(115)により駆動されるポンプ
(116)により、水位の低い部分(117)から汲み
上げ、その後、濃度差駆動(水車(118)駆動)のポ
ンプ(119)により、環境水位(120)に排出する
ようにするのである。この場合、図4の場合より水車
(115)の動力は少なくてよい。図において(11
5)、(116)が圧縮式冷凍機と、(118)、(1
19)が吸収式冷凍機と概念的に類似となる。
Therefore, the absorption type and compression type hybrid refrigerators as shown in FIG. 6 are effective. That is, as shown in the figure, a pump (116) driven by a small-capacity water turbine (115) pumps up from a low water level portion (117), and then a pump (119) for concentration difference drive (turbine (118) drive). ), The water is discharged to the environmental water level (120). In this case, the power of the water turbine (115) may be less than in the case of FIG. In the figure (11
5) and (116) are compression refrigerators, and (118) and (1
19) is conceptually similar to the absorption refrigerator.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上述の
圧縮・吸収式ハイブリッド冷凍機は下記のような3つの
大きな問題点がある。第1の問題点は、吸収式側の性能
が悪いことにある。即ち廃熱ではあるが、有限なエネル
ギーであるから、吸収冷凍サイクルの性能も重要であ
る。図6でも分かるように低温の廃熱は利用できていな
い。
However, the above-mentioned compression / absorption type hybrid refrigerator has the following three major problems. The first problem is that the performance on the absorption side is poor. That is, although it is waste heat, since it has a finite energy, the performance of the absorption refrigeration cycle is also important. As can be seen from FIG. 6, low-temperature waste heat cannot be used.

【0009】第2の問題点は、昼間の廃熱が利用し難い
ということである。即ち、夜間は深夜電力と廃熱でハイ
ブリッド冷凍機を運転できるが、昼間に運転すると、電
力危機対策とならないので、折角の廃熱を利用できない
という問題点がある。第3の問題点は、溶液中の吸収剤
の一部が再生器から、凝縮器側に混入してしまうことで
ある。本発明は、上述の点に鑑みてなされたもので、上
述の問題点を解決した冷凍機を提供することを課題とす
る。
The second problem is that it is difficult to use the waste heat in the daytime. That is, at night, the hybrid refrigerator can be operated with the midnight power and waste heat, but if it is operated in the daytime, there is a problem that the waste heat cannot be utilized because it does not serve as a power crisis countermeasure. The third problem is that part of the absorbent in the solution mixes into the condenser side from the regenerator. The present invention has been made in view of the above points, and an object thereof is to provide a refrigerator that solves the above problems.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、少なくとも吸収器、溶液ポンプ、再生
器から構成される溶液循環経路と、少なくとも凝縮器、
膨張装置、蒸発器から構成される冷媒循環経路と、再生
器から凝縮器に至る高圧冷媒ガス通路と、蒸発器から吸
収器に至る低圧冷媒ガス通路とを有し、前記低圧冷媒ガ
ス通路に圧縮機を有する冷凍機において、前記吸収器が
少なくとも高圧側吸収器と低圧側吸収器の二つ以上の吸
収器を有し、前記圧縮機が少なくとも高圧側圧縮段と低
圧側圧縮段の2段以上の圧縮段を有すると共に、前記低
圧側圧縮段と低圧側吸収器を結び、前記高圧側圧縮段と
高圧側吸収器を結ぶ冷媒ガス通路を設けたものである。
In order to solve the above problems, according to the present invention, a solution circulation path including at least an absorber, a solution pump, and a regenerator, and at least a condenser,
A refrigerant circulation path including an expansion device and an evaporator, a high-pressure refrigerant gas passage extending from the regenerator to the condenser, and a low-pressure refrigerant gas passage extending from the evaporator to the absorber, and the low-pressure refrigerant gas passage is compressed. In a refrigerator having a compressor, the absorber has two or more absorbers of at least a high pressure side absorber and a low pressure side absorber, and the compressor has at least two stages of a high pressure side compression stage and a low pressure side compression stage. And a refrigerant gas passage connecting the low pressure side compression stage and the low pressure side absorber and connecting the high pressure side compression stage and the high pressure side absorber.

【0011】また、本発明では、少なくとも吸収器、溶
液ポンプ、再生器から構成される溶液循環経路と、少な
くとも凝縮器、膨張装置、蒸発器から構成される冷媒循
環経路と、再生器から凝縮器に至る高圧冷媒ガス通路
と、蒸発器から吸収器に至る低圧冷媒ガス通路とを有
し、前記低圧冷媒ガス通路に圧縮機を有する冷凍機にお
いて、前記蒸発器が、低温蒸発器と高温蒸発器とにより
構成され、該低温蒸発器及び高温蒸発器は冷媒循環経路
及び低圧冷媒ガス通路をそれぞれ切換えられる手段と、
両蒸発器間を圧縮機を通して循環する手段とを有するこ
ととしたものである。
Further, according to the present invention, a solution circulation path including at least an absorber, a solution pump and a regenerator, a refrigerant circulation path including at least a condenser, an expansion device and an evaporator, and a regenerator to a condenser. In a refrigerator having a high-pressure refrigerant gas passage extending from the evaporator to a low-pressure refrigerant gas passage extending from the absorber to the absorber, wherein the evaporator has a low-temperature evaporator and a high-temperature evaporator. And a means for switching the low-temperature refrigerant and the high-temperature evaporator between the refrigerant circulation path and the low-pressure refrigerant gas passage, respectively,
And means for circulating between both evaporators through a compressor.

【0012】更に、本発明では、少なくとも吸収器、溶
液ポンプ、再生器から構成される溶液循環経路と、少な
くとも凝縮器、膨張装置、蒸発器から構成される冷媒循
環経路と、再生器から凝縮器に至る高圧冷媒ガス通路
と、蒸発器から吸収器に至る低圧冷媒ガス通路とを有
し、前記低圧冷媒ガス通路に圧縮機を有する冷凍機にお
いて、前記凝縮器が高温側凝縮器と低温側凝縮器により
構成され、該低温側凝縮器は高温側凝縮器を冷却する流
体よりも低温の流体で冷却されるように切換えられる手
段を有し、且つ、凝縮器と補助凝縮器に冷媒流れを切換
える手段を有することとしたものである。前記冷凍機に
おいて、圧縮機は潤滑油経路をもち、該潤滑系統を流れ
る潤滑油と前記溶液循環経路内の吸収剤が同一物質であ
るのがよい。
Further, according to the present invention, a solution circulation path including at least an absorber, a solution pump and a regenerator, a refrigerant circulation path including at least a condenser, an expansion device and an evaporator, and a regenerator to a condenser. In a refrigerator having a high-pressure refrigerant gas passage leading to a low-pressure refrigerant gas passage extending from an evaporator to an absorber and having a compressor in the low-pressure refrigerant gas passage. And a means for switching the low-temperature condenser to be cooled by a fluid having a temperature lower than that of the fluid for cooling the high-temperature condenser, and switching a refrigerant flow between the condenser and the auxiliary condenser. It has a means. In the refrigerator, the compressor preferably has a lubricating oil passage, and the lubricating oil flowing through the lubricating system and the absorbent in the solution circulation passage are preferably the same substance.

【0013】[0013]

【作用】本発明では、冷凍機を上記のように構成したこ
とにより、次の4つのモード即ち、昼間モード、ハイブ
リッドモード、圧縮式モード、省エネモードでの運転が
可能となった。昼間モードのときは、前記圧縮機の運転
が中止され、蒸発器として高温蒸発器が使用され、低温
蒸発器で冷却される低温流体より高温の冷水を冷却する
運転である。ハイブリッドモードのときは、前記圧縮機
及び溶液ポンプが運転され、蒸発器として低温蒸発器が
使用され、低温流体を冷却する運転である。
In the present invention, since the refrigerator is configured as described above, it is possible to operate in the following four modes: daytime mode, hybrid mode, compression mode, and energy saving mode. In the daytime mode, the operation of the compressor is stopped, the high temperature evaporator is used as the evaporator, and the cold water having a higher temperature than the low temperature fluid cooled by the low temperature evaporator is cooled. In the hybrid mode, the compressor and the solution pump are operated, the low temperature evaporator is used as the evaporator, and the operation is for cooling the low temperature fluid.

【0014】また、圧縮式モードのときは前記圧縮機が
運転され、蒸発器として低温蒸発器が使用され、低温流
体を冷却し、凝縮器の冷却水として、前記冷却した冷水
を使用する運転である。さらに省エネモードのときは、
前記圧縮機が停止され、蒸発器として低温蒸発器が使用
され、低温流体を冷却し、凝縮器、吸収器の冷却水とし
て、前記冷却した冷水を使用する運転である。
In the compression mode, the compressor is operated, the low temperature evaporator is used as the evaporator, the low temperature fluid is cooled, and the cooled cold water is used as the cooling water of the condenser. is there. In the energy saving mode,
In this operation, the compressor is stopped, a low temperature evaporator is used as an evaporator, a low temperature fluid is cooled, and the cooled cold water is used as cooling water for a condenser and an absorber.

【0015】[0015]

【実施例】以下、本発明を実施例により図面を用いて具
体的に説明するが、本発明はこれに限定されるものでは
ない。 実施例1 図1は、本発明の冷凍機を示すフロー構成図である。図
1において、1は圧縮・吸収式ハイブリッド冷凍機であ
る。即ち、この冷凍機は、通常、夜間に廃熱駆動吸収冷
凍機と深夜電力駆動圧縮式冷凍機とのハイブリッドシス
テムとなっている。2は廃熱回収装置であり、廃熱とし
ては例えは、ガスエンジン駆動冷凍機の廃熱や燃料電池
廃ガスなどの通常廃棄されているものが使用される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the accompanying drawings, but the present invention is not limited thereto. Example 1 FIG. 1 is a flow configuration diagram showing a refrigerator of the present invention. In FIG. 1, reference numeral 1 is a compression / absorption type hybrid refrigerator. That is, this refrigerator is usually a hybrid system of a waste heat driven absorption refrigerator and a night power driven compression refrigerator at night. Reference numeral 2 denotes a waste heat recovery device. As the waste heat, for example, waste heat of a gas engine driven refrigerator, fuel cell waste gas or the like which is normally discarded is used.

【0016】この廃熱回収装置には高温水がポンプ
(3)により供給され、ノズル(4)から供給される廃
ガスなどから熱回収する。廃ガスは、冷却され配管
(5)より外部に放出される。加熱された温水は再生器
(6)に流入し、溶液を加熱して、冷媒を蒸発させる。
再生器(6)内の溶液は低温部(7)から連絡通路
(8)を経由して高温部(9)と流れるようになってい
て、温水と対向流に流れ冷媒蒸気が発生する。蒸発した
冷媒蒸気は精留器(10)を経由して配管(11)から
凝縮器(12)に吐出される。
High-temperature water is supplied to the waste heat recovery device by a pump (3), and heat is recovered from waste gas supplied from a nozzle (4). The waste gas is cooled and discharged to the outside through the pipe (5). The heated hot water flows into the regenerator (6) to heat the solution and evaporate the refrigerant.
The solution in the regenerator (6) flows from the low temperature part (7) to the high temperature part (9) via the communication passage (8), and flows into hot water and a counter flow to generate refrigerant vapor. The evaporated refrigerant vapor is discharged from the pipe (11) to the condenser (12) via the rectifier (10).

【0017】再生器で冷却された温水は配管(13)を
経由して熱回収用熱交換器(14)で強溶液配管(1
5)から送られる強溶液(以下冷媒濃度の希溶液を弱溶
液と、冷媒濃度の濃い溶液を強溶液、中間濃度の溶液を
中間溶液と称す)を加熱する。加熱された強溶液は配管
(16)より再生器に供給される。一方冷却された温水
は配管(17)を経由し、ノズル(18)より廃熱回収
装置(2)に戻る。なお、廃熱が廃ガスの場合は廃ガス
中の水蒸気潜熱も回収することができるが、その場合は
配管(19)より凝縮水を排水する。
The hot water cooled by the regenerator is passed through the pipe (13) and is passed through the heat recovery heat exchanger (14) to the strong solution pipe (1).
5) A strong solution (hereinafter, a dilute solution having a refrigerant concentration is referred to as a weak solution, a solution having a high refrigerant concentration is referred to as a strong solution, and a solution having an intermediate concentration is referred to as an intermediate solution) sent from 5) is heated. The heated strong solution is supplied to the regenerator through the pipe (16). On the other hand, the cooled hot water returns to the waste heat recovery device (2) from the nozzle (18) via the pipe (17). When the waste heat is waste gas, the latent heat of steam in the waste gas can also be recovered, but in that case, the condensed water is drained from the pipe (19).

【0018】一方、弱溶液は、ノズル(20)から顕熱
回収装置(21)を経由して配管(22)から低圧側吸
収器(23)に流入し、配管(24)から流入する冷却
水によりチューブ(25)伝熱面で冷却し、配管(2
6)からの冷媒蒸気を吸引し、中間溶液となる。そし
て、ノズル(27)からポンプ(28)により、熱回収
装置(29)及び配管(33)を経由して高圧側吸収器
(34)に送られる。熱回収装置(29)では排管(3
0)から送られる温水が更に冷却され、配管(31)を
経由して配管(32)に合流する。
On the other hand, the weak solution flows from the nozzle (20) through the sensible heat recovery device (21) from the pipe (22) into the low pressure side absorber (23), and the cooling water flowing from the pipe (24). The tube (25) is cooled by the heat transfer surface by
The refrigerant vapor from 6) is sucked into an intermediate solution. Then, it is sent from the nozzle (27) to the high pressure side absorber (34) by the pump (28) via the heat recovery device (29) and the pipe (33). In the heat recovery device (29), the exhaust pipe (3
The hot water sent from 0) is further cooled and joins the pipe (32) via the pipe (31).

【0019】高圧側吸収器(34)で溶液は、配管(3
5)から送られる冷却水により冷却され、吸収能力が上
昇し、配管(37)から冷媒蒸気を吸収し強溶液とな
り、ポンプ(38)により配管(15)から熱回収装置
(14)に送られる。吸収器(34)で加熱された冷却
水は、配管(39)を経由し、前記凝縮器(12)で冷
媒を凝縮し、配管(40)を経由し放熱器(41)で冷
却され、ポンプ(42)により、配管(43)を経由し
て再び低圧側吸収器(23)、高圧側吸収器(34)に
送られる。一方、凝縮した冷媒は配管(44)、膨張装
置(45)を経由して、蒸発器(46)に送られる。蒸
発器で蒸発した冷媒蒸気は低圧側圧縮段(49)で圧縮
され、その一部が配管(26)を経由して、低圧側吸収
器(23)に送られる。また、その残りの冷媒ガスは高
圧側圧縮段(50)で再び圧縮され、高圧側吸収器(3
4)に吐出される。
In the high-pressure side absorber (34), the solution is piped (3
It is cooled by the cooling water sent from 5), the absorption capacity rises, the refrigerant vapor is absorbed from the pipe (37) and becomes a strong solution, and it is sent from the pipe (15) to the heat recovery device (14) by the pump (38). . The cooling water heated in the absorber (34) passes through the pipe (39), condenses the refrigerant in the condenser (12), is cooled through the pipe (40) in the radiator (41), and is pumped. By (42), it is sent again to the low pressure side absorber (23) and the high pressure side absorber (34) via the pipe (43). On the other hand, the condensed refrigerant is sent to the evaporator (46) via the pipe (44) and the expansion device (45). The refrigerant vapor evaporated in the evaporator is compressed in the low pressure side compression stage (49), and a part thereof is sent to the low pressure side absorber (23) via the pipe (26). Further, the remaining refrigerant gas is compressed again in the high pressure side compression stage (50), and the high pressure side absorber (3
4) is discharged.

【0020】本装置は昼間時は、圧縮機(49)、(5
0)は運転されない。即ちバルブ(52)、(52′)
が開けられ、バルブ(53)、(53′)、(54)が
閉じられる。従って凝縮した冷媒は(44)→(52)
→配管(55)→膨張弁(56)を通り、高温蒸発器
(57)で、冷水を冷却して蒸発し、バルブ(52′)
より、高圧側吸収器(34)に送られ廃熱だけで溶液中
の冷媒を蒸発させる。溶液ポンプとしては(38)だけ
が運転され、(28)は運転されない。高温蒸発器(5
7)には冷水が送られ、冷却され、冷却された冷水は冷
水槽(60)に蓄えられる。
In the daytime, this device is operated by compressors (49), (5)
0) is not driven. That is, the valves (52) and (52 ')
Is opened and valves (53), (53 ') and (54) are closed. Therefore, the condensed refrigerant is (44) → (52)
→ Pipe (55) → Expansion valve (56), high temperature evaporator (57) cools cold water to evaporate, and valve (52 ′)
As a result, the refrigerant in the solution is evaporated only by the waste heat sent to the high pressure side absorber (34). As the solution pump, only (38) is operated, and (28) is not operated. High temperature evaporator (5
Cold water is sent to 7), cooled, and the cooled cold water is stored in a cold water tank (60).

【0021】なお、廃熱がなく、冷水槽(60)に冷熱
が蓄えられているときは、この冷水を冷却水として、
「圧縮式モード」で運転される。即ち、バルブ(5
2′)、(53′)、(54)、(53)が閉じられ、
バルブ(61)が開けられる。従って、凝縮器として高
温側蒸発器(57)が用いられ、凝縮した冷媒液はチェ
ッキ弁(63)→膨張弁(64)→蒸発器(46)→圧
縮機(49)、(50)→バルブ(61)→高温側蒸発
器兼凝縮器(57)と流れ、低温側蒸発器(46)で、
ブラインや氷を冷却する。
When there is no waste heat and cold water is stored in the cold water tank (60), this cold water is used as cooling water.
It is operated in "compression mode". That is, the valve (5
2 '), (53'), (54), (53) are closed,
The valve (61) is opened. Therefore, the high temperature side evaporator (57) is used as the condenser, and the condensed refrigerant liquid is the check valve (63) → expansion valve (64) → evaporator (46) → compressor (49), (50) → valve. (61) → Flows from the high temperature side evaporator / condenser (57) to the low temperature side evaporator (46),
Cool the brine and ice.

【0022】また、省エネモードのときは、バイパスバ
ルブ(65)を開け、バルブ(67)、(61)、(5
2′)を閉め、水側バルブ(66)、(66′)、(6
6″)、(67)、(67′)、(67″)を切替え、
圧縮機の運転を停止し、冷水冷却による廃熱駆動冷凍機
として運転する。即ち、冷媒は(11)→(12)→
(44)→(53)→(45)→(46)→(65)→
(37)と流れ(46)でブラインや氷を冷却する。ま
た冷水は(60)→(66)→(35),(24)→
(36),(25)→(39)→(12)→(40)→
(67)→(60)と流れ吸収冷凍サイクルを冷却す
る。
In the energy saving mode, the bypass valve (65) is opened and the valves (67), (61), (5) are opened.
2 ') is closed and water side valves (66), (66'), (6
6 ″), (67), (67 ′), (67 ″),
The compressor is stopped and it is operated as a waste heat driven refrigerator by cooling with cold water. That is, the refrigerant is (11) → (12) →
(44) → (53) → (45) → (46) → (65) →
Cool brine and ice with (37) and stream (46). Cold water is (60) → (66) → (35), (24) →
(36), (25) → (39) → (12) → (40) →
(67) → (60) The flow absorption refrigeration cycle is cooled.

【0023】なお、圧縮機は通常2段の分流型圧縮機が
用いられるが、低段側圧縮機と高段側圧縮機の2台の圧
縮機を用いてもよい。なお、圧縮機の潤滑油は吸収剤と
同一のものが用いられる。冷媒がHFCの場合はエステ
ル類、エーテル類、PAGなどが用いられる。
Although a two-stage split-flow compressor is usually used as the compressor, two compressors, a low-stage compressor and a high-stage compressor, may be used. The lubricant used for the compressor is the same as the absorbent. When the refrigerant is HFC, esters, ethers, PAG and the like are used.

【0024】また、図2は、圧縮機出口配管(101)
からの冷媒ガスをバルブ(102)(103)により切
換え、高温側凝縮器(12′)又は低温側凝縮器(10
4)(105)に流せられるようにした場合である。な
お、図2では低温側凝縮器が(104)、(105)と
2つあり、低温側圧縮機を出た冷媒ガスも、バルブ(1
06)を介して補助凝縮器側に送られるようになってい
る。
FIG. 2 shows the compressor outlet pipe (101).
The refrigerant gas from is switched by the valves (102) and (103), and the high temperature side condenser (12 ') or the low temperature side condenser (10
4) It is a case where it can be made to flow to (105). In addition, in FIG. 2, there are two low temperature side condensers (104) and (105), and the refrigerant gas discharged from the low temperature side compressor also has a valve (1
06) to the auxiliary condenser side.

【0025】この低温凝縮器を利用する場合は、冷却水
としては冷水槽(107)の冷水を(108)→(10
9)→(110)→(104)→(105)→(10
7)と流せられるようになっている。この場合、冷水は
圧縮機を運転しない吸収サイクルで運転して蒸発器(4
6)で得られた冷水を用いるようになっている。
When this low temperature condenser is used, the cold water in the cold water tank (107) is (108) → (10) as the cooling water.
9) → (110) → (104) → (105) → (10
7) You can play it. In this case, the cold water is operated in the absorption cycle without operating the compressor, and
The cold water obtained in 6) is used.

【0026】[0026]

【発明の効果】本発明の圧縮・吸収式ハイブリッド冷凍
機は上述の構成となっているので、下記のような優れた
効果がある。 (1)本発明の冷凍機の効果を図3にて説明する。従来
のハイブリッド冷凍機汲み上げ温度tL0、廃熱回収温度
H0とすると、本発明の冷凍機では、tL0より高温の汲
み上げ温度tL2と低温の汲み上げ温度tL1の2つの汲み
上げ温度があり、それぞれ高温の廃熱回収温度tH2、低
温の廃熱回収温度に対応している。即ち、図−1で分か
るように低圧の場合は高温の廃熱を、高圧の場合は低温
の廃熱を用いるようになっている。従って、図3で分か
るように、従来tH0までしか利用されていなかった廃熱
をtH2まで利用することができる。
Since the compression / absorption hybrid refrigerator of the present invention has the above-mentioned structure, it has the following excellent effects. (1) The effect of the refrigerator of the present invention will be described with reference to FIG. Given the conventional hybrid refrigerator pumping temperature t L0 and waste heat recovery temperature t H0 , the refrigerator of the present invention has two pumping temperatures, a pumping temperature t L2 higher than t L0 and a pumping temperature t L1 lower than t L0 , They correspond to a high temperature waste heat recovery temperature t H2 and a low temperature waste heat recovery temperature, respectively. That is, as can be seen from FIG. 1, when the pressure is low, the high-temperature waste heat is used, and when the pressure is high, the low-temperature waste heat is used. Therefore, as can be seen from FIG. 3, the waste heat, which was conventionally used only up to t H0 , can be used up to t H2 .

【0027】(2)本発明の冷凍機は、昼間には廃熱だ
けで冷水を製造することができ、また、廃熱がないとき
は、低温の冷熱を少ない電力で得ることができる。 (3)本発明の冷凍機は駆動圧縮機を使用しなくても低
温の冷熱を得ることができる。 (4)また、潤滑油と吸収剤を同一物質とすることによ
り吸収剤が冷媒系統に混入しても弊害が少ない。
(2) In the refrigerator of the present invention, cold water can be produced only with waste heat during the daytime, and when there is no waste heat, low-temperature cold heat can be obtained with less electric power. (3) The refrigerator of the present invention can obtain low temperature cold heat without using a driving compressor. (4) Further, since the lubricating oil and the absorbent are made the same substance, even if the absorbent is mixed in the refrigerant system, there is little adverse effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の冷凍機を示すフロー構成図。FIG. 1 is a flow configuration diagram showing a refrigerator of the present invention.

【図2】本発明のもう一つの冷凍機を示すフロー構成
図。
FIG. 2 is a flow configuration diagram showing another refrigerator of the present invention.

【図3】本発明の冷凍機の効果を説明するための概略
図。
FIG. 3 is a schematic diagram for explaining the effect of the refrigerator of the present invention.

【図4】圧縮式冷凍機の概念説明図。FIG. 4 is a conceptual explanatory diagram of a compression refrigerator.

【図5】低温廃熱駆動吸収式冷凍機の概念説明図。FIG. 5 is a conceptual explanatory view of a low temperature waste heat driven absorption refrigerator.

【図6】圧縮・吸収式ハイブリッド冷凍機の概念説明
図。
FIG. 6 is a conceptual explanatory diagram of a compression / absorption type hybrid refrigerator.

【符号の説明】[Explanation of symbols]

1:圧縮・吸収式ハイブリッド冷凍機、2:廃熱回収装
置、3:ポンプ、4:廃ガスノズル、5:廃ガス排出
管、6:再生器、7:低温部、8:連絡通路、9:高温
部、10:精留器、11:冷媒ガス配管、12,1
2′:凝縮器、13,17,30,31:温水配管、1
4:熱交換器、15,16:強溶液配管、18:ノズ
ル、19:排水配管、20,22:弱溶液配管、21:
顕熱回収装置、22:低圧側吸収器、24,35,3
9,40,43:冷却水配管、25,36:冷却水チュ
ーブ、26,37,51:冷媒蒸気配管、27,33:
中間溶液配管、28:ポンプ、29:熱交換器、34:
高圧側吸収器、38:溶液ポンプ、41:放熱器、4
2:ポンプ、44,55:冷媒配管、45:膨張装置、
46:蒸発器、47:冷却流体、48:製氷・蓄氷シス
テム、49:低圧側圧縮段、50:高圧側圧縮段、5
2,52′,53,53′,54,61,65,66,
66′、66″,67,67′,67″:弁、57:高
温側蒸発器、58,59,60:冷水配管、63:チェ
ッキ弁、64:膨張弁、104,105:低温側凝縮
器、107:冷水槽
1: Compression / absorption type hybrid refrigerator, 2: Waste heat recovery device, 3: Pump, 4: Waste gas nozzle, 5: Waste gas discharge pipe, 6: Regenerator, 7: Low temperature part, 8: Communication passage, 9: High temperature part, 10: rectifier, 11: refrigerant gas pipe, 12, 1
2 ': condenser, 13, 17, 30, 31: hot water pipe, 1
4: Heat exchanger, 15, 16: Strong solution pipe, 18: Nozzle, 19: Drain pipe, 20, 22: Weak solution pipe, 21:
Sensible heat recovery device, 22: low pressure side absorber, 24, 35, 3
9, 40, 43: cooling water pipes, 25, 36: cooling water tubes, 26, 37, 51: refrigerant vapor pipes, 27, 33:
Intermediate solution pipe, 28: pump, 29: heat exchanger, 34:
High-pressure side absorber, 38: solution pump, 41: radiator, 4
2: Pump, 44, 55: Refrigerant piping, 45: Expansion device,
46: evaporator, 47: cooling fluid, 48: ice making / accumulating system, 49: low pressure side compression stage, 50: high pressure side compression stage, 5
2, 52 ', 53, 53', 54, 61, 65, 66,
66 ', 66 ", 67, 67', 67": valve, 57: high temperature side evaporator, 58, 59, 60: cold water piping, 63: check valve, 64: expansion valve, 104, 105: low temperature side condenser , 107: Cold water tank

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも吸収器、溶液ポンプ、再生器
から構成される溶液循環経路と、少なくとも凝縮器、膨
張装置、蒸発器から構成される冷媒循環経路と、再生器
から凝縮器に至る高圧冷媒ガス通路と、蒸発器から吸収
器に至る低圧冷媒ガス通路とを有し、前記低圧冷媒ガス
通路に圧縮機を有する冷凍機において、前記吸収器が少
なくとも高圧側吸収器と低圧側吸収器の二つ以上の吸収
器を有し、前記圧縮機が少なくとも高圧側圧縮段と低圧
側圧縮段の2段以上の圧縮段を有すると共に、前記低圧
側圧縮段と低圧側吸収器を結び、前記高圧側圧縮段と高
圧側吸収器を結ぶ冷媒ガス通路を設けたことを特徴とす
る冷凍機。
1. A solution circulation path including at least an absorber, a solution pump, and a regenerator, a refrigerant circulation path including at least a condenser, an expansion device, and an evaporator, and a high-pressure refrigerant from the regenerator to the condenser. In a refrigerator having a gas passage and a low-pressure refrigerant gas passage extending from an evaporator to an absorber and having a compressor in the low-pressure refrigerant gas passage, the absorber has at least a high-pressure side absorber and a low-pressure side absorber. One or more absorbers, the compressor has at least two or more compression stages of a high-pressure side compression stage and a low-pressure side compression stage, and connects the low-pressure side compression stage and the low-pressure side absorber to the high-pressure side. A refrigerating machine having a refrigerant gas passage connecting a compression stage and a high-pressure side absorber.
【請求項2】 少なくとも吸収器、溶液ポンプ、再生器
から構成される溶液循環経路と、少なくとも凝縮器、膨
張装置、蒸発器から構成される冷媒循環経路と、再生器
から凝縮器に至る高圧冷媒ガス通路と、蒸発器から吸収
器に至る低圧冷媒ガス通路とを有し、前記低圧冷媒ガス
通路に圧縮機を有する冷凍機において、前記蒸発器が、
低温蒸発器と高温蒸発器とにより構成され、該低温蒸発
器及び高温蒸発器は冷媒循環経路及び低圧冷媒ガス通路
をそれぞれ切換えられる手段と、両蒸発器間を圧縮機を
通して循環する手段とを有することを特徴とする冷凍
機。
2. A solution circulation path including at least an absorber, a solution pump, and a regenerator, a refrigerant circulation path including at least a condenser, an expansion device, and an evaporator, and a high-pressure refrigerant from the regenerator to the condenser. A refrigerator having a gas passage and a low-pressure refrigerant gas passage extending from the evaporator to the absorber, wherein the evaporator has a compressor in the low-pressure refrigerant gas passage,
It is composed of a low temperature evaporator and a high temperature evaporator, and the low temperature evaporator and the high temperature evaporator have means for switching between the refrigerant circulation path and the low pressure refrigerant gas passage, and means for circulating between both evaporators through a compressor. A refrigerator characterized in that.
【請求項3】 請求項2記載の冷凍機を昼間モード、ハ
イブリッドモード、圧縮式モード、省エネモードでそれ
ぞれ運転する運転方法において、前記昼間モードのとき
は、前記圧縮機の運転が中止され、蒸発器として高温蒸
発器が使用され、低温蒸発器で冷却される低温流体より
高温の冷水を冷却し、ハイブリッドモードのときは、前
記圧縮機及び溶液ポンプが運転され、蒸発器として低温
蒸発器が使用され、低温流体を冷却し、また、圧縮式モ
ードのときは、前記圧縮機が運転され、蒸発器として低
温蒸発器が使用され、低温流体を冷却し、凝縮器の冷却
水として、前記冷却した冷水を使用し、さらに省エネモ
ードのときは、前記圧縮機が停止され、蒸発器として低
温蒸発器が使用され、低温流体を冷却し、凝縮器、吸収
器の冷却水として、前記冷却した冷水を使用するように
したことを特徴とする冷凍機の運転方法。
3. The operation method for operating the refrigerator according to claim 2 in a daytime mode, a hybrid mode, a compression mode, and an energy saving mode, respectively. In the daytime mode, the operation of the compressor is stopped, and evaporation is performed. A high temperature evaporator is used as a condenser to cool cold water having a temperature higher than that of the low temperature fluid cooled in the low temperature evaporator.In the hybrid mode, the compressor and solution pump are operated and the low temperature evaporator is used as an evaporator. And cools the cryogenic fluid, and when in compression mode, the compressor is operated and a cryogenic evaporator is used as the evaporator to cool the cryogenic fluid and to cool it as the condenser cooling water. When cold water is used and further in the energy saving mode, the compressor is stopped, a low temperature evaporator is used as an evaporator, cools a low temperature fluid, and as cooling water for a condenser and an absorber, A method of operating a refrigerator, characterized in that the cooled cold water is used.
【請求項4】 少なくとも吸収器、溶液ポンプ、再生器
から構成される溶液循環経路と、少なくとも凝縮器、膨
張装置、蒸発器から構成される冷媒循環経路と、再生器
から凝縮器に至る高圧冷媒ガス通路と、蒸発器から吸収
器に至る低圧冷媒ガス通路とを有し、前記低圧冷媒ガス
通路に圧縮機を有する冷凍機において、前記凝縮器が高
温側凝縮器と低温側凝縮器により構成され、該低温側凝
縮器は高温側凝縮器を冷却する流体よりも低温の流体で
冷却されるように切換えられる手段を有し、且つ、凝縮
器と補助凝縮器に冷媒流れを切換える手段を有すること
を特徴とする冷凍機。
4. A solution circulation path including at least an absorber, a solution pump, and a regenerator, a refrigerant circulation path including at least a condenser, an expansion device, and an evaporator, and a high-pressure refrigerant from the regenerator to the condenser. In a refrigerator having a gas passage and a low-pressure refrigerant gas passage extending from an evaporator to an absorber, and having a compressor in the low-pressure refrigerant gas passage, the condenser includes a high-temperature side condenser and a low-temperature side condenser. , The low-temperature side condenser has means for switching to be cooled by a fluid having a temperature lower than that of a fluid for cooling the high-temperature side condenser, and means for switching a refrigerant flow to the condenser and the auxiliary condenser. A refrigerator characterized by.
【請求項5】 前記圧縮機が、潤滑油経路をもち、該潤
滑系統を流れる潤滑油と前記溶液循環経路内の吸収剤が
同一物質であることを特徴とする請求項1、2又は4記
載の冷凍機。
5. The compressor according to claim 1, wherein the compressor has a lubricating oil passage, and the lubricating oil flowing through the lubricating system and the absorbent in the solution circulation passage are the same substance. Refrigerator.
JP13523493A 1993-05-14 1993-05-14 Refrigerator and its operating method Expired - Lifetime JP2687080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13523493A JP2687080B2 (en) 1993-05-14 1993-05-14 Refrigerator and its operating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13523493A JP2687080B2 (en) 1993-05-14 1993-05-14 Refrigerator and its operating method

Publications (2)

Publication Number Publication Date
JPH06323687A true JPH06323687A (en) 1994-11-25
JP2687080B2 JP2687080B2 (en) 1997-12-08

Family

ID=15146951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13523493A Expired - Lifetime JP2687080B2 (en) 1993-05-14 1993-05-14 Refrigerator and its operating method

Country Status (1)

Country Link
JP (1) JP2687080B2 (en)

Also Published As

Publication number Publication date
JP2687080B2 (en) 1997-12-08

Similar Documents

Publication Publication Date Title
US6898947B2 (en) Utilization of harvest and/or melt water from an ice machine for a refrigerant subcool/precool system and method therefor
KR101638675B1 (en) Combined binary refrigeration cycle apparatus
CN108759138B (en) Operation method and system of secondary throttling middle incomplete cooling refrigerating system
JP2011133123A (en) Refrigerating cycle device
CN204202062U (en) With the water-cooled cooling water air conditioner unit of ice-reserving function
CN220135815U (en) Defrosting system for high-low temperature refrigeration house
JPH0926226A (en) Refrigeration apparatus
JP5240040B2 (en) Refrigeration equipment
JP3952284B2 (en) Air conditioner
JPH0953864A (en) Engine type cooling device
KR100520100B1 (en) refrigeration system
JP2004212019A (en) Refrigeration system
JP2687080B2 (en) Refrigerator and its operating method
JP6613404B2 (en) Refrigeration system
JP2003121025A (en) Heating-cooling combination appliance
KR200267157Y1 (en) refrigeration system
JP2772868B2 (en) Absorption refrigerator
JP3821286B2 (en) Refrigeration system combining absorption type and compression type and its operating method
CN104061732A (en) Refrigerator
JPS62218773A (en) Cold and heat accumulator
CN109869945B (en) Absorption type transcritical carbon dioxide double-stage compression refrigeration system
JPH09250837A (en) Refrigerator
CN213362912U (en) Air source heat pump system
CN219421405U (en) Combined evaporative cooling combined cooling device
KR100827569B1 (en) Absorption refrigerating apparatus with heat pump