JP2020133998A - Freezing device - Google Patents

Freezing device Download PDF

Info

Publication number
JP2020133998A
JP2020133998A JP2019027195A JP2019027195A JP2020133998A JP 2020133998 A JP2020133998 A JP 2020133998A JP 2019027195 A JP2019027195 A JP 2019027195A JP 2019027195 A JP2019027195 A JP 2019027195A JP 2020133998 A JP2020133998 A JP 2020133998A
Authority
JP
Japan
Prior art keywords
opening degree
refrigerant
expansion mechanism
controller
predetermined range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019027195A
Other languages
Japanese (ja)
Other versions
JP7284381B2 (en
Inventor
翼 西尾
Tsubasa Nishio
翼 西尾
信頼 小薗
Nobuyori Kozono
信頼 小薗
賢一郎 井上
Kenichiro Inoue
賢一郎 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2019027195A priority Critical patent/JP7284381B2/en
Publication of JP2020133998A publication Critical patent/JP2020133998A/en
Application granted granted Critical
Publication of JP7284381B2 publication Critical patent/JP7284381B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

To stabilize a refrigerant overheat degree even when a driving condition changes, in a freezing device that adjusts a refrigerant overheat degree at an outlet of a heat exchanger with feedback control.SOLUTION: A freezing device is provided with a controller (90) for regulating an opening degree of an expansion mechanism (22a, 22b) (36) which is obtained by feedback control in an actual refrigeration cycle during operation within a predetermined range including a necessary opening degree which is obtained by calculation in a theoretical refrigeration cycle which is defined in accordance with a driving condition.SELECTED DRAWING: Figure 1

Description

本開示は、冷凍装置に関するものである。 The present disclosure relates to a freezing device.

従来、蒸気圧縮式の冷凍サイクルを行う冷凍装置において、蒸発器となる熱交換器の出口側の実際の冷媒過熱度を求め、この冷媒過熱度が目標値になるように、蒸発器の流入側に設けられている膨張弁の開度を制御するものがある(例えば、特許文献1参照)。いわゆるフィードバック制御である。 Conventionally, in a refrigerating apparatus that performs a vapor compression refrigeration cycle, the actual refrigerant superheat degree on the outlet side of the heat exchanger serving as the evaporator is obtained, and the inflow side of the evaporator is set so that the refrigerant superheat degree becomes the target value. There is one that controls the opening degree of the expansion valve provided in (see, for example, Patent Document 1). This is so-called feedback control.

特開昭61−175457号公報Japanese Unexamined Patent Publication No. 61-175457

膨張弁を蒸発器の出口の冷媒過熱度に基づいてフィードバック制御する場合、膨張弁(膨張機構)の開度を必要以上に調節してしまうことがある。例えば、冷凍負荷が急激に変化したり、室外に設置される熱交換器に強風が吹き付けられるような急激な運転条件の変化が生じたりしたときに、礼装装置の制御器がこれらの変化に対応しようとする場合などである。 When the expansion valve is feedback-controlled based on the degree of refrigerant superheat at the outlet of the evaporator, the opening degree of the expansion valve (expansion mechanism) may be adjusted more than necessary. For example, when the freezing load changes suddenly or when there is a sudden change in operating conditions such as a strong wind blowing on the heat exchanger installed outdoors, the controller of the dressing device responds to these changes. For example, when trying.

膨張弁の開度を必要以上に調節すると、冷媒過熱度が目標過熱度を通り過ぎて変化して、今度は膨張弁の開度を逆方向に調節することになり、膨張弁開度が増減を繰り返すおそれがある。そうすると、冷媒過熱度も増減を繰り返し、いわゆるハンチングの不安定な動作が生じてしまう。 If the opening of the expansion valve is adjusted more than necessary, the degree of superheat of the refrigerant will change after passing the target degree of overheating, and this time the opening of the expansion valve will be adjusted in the opposite direction, and the opening of the expansion valve will increase or decrease. May be repeated. Then, the degree of superheat of the refrigerant repeatedly increases and decreases, and so-called unstable hunting operation occurs.

本開示の目的は、熱交換器の出口の冷媒過熱度をフィードバック制御で調節する冷凍装置において、運転条件が変化しても冷媒過熱度を安定させることである。 An object of the present disclosure is to stabilize the degree of refrigerant superheat even if the operating conditions change in the freezing device that adjusts the degree of refrigerant superheat at the outlet of the heat exchanger by feedback control.

本開示の第1の態様は、
圧縮機(31)と放熱器(15)(21a,21b)と膨張機構(22a,22b)(36)と蒸発器(21a,21b)(15)とが順に接続されて蒸気圧縮式の冷凍サイクルを行う冷媒回路(11,12)と、
上記冷媒回路(11,12)の冷凍サイクルの動作を制御する制御器(90)と、を備え、
上記制御器(90)が、上記蒸発器(21a,21b)(15)の出口側の冷媒過熱度が目標値となるように、上記膨張機構(22a,22b)(36)の開度をフィードバック制御で定めるように構成された冷凍装置を前提とする。
The first aspect of the present disclosure is
A steam compression refrigeration cycle in which a compressor (31), a radiator (15) (21a, 21b), an expansion mechanism (22a, 22b) (36) and an evaporator (21a, 21b) (15) are connected in order. Refrigerant circuit (11,12) and
It is equipped with a controller (90) that controls the operation of the refrigeration cycle of the refrigerant circuits (11, 12).
The controller (90) feeds back the opening degree of the expansion mechanism (22a, 22b) (36) so that the refrigerant superheat degree on the outlet side of the evaporators (21a, 21b) (15) becomes a target value. It is premised on a refrigeration system configured to be controlled.

この冷凍装置は、上記制御器(90)が、運転中の実際の冷凍サイクルにおいてフィードバック制御で定められる上記膨張機構(22a,22b)(36)の開度を、運転条件から定まる理論上の冷凍サイクル(以下、理論冷凍サイクルともいう)において計算で求められる必要開度を含む所定範囲内に制限する
ことを特徴とする。
In this freezing device, the controller (90) theoretically freezes the opening degree of the expansion mechanism (22a, 22b) (36) determined by feedback control in the actual freezing cycle during operation from the operating conditions. It is characterized in that the cycle (hereinafter, also referred to as a theoretical freezing cycle) is limited to a predetermined range including the required opening degree calculated by calculation.

上記の「計算で求められる必要開度」は、運転条件が変わる都度計算で求められる開度に限らない。例えば、上記必要開度は、運転条件ごとに予め計算で求められた値が記録されたデータを、上記制御器(90)が読み込む構成であってもよい。 The above "required opening degree calculated" is not limited to the opening degree calculated every time the operating conditions change. For example, the required opening degree may be configured such that the controller (90) reads data in which a value calculated in advance for each operating condition is recorded.

第1の態様では、膨張機構(22a,22b)(36)の開度は、基本的には、運転中の実際の冷凍サイクルにおいてフィードバック制御で定められる。言い換えると、制御器(90)は、蒸発器(21a,21b)(15)の出口の冷媒過熱度が目標値より大きい場合は膨張機構(22a,22b)(36)の開度を大きくして冷媒流量を増やし、蒸発器(21a,21b)(15)の出口の冷媒過熱度が目標値より小さい場合は膨張機構(22a,22b)(36)の開度を小さくして冷媒流量を減らす制御を行う。 In the first aspect, the opening degree of the expansion mechanism (22a, 22b) (36) is basically determined by feedback control in the actual refrigeration cycle during operation. In other words, the controller (90) increases the opening degree of the expansion mechanism (22a, 22b) (36) when the degree of refrigerant superheat at the outlet of the evaporators (21a, 21b) (15) is larger than the target value. Control to increase the refrigerant flow rate and reduce the refrigerant flow rate by reducing the opening degree of the expansion mechanism (22a, 22b) (36) when the refrigerant superheat degree at the outlet of the evaporator (21a, 21b) (15) is smaller than the target value. I do.

一方、制御器(90)は、フィードバック制御を行うと同時に、そのときの運転条件から定められる理論冷凍サイクルにおける膨張機構(22a,22b)(36)の必要開度を求める。制御器(90)は、実際の運転中にフィードバック制御で求めた膨張機構(22a,22b)(36)の開度が上記必要開度を含む所定範囲を超える場合は、実際の開度を、その所定範囲内に入るように制限する。このことにより、開度の調節範囲が制限されるので、運転条件が急激に変化しても、膨張機構(22a,22b)(36)の開度は必要以上に変化しない。よって、冷媒過熱度が増減を繰り返すハンチングの不安定な動作を抑制できる。 On the other hand, the controller (90) performs feedback control and at the same time obtains the required opening degree of the expansion mechanism (22a, 22b) (36) in the theoretical refrigeration cycle determined from the operating conditions at that time. When the opening degree of the expansion mechanism (22a, 22b) (36) obtained by feedback control during the actual operation exceeds the predetermined range including the required opening degree, the controller (90) sets the actual opening degree. It is restricted to be within the predetermined range. As a result, the adjustment range of the opening degree is limited, so that the opening degree of the expansion mechanism (22a, 22b) (36) does not change more than necessary even if the operating conditions change suddenly. Therefore, it is possible to suppress the unstable operation of hunting in which the degree of superheat of the refrigerant repeatedly increases and decreases.

本開示の第2の態様は、第1の態様において、
上記制御器(90)は、運転中の実際の冷凍サイクルにおいてフィードバック制御で定められる上記膨張機構(22a,22b)(36)の開度が、上記必要開度を含む所定範囲の上限を上回ると、その膨張機構(22a,22b)(36)の開度を、上記所定範囲の上限の開度に設定し、上記フィードバック制御で定められる上記膨張機構(22a,22b)(36)の開度が、上記必要開度を含む所定範囲の下限を下回ると、その膨張機構(22a,22b)(36)の開度を、上記所定範囲の下限の開度に設定する
ことを特徴とする。
A second aspect of the present disclosure is, in the first aspect,
When the opening degree of the expansion mechanism (22a, 22b) (36) determined by feedback control in the actual refrigeration cycle during operation of the controller (90) exceeds the upper limit of the predetermined range including the required opening degree. , The opening degree of the expansion mechanism (22a, 22b) (36) is set to the upper limit opening of the predetermined range, and the opening degree of the expansion mechanism (22a, 22b) (36) determined by the feedback control is set. When the temperature falls below the lower limit of the predetermined range including the required opening degree, the opening degree of the expansion mechanism (22a, 22b) (36) is set to the lower limit opening degree of the predetermined range.

第2の態様では、実際の運転中にフィードバック制御で求めた膨張機構(22a,22b)(36)の開度が上記必要開度を含む所定範囲を超えて大きくなる場合は、実際の開度がその所定範囲の上限に設定される。フィードバック制御で求めた膨張機構(22a,22b)(36)の開度が上記必要開度を含む所定範囲を下回る小さな値になる場合は、実際の開度がその所定範囲の下限に設定される。いずれの場合も、膨張機構(22a,22b)(36)の開度は必要以上に調節されず、しかもフィードバック制御で求められた値に近い開度に設定される。 In the second aspect, when the opening degree of the expansion mechanism (22a, 22b) (36) obtained by feedback control becomes larger than the predetermined range including the required opening degree during the actual operation, the actual opening degree is increased. Is set to the upper limit of the predetermined range. When the opening degree of the expansion mechanism (22a, 22b) (36) obtained by feedback control becomes a small value below the predetermined range including the required opening degree, the actual opening degree is set to the lower limit of the predetermined range. .. In either case, the opening degree of the expansion mechanism (22a, 22b) (36) is not adjusted more than necessary, and is set to an opening degree close to the value obtained by the feedback control.

本開示の第3の態様は、第1または第2の態様において、
上記制御器(90)は、
上記膨張機構(22a,22b)(36)への冷媒の流入側圧力と流出側圧力との圧力差をΔP、
上記圧縮機(31)の単位時間当たりの吸入冷媒量をG、
上記膨張機構(22a,22b)(36)を単位時間当たりに通過する冷媒の体積流量をQ、
及び係数をαとすると、
上記膨張機構(22a,22b)(36)の開度と冷媒流量との関係を表す流量特性を表す値Cvを、Cv=α×Q×(G/ΔP)1/2で表される式から求め、
上記流量特性値Cvが得られる膨張機構(22a,22b)(36)の開度を、上記必要開度に設定する
ことを特徴とする。
A third aspect of the present disclosure is the first or second aspect.
The above controller (90)
The pressure difference between the inflow side pressure and the outflow side pressure of the refrigerant to the expansion mechanism (22a, 22b) (36) is ΔP,
The amount of intake refrigerant per unit time of the compressor (31) is G,
Q, the volumetric flow rate of the refrigerant passing through the expansion mechanisms (22a, 22b) (36) per unit time.
And if the coefficient is α
The value Cv representing the flow rate characteristic representing the relationship between the opening degree of the expansion mechanism (22a, 22b) (36) and the refrigerant flow rate is derived from the formula expressed by Cv = α × Q × (G / ΔP) 1/2. Ask,
It is characterized in that the opening degree of the expansion mechanism (22a, 22b) (36) from which the flow rate characteristic value Cv is obtained is set to the required opening degree.

第3の態様では、理論冷凍サイクルにおける膨張機構(22a,22b)(36)の必要開度が、上記の圧力差、吸入冷媒量、冷媒の体積流量から求めた膨張機構(22a,22b)(36)の流量特性値Cvにより求められる。 In the third aspect, the required opening degree of the expansion mechanism (22a, 22b) (36) in the theoretical refrigeration cycle is the expansion mechanism (22a, 22b) (22a, 22b) obtained from the above pressure difference, the amount of intake refrigerant, and the volumetric flow rate of the refrigerant. It is obtained from the flow rate characteristic value Cv of 36).

図1は、実施形態のチラー装置の構成を示す冷媒回路図である。FIG. 1 is a refrigerant circuit diagram showing the configuration of the chiller device of the embodiment. 図2は、冷却運転中の冷媒の流れを示すチラー装置の冷媒回路図である。FIG. 2 is a refrigerant circuit diagram of a chiller device showing a flow of refrigerant during cooling operation. 図3は、加熱運転中の冷媒の流れを示すチラー装置の冷媒回路図である。FIG. 3 is a refrigerant circuit diagram of the chiller device showing the flow of the refrigerant during the heating operation. 図4は、熱源側膨張弁の開度−流量特性(開度(パルス数)とCv値との関係)を示すグラフである。FIG. 4 is a graph showing the opening degree-flow rate characteristic (relationship between the opening degree (number of pulses) and the Cv value) of the heat source side expansion valve.

本実施形態のチラー装置(1)は、冷凍サイクルを行う冷凍装置である。図1に示すように、このチラー装置(1)は、冷媒を循環させて蒸気圧縮式の冷凍サイクルを行う冷媒回路(11,12)を備え、冷媒によって熱媒水を冷却し又は加熱する。チラー装置(1)において冷却され又は加熱された熱媒水の冷熱又は温熱は、水熱交換器(15)を介して図外のファンコイルユニットへ伝達され、室内空間の冷房または暖房に利用される。本実施形態では、熱源機(2)であるチラー装置(1)に対し、水熱交換器(15)に室内器(3)であるファンコイルユニットが接続される。 The chiller device (1) of the present embodiment is a freezing device that performs a freezing cycle. As shown in FIG. 1, this chiller device (1) includes a refrigerant circuit (11, 12) that circulates a refrigerant to perform a vapor compression refrigeration cycle, and cools or heats the heat medium with the refrigerant. The cold or hot heat of the heat medium cooled or heated in the chiller apparatus (1) is transferred to a fan coil unit (not shown) via the water heat exchanger (15) and used for cooling or heating the indoor space. To be. In the present embodiment, the fan coil unit, which is an indoor unit (3), is connected to the water heat exchanger (15) to the chiller device (1), which is the heat source unit (2).

チラー装置(1)は、第1冷媒回路(11)と第2冷媒回路(12)とを備える。第1冷媒回路(11)と第2冷媒回路(12)は、一つの水熱交換器(15)を共用する。また、チラー装置(1)は、室外ファン(5)を、冷媒回路(11,12)毎に一つずつ備える。各室外ファン(5)は、対応する冷媒回路(11,12)の室外熱交換器(21a,21b)へ室外空気を送る。更に、チラー装置(1)は、制御器(90)を備える。 The chiller device (1) includes a first refrigerant circuit (11) and a second refrigerant circuit (12). The first refrigerant circuit (11) and the second refrigerant circuit (12) share one water heat exchanger (15). Further, the chiller device (1) is provided with one outdoor fan (5) for each refrigerant circuit (11, 12). Each outdoor fan (5) sends outdoor air to the outdoor heat exchangers (21a, 21b) of the corresponding refrigerant circuits (11,12). Further, the chiller device (1) includes a controller (90).

−冷媒回路−
第1冷媒回路(11)と第2冷媒回路(12)は、それぞれの構成が互いに同じである。図1は、第1冷媒回路(11)の具体構成を図示し、第2冷媒回路(12)の具体構成の図示を省略する。ここでは、第1冷媒回路(11)について説明する。冷媒回路(11,12)は、後述の室外熱交換器(21a,21b)と水熱交換器(15)の一方が放熱器となり、他方が蒸発器となって冷凍サイクルを行う。
-Refrigerant circuit-
The first refrigerant circuit (11) and the second refrigerant circuit (12) have the same configuration. FIG. 1 illustrates the specific configuration of the first refrigerant circuit (11), and the illustration of the specific configuration of the second refrigerant circuit (12) is omitted. Here, the first refrigerant circuit (11) will be described. In the refrigerant circuit (11,12), one of the outdoor heat exchangers (21a, 21b) and the water heat exchanger (15), which will be described later, serves as a radiator and the other serves as an evaporator to perform a refrigeration cycle.

第1冷媒回路(11)は、圧縮機(31)と、四方切換弁(32)と、ブリッジ回路(40)と、受液器(33)と、過冷却用熱交換器(35)と、利用側膨張弁(36)とを、一つずつ備える。第1冷媒回路(11)には、水熱交換器(15)が接続される。第1冷媒回路(11)は、一方向管路(53)と、過冷却管路(54)と、機器冷却管路(55)と、吸入接続管路(60)と、ガス抜き管路(61)とを、一つずつ備える。また、第1冷媒回路(11)は、二つの分岐管路(20a,20b)を備える。各分岐管路(20a,20b)には、室外熱交換器(21a,21b)と熱源側膨張弁(22a,22b)とが一つずつ設けられる。熱源側膨張弁(22a,22b)は本開示の膨張機構である。 The first refrigerant circuit (11) includes a compressor (31), a four-way switching valve (32), a bridge circuit (40), a receiver (33), a heat exchanger for supercooling (35), and the like. A user-side expansion valve (36) is provided one by one. A water heat exchanger (15) is connected to the first refrigerant circuit (11). The first refrigerant circuit (11) includes a one-way line (53), a supercooling line (54), an equipment cooling line (55), a suction connection line (60), and a degassing line ( 61) and one by one. Further, the first refrigerant circuit (11) includes two branch pipelines (20a, 20b). Each branch line (20a, 20b) is provided with one outdoor heat exchanger (21a, 21b) and one heat source side expansion valve (22a, 22b). The heat source side expansion valves (22a, 22b) are the expansion mechanisms of the present disclosure.

〈圧縮機〉
圧縮機(31)は、全密閉型のスクロール圧縮機である。圧縮機(31)の運転容量は可変である。圧縮機(31)の電動機には、図外のインバータから交流が供給される。インバータの出力周波数を変更すると、圧縮機(31)に設けられた電動機の回転速度が変化し、圧縮機(31)の運転容量が変化する。
<Compressor>
The compressor (31) is a fully enclosed scroll compressor. The operating capacity of the compressor (31) is variable. Alternating current is supplied to the electric motor of the compressor (31) from an inverter (not shown). When the output frequency of the inverter is changed, the rotation speed of the electric motor provided in the compressor (31) changes, and the operating capacity of the compressor (31) changes.

圧縮機(31)の吸入管は、吸入配管(51)に接続する。圧縮機(31)の吐出管は、吐出配管(52)に接続する。圧縮機(31)の中間インジェクション管は、過冷却管路(54)に接続する。吐出配管(52)には、逆止弁(CV13)が設けられる。この逆止弁(CV13)は、圧縮機(31)から流出する向きの冷媒の流通を許容し、逆向きの冷媒の流通を阻止する。 The suction pipe of the compressor (31) is connected to the suction pipe (51). The discharge pipe of the compressor (31) is connected to the discharge pipe (52). The intermediate injection pipe of the compressor (31) connects to the supercooled pipe (54). A check valve (CV13) is provided in the discharge pipe (52). This check valve (CV13) allows the flow of the refrigerant flowing out from the compressor (31) and blocks the flow of the refrigerant in the opposite direction.

〈四方切換弁〉
四方切換弁(32)は、四つのポートを有する切換弁である。四方切換弁(32)の第1のポートは、吐出配管(52)を介して圧縮機(31)に接続する。四方切換弁(32)の第2のポートは、吸入配管(51)を介して圧縮機(31)に接続する。四方切換弁の第3のポートは、各分岐管路(20a,20b)の一端に接続する。四方切換弁(32)の第4のポートは、水熱交換器(15)に接続する。
<Four-way switching valve>
The four-way switching valve (32) is a switching valve having four ports. The first port of the four-way switching valve (32) is connected to the compressor (31) via the discharge pipe (52). The second port of the four-way switching valve (32) connects to the compressor (31) via the suction pipe (51). The third port of the four-way switching valve is connected to one end of each branch line (20a, 20b). The fourth port of the four-way switching valve (32) connects to the water heat exchanger (15).

四方切換弁(32)は、図1に実線で示す第1状態と、図1に破線で示す第2状態とに切り換わる。第1状態の四方切換弁(32)では、第1のポートが第3のポートと連通し、第2のポートが第4のポートと連通する。第2状態の四方切換弁(32)では、第1のポートが第4のポートと連通し、第2のポートが第3のポートと連通する。 The four-way switching valve (32) switches between the first state shown by the solid line in FIG. 1 and the second state shown by the broken line in FIG. In the four-way switching valve (32) in the first state, the first port communicates with the third port, and the second port communicates with the fourth port. In the four-way switching valve (32) in the second state, the first port communicates with the fourth port, and the second port communicates with the third port.

〈分岐管路〉
二つの分岐管路(20a,20b)は、互いに並列に接続される。各分岐管路(20a,20b)のガス側端は、四方切換弁(32)の第3のポートに接続する。各分岐管路(20a,20b)の液側端は、ブリッジ回路(40)に接続する。
<Branch pipeline>
The two branch pipelines (20a, 20b) are connected in parallel with each other. The gas side end of each branch line (20a, 20b) is connected to the third port of the four-way switching valve (32). The liquid side end of each branch line (20a, 20b) is connected to the bridge circuit (40).

第1分岐管路(20a)には、第1室外熱交換器(21a)とそれに対応する第1熱源側膨張弁(22a)とが直列に配置される。第2分岐管路(20b)には、第2室外熱交換器(21b)とそれに対応する第2熱源側膨張弁(22b)とが直列に配置される。各分岐管路(20a,20b)では、分岐管路(20a,20b)のガス側端寄りに室外熱交換器(21a,21b)が配置され、分岐管路(20a,20b)の液側端寄りに熱源側膨張弁(22a,22b)が配置される。 In the first branch pipeline (20a), a first outdoor heat exchanger (21a) and a corresponding first heat source side expansion valve (22a) are arranged in series. In the second branch pipe (20b), a second outdoor heat exchanger (21b) and a corresponding second heat source side expansion valve (22b) are arranged in series. In each branch line (20a, 20b), an outdoor heat exchanger (21a, 21b) is arranged near the gas side end of the branch line (20a, 20b), and the liquid side end of the branch line (20a, 20b). Heat source side expansion valves (22a, 22b) are arranged closer to each other.

各室外熱交換器(21a,21b)は、冷媒を室外空気と熱交換させる熱源側熱交換器である。第1室外熱交換器(21a)の熱交換容量は、第2室外熱交換器(21b)の熱交換容量よりも大きい。各熱源側膨張弁(22a,22b)は、開度調整可能な電子膨張弁である。 Each outdoor heat exchanger (21a, 21b) is a heat source side heat exchanger that exchanges heat with the outdoor air for the refrigerant. The heat exchange capacity of the first outdoor heat exchanger (21a) is larger than the heat exchange capacity of the second outdoor heat exchanger (21b). Each heat source side expansion valve (22a, 22b) is an electronic expansion valve with an adjustable opening.

第1冷媒回路(11)に対応する室外ファン(5)は、第1冷媒回路(11)の第1室外熱交換器(21a)と第2室外熱交換器(21b)の両方へ室外空気を送る。 The outdoor fan (5) corresponding to the first refrigerant circuit (11) sends outdoor air to both the first outdoor heat exchanger (21a) and the second outdoor heat exchanger (21b) of the first refrigerant circuit (11). send.

〈ブリッジ回路〉
ブリッジ回路(40)は、四つの配管(41〜44)を備える。第1配管(41)には第1逆止弁(CV1)が、第2配管(42)には第2逆止弁(CV2)が、第3配管(43)には第3逆止弁(CV3)が、第4配管(44)には第4逆止弁(CV4)が、それぞれ設けられる。各逆止弁(CV1〜CV4)は、対応する配管(41〜44)の流入端から流出端に向かう方向の冷媒の流通を許容し、逆向きの冷媒の流通を阻止する。
<Bridge circuit>
The bridge circuit (40) comprises four pipes (41-44). The first check valve (CV1) is attached to the first pipe (41), the second check valve (CV2) is used for the second pipe (42), and the third check valve (CV2) is used for the third pipe (43). A CV3) is provided, and a fourth check valve (CV4) is provided in the fourth pipe (44). Each check valve (CV1 to CV4) allows the flow of refrigerant in the direction from the inflow end to the outflow end of the corresponding pipe (41 to 44) and blocks the flow of the refrigerant in the opposite direction.

第1配管(41)の流出端と第2配管(42)の流入端とは、分岐管路(20a,20b)の液側端に接続する。第2配管(42)の流出端と第3配管(43)の流出端とは、一方向管路(53)の一端に接続する。第3配管(43)の流入端と第4配管(44)の流出端とは、利用側膨張弁(36)の一端に接続する。第4配管(44)の流入端と第1配管(41)の流入端とは、一方向管路(53)の他端に接続する。 The outflow end of the first pipe (41) and the inflow end of the second pipe (42) are connected to the liquid side ends of the branch pipes (20a, 20b). The outflow end of the second pipe (42) and the outflow end of the third pipe (43) are connected to one end of the one-way pipe (53). The inflow end of the third pipe (43) and the outflow end of the fourth pipe (44) are connected to one end of the expansion valve (36) on the utilization side. The inflow end of the fourth pipe (44) and the inflow end of the first pipe (41) are connected to the other end of the one-way pipe (53).

〈利用側膨張弁〉
利用側膨張弁(36)は、開度可変の電子膨張弁である。利用側膨張弁(36)の他端は、水熱交換器(15)に接続する。
<Usage side expansion valve>
The user-side expansion valve (36) is an electronic expansion valve with a variable opening. The other end of the user-side expansion valve (36) is connected to the water heat exchanger (15).

〈水熱交換器〉
水熱交換器(15)は、利用側熱交換器である。水熱交換器(15)は、第1冷媒回路(11)及び第2冷媒回路(12)の冷媒を熱媒水と熱交換させる。
<Water heat exchanger>
The water heat exchanger (15) is a user-side heat exchanger. The water heat exchanger (15) exchanges heat between the refrigerants of the first refrigerant circuit (11) and the second refrigerant circuit (12) with the heat medium.

水熱交換器(15)には、水流路(16)と、第1冷媒流路(17)と、第2冷媒流路(18)とが形成される。水流路(16)には、熱媒水の循環回路が接続する。第1冷媒流路(17)には、第1冷媒回路(11)が接続する。第2冷媒流路(18)には、第2冷媒回路(12)が接続する。各冷媒流路(17,18)の一端は、対応する冷媒回路(11,12)の四方切換弁(32)の第4のポートに接続する。各冷媒流路(17,18)の他端は、対応する冷媒回路(11,12)の利用側膨張弁(36)の他端に接続する。 The water heat exchanger (15) is formed with a water flow path (16), a first refrigerant flow path (17), and a second refrigerant flow path (18). A heat medium water circulation circuit is connected to the water flow path (16). The first refrigerant circuit (11) is connected to the first refrigerant flow path (17). A second refrigerant circuit (12) is connected to the second refrigerant flow path (18). One end of each refrigerant flow path (17,18) is connected to the fourth port of the four-way switching valve (32) of the corresponding refrigerant circuit (11,12). The other end of each refrigerant flow path (17,18) is connected to the other end of the utilization side expansion valve (36) of the corresponding refrigerant circuit (11,12).

〈一方向管路、過冷却管路、過冷却熱交換器〉
一方向管路(53)には、一端から他端へ向かって順に、受液器(33)と過冷却用熱交換器(35)とが配置される。
<One-way pipeline, supercooled pipeline, supercooled heat exchanger>
In the one-way pipeline (53), a liquid receiver (33) and a supercooling heat exchanger (35) are arranged in order from one end to the other end.

過冷却管路(54)の一端は、一方向管路(53)における受液器(33)と過冷却用熱交換器(35)の間に接続する。過冷却管路(54)の他端は、圧縮機(31)の中間インジェクション管に接続する。過冷却管路(54)には、一端から他端へ向かって順に、過冷却用膨張弁(34)と過冷却用熱交換器(35)とが配置される。 One end of the supercooling line (54) is connected between the receiver (33) and the overcooling heat exchanger (35) in the one-way line (53). The other end of the supercooled pipeline (54) is connected to the intermediate injection pipe of the compressor (31). In the supercooling pipeline (54), a supercooling expansion valve (34) and a supercooling heat exchanger (35) are arranged in order from one end to the other end.

過冷却用熱交換器(35)には、一次側流路(35a)と二次側流路(35b)とが形成される。一次側流路(35a)は、一方向管路に接続する。二次側流路(35b)は、過冷却管路に接続する。過冷却用熱交換器(35)は、一次側流路(35a)の冷媒を二次側流路(35b)の冷媒と熱交換させて冷却する。 The supercooling heat exchanger (35) is formed with a primary side flow path (35a) and a secondary side flow path (35b). The primary side flow path (35a) connects to the unidirectional pipeline. The secondary side flow path (35b) connects to the supercooled pipeline. The supercooling heat exchanger (35) cools by exchanging heat with the refrigerant in the primary side flow path (35a) with the refrigerant in the secondary side flow path (35b).

〈機器冷却管路、機器冷却器〉
機器冷却管路(55)の一端は、第1分岐管路(20a)における第1室外熱交換器(21a)と第1熱源側膨張弁(22a)の間に接続する。機器冷却管路(55)の他端は、二つの分岐管路(20a,20b)の液側端とブリッジ回路(40)を繋ぐ配管に接続する。
<Equipment cooling pipeline, equipment cooler>
One end of the equipment cooling line (55) is connected between the first outdoor heat exchanger (21a) and the first heat source side expansion valve (22a) in the first branch line (20a). The other end of the equipment cooling line (55) is connected to the pipe connecting the liquid side ends of the two branch lines (20a, 20b) and the bridge circuit (40).

機器冷却管路(55)には、一端から他端へ向かって順に、流量調節弁(57)と機器冷却器(56)とが配置される。流量調節弁(57)は、開度可変の電子膨張弁である。機器冷却器(56)は、チラー装置(1)の構成部品を冷却するための部材である。機器冷却器(56)によって冷却される構成部品の一例としては、例えばインバータのパワー素子などの発熱する電気部品が挙げられる。機器冷却器(56)は、冷却対象の構成部品に熱的に接続され、その構成部品において発生した熱を冷媒に吸収させる。 A flow rate control valve (57) and an equipment cooler (56) are arranged in this order from one end to the other end in the equipment cooling pipeline (55). The flow rate control valve (57) is an electronic expansion valve with a variable opening degree. The equipment cooler (56) is a member for cooling the components of the chiller device (1). An example of a component cooled by the equipment cooler (56) is an electric component that generates heat, such as a power element of an inverter. The equipment cooler (56) is thermally connected to the component to be cooled, and the heat generated in the component is absorbed by the refrigerant.

〈吸入接続管路〉
吸入接続管路(60)の一端は、過冷却管路(54)における過冷却用熱交換器(35)の下流側に接続する。吸入接続管路(60)の他端は、吸入配管(51)に接続する。
<Suction connection line>
One end of the suction connection line (60) is connected to the downstream side of the supercooling heat exchanger (35) in the supercooling line (54). The other end of the suction connection line (60) is connected to the suction pipe (51).

吸入接続管路(60)には、一端から他端へ向かって順に、電磁弁(SV1)と逆止弁(CV11)とが配置される。逆止弁(CV11)は、吸入接続管路(60)の一端から他端に向かう冷媒の流通を許容し、逆向きの冷媒の流通を阻止する。 A solenoid valve (SV1) and a check valve (CV11) are arranged in this order from one end to the other end in the suction connection line (60). The check valve (CV11) allows the flow of refrigerant from one end to the other end of the suction connection line (60) and blocks the flow of refrigerant in the opposite direction.

〈ガス抜き管路〉
ガス抜き管路(61)の一端は、受液器(33)の頂部に接続する。ガス抜き管路(61)の他端は、吸入接続管路(60)における逆止弁(CV11)の下流側に接続する。
<Gas vent pipeline>
One end of the degassing line (61) connects to the top of the receiver (33). The other end of the degassing line (61) is connected to the downstream side of the check valve (CV11) in the suction connection line (60).

ガス抜き管路(61)には、一端から他端へ向かって順に、電磁弁(SV2)と、キャピラリチューブ(62)と、逆止弁(CV12)とが配置される。逆止弁(CV12)は、ガス抜き管路(61)の一端から他端に向かう冷媒の流通を許容し、逆向きの冷媒の流通を阻止する。 In the degassing pipeline (61), a solenoid valve (SV2), a capillary tube (62), and a check valve (CV12) are arranged in order from one end to the other end. The check valve (CV12) allows the flow of refrigerant from one end to the other end of the degassing line (61) and blocks the flow of refrigerant in the opposite direction.

〈圧力センサ、温度センサ〉
第1冷媒回路(11)には、吸入圧力センサ(81)と、吐出圧力センサ(82)とが設けられる。吸入圧力センサ(81)は、吸入配管(51)に接続され、吸入配管(51)を通って圧縮機(31)へ吸入される冷媒の圧力を計測する。吐出圧力センサ(82)は、吐出配管(52)に接続され、圧縮機(31)から吐出されて吐出配管(52)を流れる冷媒の圧力を計測する。
<Pressure sensor, temperature sensor>
The first refrigerant circuit (11) is provided with a suction pressure sensor (81) and a discharge pressure sensor (82). The suction pressure sensor (81) is connected to the suction pipe (51) and measures the pressure of the refrigerant sucked into the compressor (31) through the suction pipe (51). The discharge pressure sensor (82) is connected to the discharge pipe (52) and measures the pressure of the refrigerant discharged from the compressor (31) and flowing through the discharge pipe (52).

第1冷媒回路(11)には、吸入温度センサ(83)と、吐出温度センサ(84)とが設けられる。吸入温度センサ(83)は、吸入配管(51)に取り付けられ、吸入配管(51)の温度を計測する。吸入温度センサ(83)の計測値は、実質的に、吸入配管(51)を通って圧縮機(31)へ吸入される冷媒の温度である。吐出温度センサ(84)は、吐出配管(52)に取り付けられ、吐出配管(52)の温度を計測する。吐出温度センサ(84)の計測値は、実質的に、圧縮機(31)から吐出されて吐出配管(52)を流れる冷媒の温度である。 The first refrigerant circuit (11) is provided with a suction temperature sensor (83) and a discharge temperature sensor (84). The suction temperature sensor (83) is attached to the suction pipe (51) and measures the temperature of the suction pipe (51). The measured value of the suction temperature sensor (83) is substantially the temperature of the refrigerant sucked into the compressor (31) through the suction pipe (51). The discharge temperature sensor (84) is attached to the discharge pipe (52) and measures the temperature of the discharge pipe (52). The measured value of the discharge temperature sensor (84) is substantially the temperature of the refrigerant discharged from the compressor (31) and flowing through the discharge pipe (52).

また、第1冷媒回路(11)には、第1ガス側温度センサ(85a)と、第2ガス側温度センサ(85b)とが設けられる。第1ガス側温度センサ(85a)は、第1分岐管路(20a)のガス側端と第1室外熱交換器(21a)の間に取り付けられる。第2ガス側温度センサ(85b)は、第2分岐管路(20b)のガス側端と第2室外熱交換器(21b)の間に取り付けられる。各ガス側温度センサ(85a,85b)は、対応する分岐管路(20a,20b)の温度を計測する。各ガス側温度センサ(85a,85b)の計測値は、実質的に、対応する分岐管路(20a,20b)のうちガス側温度センサ(85a,85b)が取り付けられた箇所を流れる冷媒の温度である。なお、図1では図示を省略するが、第1冷媒回路(11)には、吸入温度センサ(83)、吐出温度センサ(84)、及びガス側温度センサ(85a,85b)以外にも多数の温度センサが設けられる。 Further, the first refrigerant circuit (11) is provided with a first gas side temperature sensor (85a) and a second gas side temperature sensor (85b). The first gas side temperature sensor (85a) is mounted between the gas side end of the first branch line (20a) and the first outdoor heat exchanger (21a). The second gas side temperature sensor (85b) is mounted between the gas side end of the second branch line (20b) and the second outdoor heat exchanger (21b). Each gas side temperature sensor (85a, 85b) measures the temperature of the corresponding branch line (20a, 20b). The measured values of each gas side temperature sensor (85a, 85b) are substantially the temperature of the refrigerant flowing through the corresponding branch line (20a, 20b) where the gas side temperature sensor (85a, 85b) is attached. Is. Although not shown in FIG. 1, the first refrigerant circuit (11) includes a large number of sensors other than the suction temperature sensor (83), the discharge temperature sensor (84), and the gas side temperature sensor (85a, 85b). A temperature sensor is provided.

−制御器−
制御器(90)は、演算処理ユニット(91)と、メモリーユニット(92)とを備える。演算処理ユニット(91)は、例えば集積回路から成るマイクロプロセッサである。メモリーユニット(92)は、例えば集積回路から成る半導体メモリーである。制御器(90)は、運転指令やセンサの検出信号に基づいて、チラー装置(1)の各機器の動作を調節し、冷媒回路(11,12)における冷凍サイクルの動作を制御する。
-Control-
The controller (90) includes an arithmetic processing unit (91) and a memory unit (92). The arithmetic processing unit (91) is, for example, a microprocessor including an integrated circuit. The memory unit (92) is, for example, a semiconductor memory including an integrated circuit. The controller (90) adjusts the operation of each device of the chiller device (1) based on the operation command and the detection signal of the sensor, and controls the operation of the refrigeration cycle in the refrigerant circuit (11, 12).

制御器(90)は、例えば各室外熱交換器(21a,21b)が蒸発器になる後述の加熱運転時に、その蒸発器の出口側の冷媒過熱度が目標値となるように、熱源側膨張弁(22a,22b)の開度をフィードバック制御により調節する。具体的には、制御器(90)は、蒸発器の出口側の冷媒過熱度が目標値より大きい場合は、熱源側膨張弁(22a,22b)の開度を大きくして冷媒流量を増やす。逆に、蒸発器(21a,21b)(15)の出口の冷媒過熱度が目標値より小さい場合は、制御器(90)は、膨張機構(22a,22b)(36)の開度を小さくして冷媒流量を減らす。 The controller (90) expands on the heat source side so that the refrigerant superheat degree on the outlet side of the evaporator becomes a target value during the heating operation described later, for example, when each outdoor heat exchanger (21a, 21b) becomes an evaporator. The opening degree of the valve (22a, 22b) is adjusted by feedback control. Specifically, the controller (90) increases the opening degree of the heat source side expansion valves (22a, 22b) to increase the refrigerant flow rate when the degree of refrigerant superheat on the outlet side of the evaporator is larger than the target value. On the contrary, when the degree of refrigerant superheat at the outlet of the evaporators (21a, 21b) (15) is smaller than the target value, the controller (90) reduces the opening degree of the expansion mechanism (22a, 22b) (36). To reduce the refrigerant flow rate.

一方、制御器(90)は、フィードバック制御を行うと同時に、そのときの運転条件から定められる理論上の冷凍サイクル(理論冷凍サイクル)における熱源側膨張弁(22a,22b)の必要開度を求める。そして、制御器(90)は、実際の運転中にフィードバック制御で求めた熱源側膨張弁(22a,22b)の開度が上記必要開度を含む所定範囲を超える場合は、実際の開度を、その所定範囲内に入るように制限する。 On the other hand, the controller (90) performs feedback control and at the same time obtains the required opening degree of the heat source side expansion valve (22a, 22b) in the theoretical refrigeration cycle (theoretical refrigeration cycle) determined from the operating conditions at that time. .. Then, when the opening degree of the heat source side expansion valve (22a, 22b) obtained by feedback control during the actual operation exceeds the predetermined range including the required opening degree, the controller (90) sets the actual opening degree. , Restrict so that it falls within the predetermined range.

特に、制御器(90)は、運転中の実際の冷凍サイクルにおいてフィードバック制御で定められる熱源側膨張弁(22a,22b)の開度が、運転条件から定まる理論上の冷凍サイクルにおいて計算で求められる必要開度を含む所定範囲の上限を上回ると、熱源側膨張弁(22a,22b)の開度を、その所定範囲の上限の開度に設定する。制御器(90)は、上記フィードバック制御で定められる熱源側膨張弁(22a,22b)の開度が、上記必要開度を含む所定範囲の下限を下回ると、熱源側膨張弁(22a,22b)の開度を、その所定範囲の下限の開度に設定する。ただし、熱源側膨張弁(22a,22b)は、必要開度を含む所定範囲の上限と下限に開度調節する必要はなく、上記所定範囲内に入るように制御すればよい。 In particular, in the controller (90), the opening degree of the heat source side expansion valve (22a, 22b) determined by feedback control in the actual refrigeration cycle during operation is calculated by calculation in the theoretical refrigeration cycle determined from the operating conditions. When the upper limit of the predetermined range including the required opening is exceeded, the opening of the heat source side expansion valves (22a, 22b) is set to the upper limit of the predetermined range. In the controller (90), when the opening degree of the heat source side expansion valve (22a, 22b) determined by the feedback control falls below the lower limit of the predetermined range including the required opening degree, the heat source side expansion valve (22a, 22b) The opening degree of is set to the lower limit opening degree of the predetermined range. However, it is not necessary to adjust the opening degree of the heat source side expansion valve (22a, 22b) to the upper limit and the lower limit of the predetermined range including the required opening degree, and it may be controlled so as to be within the predetermined range.

このように、本実施形態では、熱源側膨張弁(22a,22b)を蒸発器の出口の冷媒過熱度に基づいて単にフィードバック制御するだけでなく、開度調節をするに当たって、その調節範囲に、理論冷凍サイクルにおける必要開度を基準とする制限を設けている。 As described above, in the present embodiment, the heat source side expansion valves (22a, 22b) are not only feedback-controlled based on the degree of superheat of the refrigerant at the outlet of the evaporator, but also in the adjustment range when adjusting the opening degree. There is a limit based on the required opening in the theoretical refrigeration cycle.

制御器(90)は、熱源側膨張弁(22a,22b)への冷媒の流入側圧力と流出側圧力との圧力差と、圧縮機(31)の単位時間当たりの吸入冷媒量と、熱源側膨張弁(22a,22b)を通過する冷媒の体積流量と、熱源側膨張弁(22a,22b)を通過する冷媒の密度から、熱源側膨張弁(22a,22b)の流量特性を表す容量係数(いわゆるCv値)を算出し、そのCv値になる開度を上記必要開度として設定する。 The controller (90) has the pressure difference between the inflow side pressure and the outflow side pressure of the refrigerant to the heat source side expansion valves (22a, 22b), the amount of the intake refrigerant per unit time of the compressor (31), and the heat source side. From the volumetric flow rate of the refrigerant passing through the expansion valve (22a, 22b) and the density of the refrigerant passing through the heat source side expansion valve (22a, 22b), the capacitance coefficient (capacity coefficient) representing the flow rate characteristic of the heat source side expansion valve (22a, 22b). The so-called Cv value) is calculated, and the opening degree at which the Cv value is obtained is set as the required opening degree.

Cv値は、Cv=α×Q×(G/ΔP)1/2で表される式により求められる。ここで、Qは、熱源側膨張弁(22a,22b)を通過する冷媒の体積流量であり、Q=G/Dである。Gは、単位時間当たりに圧縮機(31)へ吸入される冷媒の質量である。Dは、熱源側膨張弁(22a,22b)を通過する冷媒の密度である。ΔPは、“熱源側膨張弁(22a,22b)の入口における冷媒の圧力(流入側圧力)”と“熱源側膨張弁(22a,22b)の出口における冷媒の圧力(流出側圧力)”の差である。αは、係数である。 The Cv value is obtained by the formula expressed by Cv = α × Q × (G / ΔP) 1/2 . Here, Q is the volumetric flow rate of the refrigerant passing through the heat source side expansion valves (22a, 22b), and Q = G / D. G is the mass of the refrigerant sucked into the compressor (31) per unit time. D is the density of the refrigerant passing through the heat source side expansion valves (22a, 22b). ΔP is the difference between the “pressure of the refrigerant at the inlet of the heat source side expansion valve (22a, 22b) (inflow side pressure)” and the “pressure of the refrigerant at the outlet of the heat source side expansion valve (22a, 22b) (outflow side pressure)”. Is. α is a coefficient.

上式により求めたCv値は、熱源側膨張弁(22a,22b)の開度と冷媒流量との関係を表す流量特性であり、冷媒の流れやすさを表す指標である。本実施形態では、求められたCv値に対応する開度を上記必要開度とする。その際、Cv値に対応する開度は、図4のグラフから求められる。図4は、熱源側膨張弁(22a,22b)の開度−流量特性(開度(パルス数)とCv値との関係)を示すグラフである。このグラフに示すように、熱源側膨張弁(22a,22b)は、パルス数を増やして開度を大きくすると、冷媒が流通する口径が大きくなり、Cv値が大きくなる。そして、熱源側膨張弁(22a,22b)が適切なCv値となるように、必要開度が定められる。 The Cv value obtained by the above equation is a flow rate characteristic showing the relationship between the opening degree of the heat source side expansion valves (22a, 22b) and the refrigerant flow rate, and is an index showing the ease of flow of the refrigerant. In the present embodiment, the opening degree corresponding to the obtained Cv value is defined as the required opening degree. At that time, the opening degree corresponding to the Cv value can be obtained from the graph of FIG. FIG. 4 is a graph showing the opening-flow rate characteristics (relationship between the opening (number of pulses) and the Cv value) of the heat source side expansion valves (22a, 22b). As shown in this graph, when the number of pulses of the heat source side expansion valves (22a, 22b) is increased and the opening degree is increased, the diameter through which the refrigerant flows becomes large and the Cv value becomes large. Then, the required opening degree is determined so that the heat source side expansion valves (22a, 22b) have an appropriate Cv value.

−チラー装置の運転動作−
チラー装置(1)は、冷却運転と加熱運転を行う。冷却運転は、水熱交換器(15)において熱媒水を冷却する運転である。加熱運転は、水熱交換器(15)において熱媒水を加熱する運転である。
-Operating operation of chiller device-
The chiller device (1) performs a cooling operation and a heating operation. The cooling operation is an operation of cooling the heat medium in the water heat exchanger (15). The heating operation is an operation of heating the heat medium in the water heat exchanger (15).

〈冷却運転〉
冷却運転において、制御器(90)は、四方切換弁(32)を第1状態に設定し、第1熱源側膨張弁(22a)及び第2熱源側膨張弁(22b)と、利用側膨張弁(36)と、過冷却用膨張弁(34)と、流量調節弁(57)との開度を調節する。
<Cooling operation>
In the cooling operation, the controller (90) sets the four-way switching valve (32) to the first state, and sets the first heat source side expansion valve (22a), the second heat source side expansion valve (22b), and the utilization side expansion valve. The opening degree between (36), the supercooling expansion valve (34), and the flow rate control valve (57) is adjusted.

図2に示すように、冷却運転において、圧縮機(31)から吐出された冷媒は、一部が第1分岐管路(20a)へ流入し、残りが第2分岐管路(20b)へ流入する。各分岐管路(20a,20b)へ流入した冷媒は、室外熱交換器(21a,21b)において室外空気へ放熱して凝縮し、続いて熱源側膨張弁(22a,22b)を通過してから合流する。また、第1分岐管路(20a)において第1室外熱交換器(21a)から流出した冷媒の一部は、流量調節弁(57)を通過後に機器冷却器(56)へ流入し、機器冷却器(56)において構成機器から吸熱し、ブリッジ回路(40)の上流側において、各分岐管路(20a,20b)の液側端から流出した冷媒と合流する。 As shown in FIG. 2, in the cooling operation, a part of the refrigerant discharged from the compressor (31) flows into the first branch line (20a), and the rest flows into the second branch line (20b). To do. The refrigerant that has flowed into each branch line (20a, 20b) dissipates heat to the outdoor air in the outdoor heat exchanger (21a, 21b), condenses it, and then passes through the heat source side expansion valve (22a, 22b). Meet. In addition, a part of the refrigerant flowing out from the first outdoor heat exchanger (21a) in the first branch pipeline (20a) flows into the equipment cooler (56) after passing through the flow control valve (57) to cool the equipment. Heat is absorbed from the constituent equipment in the vessel (56) and merges with the refrigerant flowing out from the liquid side end of each branch line (20a, 20b) on the upstream side of the bridge circuit (40).

続いて、冷媒は、ブリッジ回路(40)の第2配管(42)を通って一方向管路(53)へ流入し、その後に受液器(33)へ流入する。受液器(33)から流出した冷媒は、一部が過冷却管路(54)へ流入し、残りが過冷却用熱交換器(35)の一次側流路(35a)へ流入する。過冷却管路(54)へ流入した冷媒は、過冷却用膨張弁(34)を通過する際に中間圧にまで膨張し、続いて過冷却用熱交換器(35)の二次側流路(35b)へ流入して一次側流路(35a)の冷媒から吸熱し、その後に圧縮機(31)へ流入する。 Subsequently, the refrigerant flows into the one-way pipeline (53) through the second pipe (42) of the bridge circuit (40), and then flows into the receiver (33). A part of the refrigerant flowing out from the liquid receiver (33) flows into the supercooling pipeline (54), and the rest flows into the primary side flow path (35a) of the supercooling heat exchanger (35). The refrigerant flowing into the supercooling pipeline (54) expands to an intermediate pressure when passing through the supercooling expansion valve (34), and then the secondary side flow path of the supercooling heat exchanger (35). It flows into (35b), absorbs heat from the refrigerant in the primary side flow path (35a), and then flows into the compressor (31).

過冷却用熱交換器(35)の一次側流路(35a)において冷却された冷媒は、ブリッジ回路(40)の第4配管(44)と利用側膨張弁(36)を順に通過する。利用側膨張弁(36)を通過する際に低圧にまで膨張した冷媒は、水熱交換器(15)の第1冷媒流路(17)へ流入し、水流路(16)の熱媒水から吸熱して蒸発する。水熱交換器(15)では、水流路(16)を流れる熱媒水が、冷媒によって冷却される。水熱交換器(15)から流出した冷媒は、圧縮機(31)へ吸入される。圧縮機(31)は、吸入した冷媒を圧縮して吐出する。 The refrigerant cooled in the primary side flow path (35a) of the supercooling heat exchanger (35) passes through the fourth pipe (44) and the utilization side expansion valve (36) of the bridge circuit (40) in order. The refrigerant expanded to a low pressure when passing through the user-side expansion valve (36) flows into the first refrigerant flow path (17) of the water heat exchanger (15) and from the heat medium of the water flow path (16). It absorbs heat and evaporates. In the water heat exchanger (15), the heat medium flowing through the water flow path (16) is cooled by the refrigerant. The refrigerant flowing out of the water heat exchanger (15) is sucked into the compressor (31). The compressor (31) compresses and discharges the sucked refrigerant.

〈加熱運転〉
加熱運転において、制御器(90)は、四方切換弁(32)を第2状態に設定し、第1熱源側膨張弁(22a)及び第2熱源側膨張弁(22b)と、過冷却用膨張弁(34)と、流量調節弁(57)との開度を調節し、利用側膨張弁(36)の開度を実質的に全開に保持する。
<Heating operation>
In the heating operation, the controller (90) sets the four-way switching valve (32) to the second state, and expands for supercooling with the first heat source side expansion valve (22a) and the second heat source side expansion valve (22b). The opening degree of the valve (34) and the flow rate adjusting valve (57) is adjusted to keep the opening degree of the utilization side expansion valve (36) substantially fully open.

図3に示すように、加熱運転において、圧縮機(31)から吐出された冷媒は、水熱交換器(15)の第1冷媒流路(17)へ流入し、水流路(16)の熱媒水へ放熱して凝縮する。水熱交換器(15)では、水流路(16)を流れる熱媒水が、冷媒によって加熱される。 As shown in FIG. 3, in the heating operation, the refrigerant discharged from the compressor (31) flows into the first refrigerant flow path (17) of the water heat exchanger (15) and heats the water flow path (16). It dissipates heat to the refrigerant and condenses. In the water heat exchanger (15), the heat medium flowing through the water flow path (16) is heated by the refrigerant.

水熱交換器(15)から流出した冷媒は、利用側膨張弁(36)とブリッジ回路(40)の第3配管(43)を順に通過し、その後に受液器(33)へ流入する。受液器(33)から流出した冷媒は、一部が過冷却管路(54)へ流入し、残りが過冷却用熱交換器(35)の一次側流路(35a)へ流入する。過冷却管路(54)へ流入した冷媒は、過冷却用膨張弁(34)を通過する際に中間圧にまで膨張し、その後に過冷却用熱交換器(35)の二次側流路(35b)へ流入して一次側流路(35a)の冷媒から吸熱し、その後に圧縮機(31)へ流入する。 The refrigerant flowing out of the water heat exchanger (15) passes through the expansion valve (36) on the utilization side and the third pipe (43) of the bridge circuit (40) in order, and then flows into the receiver (33). A part of the refrigerant flowing out from the liquid receiver (33) flows into the supercooling pipeline (54), and the rest flows into the primary side flow path (35a) of the supercooling heat exchanger (35). The refrigerant flowing into the supercooling pipeline (54) expands to an intermediate pressure when passing through the supercooling expansion valve (34), and then the secondary side flow path of the supercooling heat exchanger (35). It flows into (35b), absorbs heat from the refrigerant in the primary side flow path (35a), and then flows into the compressor (31).

過冷却用熱交換器(35)の一次側流路(35a)において冷却された冷媒は、ブリッジ回路(40)の第1配管(41)を通過する。その後、冷媒は、一部が機器冷却管路(55)へ流入し、残りが分岐管路(20a,20b)の液側端に向かって流れる。機器冷却管路(55)へ流入した冷媒は、機器冷却器(56)において構成機器から吸熱し、流量調節弁(57)を通過する際に低圧にまで膨張し、その後に第1分岐管路(20a)に流入する。 The refrigerant cooled in the primary side flow path (35a) of the supercooling heat exchanger (35) passes through the first pipe (41) of the bridge circuit (40). After that, a part of the refrigerant flows into the equipment cooling line (55), and the rest flows toward the liquid side end of the branch line (20a, 20b). The refrigerant flowing into the equipment cooling pipeline (55) absorbs heat from the constituent equipment in the equipment cooler (56), expands to a low pressure when passing through the flow rate control valve (57), and then the first branch pipeline. It flows into (20a).

分岐管路(20a,20b)の液側端に向かって流れる冷媒は、一部が第1分岐管路(20a)へ流入し、残りが第2分岐管路(20b)へ流入する。各分岐管路(20a,20b)へ流入した冷媒は、熱源側膨張弁(22a,22b)を通過する際に低圧にまで膨張し、その後に室外熱交換器(21a,21b)へ流入する。その際、第1分岐管路(20a)において、第1熱源側膨張弁(22a)を通過した冷媒は、機器冷却管路(55)を通過した冷媒と合流後に第1室外熱交換器(21a)へ流入する。室外熱交換器(21a,21b)へ流入した冷媒は、室外空気から吸熱して蒸発し、その後に圧縮機(31)へ吸入される。圧縮機(31)は、吸入した冷媒を圧縮して吐出する。 A part of the refrigerant flowing toward the liquid side end of the branch line (20a, 20b) flows into the first branch line (20a), and the rest flows into the second branch line (20b). The refrigerant flowing into each branch line (20a, 20b) expands to a low pressure when passing through the heat source side expansion valve (22a, 22b), and then flows into the outdoor heat exchanger (21a, 21b). At that time, in the first branch line (20a), the refrigerant that has passed through the first heat source side expansion valve (22a) merges with the refrigerant that has passed through the equipment cooling line (55), and then joins the first outdoor heat exchanger (21a). ). The refrigerant flowing into the outdoor heat exchangers (21a, 21b) absorbs heat from the outdoor air, evaporates, and is then sucked into the compressor (31). The compressor (31) compresses and discharges the sucked refrigerant.

−熱源側膨張弁の開度制御−
室外熱交換器(21a,21b)が蒸発器になるときの熱源側膨張弁(22a,22b)の開度の制御について説明する。
-Opening control of expansion valve on the heat source side-
The control of the opening degree of the heat source side expansion valve (22a, 22b) when the outdoor heat exchanger (21a, 21b) becomes an evaporator will be described.

本実施形態では、熱源側膨張弁(22a,22b)は、蒸発器である室外熱交換器(21a,21b)の出口側の冷媒過熱度を目標値に保つように、基本的にはフィードバック制御で開度が調節される。言い換えると、制御器(90)は、蒸発器の出口側の冷媒過熱度が目標値より大きい場合は、熱源側膨張弁(22a,22b)の開度を大きくして冷媒流量を増やす。その結果、蒸発器の出口側の冷媒過熱度が小さくなり、目標値に近づく。逆に、蒸発器の出口の冷媒過熱度が目標値より小さい場合、制御器(90)は、膨張機構(22a,22b)の開度を小さくして冷媒流量を減らす。その結果、蒸発器の出口側の冷媒過熱度が大きくなり、目標値に近づく。 In the present embodiment, the heat source side expansion valve (22a, 22b) is basically feedback controlled so as to keep the refrigerant superheat degree on the outlet side of the outdoor heat exchanger (21a, 21b) which is an evaporator at a target value. The opening is adjusted with. In other words, the controller (90) increases the opening degree of the heat source side expansion valves (22a, 22b) to increase the refrigerant flow rate when the degree of refrigerant superheat on the outlet side of the evaporator is larger than the target value. As a result, the degree of superheat of the refrigerant on the outlet side of the evaporator becomes small and approaches the target value. On the contrary, when the degree of refrigerant superheat at the outlet of the evaporator is smaller than the target value, the controller (90) reduces the opening degree of the expansion mechanism (22a, 22b) to reduce the refrigerant flow rate. As a result, the degree of superheat of the refrigerant on the outlet side of the evaporator becomes large and approaches the target value.

本実施形態では、制御器(90)は、熱源側膨張弁(22a,22b)の開度に基づいて単にフィードバック制御をするだけでなく、そのときの運転条件から定められる理論上の冷凍サイクル(理論冷凍サイクル)における熱源側膨張弁(22a,22b)の必要開度も用いて熱源側膨張弁(22a,22b)を制御する。 In the present embodiment, the controller (90) not only performs feedback control based on the opening degree of the heat source side expansion valves (22a, 22b), but also performs a theoretical refrigeration cycle determined from the operating conditions at that time ( The heat source side expansion valve (22a, 22b) is also controlled by using the required opening degree of the heat source side expansion valve (22a, 22b) in the theoretical refrigeration cycle).

具体的には、制御器(90)は、運転中に、そのときの運転条件から定められる理論冷凍サイクルにおける熱源側膨張弁(22a,22b)の必要開度を求める。そして、制御器(90)は、実際の運転中にフィードバック制御で求めた熱源側膨張弁(22a,22b)の開度が上記必要開度を含む所定範囲を超える場合は、フィードバック制御で求めた開度を、必要開度を含む所定範囲内に入るように制限する。 Specifically, the controller (90) obtains the required opening degree of the heat source side expansion valve (22a, 22b) in the theoretical refrigeration cycle determined from the operating conditions at that time during operation. Then, when the opening degree of the heat source side expansion valve (22a, 22b) obtained by feedback control exceeds a predetermined range including the required opening degree during actual operation, the controller (90) obtains it by feedback control. The opening degree is limited so as to be within a predetermined range including the required opening degree.

具体的には、制御器(90)は、上記フィードバック制御で定められた熱源側膨張弁(22a,22b)の開度が、上記必要開度を含む所定範囲の上限を上回ると、熱源側膨張弁(22a,22b)の開度を、その所定範囲の上限の開度に設定する。また、制御器(90)は、上記フィードバック制御で定められた熱源側膨張弁(22a,22b)の開度が、上記必要開度を含む所定範囲の下限を下回ると、熱源側膨張弁(22a,22b)の開度を、その所定範囲の下限の開度に設定する。 Specifically, the controller (90) expands on the heat source side when the opening degree of the heat source side expansion valve (22a, 22b) defined by the feedback control exceeds the upper limit of the predetermined range including the required opening degree. The opening degree of the valve (22a, 22b) is set to the upper limit opening degree of the predetermined range. Further, in the controller (90), when the opening degree of the heat source side expansion valve (22a, 22b) defined by the feedback control falls below the lower limit of the predetermined range including the required opening degree, the heat source side expansion valve (22a) , 22b) is set to the lower limit of the predetermined range.

このように、本実施形態では、チラー装置の実際の運転中にフィードバック制御で求められる熱源側膨張弁(22a,22b)の開度に、上記必要開度に基づく制限をかける制御を行っている。本実施形態の熱源側膨張弁(22a,22b)の開度制御は、その点で、単なるフィードバック制御とは異なる。 As described above, in the present embodiment, the opening degree of the heat source side expansion valve (22a, 22b) required by the feedback control during the actual operation of the chiller device is controlled to be limited based on the required opening degree. .. The opening control of the heat source side expansion valves (22a, 22b) of the present embodiment is different from the simple feedback control in that respect.

制御器(90)は、上記必要開度を、熱源側膨張弁(22a,22b)の開度と冷媒流量との関係を表す流量特性(いわゆるCv値(容量係数))と、熱源側膨張弁(22a,22b)への冷媒の流入側圧力と流出側圧力との圧力差と、圧縮機(31)の単位時間当たりの吸入冷媒量と、熱源側膨張弁(22a,22b)を単位時間当たりに通過する冷媒の体積流量と、熱源側膨張弁(22a,22b)を通過する冷媒の密度と、から算出する。このようにすることにより、上記必要開度を高精度で求められる。 The controller (90) sets the required opening degree as a flow rate characteristic (so-called Cv value (capacity coefficient)) indicating the relationship between the opening degree of the heat source side expansion valve (22a, 22b) and the refrigerant flow rate, and the heat source side expansion valve. The pressure difference between the inflow side pressure and the outflow side pressure of the refrigerant to (22a, 22b), the amount of intake refrigerant per unit time of the compressor (31), and the heat source side expansion valve (22a, 22b) per unit time. It is calculated from the volumetric flow rate of the refrigerant passing through and the density of the refrigerant passing through the heat source side expansion valves (22a, 22b). By doing so, the required opening degree can be obtained with high accuracy.

−実施形態の効果−
本実施形態のチラー装置(冷凍装置)(1)は、圧縮機(31)と放熱器になる水熱交換器(15)と膨張機構(22a,22b)(36)と蒸発器になる室外熱交換器(21a,21b)とが順に接続されて蒸気圧縮式の冷凍サイクルを行う冷媒回路(11,12)と、上記冷媒回路(11,12)の冷凍サイクルの動作を制御する制御器(90)と、を備えている。上記制御器(90)は、基本的には、上記蒸発器(21a,21b)の出口側の冷媒過熱度が目標値となるように、上記膨張機構(22a,22b)の開度をフィードバック制御で定めるように構成されている。
-Effect of embodiment-
The chiller device (refrigerator) (1) of the present embodiment includes a compressor (31), a water heat exchanger (15) that serves as a radiator, an expansion mechanism (22a, 22b) (36), and outdoor heat that serves as an evaporator. A refrigerant circuit (11,12) in which exchangers (21a, 21b) are connected in order to perform a vapor compression refrigeration cycle, and a controller (90) that controls the operation of the refrigeration cycle of the refrigerant circuit (11,12). ) And. The controller (90) basically feedback-controls the opening degree of the expansion mechanism (22a, 22b) so that the refrigerant superheat degree on the outlet side of the evaporator (21a, 21b) becomes a target value. It is configured as specified in.

本実施形態のチラー装置(1)は、上記制御器(90)が、運転中の実際の冷凍サイクルにおいてフィードバック制御で定められる上記膨張機構(22a,22b)の開度を、運転条件から定まる理論上の冷凍サイクルにおいて計算で求められる必要開度を含む所定範囲内に制限する。 The chiller device (1) of the present embodiment is a theory in which the controller (90) determines the opening degree of the expansion mechanism (22a, 22b) determined by feedback control in an actual refrigeration cycle during operation from operating conditions. It is limited to a predetermined range including the required opening degree calculated in the above refrigeration cycle.

ここで、従来の装置において、膨張弁を蒸発器の出口の冷媒過熱度に基づいてフィードバック制御する場合、膨張弁の開度を必要以上に調節してしまうことがある。例えば、冷凍負荷が急激に変化したり、室外に設置される熱交換器に強風が吹き付けられるような急激な運転条件の変化が生じたりしたときに、これらの変化に対応しようとする場合などである。 Here, in the conventional device, when the expansion valve is feedback-controlled based on the degree of superheat of the refrigerant at the outlet of the evaporator, the opening degree of the expansion valve may be adjusted more than necessary. For example, when the refrigeration load changes suddenly or when there is a sudden change in operating conditions such as a strong wind blowing on a heat exchanger installed outdoors, when trying to respond to these changes. is there.

膨張弁の開度を必要以上に調節することになると、冷媒過熱度が目標過熱度を通り過ぎて変化し、膨張弁開度が増減を繰り返すおそれがある。そうすると、冷媒過熱度も増減を繰り返し、いわゆるハンチングの不安定な動作が生じてしまう。 If the opening degree of the expansion valve is adjusted more than necessary, the refrigerant superheat degree may change after passing the target superheat degree, and the expansion valve opening degree may repeatedly increase and decrease. Then, the degree of superheat of the refrigerant repeatedly increases and decreases, and so-called unstable hunting operation occurs.

これに対して、本実施形態によれば、膨張弁(22a,22b)の開度を、基本的には運転中の実際の冷凍サイクルにおいて蒸発器の過熱度のフィードバック制御で定められる。一方、本実施形態によれば、制御器(90)は、フィードバック制御を行うと同時に、そのときの運転条件から定められる理論冷凍サイクルにおける膨張機構(22a,22b)の必要開度を求め、フィードバック制御で求めた膨張弁(22a,22b)開度を制限する。具体的には、制御器(90)は、実際の運転中にフィードバック制御で求めた膨張機構(22a,22b)(36)の開度が上記必要開度を含む所定範囲を超える場合は、実際の開度を、その所定範囲内に入るように制限する。 On the other hand, according to the present embodiment, the opening degree of the expansion valve (22a, 22b) is basically determined by feedback control of the degree of superheat of the evaporator in the actual refrigeration cycle during operation. On the other hand, according to the present embodiment, the controller (90) performs feedback control, and at the same time, obtains the required opening degree of the expansion mechanism (22a, 22b) in the theoretical refrigeration cycle determined from the operating conditions at that time, and provides feedback. Limit the opening of the expansion valve (22a, 22b) obtained by control. Specifically, the controller (90) actually operates when the opening degree of the expansion mechanism (22a, 22b) (36) obtained by feedback control exceeds a predetermined range including the required opening degree during actual operation. The opening degree of is limited to be within the predetermined range.

このことにより、運転条件が急激に変化しても、膨張機構(22a,22b)(36)の開度は必要以上に変化しない。よって、冷媒過熱度が増減を繰り返すハンチングの不安定な動作を抑制できる。 As a result, the opening degree of the expansion mechanism (22a, 22b) (36) does not change more than necessary even if the operating conditions change suddenly. Therefore, it is possible to suppress the unstable operation of hunting in which the degree of superheat of the refrigerant repeatedly increases and decreases.

また、本実施形態では、制御器(90)は、運転中の実際の冷凍サイクルにおいてフィードバック制御で定められる上記膨張機構(22a,22b)(36)の開度が、運転条件から定まる理論上の冷凍サイクルにおいて計算で求められる必要開度を含む所定範囲の上限を上回ると、膨張機構(22a,22b)(36)の開度を、その所定範囲の上限の開度に設定する。逆に、制御器(90)は、上記フィードバック制御で定められる上記膨張機構(22a,22b)(36)の開度が、上記必要開度を含む所定範囲の下限を下回ると、膨張機構(22a,22b)(36)の開度を、その所定範囲の下限の開度に設定する。 Further, in the present embodiment, in the controller (90), the opening degree of the expansion mechanism (22a, 22b) (36) determined by feedback control in the actual refrigeration cycle during operation is theoretically determined from the operating conditions. When the upper limit of the predetermined range including the required opening calculated by calculation is exceeded in the refrigeration cycle, the opening of the expansion mechanism (22a, 22b) (36) is set to the upper limit opening of the predetermined range. On the contrary, in the controller (90), when the opening degree of the expansion mechanism (22a, 22b) (36) defined by the feedback control falls below the lower limit of the predetermined range including the required opening degree, the expansion mechanism (22a) , 22b) The opening degree of (36) is set to the lower limit opening degree of the predetermined range.

この構成によれば、実際の運転中にフィードバック制御で求めた膨張機構(22a,22b)(36)の開度が上記必要開度を含む所定範囲を超えて大きくなる場合は、実際の開度がその所定範囲の上限に設定される。フィードバック制御で求めた膨張機構(22a,22b)の開度が上記必要開度を含む所定範囲を下回る小さな値になる場合は、実際の開度がその所定範囲の下限に設定される。いずれの場合も、膨張機構(22a,22b)の開度は必要以上に調節されず、しかもフィードバック制御で求められた値に近い開度に設定される。 According to this configuration, when the opening degree of the expansion mechanism (22a, 22b) (36) obtained by feedback control becomes larger than the predetermined range including the required opening degree during the actual operation, the actual opening degree is increased. Is set to the upper limit of the predetermined range. When the opening degree of the expansion mechanism (22a, 22b) obtained by the feedback control becomes a small value below the predetermined range including the required opening degree, the actual opening degree is set to the lower limit of the predetermined range. In either case, the opening degree of the expansion mechanism (22a, 22b) is not adjusted more than necessary, and is set to an opening degree close to the value obtained by the feedback control.

本実施形態では、上記必要開度を、膨張機構(22a,22b)の開度と冷媒流量との関係を表す流量特性と、膨張機構(22a,22b)(36)への冷媒の流入側圧力と流出側圧力との圧力差と、圧縮機(31)の単位時間当たりの吸入冷媒量と、膨張機構(22a,22b)(36)を単位時間当たりに通過する冷媒の体積流量と、膨張機構(22a,22b)(36)を通過する冷媒の密度とから、高精度で算出することができる。 In the present embodiment, the required opening degree is determined by the flow rate characteristic representing the relationship between the opening degree of the expansion mechanism (22a, 22b) and the refrigerant flow rate, and the inflow side pressure of the refrigerant into the expansion mechanism (22a, 22b) (36). The pressure difference between and the outflow side pressure, the amount of intake refrigerant per unit time of the compressor (31), the volumetric flow rate of the refrigerant passing through the expansion mechanisms (22a, 22b) (36) per unit time, and the expansion mechanism. It can be calculated with high accuracy from the density of the refrigerant passing through (22a, 22b) and (36).

本実施形態では、室外熱交換器(21a,21b)が蒸発器になるときに、フィードバック制御で求めた熱源側膨張弁(22a,22b)の開度を、理論冷凍サイクルの必要開度で制限するようにしている。室外の熱源機(2)は室内機(3)に比べて通風条件などが変化しやすく、その場合にフィードバック制御ではハンチングなどの不安定な動作が生じやすいが、本実施形態では、熱源機(2)に設けられる熱源側膨張弁(22a,22b)の不安定な制御を効果的に抑制できる。 In the present embodiment, when the outdoor heat exchanger (21a, 21b) becomes an evaporator, the opening degree of the heat source side expansion valve (22a, 22b) obtained by feedback control is limited by the required opening degree of the theoretical refrigeration cycle. I try to do it. The outdoor heat source unit (2) is more likely to change ventilation conditions than the indoor unit (3), and in that case, unstable operation such as hunting is likely to occur in the feedback control, but in this embodiment, the heat source unit ( Unstable control of the heat source side expansion valves (22a, 22b) provided in 2) can be effectively suppressed.

《その他の実施形態》
上記実施形態については、以下のような構成としてもよい。
<< Other Embodiments >>
The above embodiment may have the following configuration.

例えば、上記実施形態では、チラー装置(1)において室外熱交換器(21a,21b)が蒸発器になるときに熱源側膨張弁(22a,22b)を制御する制御器(90)を説明したが、本開示の過熱度制御は、水熱交換器(15)が蒸発器になるときの利用側膨張弁(36)の制御に適用してもよい。 For example, in the above embodiment, the controller (90) that controls the heat source side expansion valve (22a, 22b) when the outdoor heat exchanger (21a, 21b) becomes an evaporator in the chiller apparatus (1) has been described. , The superheat degree control of the present disclosure may be applied to the control of the user-side expansion valve (36) when the water heat exchanger (15) becomes an evaporator.

また、本開示の過熱度制御は、冷蔵庫や冷凍庫の庫内を冷媒の冷熱で冷却する冷凍装置が並列接続の庫内熱交換器を有する構成において、庫内熱交換器の膨張機構の制御に適用してもよい。言い換えると、本開示の対象の冷凍装置はチラー装置には限定されない。 Further, the superheat degree control of the present disclosure is for controlling the expansion mechanism of the internal heat exchanger in a configuration in which a freezing device that cools the inside of a refrigerator or a freezer with the cold heat of a refrigerant has an internal heat exchanger connected in parallel. May be applied. In other words, the freezing device covered by the present disclosure is not limited to the chiller device.

上記実施形態において説明した必要開度は、上述したとおり、理論冷凍サイクルの最適な膨張弁開度として計算で求めることができる開度のことである。言い換えると、必要開度は、必ずしも運転中に実際に計算で求めた開度である必要はない。例えば、上記実施形態において、種々の運転条件に対応する必要開度の値をデータとして、メモリーに保存しておいてもよい。 As described above, the required opening degree described in the above embodiment is an opening degree that can be calculated as the optimum expansion valve opening degree of the theoretical refrigeration cycle. In other words, the required opening does not necessarily have to be the opening actually calculated during operation. For example, in the above embodiment, the value of the required opening degree corresponding to various operating conditions may be stored in the memory as data.

以上、実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態および変形例は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。 Although the embodiments and modifications have been described above, it will be understood that various modifications of the forms and details are possible without departing from the purpose and scope of the claims. In addition, the above embodiments and modifications may be appropriately combined or replaced as long as they do not impair the functions of the present disclosure.

以上説明したように、本開示は、冷凍装置について有用である。 As described above, the present disclosure is useful for freezing equipment.

1 チラー装置(冷凍装置)
11 第1冷媒回路
12 第2冷媒回路
21a 第1室外熱交換器(蒸発器、放熱器)
21b 第2室熱交換器(蒸発器、凝縮器)
22a 第1熱源側膨張弁(膨張機構)
22b 第2熱源側膨張弁(膨張機構)
31 圧縮機
90 制御器
1 Chiller device (freezing device)
11 1st refrigerant circuit
12 Second refrigerant circuit
21a 1st outdoor heat exchanger (evaporator, radiator)
21b Room 2 heat exchanger (evaporator, condenser)
22a 1st heat source side expansion valve (expansion mechanism)
22b 2nd heat source side expansion valve (expansion mechanism)
31 compressor
90 controller

Claims (3)

圧縮機(31)と放熱器(15)(21a,21b)と膨張機構(22a,22b)(36)と蒸発器(21a,21b)(15)とが順に接続されて蒸気圧縮式の冷凍サイクルを行う冷媒回路(11,12)と、
上記冷媒回路(11,12)の冷凍サイクルの動作を制御する制御器(90)と、を備え、
上記制御器(90)が、上記蒸発器(21a,21b)(15)の出口側の冷媒過熱度が目標値となるように、上記膨張機構(22a,22b)(36)の開度をフィードバック制御で定めるように構成された冷凍装置であって、
上記制御器(90)は、運転中の実際の冷凍サイクルにおいてフィードバック制御で定められる上記膨張機構(22a,22b)(36)の開度を、運転条件から定まる理論上の冷凍サイクルにおいて計算で求められる必要開度を含む所定範囲内に制限する
ことを特徴とする冷凍装置。
A steam compression refrigeration cycle in which a compressor (31), a radiator (15) (21a, 21b), an expansion mechanism (22a, 22b) (36) and an evaporator (21a, 21b) (15) are connected in order. Refrigerant circuit (11,12) and
It is equipped with a controller (90) that controls the operation of the refrigeration cycle of the refrigerant circuits (11, 12).
The controller (90) feeds back the opening degree of the expansion mechanism (22a, 22b) (36) so that the refrigerant superheat degree on the outlet side of the evaporators (21a, 21b) (15) becomes a target value. A freezing device configured to be controlled
The controller (90) calculates the opening degree of the expansion mechanism (22a, 22b) (36) determined by feedback control in the actual refrigeration cycle during operation in the theoretical refrigeration cycle determined from the operating conditions. A freezing device characterized in that it is limited to a predetermined range including the required opening degree.
請求項1において、
上記制御器(90)は、運転中の実際の冷凍サイクルにおいてフィードバック制御で定められる上記膨張機構(22a,22b)(36)の開度が、上記必要開度を含む所定範囲の上限を上回ると、その膨張機構(22a,22b)(36)の開度を、上記所定範囲の上限の開度に設定し、上記フィードバック制御で定められる上記膨張機構(22a,22b)(36)の開度が、上記必要開度を含む所定範囲の下限を下回ると、その膨張機構(22a,22b)(36)の開度を、上記所定範囲の下限の開度に設定する
ことを特徴とする冷凍装置。
In claim 1,
When the opening degree of the expansion mechanism (22a, 22b) (36) determined by feedback control in the actual refrigeration cycle during operation of the controller (90) exceeds the upper limit of the predetermined range including the required opening degree. , The opening degree of the expansion mechanism (22a, 22b) (36) is set to the upper limit opening of the predetermined range, and the opening degree of the expansion mechanism (22a, 22b) (36) determined by the feedback control is set. The refrigerating apparatus is characterized in that when it falls below the lower limit of the predetermined range including the required opening degree, the opening degree of the expansion mechanism (22a, 22b) (36) is set to the lower limit opening degree of the predetermined range.
請求項1または2において、
上記制御器(90)は、
上記膨張機構(22a,22b)(36)への冷媒の流入側圧力と流出側圧力との圧力差をΔP、
上記圧縮機(31)の単位時間当たりの吸入冷媒量をG、
上記膨張機構(22a,22b)(36)を単位時間当たりに通過する冷媒の体積流量をQ、
及び係数をαとすると、
上記膨張機構(22a,22b)(36)の開度と冷媒流量との関係を表す流量特性を表す値Cvを、Cv=α×Q×(G/ΔP)1/2で表される式から求め、
上記流量特性値Cvが得られる膨張機構(22a,22b)(36)の開度を、上記必要開度に設定する
ことを特徴とする冷凍装置。
In claim 1 or 2,
The above controller (90)
The pressure difference between the inflow side pressure and the outflow side pressure of the refrigerant to the expansion mechanism (22a, 22b) (36) is ΔP,
The amount of intake refrigerant per unit time of the compressor (31) is G,
Q, the volumetric flow rate of the refrigerant passing through the expansion mechanisms (22a, 22b) (36) per unit time.
And if the coefficient is α
The value Cv representing the flow rate characteristic representing the relationship between the opening degree of the expansion mechanism (22a, 22b) (36) and the refrigerant flow rate is derived from the formula expressed by Cv = α × Q × (G / ΔP) 1/2. Ask,
A freezing device characterized in that the opening degree of the expansion mechanism (22a, 22b) (36) from which the flow rate characteristic value Cv is obtained is set to the required opening degree.
JP2019027195A 2019-02-19 2019-02-19 refrigeration equipment Active JP7284381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019027195A JP7284381B2 (en) 2019-02-19 2019-02-19 refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019027195A JP7284381B2 (en) 2019-02-19 2019-02-19 refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2020133998A true JP2020133998A (en) 2020-08-31
JP7284381B2 JP7284381B2 (en) 2023-05-31

Family

ID=72278212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019027195A Active JP7284381B2 (en) 2019-02-19 2019-02-19 refrigeration equipment

Country Status (1)

Country Link
JP (1) JP7284381B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58205057A (en) * 1982-05-26 1983-11-29 株式会社東芝 Air conditioner
JPH01123165U (en) * 1988-02-16 1989-08-22
JPH04190057A (en) * 1990-11-26 1992-07-08 Matsushita Refrig Co Ltd Multi-chamber type air conditioner
JP2003156244A (en) * 2001-11-20 2003-05-30 Fujitsu General Ltd Control method for air-conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58205057A (en) * 1982-05-26 1983-11-29 株式会社東芝 Air conditioner
JPH01123165U (en) * 1988-02-16 1989-08-22
JPH04190057A (en) * 1990-11-26 1992-07-08 Matsushita Refrig Co Ltd Multi-chamber type air conditioner
JP2003156244A (en) * 2001-11-20 2003-05-30 Fujitsu General Ltd Control method for air-conditioner

Also Published As

Publication number Publication date
JP7284381B2 (en) 2023-05-31

Similar Documents

Publication Publication Date Title
JP3972860B2 (en) Refrigeration equipment
CA2492272C (en) Method and apparatus for control of carbon dioxide gas cooler pressure by use of a capillary tube
JP4411870B2 (en) Refrigeration equipment
RU2660723C1 (en) Method for controlling ejector unit of variable capacity
JP5355016B2 (en) Refrigeration equipment and heat source machine
JP5318057B2 (en) Refrigerator, refrigeration equipment and air conditioner
WO2018110185A1 (en) Refrigerant circuit system and method for controlling refrigerant circuit system
KR20100123729A (en) Refrigeration device
JP2006300370A (en) Air conditioner
CN107490090B (en) Air conditioner
JP2004218879A (en) Air conditioner and its control method
JP2006300371A (en) Air conditioner
JP2007225140A (en) Turbo refrigerating machine, and control device and method of turbo refrigerating machine
CN109341125B (en) A kind of refrigeration system and control method
JP2006300373A (en) Air conditioner
JP2001311567A (en) Freezer device and environmental test device using the same
JP7284381B2 (en) refrigeration equipment
JP2013061115A (en) Refrigeration cycle system
JP6881424B2 (en) Refrigerator
GB2578533A (en) Refrigeration cycle device
WO2021010130A1 (en) Refrigeration device
JP2013124843A (en) Refrigeration cycle system
JP3661014B2 (en) Refrigeration equipment
KR100639488B1 (en) Air conditional and overload controlling method the same
JP6835116B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230501

R151 Written notification of patent or utility model registration

Ref document number: 7284381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151