JPH03225161A - Liquid injection device of freezing cycle in thermostatic device - Google Patents

Liquid injection device of freezing cycle in thermostatic device

Info

Publication number
JPH03225161A
JPH03225161A JP2124890A JP2124890A JPH03225161A JP H03225161 A JPH03225161 A JP H03225161A JP 2124890 A JP2124890 A JP 2124890A JP 2124890 A JP2124890 A JP 2124890A JP H03225161 A JPH03225161 A JP H03225161A
Authority
JP
Japan
Prior art keywords
temperature
compressor
expansion valve
liquid injection
electronic expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2124890A
Other languages
Japanese (ja)
Inventor
Hiroshi Hatta
博史 八田
Takeo Ogawa
尾川 健男
Masashi Shimizu
正志 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2124890A priority Critical patent/JPH03225161A/en
Publication of JPH03225161A publication Critical patent/JPH03225161A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PURPOSE:To enable a disturbance of a freezing cycle caused by a liquid injection to be reduced by a method wherein a liquid injection refrigerant passage is arranged to be connected to a refrigerant passage branched from a refrigerant passage between a condensor and a pressure reducing mechanism, passing through an oil cooler of a pressure device and an electrical expansion valve and between an evaporator and a suction side of a compressor. CONSTITUTION:A branch pipe is arranged between a condensor 2 and a pressure reducing mechanism 3 and then the branch pipe is connected to an inlet pipe of an oil cooler 1a of a compressor. An outlet pipe of the oil cooler 1a is connected through an electronic expansion valve 5 to the branch pipe arranged between an evaporator 4 and a suction of the compressor 1. A temperature sensor 8 detects a temperature in a thermostatic chamber, a temperature sensor 9 detects a temperature outside the thermostatic chamber, a temperature sensor 10 detects a temperature of discharged gas of the compressor and a temperature sensor 11 detects an oil temperature of the compressor. A micro-computer 12 takes each of the temperatures detected by the sensors 8 to 11, calculates these temperature signals and outputs a proper pulse-like signal of a degree of opening to the electronic expansion valve 5.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は恒温装置の冷凍サイクルの液インジェクション
およびオイルクーラ機構に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a liquid injection and oil cooler mechanism of a refrigeration cycle of a constant temperature device.

[従来の技術] 冷凍サイクルを用いる恒温装置では、恒温室内温度(以
下、単に室内温度もしくは室温と略記する)は150℃
ないし一70℃と広範囲に亘るため、室内温度が高温の
状態において冷凍機を運転する場合か生じる。従ってこ
の場合、蒸発器から戻る冷媒は室内温度とほぼ同じ温度
の過熱ガスとなっており、従って、圧縮機の吐出ガスや
オイルの温度が高くなって圧縮機の仕様範囲を満たさな
いことが起こり得る。そこで、これを防ぐために液イン
ジェクションの必要がある。また全密閉形圧縮機ではモ
ータの熱を逃がすためのオイルクーラ機構を設けている
[Prior art] In a constant temperature device that uses a refrigeration cycle, the temperature inside the constant temperature chamber (hereinafter simply referred to as room temperature or room temperature) is 150°C.
Since the temperature ranges over a wide range from -70°C, it occurs when the refrigerator is operated in a state where the indoor temperature is high. Therefore, in this case, the refrigerant that returns from the evaporator is a superheated gas with approximately the same temperature as the room temperature, and therefore the temperature of the discharge gas and oil of the compressor becomes high and may not meet the specifications of the compressor. obtain. Therefore, liquid injection is necessary to prevent this. Additionally, hermetic compressors are equipped with an oil cooler mechanism to release heat from the motor.

従来の恒温装置では、液インジェクション回路とオイル
クーラ機構は、別の機構として存在する。液インジェク
ション回路は、キャピラリチューブと電磁弁で構成され
、圧縮機吐出ガス温度の検知により電磁弁を開閉する構
成が一般的である。又、液インジェクション量を変化さ
せたい場合は絞り量の異なる複数のキャピラリチューブ
を切り換える方式が採用される。
In conventional thermostats, the liquid injection circuit and oil cooler mechanism exist as separate mechanisms. The liquid injection circuit is composed of a capillary tube and a solenoid valve, and the solenoid valve is generally opened and closed by detecting the temperature of the compressor discharge gas. Furthermore, when it is desired to change the amount of liquid injection, a method is adopted in which a plurality of capillary tubes with different aperture amounts are switched.

オイルクーラ機構は、凝縮器冷媒配管が、凝縮器の途中
でオイルクーラ人口配管に直結し、オイルクーラ出口配
管から再び凝縮器へ戻る構造となっている。従って凝縮
器を流れる冷媒は全てオイルクーラを通過することにな
る。
The oil cooler mechanism has a structure in which the condenser refrigerant pipe is directly connected to the oil cooler artificial pipe midway through the condenser, and returns to the condenser again from the oil cooler outlet pipe. Therefore, all the refrigerant flowing through the condenser passes through the oil cooler.

なおこの種の装置として関連するものには例えは、実開
昭63−132252か挙げられる。
An example of a related device of this type is Utility Model Application No. 63-132252.

[発明か解決しようとする課題] 従来技術における液インジェクションは、電磁弁の開閉
動作で行うので冷凍サイクルの乱れか急激で、この乱れ
が室内温度制御の乱れを起すという問題があった。また
、恒温装置においては運転室内温度範囲が一70℃から
150℃と広範囲にわたるため、液インジェクションの
適正量は運転室イ晶によって異なるが、従来技術ではこ
れが満足されないという問題があった。
[Problems to be Solved by the Invention] Liquid injection in the prior art is performed by opening and closing an electromagnetic valve, so there is a problem in that the refrigeration cycle is suddenly disturbed, and this disturbance causes disturbances in indoor temperature control. Further, in a constant temperature device, the temperature range in the operating room is wide ranging from 170°C to 150°C, so the appropriate amount of liquid injection differs depending on the size of the operating room, but there was a problem that this was not satisfied with the conventional technology.

又、恒温装置の運転可能周囲温度(恒温室外の温度)は
O℃〜40℃と広範囲である。しかるに、従来の空冷式
の凝縮器を有する恒温装置におけるオイルクーラ機構で
は、オイルクーラを通る冷媒量が一定であるため、装置
周囲温度が低温のとき、オイルクーラを通過する冷媒量
が適正量に比較して過大になり、油温が圧縮機の仕様値
を下まわるという問題があった。
Further, the operating ambient temperature of the constant temperature device (temperature outside the constant temperature room) is wide ranging from 0°C to 40°C. However, in the oil cooler mechanism of a conventional constant temperature device with an air-cooled condenser, the amount of refrigerant passing through the oil cooler is constant, so when the ambient temperature of the device is low, the amount of refrigerant passing through the oil cooler does not reach the appropriate amount. There was a problem in that the oil temperature became excessive in comparison and the oil temperature fell below the compressor specification value.

本発明は、このような従来技術の問題点を解決するため
になされたものであって、その目的は、イ夜インジェク
ション量およびオイルクーラ通過冷媒量を適正量とし、
前記のような冷凍サイクル上および油温上の問題をなく
し、冷凍サイクルの乱れを抑えて恒温装置の室内温度制
御を乱さないようにすることにある。
The present invention has been made in order to solve the problems of the prior art, and its purpose is to: (i) set the amount of night injection and the amount of refrigerant passing through the oil cooler to appropriate amounts;
The purpose is to eliminate the above-mentioned problems on the refrigeration cycle and oil temperature, suppress disturbances in the refrigeration cycle, and prevent disturbances in indoor temperature control of a constant temperature device.

[課題を解決するための手段] 本発明は特許請求の範囲の各請求項記載の特徴を有する
恒温装置における液インジェクション装置を提供する。
[Means for Solving the Problems] The present invention provides a liquid injection device in a constant temperature device having the features described in each claim.

〔作   用] 液インジェクションの冷媒量を適正化するための電子膨
張弁の開度制御は、 (1)恒温室内温度、周囲温度に応じ予め定めた開度に
する。又は (2)吐出ガス温度が所定限界を出たとき、該温度に応
じ連続制御たとえばPl[)制御をする。
[Function] The opening degree of the electronic expansion valve is controlled to optimize the amount of refrigerant for liquid injection: (1) The opening degree is set in advance according to the temperature inside the thermostatic chamber and the ambient temperature. or (2) when the temperature of the discharged gas exceeds a predetermined limit, continuous control, such as Pl[) control, is performed in accordance with the temperature.

の2つの仕方がある。There are two ways.

オイルクーラの冷媒通過量を適正化するための電子膨張
弁の開度制御は、 (1)恒温室内温度、装置周囲温度に応じ予め定めた開
度にする。又は (2)油温が所定限界を出たとき該温度に応じ連続制御
たとえばPID制御する。
The opening degree of the electronic expansion valve is controlled to optimize the amount of refrigerant passing through the oil cooler: (1) The opening degree is set in advance according to the temperature inside the thermostatic chamber and the ambient temperature of the device. or (2) when the oil temperature exceeds a predetermined limit, continuous control, such as PID control, is performed according to the temperature.

の2つの仕方がある。There are two ways.

油温が低くなる運転時には、吐出ガス温度も低くなって
いるので、液インジェクション量が足りなくなることは
ない。
During operation when the oil temperature is low, the discharge gas temperature is also low, so the amount of liquid injection will not run out.

[実 施 例] 以下、本発明の一実施例を第1図により説明する。[Example] An embodiment of the present invention will be described below with reference to FIG.

第1図は、本発明の一実施例に係る恒温装置の恒温室の
部分概略断面、恒温装置の冷凍サイクル系統、およびマ
イコンへの信号の人出力を示した図である。
FIG. 1 is a diagram showing a partial schematic cross section of a constant temperature chamber of a constant temperature device, a refrigeration cycle system of the constant temperature device, and human output of signals to a microcomputer according to an embodiment of the present invention.

断熱材13で区切られた恒温室内に、該室内の空気を冷
却する蒸発器4、該室内の空気を加熱する加熱器6、及
び該室内の空気を循環させる送風機7が配置しである。
An evaporator 4 that cools the air in the room, a heater 6 that heats the air in the room, and a blower 7 that circulates the air in the room are arranged in a constant temperature room separated by a heat insulating material 13.

恒温室内の温度(以下、車に室内温度もしくは室温と略
記する)は温度センサ8にて検知される。蒸発器4は、
全密閉圧縮機1、凝縮器2、減圧機構3とともに一つの
冷凍サイクルを構成する。本実施例では、凝縮器2と減
圧機構3との間に分岐管を設け、これを圧縮機のオイル
クーラ1aの入口配管と接続する。そしてオイルクーラ
1aの出口配管は、蒸発器4と全密閉圧縮機1の吸入側
との間に設けた分岐管に電子膨張弁5を介して接続する
。温度センサ9は恒温室外の温度を検知し、温度センサ
10は圧縮機吐出ガス温度を検知し、温度センサ11は
圧縮機の油温を検知する。温度センサ8〜11で検知さ
れた各温度は制御用マイコン12に取り込まれる。制御
用マイコン12は、これらの温度信号を演算し、適切な
パルス状の開度信号を電子膨張弁5へ出力する。
The temperature inside the constant temperature room (hereinafter abbreviated as vehicle interior temperature or room temperature) is detected by a temperature sensor 8. The evaporator 4 is
A completely hermetic compressor 1, a condenser 2, and a pressure reducing mechanism 3 constitute one refrigeration cycle. In this embodiment, a branch pipe is provided between the condenser 2 and the pressure reducing mechanism 3, and this branch pipe is connected to the inlet pipe of the oil cooler 1a of the compressor. The outlet pipe of the oil cooler 1a is connected to a branch pipe provided between the evaporator 4 and the suction side of the hermetic compressor 1 via an electronic expansion valve 5. Temperature sensor 9 detects the temperature outside the constant temperature room, temperature sensor 10 detects the compressor discharge gas temperature, and temperature sensor 11 detects the oil temperature of the compressor. Each temperature detected by the temperature sensors 8 to 11 is taken into the control microcomputer 12. The control microcomputer 12 calculates these temperature signals and outputs an appropriate pulse-shaped opening signal to the electronic expansion valve 5.

次に本実施例に係る液インジェクションとオイルクーラ
の制御を説明する。
Next, control of liquid injection and oil cooler according to this embodiment will be explained.

[従来の技術]の所でも述べたように、恒温装置では室
内温度が高温で冷凍機を運転する場合が生じ、この時、
蒸発機4から戻る冷媒は室温とほぼ同し温度の過熱ガス
となっているため、全密閉圧縮機1の吐出ガス温度や油
温が高くなり、圧縮機の仕様範囲を満たさない場合が生
しる。そこで、これを防ぐために液インジェクションの
必要があるが、恒温装置で許される室温の乱れは市場要
求で±05℃〜±0.3℃であるため、冷凍サイクルを
ン夜インジェクションか乱すことは許されない。又、恒
温装置の室温の温度範囲は広く、蒸発器4から戻って来
る冷媒のエンタルピが室温によって異なるので、従来技
術の如き一定量の液インジェクションでは過不足が生し
ることになる。以上2つの理由で恒温装置では液インジ
ェクションの量は、吐出ガス温度を仕様範囲内にあらし
める適正量に制御される必要かある。
As mentioned in the [Prior Art] section, when using a constant temperature device, there are times when the refrigerator is operated at a high indoor temperature.
Since the refrigerant that returns from the evaporator 4 is a superheated gas with a temperature almost the same as room temperature, the discharge gas temperature and oil temperature of the hermetic compressor 1 may become high, and the compressor specification range may not be met. Ru. Therefore, liquid injection is necessary to prevent this, but since the room temperature disturbance allowed by a constant temperature device is ±05°C to ±0.3°C as required by the market, it is not permissible to disturb the refrigeration cycle by night injection. Not done. Furthermore, the temperature range of the room temperature of the constant temperature device is wide, and the enthalpy of the refrigerant returned from the evaporator 4 differs depending on the room temperature, so injecting a fixed amount of liquid as in the prior art will result in excess or deficiency. For the above two reasons, it is necessary to control the amount of liquid injected in the constant temperature device to an appropriate amount to bring the discharge gas temperature within the specification range.

又、恒温装置の運転可能周囲温度は0℃〜40℃と広範
囲である。従って従来の空冷式の凝縮器を有する恒温装
置におけるオイルクーラ機構のようにオイルクーラを通
る冷媒流量が定であるならば、装置周囲温度が低いとき
にはオイルクーラを通る冷媒流量が適正値に比べて過大
になり、油温が圧縮機の仕様値を下まわる現象が生じる
。ゆえにオイルクーラ機構を流れる冷媒流量も、圧縮機
の油温を仕様範囲にあらしめる様に適正に制御される必
要がある。
Further, the ambient temperature at which the constant temperature device can be operated is within a wide range of 0°C to 40°C. Therefore, if the refrigerant flow rate through the oil cooler is constant, such as in the oil cooler mechanism of a conventional constant temperature device with an air-cooled condenser, when the ambient temperature of the device is low, the refrigerant flow rate through the oil cooler will be lower than the appropriate value. This will cause the oil temperature to drop below the compressor specifications. Therefore, the flow rate of refrigerant flowing through the oil cooler mechanism also needs to be appropriately controlled so as to keep the oil temperature in the compressor within the specified range.

本実施例は、上記の様な液インジェクションおよびオイ
ルクーラ通過冷媒流量の適正な制御を行うものであり、
以下、これを説明する。
This embodiment appropriately controls the liquid injection and the refrigerant flow rate passing through the oil cooler as described above.
This will be explained below.

イ 第3図(幻は、装置の周囲温度が20℃のときにおいて
、検出された室内温度に応じて制御される電子膨張弁5
の開度、および、それに伴う圧縮機1の吐出ガス温度と
油温の変化の様子を示したものである。図中、実線グラ
フは本実施例の場合であり、破線グラフ(従来a、従来
すと表示したもの)は従来技術に相当する場合である。
Figure 3 (illustrated is the electronic expansion valve 5 which is controlled according to the detected indoor temperature when the ambient temperature of the device is 20°C)
2 shows the degree of opening of the compressor 1 and the accompanying changes in the discharge gas temperature and oil temperature of the compressor 1. In the figure, the solid line graph corresponds to the present embodiment, and the dashed line graph (indicated as Conventional A and Conventional S) corresponds to the conventional technique.

本実施例においては、電子膨張弁5の開度は、図示の如
く室内温度に応じ、予め定めた階段状に変化する様に制
御され、その結果、吐出ガス温度および油温は図示実線
のように変化する。液インジェクション量、すなわち、
本実施例でオイルクーラーaを通る冷媒流量、のイ 適正値は、第3図(#)の室内温度20℃から40℃ま
での区間では、該区間の実線図示の膨張弁開度によって
得られるものとする。もし従来aの破線で示すように膨
張弁開度すなわち液インジェクション量が室内温度に依
らずこのまま一定だとすると、吐出ガス温度及び油温は
室内温度50℃付近で仕様値上限を越えることとなる。
In this embodiment, the opening degree of the electronic expansion valve 5 is controlled to change in a predetermined stepwise manner according to the indoor temperature as shown in the figure, and as a result, the discharge gas temperature and oil temperature are changed as shown by the solid line in the figure. Changes to The amount of liquid injection, i.e.
In this embodiment, the appropriate value of the refrigerant flow rate passing through the oil cooler a is obtained by the expansion valve opening degree shown by the solid line in the section of the room temperature from 20°C to 40°C in Fig. 3 (#). shall be taken as a thing. If the expansion valve opening, that is, the liquid injection amount remains constant regardless of the indoor temperature, as shown by the broken line in conventional a, the discharge gas temperature and oil temperature will exceed the upper limit of the specification value when the indoor temperature is around 50°C.

又、室内温度60〜80℃の区間では、吐出ガス温度、
油温が仕様を満たす液インシェイ クジョンの適正量は第3図(7)の当該区間の実線図示
の膨張弁開度で得られるものとする。もし従来すの破線
で示す如く膨張弁開度すなわち液インジェクション量が
このまき一定だとすると、室内温度30℃付近で油温が
仕様の下限を下回ることになる。しかし、かSる事態は
、本実施例においては、膨張弁5の開度を図示の如く室
内温度に応じて階段状に変化させるから、起らない。
In addition, in the area where the indoor temperature is 60 to 80°C, the discharge gas temperature,
It is assumed that the appropriate amount of liquid infusion for which the oil temperature satisfies the specifications can be obtained at the expansion valve opening degree shown by the solid line in the relevant section in FIG. 3 (7). If the expansion valve opening degree, that is, the amount of liquid injection were constant as shown by the broken line in the conventional case, the oil temperature would fall below the lower limit of the specification when the room temperature was around 30°C. However, such a situation does not occur in this embodiment because the opening degree of the expansion valve 5 is changed stepwise according to the room temperature as shown in the figure.

口 第3図(J)は、室内温度が20℃のときにおいて、検
出された周囲温度に応じてなされる膨張弁5の開度制御
の仕方、および、それに伴う油温および吐出ガス温度の
変化の様子を示したものであり、実線および破線の意味
は前記第3図(6)の場合と同様である。もし、従来C
の破線で示すように膨張弁開度が周囲温度に依らず定だ
とすると、周囲温度が20℃以下に低下したとき、オイ
ルクーラを通過する冷媒の温度が下がり、周囲温度10
℃以下では油温の仕様下限値を満足できなくなるが、本
実施例では周囲温度に応じて実線の如く膨張弁5の開度
を制御するので、かSる事態は起きない。
Figure 3 (J) shows how the opening degree of the expansion valve 5 is controlled according to the detected ambient temperature when the indoor temperature is 20°C, and the accompanying changes in oil temperature and discharge gas temperature. The meanings of the solid lines and broken lines are the same as in the case of FIG. 3 (6). If conventional C
Assuming that the expansion valve opening is constant regardless of the ambient temperature, as shown by the broken line, when the ambient temperature drops below 20°C, the temperature of the refrigerant passing through the oil cooler drops and the ambient temperature drops to 10°C.
℃ or below, the oil temperature cannot satisfy the specified lower limit value, but in this embodiment, the opening degree of the expansion valve 5 is controlled as shown by the solid line according to the ambient temperature, so this situation does not occur.

以上が、室内温度、周囲温度によって予め電子膨張弁5
の開度を決めておく制御方式の一実施例である。
The above is the electronic expansion valve 5 in advance depending on the indoor temperature and ambient temperature.
This is an example of a control method that determines the opening degree of the valve.

電子膨張弁5の開度制御に関して他の実施例を以下に第
4図、第5図を用いて述べる。
Another embodiment regarding the opening control of the electronic expansion valve 5 will be described below with reference to FIGS. 4 and 5.

第4図は圧縮機の吐出ガス温度に応じて膨張弁5の開度
を制御する例を示す。室内温度の上昇、周囲温度の上昇
などの理由で吐出ガス温度は上昇する。今、圧縮機の吐
出ガス温度の仕様範囲の上限が130℃であるとする。
FIG. 4 shows an example in which the opening degree of the expansion valve 5 is controlled according to the temperature of the discharge gas from the compressor. The discharge gas temperature increases due to reasons such as an increase in indoor temperature or an increase in ambient temperature. Assume now that the upper limit of the specification range for the discharge gas temperature of the compressor is 130°C.

膨張弁5の開度制御を行わないならば吐出ガス温度は仕
様範囲の上限を越えてしまう。そこで本実施例では制御
温度として120℃を設定し、吐出ガス温度が120℃
より3 deg低い温度になったとき電子膨張弁5の開
度をPID制御し、吐出ガス温度を120℃に保つよう
にする。吐出ガス温度が120℃より3 deg以上低
くなれば再び電子膨張弁5の開度を標準開度に戻す。こ
の様な制御により吐出ガス温度は常に圧縮機の仕様上限
を満足できる。
If the opening degree of the expansion valve 5 is not controlled, the discharge gas temperature will exceed the upper limit of the specification range. Therefore, in this example, the control temperature is set at 120°C, and the discharge gas temperature is set at 120°C.
When the temperature becomes 3 degrees lower than the above temperature, the opening degree of the electronic expansion valve 5 is PID-controlled to maintain the discharge gas temperature at 120°C. When the discharge gas temperature becomes 3 degrees or more lower than 120° C., the opening degree of the electronic expansion valve 5 is returned to the standard opening degree again. Such control allows the discharge gas temperature to always satisfy the upper specification limit of the compressor.

第5図(a)は、油温が仕様の上限を越えないように検
知油温に基づいて電子膨張弁5の開度を制御する例を示
す。吐出ガス温度と同様に、油温も室温の上昇や周囲温
度の上昇などの理由で上昇する。圧縮機の油温の仕様上
限が90℃であるとする。電子膨張弁5の開度制御を行
わないと、油温は仕様範囲上限を越えてしまう。
FIG. 5(a) shows an example in which the opening degree of the electronic expansion valve 5 is controlled based on the detected oil temperature so that the oil temperature does not exceed the upper limit of specifications. Similar to the discharge gas temperature, the oil temperature also increases due to reasons such as an increase in room temperature or an increase in ambient temperature. Assume that the upper specification limit for the oil temperature of the compressor is 90°C. If the opening degree of the electronic expansion valve 5 is not controlled, the oil temperature will exceed the upper limit of the specification range.

そこで本実施例では制御温度として80℃を設定し、油
温が80℃より3 deg低い温度になったとき、電子
膨張弁5の開度をPID制御し、油温を80℃に保つよ
うにする。油温が80℃より3 deg以上低くなれば
再び電子膨張弁5の開度を標準開度に戻す。この制御に
より油温は圧縮機の仕様上限を満足できる。
Therefore, in this embodiment, 80°C is set as the control temperature, and when the oil temperature becomes 3 degrees lower than 80°C, the opening degree of the electronic expansion valve 5 is PID controlled to maintain the oil temperature at 80°C. do. When the oil temperature becomes 3 degrees or more lower than 80° C., the opening degree of the electronic expansion valve 5 is returned to the standard opening degree again. This control allows the oil temperature to satisfy the upper limit of the compressor specifications.

第5図(b)は、油温が仕様の下限値を下回らない様に
検知油温に基づいて電子膨張弁5の開度を制御する例を
示す。電子膨張弁5の開度を制御しなければ、室温の低
下、周囲温度の低下により、油温が圧縮機の仕様値下限
を下まわる現象が生じる。そこで本実施例では、該下限
値10℃に対して制御温度20℃を設定し、油温が20
℃より3 deg高い温度になったとき電子膨張弁5の
開度をPID制御して油温を20℃に保つようにする。
FIG. 5(b) shows an example in which the opening degree of the electronic expansion valve 5 is controlled based on the detected oil temperature so that the oil temperature does not fall below the lower limit of the specification. If the opening degree of the electronic expansion valve 5 is not controlled, a phenomenon occurs in which the oil temperature falls below the lower limit of the specification value of the compressor due to a decrease in room temperature and ambient temperature. Therefore, in this embodiment, the control temperature is set at 20°C with respect to the lower limit of 10°C, and the oil temperature is set at 20°C.
When the temperature becomes 3 degrees higher than ℃, the opening degree of the electronic expansion valve 5 is controlled by PID to maintain the oil temperature at 20℃.

油温が20℃より3 deg以上高くなれば、開度を標
準開度に戻す。これにより、油温を圧縮機仕様下限値を
満足するように制御することができる。
If the oil temperature becomes 3 degrees or more higher than 20°C, the opening degree will be returned to the standard opening degree. Thereby, the oil temperature can be controlled so as to satisfy the lower limit of the compressor specifications.

以上、圧縮機の吐出ガス温度または油温を仕様範囲内に
保つように、室内温度、周囲温度、吐出ガス温度または
油温の検出値に応じて電子膨張弁5の開度を制御する幾
つかの制御方式を説明したが、恒温装置としては、必要
に応じ、このうちいずれか一つの方式を採用し、又は二
つもしくはそれ以上の方式の組み合わせとすることもで
きる。かする制御を前記制御用マイコン12に行わせる
As described above, in order to maintain the discharge gas temperature or oil temperature of the compressor within the specification range, the opening degree of the electronic expansion valve 5 is controlled according to the detected value of the indoor temperature, ambient temperature, discharge gas temperature, or oil temperature. Although the above control methods have been described, the constant temperature device may adopt any one of these methods, or a combination of two or more methods, if necessary. The control microcomputer 12 is caused to perform such control.

第2図は、液インジェクション冷媒をオイルクーラなし
で電子膨張弁5を介して圧縮機吸入側に導入する様にし
た点において第1区と相違している例を示す。液インジ
ェクションで圧縮機オイルも冷却されるので、本例でも
、前述した制御を通用できる。
FIG. 2 shows an example that is different from the first section in that the liquid injection refrigerant is introduced into the suction side of the compressor via the electronic expansion valve 5 without an oil cooler. Since compressor oil is also cooled by liquid injection, the above-described control can be applied in this example as well.

[発明の効果] 本発明によれば、液インジェクションに因る冷凍サイク
ルの乱れを少なくすることができるので、液インジェク
ション時の恒温室内温度の乱れが例えば±0.5から±
0.3℃と小さくなる様にできる。
[Effects of the Invention] According to the present invention, it is possible to reduce disturbances in the refrigeration cycle caused by liquid injection, so that the disturbances in the temperature inside the thermostatic chamber during liquid injection can be reduced, for example, from ±0.5 to ±
It can be made as low as 0.3℃.

また、広い恒温室内温度にわたって液インジェクシジン
量を適正量に制御でき、吐出ガス温度が仕様の限界を越
えることがない。
Furthermore, the amount of liquid injectidine can be controlled to an appropriate amount over a wide range of constant temperature chamber temperatures, and the discharge gas temperature does not exceed the specification limit.

又、周囲温度が低い時に、オイルを冷却する冷媒流量を
小さくすることができるので油温の低下が防止できる効
果がある。
Furthermore, when the ambient temperature is low, the flow rate of refrigerant for cooling the oil can be reduced, which has the effect of preventing a drop in oil temperature.

又、適正な液インジェクション量、オイル冷却量が得ら
れることにより、むだなバイパス冷媒がなく、冷凍能力
の低下を最小に押える効果がある。
Furthermore, by obtaining an appropriate amount of liquid injection and oil cooling, there is no wasted bypass refrigerant, and there is an effect of minimizing a decrease in refrigerating capacity.

又、液インジェクション回路、オイルクーラ機構を一体
化することにより、信頼性も高くなり、安価で信頼性の
高い冷凍サイクルを供給できる効果がある。
Further, by integrating the liquid injection circuit and the oil cooler mechanism, reliability is increased, and an inexpensive and highly reliable refrigeration cycle can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の恒温装置の実施例の構成を
示す概要図、 第3図(イ) 、 (0)は本発明実施例の恒温装置の
制御方法における膨張弁開度、吐出ガス温度、油温の変
化の様子を示す図、 第4図は本発明実施例の恒温装置の他の制御方法を示す
もので吐出ガス温度と膨張弁開度の関係を示す図、 第5図(a) 、 (b)は本発明実施例の恒温装置の
制御方法を示すもので油温と膨張弁開度関係を示す図で
ある。 1・・・圧縮機、2・・・凝縮器、3・・・減圧機構、
4・・・蒸発器、5・・・電子膨張弁、6・・・加熱器
、7・・・送風機、8・・・室温センサ、9・・・装置
周囲温度センサ、 10・・・吐出ガス温度センサ、 11・・・油温センサ、 12・・・制御用マイコン、13・°°断熱材、1a・
・・オイルクーラ。 第1図 マイコンの人士た侶ろ 第2図 マイコンの入出方イ言号 第3図 室内5里度(’C) 周囲温度(’C) 第4図 時間経通 第5図(α)
FIGS. 1 and 2 are schematic diagrams showing the configuration of an embodiment of the constant temperature device of the present invention, and FIGS. FIG. 4 is a diagram showing the change in discharge gas temperature and oil temperature; FIG. 4 is a diagram showing another control method of the constant temperature device according to the embodiment of the present invention; FIG. 5 is a diagram showing the relationship between discharge gas temperature and expansion valve opening; Figures (a) and (b) show a control method for a constant temperature device according to an embodiment of the present invention, and are diagrams showing the relationship between oil temperature and expansion valve opening degree. 1... Compressor, 2... Condenser, 3... Pressure reduction mechanism,
4... Evaporator, 5... Electronic expansion valve, 6... Heater, 7... Air blower, 8... Room temperature sensor, 9... Device ambient temperature sensor, 10... Discharge gas Temperature sensor, 11... Oil temperature sensor, 12... Control microcomputer, 13.°° insulation material, 1a.
・Oil cooler. Figure 1: Microcomputer Figure 2: How to enter and exit the microcomputer Figure 3: Indoor 5 degrees ('C) Ambient temperature ('C) Figure 4: Time course Figure 5 (α)

Claims (1)

【特許請求の範囲】 1、圧縮機から出た冷媒が凝縮器、減圧機構および蒸発
器をこの順に通って圧縮機に戻る様にした冷凍サイクル
を備え、該蒸発器を恒温室内の冷却器として設置してな
る恒温装置において、凝縮器と減圧機構との間の冷媒路
から分岐し開度可変の電子膨張弁を経て蒸発器と圧縮機
の吸入側との間の冷媒路に接続した液インジェクション
冷媒路を設け、圧縮機吐出ガス温度および/又は圧縮機
油温度を仕様範囲内に保つ様に上記電子膨張弁の開度を
制御する制御手段を備えたことを特徴とする、恒温装置
における冷凍サイクルの液インジェクション装置。 2、圧縮機から出た冷媒が凝縮器、減圧機構および蒸発
器をこの順に通って圧縮機に戻る様にした冷凍サイクル
を備え、該蒸発器を恒温室内の冷却器として設置してな
る恒温装置において、凝縮器と減圧機構との間の冷媒路
から分岐し圧縮機のオイルクーラおよび開度可変の電子
膨張弁を経て蒸発器と圧縮機の吸入側との間の冷媒路に
接続した液インジェクション冷媒路を設け、圧縮機吐出
ガス温度および/又は圧縮機油温度を仕様範囲内に保つ
様に上記電子膨張弁の開度を制御する制御手段を備えた
ことを特徴とする、恒温装置における冷凍サイクルの液
インジェクション装置。 3、前記制御手段は、恒温室内温度センサおよび周囲温
度センサと、これらセンサの検知温度に応じ予めそれら
の関数として定めた開度をとる様に前記電子膨張弁の開
度を制御する制御器とからなる請求項1又は2記載の、
恒温装置における冷凍サイクルの液インジェクション装
置。 4、前記制御手段は、圧縮機吐出ガス温度センサおよび
/又は圧縮機油温度センサと、これらセンサの一方また
は両方の検知温度が夫々の所定限界温度から逸脱したと
き、その逸脱を解消する様に前記電子膨張弁の開度を連
続制御する制御器とからなる請求項1又は2記載の、恒
温装置における冷凍サイクルの液インジェクション装置
[Claims] 1. A refrigeration cycle is provided in which the refrigerant discharged from the compressor passes through a condenser, a pressure reducing mechanism, and an evaporator in this order and returns to the compressor, and the evaporator is used as a cooler in a constant temperature room. In the thermostat installed, a liquid injection system branches from the refrigerant path between the condenser and pressure reduction mechanism and connects to the refrigerant path between the evaporator and the suction side of the compressor via an electronic expansion valve with variable opening. A refrigeration cycle in a constant temperature device, characterized in that a refrigerant path is provided and control means is provided for controlling the opening degree of the electronic expansion valve so as to maintain the compressor discharge gas temperature and/or the compressor oil temperature within the specification range. liquid injection device. 2. A constant temperature device equipped with a refrigeration cycle in which the refrigerant discharged from the compressor passes through a condenser, a pressure reducing mechanism, and an evaporator in this order and returns to the compressor, and the evaporator is installed as a cooler in a constant temperature room. , the liquid injection branched from the refrigerant path between the condenser and the pressure reduction mechanism and connected to the refrigerant path between the evaporator and the suction side of the compressor via the compressor's oil cooler and an electronic expansion valve with variable opening. A refrigeration cycle in a constant temperature device, characterized in that a refrigerant path is provided and control means is provided for controlling the opening degree of the electronic expansion valve so as to maintain the compressor discharge gas temperature and/or the compressor oil temperature within the specification range. liquid injection device. 3. The control means includes a thermostatic chamber internal temperature sensor, an ambient temperature sensor, and a controller that controls the opening degree of the electronic expansion valve so that the opening degree is predetermined as a function of the temperatures detected by these sensors. according to claim 1 or 2, consisting of
Liquid injection device for refrigeration cycle in constant temperature equipment. 4. The control means controls the compressor discharge gas temperature sensor and/or the compressor oil temperature sensor so that when the detected temperature of one or both of these sensors deviates from the respective predetermined limit temperatures, the deviation is corrected. 3. A liquid injection device for a refrigeration cycle in a constant temperature device according to claim 1, further comprising a controller that continuously controls the opening degree of an electronic expansion valve.
JP2124890A 1990-01-31 1990-01-31 Liquid injection device of freezing cycle in thermostatic device Pending JPH03225161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2124890A JPH03225161A (en) 1990-01-31 1990-01-31 Liquid injection device of freezing cycle in thermostatic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2124890A JPH03225161A (en) 1990-01-31 1990-01-31 Liquid injection device of freezing cycle in thermostatic device

Publications (1)

Publication Number Publication Date
JPH03225161A true JPH03225161A (en) 1991-10-04

Family

ID=12049762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2124890A Pending JPH03225161A (en) 1990-01-31 1990-01-31 Liquid injection device of freezing cycle in thermostatic device

Country Status (1)

Country Link
JP (1) JPH03225161A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05180517A (en) * 1992-01-06 1993-07-23 Hitachi Ltd Freezing cycle controlling method in thermo-hygrostate, controlling device and thermo-hygrostate
JP2013253734A (en) * 2012-06-07 2013-12-19 Hitachi Appliances Inc Refrigeration cycle device
JP2014163624A (en) * 2013-02-27 2014-09-08 Ebara Refrigeration Equipment & Systems Co Ltd Turbo refrigerator
JP2016044960A (en) * 2014-08-21 2016-04-04 ヤマト科学株式会社 Cooling system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05180517A (en) * 1992-01-06 1993-07-23 Hitachi Ltd Freezing cycle controlling method in thermo-hygrostate, controlling device and thermo-hygrostate
JP2013253734A (en) * 2012-06-07 2013-12-19 Hitachi Appliances Inc Refrigeration cycle device
JP2014163624A (en) * 2013-02-27 2014-09-08 Ebara Refrigeration Equipment & Systems Co Ltd Turbo refrigerator
JP2016044960A (en) * 2014-08-21 2016-04-04 ヤマト科学株式会社 Cooling system

Similar Documents

Publication Publication Date Title
AU2005277189B2 (en) Compressor loading control
US5425246A (en) Refrigerant flow rate control based on evaporator dryness
JPH03225161A (en) Liquid injection device of freezing cycle in thermostatic device
JP3356386B2 (en) Environmental test equipment using refrigerant switching type refrigerator
JPH04251164A (en) Freezing cycle device
JPS6350628B2 (en)
JP3348465B2 (en) Binary refrigeration equipment
JP3021987B2 (en) Refrigeration equipment
JPH0534578B2 (en)
US6499307B1 (en) Refrigeration system incorporating simplified valve arrangement
JPH01123966A (en) Refrigerator
JPH09210480A (en) Two-stage compression type refrigerating apparatus
JPS63129286A (en) Refrigerator
JPS6222396B2 (en)
JPH04327762A (en) Freezing cycle in thermostatic device
JPS6350629B2 (en)
JPS63259353A (en) Refrigerator
JPH02176363A (en) Heat pump device
JPS61159072A (en) Refrigerator
JPH03274361A (en) Refrigerating plant
JPH0428958A (en) Operation control device for freezer
JPH03152349A (en) Freezer device
JPH07151467A (en) Cold air dryer
JPS61208473A (en) Refrigeration cycle device
JPS5844184B2 (en) Refrigeration equipment