JPS61208473A - Refrigeration cycle device - Google Patents

Refrigeration cycle device

Info

Publication number
JPS61208473A
JPS61208473A JP5087885A JP5087885A JPS61208473A JP S61208473 A JPS61208473 A JP S61208473A JP 5087885 A JP5087885 A JP 5087885A JP 5087885 A JP5087885 A JP 5087885A JP S61208473 A JPS61208473 A JP S61208473A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
evaporator
refrigeration cycle
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5087885A
Other languages
Japanese (ja)
Inventor
永治 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5087885A priority Critical patent/JPS61208473A/en
Publication of JPS61208473A publication Critical patent/JPS61208473A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、能力可変圧縮機、凝縮器、および複数個の
蒸発器の並列体などを順次連通してなる冷凍サイクルを
備えたマルチタイプの冷凍サイクル装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a multi-type refrigeration system equipped with a refrigeration cycle in which a variable capacity compressor, a condenser, a plurality of parallel evaporators, etc. are connected in sequence. Related to cycle equipment.

〔発明の技術的背景〕[Technical background of the invention]

一般に、生鮮食品を扱う商店では、商品の陳列にショー
ケースを用いる。
Generally, stores that sell fresh foods use showcases to display their products.

このようなショーケースとしては、被冷却空間つまり冷
却室を複数備え、その冷却室ごとに冷却器(蒸発器)を
設けるようにしたものがある。第3図はこのようなショ
ーケースに搭載される冷凍サイクル装置の一例である。
Some such showcases include a plurality of spaces to be cooled, that is, cooling chambers, and each cooling chamber is provided with a cooler (evaporator). FIG. 3 shows an example of a refrigeration cycle device mounted on such a showcase.

第3因において、1は能力可変圧縮機で、この能力可変
圧縮機1.凝縮器2.リキッドタンク3゜電磁開閉弁1
1.膨張弁12.″a縮器13.およびアキュームレー
タ4などを順次連通するとともに、電磁開閉弁11.膨
張弁12.蒸発器13の直列体に対して、電磁開閉弁2
1.膨張弁22゜蒸発器23の直列体および電11開閉
弁31.膨張弁32.蒸発器33の直列体をそれぞれ並
列に連通し、冷凍サイクルを構成している。
In the third factor, 1 is a variable capacity compressor, and this variable capacity compressor 1. Condenser 2. Liquid tank 3゜Solenoid shut-off valve 1
1. Expansion valve 12. ``A compressor 13., accumulator 4, etc. are connected in sequence, and the electromagnetic on-off valve 2 is connected to the series body of the electromagnetic on-off valve 11.expansion valve 12.evaporator 13.
1. Expansion valve 22. Evaporator 23 in series and electric switch 11 on/off valve 31. Expansion valve 32. The series bodies of the evaporators 33 are connected in parallel to form a refrigeration cycle.

蒸発器13,23.33は各冷却室に設けるようになっ
ており、その各冷却室内には温度センサ14.24.3
4を設けている。そして、電磁開閉弁11.21.31
を温度センサ14.24゜34の検知温度に応じてオン
、オフ(開放、開成)するようになっている。また、蒸
発器13.23゜33の冷媒出口側配管に膨張弁12.
22.32の感温筒12a、22a、32aを取付けて
いる。
The evaporators 13, 23.33 are arranged in each cooling chamber, and a temperature sensor 14.24.3 is installed in each cooling chamber.
There are 4. And solenoid on/off valve 11.21.31
is turned on and off (opened, opened) according to the temperature detected by the temperature sensor 14.24°34. In addition, an expansion valve 12. is installed on the refrigerant outlet side pipe of the evaporator 13.
22.32 temperature sensing cylinders 12a, 22a, 32a are installed.

さらに、サクションラインに圧力センサ5を取付け、こ
の圧力センサ5の検知結果をインバータ駆動制御回路6
に供給するようにしている。このインバータ駆動制御回
路6は、圧力センサ5の検知結果に応じてインバータ回
路7の出力周波数を制御するものである。インバータ回
路7は、インバータ駆動制御回路6の制御に応じた周波
数(および電圧)の交流電力を圧縮機1の駆動モータに
供給するものである。
Furthermore, a pressure sensor 5 is attached to the suction line, and the detection results of this pressure sensor 5 are sent to the inverter drive control circuit 6.
We are trying to supply it to This inverter drive control circuit 6 controls the output frequency of the inverter circuit 7 according to the detection result of the pressure sensor 5. The inverter circuit 7 supplies the drive motor of the compressor 1 with AC power having a frequency (and voltage) according to the control of the inverter drive control circuit 6 .

すなわち、第4図に示すように、各冷却室内の温度が設
定値以上であれば電磁開閉弁11.21゜31が共にオ
ン(開放)し、圧縮機1から吐出されて凝縮器2を経た
冷媒が膨張弁12.22゜32を通して蒸発器13.2
3.33に流入する。
That is, as shown in FIG. 4, if the temperature in each cooling chamber is above the set value, both the electromagnetic on-off valves 11, 21 and 31 are turned on (opened), and the air is discharged from the compressor 1 and passed through the condenser 2. The refrigerant passes through the expansion valve 12.22°32 to the evaporator 13.2.
It flows into 3.33.

こうして、蒸発器13.23.33おける冷媒の蒸発作
用により、各冷却室が冷却される。この場合、負荷が大
きければサクション圧力Psが上昇し、逆に負荷が小さ
ければサクション圧力PSが下降し、それに伴ってイン
バータ回路7の出力周波数(以下、運転周波数Fと称す
)が変化する。
In this way, each cooling chamber is cooled by the evaporation action of the refrigerant in the evaporator 13, 23, 33. In this case, if the load is large, the suction pressure Ps increases, and conversely, if the load is small, the suction pressure PS decreases, and the output frequency of the inverter circuit 7 (hereinafter referred to as operating frequency F) changes accordingly.

つまり、圧縮機1の能力が変化する。また、圧縮機1の
能力が変化すると蒸発器13.23.33における冷媒
過熱度(スーパヒート量)がそれぞれ変化しようとする
が、膨張弁12,22.32の開度変化によって冷媒過
熱度の一定制御を行なう。そして、たとえば蒸発器13
が設けられている冷却室内の温度が設定値よりもd℃低
い値まで低下すると、電磁開閉弁11がオフ(閉成)し
て蒸発器13に冷媒が流入しなくなり、その室の冷却運
転が中断する。以後、電磁開閉弁11,21゜31のオ
ン、オフによって温度調節を行なう。
In other words, the capacity of the compressor 1 changes. Furthermore, when the capacity of the compressor 1 changes, the degree of superheating (amount of superheat) of the refrigerant in the evaporator 13, 23, 33 tends to change, but the degree of superheating of the refrigerant remains constant due to the change in the opening of the expansion valves 12, 22, 32. control. For example, the evaporator 13
When the temperature in the cooling chamber in which the evaporator is installed falls to a value d°C lower than the set value, the electromagnetic on-off valve 11 is turned off (closed) and no refrigerant flows into the evaporator 13, and the cooling operation of that chamber is stopped. Interrupt. Thereafter, the temperature is adjusted by turning on and off the electromagnetic on-off valves 11, 21 and 31.

〔背景技術の問題点〕[Problems with background technology]

ただし、このような電磁開閉弁11.21゜31のオン
、オフによる温度調節では、設定値に対する変動が大き
いという欠点があった。特に、ある冷却室において負荷
変動が生じると他の冷却室においては自身の負荷にかか
わらず圧縮機1の能力が変化することになり、このとき
電磁開閉弁のオン、オフでは能力変化にうまく対処する
ことができず、大きな温度変化となって現われてしまう
However, temperature control by turning on and off the electromagnetic on-off valves 11, 21, 31 has a disadvantage in that there is a large variation with respect to the set value. In particular, when a load change occurs in one cooling room, the capacity of the compressor 1 changes in other cooling rooms regardless of their own loads, and at this time, turning on and off the electromagnetic on-off valve effectively deals with the change in capacity. This results in large temperature changes.

〔発明の目的〕[Purpose of the invention]

この発明は上記のような事情に鑑みてなされたもので、
その目的とするところは、負荷の変動にかかわらず各冷
却空間の温度を略一定に維持することができる信頼性に
すぐれた冷凍サイクル装置を提供することにある。
This invention was made in view of the above circumstances,
The purpose is to provide a highly reliable refrigeration cycle device that can maintain the temperature of each cooling space substantially constant regardless of changes in load.

〔発明の概要〕[Summary of the invention]

この発明は、各蒸発器が設けられた被冷却空間の温度を
それぞれ検知する温度センサを設け、かつ各蒸発器への
冷媒流量を制御する冷媒流量制御弁を設け、これら冷媒
流量制御弁の開度を上記各温度センサの検知温度に応じ
て制御するとともに、各蒸発器による全体の冷媒過熱度
を検出する手段を設け、この検出結果に応じて能力可変
圧縮様の能力を制御する手段を設けたものである。
This invention provides a temperature sensor that detects the temperature of a space to be cooled in which each evaporator is installed, and a refrigerant flow control valve that controls the flow rate of refrigerant to each evaporator. In addition to controlling the degree of superheating according to the temperature detected by each of the above-mentioned temperature sensors, there is also a means for detecting the overall degree of superheating of the refrigerant by each evaporator, and a means for controlling the capacity of variable capacity compression according to the detection result. It is something that

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例について図面を参照して説明
する。ただし、図面において第3図と同一部分には同一
符号を付し、その詳細な説明は省略する。
An embodiment of the present invention will be described below with reference to the drawings. However, in the drawings, the same parts as in FIG. 3 are given the same reference numerals, and detailed explanation thereof will be omitted.

第1図に示すように、蒸発器13.23.33の冷媒流
入側において、従来の電磁開閉弁11゜21.31およ
び膨張弁12.22.32に代えて冷媒流量制御弁15
.25.35を設ける。これら冷媒流量制御弁は、開度
が連続的に変化し得るもので、凝縮器2と各蒸発器との
間の減圧装置としても働くものである。そして、温度セ
ンサ14.24.34に開度制圓器16.26.36を
接続し、これら開度制御器に上記冷媒流量制御弁15.
25.35のそれぞれ駆動モータを接続する。ここで、
開度制御器16,26.36は、温度センサ14,24
.34の検知温度に応じて冷媒流量制御弁15.25.
35の開度をそれぞれ制御するものである。
As shown in FIG. 1, on the refrigerant inflow side of the evaporator 13.23.33, a refrigerant flow control valve 15 is installed in place of the conventional electromagnetic on-off valve 11.21.31 and expansion valve 12.22.32.
.. 25.35 shall be provided. These refrigerant flow rate control valves can change their opening degree continuously, and also function as a pressure reducing device between the condenser 2 and each evaporator. Opening limiters 16, 26, and 36 are connected to the temperature sensors 14, 24, and 34, and these opening controllers are connected to the refrigerant flow rate control valves 15.
25. Connect the respective drive motors of 35. here,
The opening controllers 16, 26.36 are temperature sensors 14, 24.
.. Depending on the detected temperature of 34, the refrigerant flow control valve 15.25.
35, respectively.

また、リキッドタンク3とサクションラインとの間にキ
ャピラリチューブ8を介して管路を設け、この管路に温
度センサ9を取付ける。さらに、蒸発器13.23.3
3の冷媒出口側管路に温度センサ10を取付ける。そし
て、これら温度センサ9.10の検知温度情報をインバ
ータ駆動制御回路60に供給するようにしている。この
インバータ駆動制御回路60は、温度センサ9,10の
検知温度に基づき、各蒸発器による全体の冷媒過熱度を
検出し、この検出した冷媒過熱度に応じてインバータ回
路7の出力周波数つまり能力可変圧縮機1の運転周波数
Fを制御するものである。
Further, a conduit is provided between the liquid tank 3 and the suction line via a capillary tube 8, and a temperature sensor 9 is attached to this conduit. Additionally, the evaporator 13.23.3
A temperature sensor 10 is attached to the refrigerant outlet side conduit of No. 3. The temperature information detected by these temperature sensors 9 and 10 is supplied to the inverter drive control circuit 60. The inverter drive control circuit 60 detects the overall degree of superheating of the refrigerant in each evaporator based on the temperatures detected by the temperature sensors 9 and 10, and changes the output frequency, that is, the capacity, of the inverter circuit 7 according to the detected degree of refrigerant superheating. This controls the operating frequency F of the compressor 1.

つぎに、上記のような構成において第2図のフローチャ
ートを参照しながら動作を説明する。
Next, the operation of the above-described configuration will be explained with reference to the flowchart shown in FIG.

能力可変圧縮機1を起動すると、その能力可変圧縮機1
の吐出冷媒が凝縮器2を経た侵、冷媒流量制御弁15.
25.35を通って蒸発器13゜23.33に流入する
。こうして、各冷却室の冷却が行なわれる。
When the variable capacity compressor 1 is started, the variable capacity compressor 1
When the discharged refrigerant passes through the condenser 2, the refrigerant flow control valve 15.
25.35 into the evaporator 13°23.33. In this way, each cooling chamber is cooled.

しかして、いま、冷媒流量制御弁15.25゜35の開
度および圧縮機1の能力がそれぞれ最適な値となって冷
凍サイクルが安定運転しているものとする。
Therefore, it is now assumed that the opening degree of the refrigerant flow rate control valve 15.25°35 and the capacity of the compressor 1 are each at their optimum values, and the refrigeration cycle is operating stably.

この状態において、蒸発器13の冷却室でたとえば扉の
開放がなされると、負荷の増大となり、冷却室の温度T
aが上昇するとともに、蒸発器13における冷媒が蒸発
し易くなって冷媒過熱度が大きくなる。このとき、温度
センサ14が温度Taを検知しており、温度Taが設定
値TSよりも高ければ開度制御器16が冷媒流量制御弁
15の開度を増大せしめる。冷媒流量制御弁15の開度
が増大すると、蒸発器13への冷媒流量が増え、冷却能
力が増える。こうして、冷却能力が増えると、温度Ta
の上昇を抑えることができ、しかも冷媒過熱度の増大を
抑えることができる。
In this state, if the door of the cooling chamber of the evaporator 13 is opened, for example, the load increases and the temperature of the cooling chamber T
As a increases, the refrigerant in the evaporator 13 becomes easier to evaporate, and the degree of refrigerant superheating increases. At this time, the temperature sensor 14 detects the temperature Ta, and if the temperature Ta is higher than the set value TS, the opening controller 16 increases the opening of the refrigerant flow rate control valve 15. When the opening degree of the refrigerant flow control valve 15 increases, the refrigerant flow rate to the evaporator 13 increases, and the cooling capacity increases. In this way, when the cooling capacity increases, the temperature Ta
It is possible to suppress an increase in the temperature of the refrigerant, and furthermore, it is possible to suppress an increase in the degree of superheating of the refrigerant.

ただし、このような開度調節によっても冷却不足で負荷
に対応できない場合がある。この場合、冷媒過熱度がま
だ大きく、これに対処してインバータ駆動制御回路60
が次の制御を行なう。すなわち、インバータ駆動制御回
路60は、温度センサ9の検知温度(飽和温度)Tsa
tと温度センサ10の検知温度(サクション温度)To
とで全体の冷媒過熱度SH(−To−Tset )を算
出しており、冷媒過熱度SHが設定値SHsよりも大き
ければ圧縮機1の運転周波数Fを上昇せしめる(冷媒過
熱度SHが設定値SH8よりも小さければ圧縮機1の運
転周波数Fを下降せしめる)。しかして、運転周波数F
が上昇すれば、圧縮機1の能力が高まって冷媒循環量が
増え、上記流量制御弁15の開度増大と合わせて冷却能
力が増大する。
However, even with such opening adjustment, there may be cases where the cooling is insufficient and it is not possible to cope with the load. In this case, the degree of superheating of the refrigerant is still large, and in order to cope with this, the inverter drive control circuit 60
performs the following control. That is, the inverter drive control circuit 60 controls the temperature detected by the temperature sensor 9 (saturation temperature) Tsa
t and the detected temperature (suction temperature) To of the temperature sensor 10
The overall degree of refrigerant superheating SH (-To-Tset) is calculated by If it is smaller than SH8, the operating frequency F of the compressor 1 is lowered). However, the operating frequency F
If the amount increases, the capacity of the compressor 1 increases, the amount of refrigerant circulated increases, and together with the increase in the opening of the flow rate control valve 15, the cooling capacity increases.

しかも、冷媒過熱度が安定化する。Moreover, the degree of superheating of the refrigerant is stabilized.

このように、負荷の変動に応じて冷媒流量制御弁の開度
を調節し、蒸発器への冷媒流量を制御するとともに、全
体の冷媒過熱度に応じて圧縮機1の能力を制御するよう
にしたので、冷凍サイクルのバランスを保ちながら各冷
却室の温度を略一定に維持することかできる。しかも、
1個の蒸発器に対して1個の弁を設けるだけでよく(従
来は1個の蒸発器に対して2個必要)、冷凍サイクルの
構成が簡略化するとともに、コストの低減が図れる。
In this way, the opening degree of the refrigerant flow control valve is adjusted according to load fluctuations to control the refrigerant flow rate to the evaporator, and the capacity of the compressor 1 is controlled according to the overall degree of refrigerant superheating. Therefore, the temperature of each cooling chamber can be maintained approximately constant while maintaining the balance of the refrigeration cycle. Moreover,
Only one valve is required for one evaporator (conventionally, two valves are required for one evaporator), which simplifies the configuration of the refrigeration cycle and reduces costs.

なお、上記実施例では、冷媒過熱度を2つの温度センサ
を用いて検出するようにしたが、サクション温度とサク
ション圧力から検出するようにしてもよい。その他、こ
の発明は上記実施例に限定されるものではなく、要旨を
変えない範囲で種々以上述べたようにこの発明によれば
、各蒸発器が設けられた被冷却空間の温度をそれぞれ検
知する温度センサを設け、かつ各蒸発器への冷媒流量を
制御する冷媒流量制御弁を設け、これら冷媒流量制御弁
の開度を上記各温度センサの検知温度に応じて制御する
とともに、各蒸発器による全体の冷媒過熱度を検出する
手段を設け、この検出結果に応じて能力可変圧縮機の能
力を制御する手段を設けたので、負荷の変動にかかわら
ず各冷却空間の温度を略一定に維持することができる信
頼性にすぐれた冷凍サイクル装置を提供できる。
In the above embodiment, the refrigerant superheat degree is detected using two temperature sensors, but it may be detected from the suction temperature and suction pressure. In addition, the present invention is not limited to the embodiments described above, and as described above without changing the gist, according to the present invention, the temperature of the space to be cooled in which each evaporator is installed is detected. A temperature sensor is provided, and a refrigerant flow control valve is provided to control the refrigerant flow rate to each evaporator. A means for detecting the overall refrigerant superheat degree is provided, and a means for controlling the capacity of the variable capacity compressor according to the detection result is provided, so the temperature of each cooling space can be maintained approximately constant regardless of load fluctuations. It is possible to provide a refrigeration cycle device with excellent reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の全体的な構成を示す図、
第2図は同実施例の動作を説明するためのフローチャー
ト、第3図は従来装置の全体的な構成を示す図、第4図
は従来装置の動作を説明するための図である。 1・・・能力可変圧縮機、2・・・凝縮器、13.23
.33・・・蒸発器、 14.24.34・・・温度センサ、 15.25.35・・・冷媒流量制御弁、16.26.
36・・・開度制御器、60・・・インバータ駆動制御
回路。 出願人代理人 弁理士 鈴江武彦 第2図
FIG. 1 is a diagram showing the overall configuration of an embodiment of the present invention;
FIG. 2 is a flowchart for explaining the operation of the same embodiment, FIG. 3 is a diagram showing the overall configuration of the conventional device, and FIG. 4 is a diagram for explaining the operation of the conventional device. 1... variable capacity compressor, 2... condenser, 13.23
.. 33... Evaporator, 14.24.34... Temperature sensor, 15.25.35... Refrigerant flow rate control valve, 16.26.
36... Opening controller, 60... Inverter drive control circuit. Applicant's agent Patent attorney Takehiko Suzue Figure 2

Claims (1)

【特許請求の範囲】[Claims] 能力可変圧縮機、凝縮器、および複数個の蒸発器の並列
体などを順次連通してなる冷凍サイクルを備えた冷凍サ
イクル装置において、前記各蒸発器が設けられる被冷却
空間の温度をそれぞれ検知する温度センサと、前記各蒸
発器への冷媒流量を制御する冷媒流量制御弁と、各蒸発
器による全体の冷媒過熱度を検出する手段と、この検出
結果に応じて前記能力可変圧縮機の能力を制御する手段
とを具備したことを特徴とする冷凍サイクル装置。
In a refrigeration cycle device including a refrigeration cycle formed by sequentially communicating a variable capacity compressor, a condenser, and a plurality of parallel evaporators, the temperature of a space to be cooled in which each of the evaporators is installed is detected. a temperature sensor, a refrigerant flow control valve for controlling the flow rate of refrigerant to each of the evaporators, means for detecting the overall degree of superheating of the refrigerant by each evaporator, and adjusting the capacity of the variable capacity compressor according to the detection result. A refrigeration cycle device characterized by comprising: means for controlling.
JP5087885A 1985-03-14 1985-03-14 Refrigeration cycle device Pending JPS61208473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5087885A JPS61208473A (en) 1985-03-14 1985-03-14 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5087885A JPS61208473A (en) 1985-03-14 1985-03-14 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
JPS61208473A true JPS61208473A (en) 1986-09-16

Family

ID=12870979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5087885A Pending JPS61208473A (en) 1985-03-14 1985-03-14 Refrigeration cycle device

Country Status (1)

Country Link
JP (1) JPS61208473A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03191265A (en) * 1989-12-19 1991-08-21 Mitsubishi Electric Corp Multiroom separation type air conditioning apparatus
JP2007033002A (en) * 2005-07-29 2007-02-08 Sanden Corp Showcase cooler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03191265A (en) * 1989-12-19 1991-08-21 Mitsubishi Electric Corp Multiroom separation type air conditioning apparatus
JP2007033002A (en) * 2005-07-29 2007-02-08 Sanden Corp Showcase cooler

Similar Documents

Publication Publication Date Title
EP2737265B1 (en) Temperature control logic for refrigeration system
EP2147264B1 (en) Refrigerant vapor compression system
EP2737264B1 (en) Startup logic for refrigeration system
US20120011866A1 (en) Refrigerant vapor compression system with hot gas bypass
JPS6334459A (en) Air conditioner
US5157943A (en) Refrigeration system including capillary tube/suction line heat transfer
CN107490090A (en) Air conditioner
JP2001280669A (en) Refrigerating cycle device
US6758053B2 (en) Cooling apparatus
JPH04251164A (en) Freezing cycle device
JPH10103834A (en) Refrigerator
EP0485147A1 (en) Refrigeration system
JPS61208473A (en) Refrigeration cycle device
JPH0534578B2 (en)
JP3021987B2 (en) Refrigeration equipment
JPH06294551A (en) Airconditioning apparatus
JPS61173060A (en) Refrigeration cycle device
JPS62116862A (en) Refrigerator
JPH04288453A (en) Freezing cycle device
JP2003042582A (en) Freezing cycle device
KR19980083062A (en) Integrated refrigeration unit of air conditioner and refrigerator
JPS63129286A (en) Refrigerator
JPH03225161A (en) Liquid injection device of freezing cycle in thermostatic device
JPS60114669A (en) Air conditioner
JP2006153406A (en) Cooling system, and showcase cooling device