JPH06313644A - Controlling method for very low temperature refrigerating plant - Google Patents
Controlling method for very low temperature refrigerating plantInfo
- Publication number
- JPH06313644A JPH06313644A JP10301193A JP10301193A JPH06313644A JP H06313644 A JPH06313644 A JP H06313644A JP 10301193 A JP10301193 A JP 10301193A JP 10301193 A JP10301193 A JP 10301193A JP H06313644 A JPH06313644 A JP H06313644A
- Authority
- JP
- Japan
- Prior art keywords
- oil
- air
- cooling
- heat exchanger
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、加圧ガス体を冷却媒体
として膨張冷却を行う極低温冷凍装置に関する技術であ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cryogenic refrigeration system for expanding and cooling a pressurized gas body as a cooling medium.
【0002】[0002]
【従来の技術】この種の装置は、図4に例示した極低温
冷凍装置500のように、圧縮部100で加圧した冷媒
体、例えばヘリウムを極低温冷却部200に送って所要
の冷却を行った後、圧縮部100に戻し、再び加圧して
極低温冷却部200に送ると云う循環を行うと共に、圧
縮部100における種々の動作を円滑安定に行うための
調整部300を設けた構成になっている。2. Description of the Related Art In this type of apparatus, like a cryogenic refrigerating apparatus 500 shown in FIG. 4, a refrigerant body pressurized in a compression section 100, such as helium, is sent to a cryogenic cooling section 200 to perform required cooling. After the operation, it is returned to the compression unit 100, and is circulated such that it is pressurized again and sent to the cryogenic cooling unit 200, and an adjustment unit 300 for smoothly and stably performing various operations in the compression unit 100 is provided. Has become.
【0003】具体的に説明すると、圧縮機11により所
定のガス体、例えばヘリウムガスを冷媒体として用いて
加圧し、第2熱交換器12Bで圧縮による温度上昇分を
冷却した後、オイルセパレータ13に与えて加圧の際に
用いたオイル分を分流し、オイル分は後記する経路を介
して圧縮機11に戻し、冷却後の冷媒体をアドソーバ1
4に与える。アドソーバ14は、内部に活性炭などの吸
収剤を収納したものであり、オイルセパレータ13で分
流しきれなかった細かいオイル分を吸収分離して、冷媒
体のみを往路管21に送出する。More specifically, the compressor 11 pressurizes a predetermined gas body, for example, helium gas, as a refrigerant body, and the second heat exchanger 12B cools the temperature increase due to the compression, and then the oil separator 13 is used. The oil component used for pressurization is diverted, the oil component is returned to the compressor 11 via a path described later, and the cooled refrigerant body is fed to the adsorber 1
Give to 4. The adsorber 14 contains an absorbent such as activated carbon inside, and absorbs and separates a fine oil component that could not be split by the oil separator 13 and sends only the refrigerant body to the outward pipe 21.
【0004】冷媒体は、供給弁22を介してクライオポ
ンプなどからなる極低温冷却機23で所要の冷却作用を
果した後、排出弁24・復路管25を経由してアキュム
レータ15に流入し、ここに一時的に貯溜されて、再び
圧縮機11で加圧されると云う循環経路を辿る。The refrigerant body performs a required cooling action through a cryogenic cooler 23 such as a cryopump via a supply valve 22, and then flows into an accumulator 15 via a discharge valve 24 and a return pipe 25. The circulation path of being temporarily stored here and being again pressurized by the compressor 11 is followed.
【0005】圧縮機11内での圧縮時に、オイルと冷媒
体の混合流体に生ずる発熱分を、第1熱交換器12Cに
おいて冷却する。The heat generated in the mixed fluid of oil and refrigerant at the time of compression in the compressor 11 is cooled in the first heat exchanger 12C.
【0006】調整部300は、オイルセパレータ13の
オイル出口側と復路管25との間を側路する側路管31
の途中に設けた差圧弁32と均圧弁33とによって所要
の圧力調節を行うことにより、極低温冷却機23または
圧縮機11に対する不要な高圧などを側路して極低温冷
却機23と圧縮機11との異常運転を防止する調整動作
と、オイルセパレータ13で分離したオイル分を圧縮機
11に戻す側路管34に、キャピラリーチューブなどか
らなる減圧器35を設けて減圧する調整動作と、圧縮機
11内のオイルをオイル熱交換器12Aで冷却して再び
圧縮機11に戻すためのオイル戻り経路36に、キャピ
ラリーチューブなどからなる減圧器37を設けて減圧す
る調整動作と、を行うものである。The adjusting portion 300 is provided with a bypass pipe 31 that bypasses between the oil outlet side of the oil separator 13 and the return pipe 25.
By adjusting the required pressure with the differential pressure valve 32 and the pressure equalizing valve 33 provided in the middle of the path, unnecessary high pressure or the like to the cryogenic cooler 23 or the compressor 11 is bypassed and the cryogenic cooler 23 and the compressor are bypassed. 11, an adjusting operation for preventing abnormal operation, and an adjusting operation for reducing the pressure by providing a pressure reducer 35 including a capillary tube on the bypass pipe 34 for returning the oil component separated by the oil separator 13 to the compressor 11, The oil return path 36 for cooling the oil in the machine 11 by the oil heat exchanger 12A and returning it to the compressor 11 again is provided with a decompressor 37 composed of a capillary tube or the like to perform an adjusting operation for decompressing. is there.
【0007】なお、第1熱交換器12Cは前記したよう
に冷媒体とオイルとの混合流体を冷却するための熱交換
器であり、冷媒体の圧縮熱の大半を冷却する。また、第
2熱交換器12Bは主として冷媒体を冷却するための熱
交換器であり、圧縮機11の動作部分、例えばモータ部
の発熱と、圧縮熱の熱伝導部分とを冷却する。また、オ
イル熱交換器12Aは主にオイルを冷却するための熱交
換器であり、圧縮機11内のオイルを冷却し、冷媒体の
圧縮過程における発熱を抑えるものである。The first heat exchanger 12C is a heat exchanger for cooling the mixed fluid of the refrigerant body and oil as described above, and cools most of the compression heat of the refrigerant body. The second heat exchanger 12B is a heat exchanger mainly for cooling the refrigerant body, and cools the operation part of the compressor 11, for example, the heat generation of the motor part and the heat conduction part of the compression heat. The oil heat exchanger 12A is a heat exchanger mainly for cooling the oil, and cools the oil in the compressor 11 to suppress heat generation in the compression process of the refrigerant body.
【0008】そして、これら第1熱交換器12C・第2
熱交換器12B・オイル熱交換器12Aに、冷却ファン
16を用いて相対的に冷たい空気(外気)を冷却用空気
として送風し、熱交換効率の改善を図っている。The first heat exchanger 12C and the second heat exchanger 12C
The cooling fan 16 is used to blow relatively cool air (outside air) as cooling air to the heat exchanger 12B and the oil heat exchanger 12A to improve heat exchange efficiency.
【0009】しかし、上記構成の極低温冷凍装置500
は、しばしば空気の清浄な高地に建てられた例えば天文
台の観測機器に設けられることがあり、そのような高緯
度の寒冷地に設置する場合には、冬期に氷点下になるこ
とも珍しいことではない。However, the cryogenic refrigerator 500 having the above-mentioned structure
Is often installed in observatory equipment, such as an observatory, which is built in a high-altitude area where air is clean, and when installed in a cold area at such high latitudes, it is not uncommon to have a freezing point in winter.
【0010】したがって、特開昭3−217763号公
報などに開示されている、オイル熱交換器12Aを水冷
する方式の極低温冷凍装置が、冷却水の凝固により使用
できないのはもちろん、図4に示したオイル熱交換器1
2Aを空冷する極低温冷凍装置500であっても、外気
温度が低くなると、冷却ファン16で冷却したオイルの
温度が低下し過ぎて粘性が増し、これによりオイル循環
に支障を来し、正常な運転が出来なくなると云った問題
点があった。Therefore, the cryogenic refrigerating apparatus of the type which cools the oil heat exchanger 12A with water, which is disclosed in Japanese Patent Laid-Open No. 3-217763, cannot be used due to the solidification of the cooling water. Shown oil heat exchanger 1
Even in the cryogenic refrigeration apparatus 500 that air-cools 2A, when the outside air temperature becomes low, the temperature of the oil cooled by the cooling fan 16 falls too much and the viscosity increases, which hinders the oil circulation and causes normal operation. There was a problem that I could not drive.
【0011】このため、例えば図5に例示したように、
圧縮機11の外表面に加熱手段としての電熱ヒータ41
を設置すると共に、温度センサ51を設けて圧縮機11
の温度を計測し、コントローラ61によって電熱ヒータ
41への通電を制御し、圧縮機11の温度が所定温度
(例えば、0℃)以下に低下しないように工夫した、極
低温冷凍装置500Dがある。Therefore, for example, as illustrated in FIG.
An electric heater 41 as a heating means is provided on the outer surface of the compressor 11.
And the temperature sensor 51 is installed,
There is a cryogenic refrigeration system 500D in which the controller 61 controls the energization of the electric heater 41 to prevent the temperature of the compressor 11 from falling below a predetermined temperature (for example, 0 ° C.).
【0012】[0012]
【発明が解決しようとする課題】しかし、上記構成の極
低温冷凍装置500Dにおいては、電熱ヒータ41が折
角暖めた圧縮機11のオイルは、冷却ファン16が送風
して冷却するオイル熱交換器12Aにおいて冷却される
ので、オイル熱交換器12A出口部の温度は外気温度に
より大きく左右される。このため、例えば寒冷地におけ
る冬期などで外気温度が低くなり過ぎると、オイル熱交
換器12A・オイル戻り経路36においてオイルの温度
が下がり過ぎ、粘性が増してオイルの循環量不足を来
し、圧縮機11の安定した運転を継続することができな
くなることがあった。However, in the cryogenic refrigerating apparatus 500D having the above-mentioned structure, the oil of the compressor 11, which is heated by the electric heater 41, is cooled by the cooling fan 16 blowing air. The temperature at the outlet of the oil heat exchanger 12A greatly depends on the outside air temperature. Therefore, if the outside air temperature becomes too low, for example, in winter in a cold region, the temperature of the oil in the oil heat exchanger 12A / oil return path 36 becomes too low, the viscosity increases, and the amount of oil circulation becomes insufficient, resulting in compression. In some cases, stable operation of the aircraft 11 could not be continued.
【0013】また、外気の温度がそれほど低下していな
い時にも、メンテナンスを行う時などでは長時間に渡っ
て運転を停止させることになり、これにより圧縮機11
・オイル熱交換器12A・オイル戻り経路36などの温
度が下がってしまうため、再起動するためのウォーミン
グアップに長い時間を要するようになり、再起動した後
もオイル熱交換器12A・オイル戻り経路36が十分暖
められるまではオイル温度が低く、十分な量のオイル循
環が確保されないことから、圧縮機11が苛酷な条件下
で運転され、装置寿命を縮めると云った問題点もあり、
この点の解決が課題となっていた。Further, even when the temperature of the outside air has not dropped so much, the operation is stopped for a long time at the time of maintenance, etc., whereby the compressor 11 is stopped.
Since the temperature of the oil heat exchanger 12A / oil return path 36 and the like is lowered, it takes a long time to warm up for restarting, and the oil heat exchanger 12A / oil return path 36 is restarted after restarting. Since the oil temperature is low and a sufficient amount of oil circulation is not ensured until is sufficiently warmed, there is also a problem that the compressor 11 is operated under severe conditions and the life of the device is shortened.
The solution to this point was an issue.
【0014】[0014]
【課題を解決するための手段】本発明は、上記従来技術
の課題を解決するため、オイルを介在させて冷媒体を加
圧する圧縮部を備え、この圧縮部で加圧した冷媒体を極
低温冷却部に供給して所要の極低温冷却を行うと共に、
圧縮部にオイルを冷却するための空冷式オイル熱交換器
と、この空冷式オイル熱交換器に冷却用空気を送風する
冷却ファンとを設け、且つこの空冷式オイル熱交換器か
ら前記加圧を行う部分に至るオイル戻り経路にオイル加
熱手段を設け、さらにこの空冷式オイル熱交換器のオイ
ル入口側とオイル出口側とを連通する側路管を設けた極
低温冷凍装置において、In order to solve the above-mentioned problems of the prior art, the present invention comprises a compression section for pressurizing a refrigerant body with an oil interposed, and the refrigerant body pressurized by this compression section is cryogenically cooled. While supplying it to the cooling unit to perform the required cryogenic cooling,
An air-cooled oil heat exchanger for cooling the oil in the compression section and a cooling fan for blowing cooling air to the air-cooled oil heat exchanger are provided, and the pressure is applied from the air-cooled oil heat exchanger. In a cryogenic refrigeration system provided with an oil heating means in the oil return path to the part to be performed, and further provided with a bypass pipe communicating the oil inlet side and the oil outlet side of this air-cooled oil heat exchanger,
【0015】前記冷却用空気の温度低下に伴って、前記
空冷式オイル熱交換器を側路して前記側路管に流れるオ
イル量を増加し、且つ前記オイル加熱手段を起動して加
熱量を増加させることを特徴とする極低温冷凍装置の制
御方法であり、As the temperature of the cooling air decreases, the amount of oil flowing through the air-cooled oil heat exchanger to the bypass pipe is increased, and the oil heating means is activated to increase the heating amount. It is a control method of a cryogenic refrigerator characterized by increasing the
【0016】前記冷却用空気が所定温度以下に下がった
時、循環オイル全量を前記空冷式オイル熱交換器を側路
して前記側路管に流し、且つ前記オイル加熱手段を起動
することを特徴とする極低温冷凍装置の制御方法であ
り、When the cooling air falls below a predetermined temperature, all the circulating oil flows through the air-cooled oil heat exchanger to the bypass pipe, and the oil heating means is activated. It is a control method of the cryogenic refrigerating device to
【0017】前記冷却用空気または前記空冷式オイル熱
交換器のオイル出口側を臨むオイル戻り経路の温度低下
に伴って、前記側路管に流れるオイル量を制御し、且つ
前記加熱手段の設置部より下流側の前記オイル戻り経路
の温度低下に伴って前記加熱手段を起動することを特徴
とする極低温冷凍装置の制御方法である。The amount of oil flowing to the bypass pipe is controlled in accordance with a decrease in temperature of the cooling air or the oil return path facing the oil outlet side of the air-cooled oil heat exchanger, and the heating means installation portion is provided. A method for controlling a cryogenic refrigerating apparatus, characterized in that the heating means is started in accordance with a temperature decrease in the oil return path on a more downstream side.
【0018】[0018]
【作用】請求項1;冷却ファンが送る冷却用空気(外
気)の温度が低下すると、側路管に流れてオイル熱交換
器を側路するオイル量が増加すると共に、オイル加熱手
段が起動してオイル戻り経路を流れているオイルが加熱
される。このため、オイル戻り経路を流れるオイルを所
定の温度以上に維持して、オイルの粘性増加を防止する
ことが可能であるから、外気の温度が寒冷地における冬
期などで大きく下がることがあっても、オイルの循環量
が大きく減少して装置の正常な運転ができなくなると云
った懸念がない。When the temperature of the cooling air (outside air) sent by the cooling fan decreases, the amount of oil flowing to the bypass pipe and bypassing the oil heat exchanger increases and the oil heating means starts. The oil flowing through the oil return path is heated. For this reason, it is possible to maintain the oil flowing through the oil return path at a predetermined temperature or higher and prevent the viscosity of the oil from increasing. Therefore, even if the temperature of the outside air drops significantly in the cold season such as in winter. However, there is no concern that the amount of oil circulation will be greatly reduced and normal operation of the device will not be possible.
【0019】請求項2;冷却ファンが送る冷却用空気
(外気)の温度が所定温度以下に下がると、循環してい
るオイルの全量が側路管に流れてオイル熱交換器を完全
に側路すると共に、オイル加熱手段が起動してオイル戻
り経路を流れているオイルが加熱される。このため、オ
イル戻り経路を流れるオイルを所定の温度以上に維持し
て、オイルの粘性増加を防止することが可能であるか
ら、外気の温度が寒冷地における冬期などで大きく下が
ることがあっても、オイルの循環量が大きく減少して装
置の正常な運転ができなくなると云った懸念がない。Claim 2; When the temperature of the cooling air (outside air) sent by the cooling fan falls below a predetermined temperature, the entire amount of the circulating oil flows into the bypass pipe to completely bypass the oil heat exchanger. At the same time, the oil heating means is activated to heat the oil flowing through the oil return path. For this reason, it is possible to maintain the oil flowing through the oil return path at a predetermined temperature or higher and prevent the viscosity of the oil from increasing. Therefore, even if the temperature of the outside air drops significantly in the cold season such as in winter. However, there is no concern that the amount of oil circulation will be greatly reduced and normal operation of the device will not be possible.
【0020】請求項3;冷却ファンが送る冷却用空気
(外気)または空冷式オイル熱交換器のオイル出口側を
臨むオイル戻り経路の温度が低下すると、側路管に流れ
てオイル熱交換器を側路するオイルが増加し、加熱手段
の設置部位より下流側のオイル戻り経路の温度が低下す
ると、加熱手段が起動してオイルを加熱するので、オイ
ル戻り経路を流れるオイルを所定の温度以上に維持し
て、オイルの粘性増加を防止することが可能であり、外
気の温度が寒冷地における冬期などで大きく下がること
があっても、オイルの循環量が大きく減少して装置の正
常な運転ができなくなると云った懸念がない。Claim 3; When the temperature of the cooling air (outside air) sent by the cooling fan or the temperature of the oil return path facing the oil outlet side of the air-cooled oil heat exchanger decreases, it flows into the bypass pipe to pass through the oil heat exchanger. When the amount of oil that bypasses increases and the temperature of the oil return path on the downstream side of the installation location of the heating means decreases, the heating means is activated and heats the oil, so that the oil flowing through the oil return path is heated to a temperature above a predetermined temperature. It is possible to maintain the viscosity of the oil and prevent the oil from increasing in viscosity, and even if the temperature of the outside air drops significantly in winter in cold regions, the amount of oil circulation greatly decreases and normal operation of the device is prevented. There is no concern that it will not be possible.
【0021】[0021]
(実施例1)以下、本発明になる第1の実施例を図1に
示した極低温冷凍装置500Aに基づいて詳細に説明す
る。なお、この図において、図4・図5における符号と
同一の符号で示した部分は、前記図面により説明した部
分と同一の機能を持つ部分であり、本発明の理解を損な
わない範囲で説明を省略した。(Embodiment 1) Hereinafter, a first embodiment of the present invention will be described in detail with reference to the cryogenic refrigerating apparatus 500A shown in FIG. In this figure, the parts denoted by the same reference numerals as those in FIGS. 4 and 5 are the parts having the same functions as those described in the above drawings, and will be described within the range that does not impair the understanding of the present invention. Omitted.
【0022】図1において、符号38は、空冷式のオイ
ル熱交換器12Aのオイル入口側とオイル出口側とを連
通する側路管である。この側路管38にはコントローラ
62が制御する切替弁39を介して、温度センサ52が
計測する冷却用空気(外気)の温度が所定温度以下に下
がった時に、圧縮機11から吐出したオイルがオイル熱
交換器12Aを側路して流れるようになっている。In FIG. 1, reference numeral 38 is a bypass pipe that connects the oil inlet side and the oil outlet side of the air-cooled oil heat exchanger 12A. Oil discharged from the compressor 11 is supplied to the bypass pipe 38 via a switching valve 39 controlled by the controller 62 when the temperature of the cooling air (outside air) measured by the temperature sensor 52 falls below a predetermined temperature. It flows through the oil heat exchanger 12A by-pass.
【0023】また、前記温度センサ52が計測する外気
の温度データに基づいて、コントローラ63が、オイル
戻り経路36のオイル熱交換器12Aと減圧器37との
間の配管部に設置された電熱ヒータ42と、減圧器37
に設置された電熱ヒータ43への通電を制御するように
設けられている。Further, based on the temperature data of the outside air measured by the temperature sensor 52, the controller 63 causes the electric heater installed in the pipe portion between the oil heat exchanger 12A of the oil return path 36 and the pressure reducer 37. 42 and decompressor 37
It is provided so as to control the energization of the electric heater 43 installed in the.
【0024】すなわち、前記コントローラ62・63
は、例えば表1に例示したように、温度センサ52が計
測した外気の温度Tが所定温度T1(例えば、0℃)よ
り高い時には圧縮機11から吐出したオイルがオイル熱
交換器12Aに流れるように切替弁39のスイッチを切
り、電熱ヒータ42・43による通電加熱が行われない
ようにヒータのスイッチを切り、外気温度Tが前記所定
温度T1以下の時には圧縮機11から吐出したオイルが
側路管38に流れてオイル熱交換器12Aを側路するよ
うに切替弁39のスイッチが入り、同時に電熱ヒータ4
2・43による通電加熱が行われるようにヒータのスイ
ッチが入る設計となっている。That is, the controllers 62 and 63
For example, as illustrated in Table 1, when the temperature T of the outside air measured by the temperature sensor 52 is higher than a predetermined temperature T1 (for example, 0 ° C.), the oil discharged from the compressor 11 flows to the oil heat exchanger 12A. When the outside air temperature T is equal to or lower than the predetermined temperature T1, the oil discharged from the compressor 11 is diverted to the side path. The switching valve 39 is switched on so as to flow to the pipe 38 and bypass the oil heat exchanger 12A, and at the same time, the electric heater 4
The design is such that the heater is switched on so that the electricity is heated by 2.43.
【0025】[0025]
【表1】 [Table 1]
【0026】したがって、上記制御が可能なコントロー
ラ62・63を備えた極低温冷凍装置500Aにおいて
は、温度センサ52が計測する外気温度Tが前記所定温
度T1より高い時には、圧縮機11から吐出したオイル
はオイル熱交換器12Aに流れ、ここで冷却ファン16
が送風する相対的に低温度の外気によって効果的に冷却
され、オイル戻り経路36の加熱手段42・43による
通電加熱がないので、圧縮機11内での圧縮時に加熱さ
れたオイルは十分冷却された状態で還流し、Therefore, in the cryogenic refrigerating apparatus 500A having the controllers 62 and 63 capable of controlling the above, the oil discharged from the compressor 11 when the outside air temperature T measured by the temperature sensor 52 is higher than the predetermined temperature T1. Flows to the oil heat exchanger 12A, where the cooling fan 16
Is effectively cooled by the outside air having a relatively low temperature and there is no electric heating by the heating means 42, 43 of the oil return path 36, so the oil heated during compression in the compressor 11 is sufficiently cooled. In the closed state,
【0027】外気温度Tが前記所定温度T1以下に下が
ると、オイルは側路管38を流れてオイル熱交換器12
Aに流れなくなり、同時に加熱手段42・43による通
電加熱が行なわれてオイル戻り経路36で加熱されるた
め、外気温度Tが大きく低下してもオイルは所定温度
(例えば、10℃)以上に維持され、オイルの粘性増加
が防止されてオイル循環量が確保されることから、圧縮
機11には常に十分な量のオイルが還流し、圧縮機11
は四季を問わず常に正常な状態で運転される。When the outside air temperature T falls below the predetermined temperature T1, the oil flows through the bypass pipe 38 and the oil heat exchanger 12
The oil does not flow to A, and at the same time, electric heating is performed by the heating means 42 and 43 to heat the oil in the oil return path 36. Since the increase in the viscosity of the oil is prevented and the oil circulation amount is secured, a sufficient amount of oil is constantly recirculated to the compressor 11, and the compressor 11
Is always in normal condition regardless of the four seasons.
【0028】なお、コントローラ62・63は、切替弁
39と電熱ヒータ42・43とを表1のように操作する
ほか、表2〜表4などのように、温度センサ52が計測
した外気温度Tを三領域以上に区分し、外気温度Tが高
い時ほど圧縮機11に還流するオイルの温度が低下する
ように切替弁39と電熱ヒータ42・43とを操作し、
外気温度Tが低い時ほど圧縮機11に還流するオイルの
温度が低下し難くなるように切替弁39と電熱ヒータ4
2・43とを操作することも可能である。The controllers 62 and 63 operate the switching valve 39 and the electric heaters 42 and 43 as shown in Table 1, and also, as shown in Tables 2 to 4, the outside air temperature T measured by the temperature sensor 52. Is divided into three or more regions, and the switching valve 39 and the electric heaters 42 and 43 are operated so that the temperature of the oil flowing back to the compressor 11 decreases as the outside air temperature T increases.
The switching valve 39 and the electric heater 4 are arranged so that the temperature of the oil flowing back to the compressor 11 is less likely to decrease as the outside air temperature T is lower.
It is also possible to operate 2.43.
【0029】[0029]
【表2】 [Table 2]
【0030】[0030]
【表3】 [Table 3]
【0031】[0031]
【表4】 [Table 4]
【0032】(実施例2)次に、本発明になる第2の実
施例を図2に示した極低温冷凍装置500Bに基づいて
詳細に説明する。なお、この図において、図1および図
4・図5における符号と同一の符号で示した部分は、既
に説明した部分であるから、本発明の理解を損なわない
範囲で説明を省略した。(Embodiment 2) Next, a second embodiment of the present invention will be described in detail based on the cryogenic refrigerator 500B shown in FIG. Note that, in this figure, the portions denoted by the same reference numerals as those in FIGS. 1 and 4 and 5 are the portions that have already been described, so the description thereof is omitted within the range that does not impair the understanding of the present invention.
【0033】符号53は、オイル戻り経路36のオイル
熱交換器12A出口部を臨む部位の管内に挿入設置され
て、管内を流れているオイルの温度を直接計測する温度
センサ、符号54は、オイル戻り経路36の復路管25
を臨む部位の管内に挿入設置されて、管内を流れている
オイルの温度を直接計測する温度センサである。Reference numeral 53 is a temperature sensor that is inserted and installed in the pipe of the oil return path 36 facing the outlet of the oil heat exchanger 12A and directly measures the temperature of the oil flowing in the pipe. Reference numeral 54 is the oil Return pipe 25 of return path 36
It is a temperature sensor that is inserted and installed in the pipe of the part that faces the, and directly measures the temperature of the oil flowing in the pipe.
【0034】そして、この場合は温度センサ53が計測
するオイルの温度データに基づいてコントローラ62が
切替弁39の切り替えを制御し、温度センサ54が計測
するオイルの温度データに基づいてコントローラ63が
電熱ヒータ42・43による通電加熱を制御するように
なっている。Then, in this case, the controller 62 controls the switching of the switching valve 39 based on the oil temperature data measured by the temperature sensor 53, and the controller 63 electrothermally operates based on the oil temperature data measured by the temperature sensor 54. The electric heating by the heaters 42 and 43 is controlled.
【0035】すなわち、コントローラ62は、温度セン
サ53が計測したオイル熱交換器12A下流部のオイル
の温度が所定温度より高いと圧縮機11から吐出したオ
イルがオイル熱交換器12Aに流れるように切替弁39
を操作し、前記所定温度以下になると側路管38に流れ
てオイル熱交換器12Aを側路するように切替弁39を
操作し、コントローラ63は、温度センサ54が計測し
た復路管25に合流するオイルの温度が所定温度より高
い時には電熱ヒータ42・43による通電加熱が行われ
ないようにスイッチを切り、前記所定温度以下になると
電熱ヒータ42・43による通電加熱が行われるように
スイッチが入る設計となっている。That is, the controller 62 switches so that the oil discharged from the compressor 11 flows to the oil heat exchanger 12A when the temperature of the oil downstream of the oil heat exchanger 12A measured by the temperature sensor 53 is higher than a predetermined temperature. Valve 39
When the temperature becomes equal to or lower than the predetermined temperature, the switching valve 39 is operated so as to flow to the bypass pipe 38 and bypass the oil heat exchanger 12A, and the controller 63 joins the return pipe 25 measured by the temperature sensor 54. When the temperature of the oil to be heated is higher than a predetermined temperature, the switch is turned off so that the electric heaters 42 and 43 do not perform the electric heating, and when the temperature becomes lower than the predetermined temperature, the switch is turned on so that the electric heaters 42 and 43 perform the electric heating. It is designed.
【0036】したがって、上記構成の極低温冷凍装置5
00Bにおいては、温度センサ53が計測するオイル温
度が所定温度より高いと、圧縮機11から吐出したオイ
ルはオイル熱交換器12Aに流れてここで効果的に冷却
されるので、圧縮機11内での圧縮時に加熱されても圧
縮機11には十分冷却されて還流する。Therefore, the cryogenic refrigerator 5 having the above-mentioned structure
In 00B, when the oil temperature measured by the temperature sensor 53 is higher than the predetermined temperature, the oil discharged from the compressor 11 flows to the oil heat exchanger 12A and is effectively cooled there, so that Even if it is heated at the time of compression, it is sufficiently cooled and refluxed in the compressor 11.
【0037】一方、温度センサ53が計測するオイル温
度が所定温度以下になった時には、コントローラ62か
らの指令により、圧縮機11から吐出したオイルが側路
管38に流れてオイル熱交換器12Aに流れないように
切替弁39が切り換わり、オイル熱交換器12Aを側路
しても温度センサ54が計測したオイルの温度が所定温
度以下になっていると、コントローラ63が制御信号を
出力して電熱ヒータ42・43による通電加熱が行なわ
れ、外気温度が大きく低下することがあっても、オイル
戻り経路36を通って圧縮機11に還流するオイルは所
定温度以上に保たれるので、オイルの粘性増加が防止さ
れてオイル循環量が確保されることから、圧縮機11に
は常に十分な量のオイルが還流し、圧縮機11は常に正
常な状態で運転される。On the other hand, when the oil temperature measured by the temperature sensor 53 becomes lower than the predetermined temperature, the oil discharged from the compressor 11 flows to the side heat pipe 38 to the oil heat exchanger 12A in response to a command from the controller 62. When the temperature of the oil measured by the temperature sensor 54 is below the predetermined temperature even if the switching valve 39 is switched so as not to flow and the oil heat exchanger 12A is bypassed, the controller 63 outputs a control signal. Even if the electric heaters 42 and 43 perform energization heating to significantly reduce the outside air temperature, the oil flowing back to the compressor 11 through the oil return path 36 is maintained at a predetermined temperature or higher, Since the increase in viscosity is prevented and the oil circulation amount is secured, a sufficient amount of oil always flows back to the compressor 11, and the compressor 11 is always operated in a normal state. That.
【0038】なお、この場合も切替弁39の切り替え操
作と電熱ヒータ42・43の通電加熱操作については、
前記した表2〜表4のように、温度センサ53・54が
計測するオイルの温度レベルによって、多段制御とする
ことも可能である。Also in this case, regarding the switching operation of the switching valve 39 and the electric heating operation of the electric heaters 42 and 43,
As shown in Tables 2 to 4, the multi-stage control can be performed depending on the oil temperature levels measured by the temperature sensors 53 and 54.
【0039】また、温度センサ53・54については、
オイル戻り経路36の管内に挿入設置して管内を流れて
いるオイルの温度を直接計測する他、管外に貼り付け設
置して、管壁を介して管内を流れているオイルの温度を
計測したり、あるいは管壁内に埋め込み設置して、管内
を流れているオイルの温度を計測するものであっても良
い。Regarding the temperature sensors 53 and 54,
The temperature of the oil flowing inside the pipe is directly measured by inserting and installing it in the pipe of the oil return path 36, and the temperature of the oil flowing inside the pipe is measured by being installed outside the pipe. Alternatively, the temperature of the oil flowing in the pipe may be measured by embedding it in the pipe wall.
【0040】(実施例3)次に、本発明になる第3の実
施例である極低温冷凍装置500Cを、図3に基づいて
詳細に説明する。なお、この図において、図1・図2お
よび図4・図5における符号と同一の符号で示した部分
は、既に説明した部分であるから、本発明の理解を損な
わない範囲で説明を省略した。(Embodiment 3) Next, a cryogenic refrigerating apparatus 500C according to a third embodiment of the present invention will be described in detail with reference to FIG. Note that, in this figure, the portions denoted by the same reference numerals as those in FIGS. 1 and 2 and FIGS. 4 and 5 are the portions that have already been described, so description thereof is omitted within the range that does not impair the understanding of the present invention. .
【0041】この極低温冷凍装置500Cにおいては、
温度センサ52が計測した冷却用空気(外気)の温度デ
ータに基づいてコントローラ62が切替弁39の切り替
えを制御し、温度センサ54が計測したオイルの温度デ
ータに基づいてコントローラ63が電熱ヒータ42・4
3への通電を制御するように設けられている。In this cryogenic refrigerator 500C,
The controller 62 controls the switching of the switching valve 39 based on the temperature data of the cooling air (outside air) measured by the temperature sensor 52, and the controller 63 controls the electric heater 42, based on the oil temperature data measured by the temperature sensor 54. Four
It is provided so as to control the energization to 3.
【0042】すなわち、上記構成の極低温冷凍装置50
0Cにおいては、温度センサ52が計測した外気の温度
が所定温度より高い時には圧縮機11からのオイルがオ
イル熱交換器12Aに流れるように切替弁39を操作
し、温度センサ54が計測したオイルの温度が所定温度
より高い時には電熱ヒータ42・43による通電加熱が
行われず、温度センサ52が計測した外気の温度が所定
温度以下の時には側路管38に流れてオイル熱交換器1
2Aに流れないように切替弁39を操作し、オイル熱交
換器12Aを側路しても温度センサ54が計測したオイ
ルの温度が所定温度以下の時には電熱ヒータ42・43
による通電加熱が行われて、圧縮機11に還流するオイ
ルの温度が所定温度を維持するようになっている。That is, the cryogenic refrigerator 50 having the above structure
At 0C, when the temperature of the outside air measured by the temperature sensor 52 is higher than a predetermined temperature, the switching valve 39 is operated so that the oil from the compressor 11 flows to the oil heat exchanger 12A, and the oil measured by the temperature sensor 54 is changed. When the temperature is higher than the predetermined temperature, electric heating by the electric heaters 42 and 43 is not performed, and when the temperature of the outside air measured by the temperature sensor 52 is equal to or lower than the predetermined temperature, it flows into the bypass pipe 38 and the oil heat exchanger 1
Even if the switching valve 39 is operated so as not to flow to 2A and the oil temperature measured by the temperature sensor 54 is equal to or lower than the predetermined temperature even when the oil heat exchanger 12A is bypassed, the electric heaters 42 and 43 are provided.
The energization heating is performed so that the temperature of the oil flowing back to the compressor 11 is maintained at a predetermined temperature.
【0043】このため、上記構成の極低温冷凍装置50
0Cにおいても、外気の温度が高い時には圧縮機11内
での圧縮工程で加熱されたオイルを冷却する作用を強
め、外気の温度が低い時にはオイルを加熱する作用を強
める運転制御となっているので、四季を問わず常に正常
な状態での運転が可能である。Therefore, the cryogenic refrigerator 50 having the above structure
Even at 0C, the operation control is such that when the outside air temperature is high, the action of cooling the oil heated in the compression process in the compressor 11 is enhanced, and when the outside air temperature is low, the action of heating the oil is enhanced. It is possible to operate in normal condition regardless of the four seasons.
【0044】なお、この場合も切替弁39の切り替え操
作と電熱ヒータ42・43の通電加熱操作については、
前記した表2〜表4のように、温度センサ53・54が
計測するオイルの温度レベルによって、多段制御とする
ことも可能である。Also in this case, regarding the switching operation of the switching valve 39 and the electric heating operation of the electric heaters 42 and 43,
As shown in Tables 2 to 4, the multi-stage control can be performed depending on the oil temperature levels measured by the temperature sensors 53 and 54.
【0045】ところで、本発明は上記実施例に限定され
るものではないので、特許請求の範囲に記載の趣旨から
逸脱しない範囲で適宜の変形実施が可能であり、例えば
切替弁39に代えてオイル熱交換器12Aに流れるオイ
ル流量と側路管38に流れるオイル流量との比が自在に
調節できる弁を設置することも可能である。By the way, since the present invention is not limited to the above-mentioned embodiment, appropriate modifications can be made without departing from the spirit of the claims, and for example, the oil may be used in place of the switching valve 39. It is also possible to install a valve capable of freely adjusting the ratio of the oil flow rate flowing to the heat exchanger 12A and the oil flow rate flowing to the bypass pipe 38.
【0046】また、この種の弁は、側路管38とオイル
戻り経路36との合流部に設置したり、オイル戻り経路
36の途中に設置することも可能である。Further, this type of valve can be installed at the confluence of the side pipe 38 and the oil return path 36, or can be installed in the middle of the oil return path 36.
【0047】[0047]
【発明の効果】以上説明したように本発明になる極低温
冷凍装置の制御方法は、オイルを介在させて冷媒体を加
圧する圧縮部を備え、この圧縮部で加圧した冷媒体を極
低温冷却部に供給して所要の極低温冷却を行うと共に、
圧縮部にオイルを冷却するための空冷式オイル熱交換器
と、この空冷式オイル熱交換器に冷却用空気を送風する
冷却ファンとを設け、且つこの空冷式オイル熱交換器か
ら前記加圧を行う部分に至るオイル戻り経路にオイル加
熱手段を設け、さらにこの空冷式オイル熱交換器のオイ
ル入口側とオイル出口側とを連通する側路管を設けた極
低温冷凍装置において、As described above, the control method of the cryogenic refrigerating apparatus according to the present invention is provided with the compression section for pressurizing the refrigerant body with the interposition of oil, and the refrigerant body pressurized by this compression section is cryogenically cooled. While supplying it to the cooling unit to perform the required cryogenic cooling,
An air-cooled oil heat exchanger for cooling the oil in the compression section and a cooling fan for blowing cooling air to the air-cooled oil heat exchanger are provided, and the pressure is applied from the air-cooled oil heat exchanger. In a cryogenic refrigeration system provided with an oil heating means in the oil return path to the part to be performed, and further provided with a bypass pipe communicating the oil inlet side and the oil outlet side of this air-cooled oil heat exchanger,
【0048】前記冷却用空気または前記オイル戻り経路
の温度低下に伴って、前記冷却ファンの回転数を減らす
と共に、前記オイル加熱手段を起動することを特徴とす
る極低温冷凍装置の制御方法であり、A method for controlling a cryogenic refrigerating apparatus, characterized in that the number of rotations of the cooling fan is reduced and the oil heating means is started as the temperature of the cooling air or the oil return path decreases. ,
【0049】前記冷却用空気または前記空冷式オイル熱
交換器のオイル出口側を臨むオイル戻り経路の温度低下
に伴って、前記側路管に流れるオイル量を制御し、且つ
前記加熱手段の設置部より下流側の前記オイル戻り経路
の温度低下に伴って前記加熱手段を起動することを特徴
とする極低温冷凍装置の制御方法であるから、The amount of oil flowing to the bypass pipe is controlled in accordance with a decrease in the temperature of the oil return path facing the cooling air or the oil outlet side of the air-cooled oil heat exchanger, and the heating means installation portion is provided. Since it is the control method of the cryogenic refrigeration apparatus, which starts the heating means with the temperature decrease of the oil return path on the more downstream side,
【0050】外気の温度が低下しても、オイルの温度を
所定温度以上に維持することが可能であり、粘性が増加
してオイルの循環量が減少する懸念がない。Even if the temperature of the outside air decreases, the oil temperature can be maintained at a predetermined temperature or higher, and there is no concern that the viscosity will increase and the oil circulation amount will decrease.
【0051】これにより、外気温度が冬期などに大きく
低下することがあっても、圧縮機を正常な状態で運転す
ることができるので、極低温冷凍装置を例えば寒冷地に
設置する天文台の電波望遠鏡の観測機器などを冷却する
装置として使用する時にも、全く問題なく冷凍作用を発
揮することが可能になるなど、顕著な効果を奏するもの
である。As a result, the compressor can be operated in a normal state even if the outside air temperature drops significantly in winter, etc., and therefore the radio telescope of an astronomical observatory in which a cryogenic refrigerator is installed, for example, in a cold region. Even when it is used as a cooling device for the observation equipment, the refrigeration action can be achieved without any problem, and a remarkable effect is exhibited.
【図1】第1の実施例の説明図。FIG. 1 is an explanatory diagram of a first embodiment.
【図2】第2の実施例の変形例。FIG. 2 is a modification of the second embodiment.
【図3】第3の実施例の変形例。FIG. 3 is a modification of the third embodiment.
【図4】極低温冷凍装置の全体構成を示すブロック図。FIG. 4 is a block diagram showing the overall configuration of a cryogenic refrigerator.
【図5】従来技術の説明図。FIG. 5 is an explanatory diagram of a conventional technique.
11 圧縮機 12A オイル熱交換器 12B 第2熱交換器 12C 第1熱交換器 13 オイルセパレータ 14 アドソーバ 16 冷却ファン 21 往路管 23 極低温冷却機 25 復路管 36 オイル戻り経路 37 減圧器 38 側路管 39 切替弁 41・42・43 電熱ヒータ 51・52・53・54 温度センサ 61・62・63 コントローラ 100 圧縮部 200 極低温冷却部 300 調整部 500・500A・500B・500C・500D 極
低温冷凍装置11 Compressor 12A Oil Heat Exchanger 12B Second Heat Exchanger 12C First Heat Exchanger 13 Oil Separator 14 Adsorber 16 Cooling Fan 21 Outgoing Pipe 23 Cryogenic Cooler 25 Return Pipe 36 Oil Return Path 37 Pressure Reducer 38 Side Pipe 39 Switching valve 41/42/43 Electric heater 51/52/53/54 Temperature sensor 61/62/63 Controller 100 Compression unit 200 Cryogenic cooling unit 300 Adjustment unit 500 / 500A / 500B / 500C / 500D Cryogenic refrigerator
Claims (3)
縮部を備え、この圧縮部で加圧した冷媒体を極低温冷却
部に供給して所要の極低温冷却を行うと共に、圧縮部に
オイルを冷却するための空冷式オイル熱交換器と、この
空冷式オイル熱交換器に冷却用空気を送風する冷却ファ
ンとを設け、且つこの空冷式オイル熱交換器から前記加
圧を行う部分に至るオイル戻り経路にオイル加熱手段を
設け、さらにこの空冷式オイル熱交換器のオイル入口側
とオイル出口側とを連通する側路管を設けた極低温冷凍
装置において、前記冷却用空気の温度低下に伴って、前
記空冷式オイル熱交換器を側路して前記側路管に流れる
オイル量を増加し、且つ前記オイル加熱手段を起動して
加熱量を増加させることを特徴とする極低温冷凍装置の
制御方法。1. A compression unit for pressurizing a refrigerant body with oil interposed, the refrigerant body pressurized by this compression unit is supplied to a cryogenic cooling unit to perform required cryogenic cooling, and the compressor unit is also provided. An air-cooled oil heat exchanger for cooling oil and a cooling fan for blowing cooling air to the air-cooled oil heat exchanger are provided, and the air-cooled oil heat exchanger is provided with a portion for performing the pressurization. In the cryogenic refrigeration system, in which an oil heating means is provided in the oil return path leading to the oil cooling path, and a bypass pipe is provided to connect the oil inlet side and the oil outlet side of the air-cooled oil heat exchanger, the temperature of the cooling air is lowered. Accordingly, the amount of oil flowing to the bypass pipe by bypassing the air-cooled oil heat exchanger is increased, and the oil heating means is activated to increase the heating amount. Device control method.
縮部を備え、この圧縮部で加圧した冷媒体を極低温冷却
部に供給して所要の極低温冷却を行うと共に、圧縮部に
オイルを冷却するための空冷式オイル熱交換器と、この
空冷式オイル熱交換器に冷却用空気を送風する冷却ファ
ンとを設け、且つこの空冷式オイル熱交換器から前記加
圧を行う部分に至るオイル戻り経路にオイル加熱手段を
設け、さらにこの空冷式オイル熱交換器のオイル入口側
とオイル出口側とを連通する側路管を設けた極低温冷凍
装置において、前記冷却用空気が所定温度以下に下がっ
た時、循環オイル全量を前記空冷式オイル熱交換器を側
路して前記側路管に流し、且つ前記オイル加熱手段を起
動することを特徴とする極低温冷凍装置の制御方法。2. A compression section for pressurizing a refrigerant body with oil interposed, and the refrigerant body pressurized by this compression section is supplied to a cryogenic cooling section to perform required cryogenic cooling, and at the same time, the compression section is provided. An air-cooled oil heat exchanger for cooling oil and a cooling fan for blowing cooling air to the air-cooled oil heat exchanger are provided, and the air-cooled oil heat exchanger is provided with a portion for performing the pressurization. In the cryogenic refrigeration system, in which an oil heating means is provided in the oil return path leading to the oil cooling path, and a bypass pipe for communicating the oil inlet side and the oil outlet side of the air-cooled oil heat exchanger is provided, the cooling air is cooled to a predetermined temperature. A control method for a cryogenic refrigeration system, characterized in that, when the temperature falls below, all the circulating oil is bypassed through the air-cooled oil heat exchanger to flow into the bypass pipe, and the oil heating means is activated.
縮部を備え、この圧縮部で加圧した冷媒体を極低温冷却
部に供給して所要の極低温冷却を行うと共に、圧縮部に
オイルを冷却するための空冷式オイル熱交換器と、この
空冷式オイル熱交換器に冷却用空気を送風する冷却ファ
ンとを設け、且つこの空冷式オイル熱交換器から前記加
圧を行う部分に至るオイル戻り経路にオイル加熱手段を
設け、さらにこの空冷式オイル熱交換器のオイル入口側
とオイル出口側とを連通する側路管を設けた極低温冷凍
装置において、前記冷却用空気または前記空冷式オイル
熱交換器のオイル出口側を臨むオイル戻り経路の温度低
下に伴って、前記側路管に流れるオイル量を制御し、且
つ前記加熱手段の設置部より下流側の前記オイル戻り経
路の温度低下に伴って前記加熱手段を起動することを特
徴とする極低温冷凍装置の制御方法。3. A compression unit for pressurizing a refrigerant body with oil interposed, the refrigerant body pressurized by this compression unit is supplied to a cryogenic cooling unit to perform required cryogenic cooling, and the compressor unit An air-cooled oil heat exchanger for cooling oil and a cooling fan for blowing cooling air to the air-cooled oil heat exchanger are provided, and the air-cooled oil heat exchanger is provided with a portion for performing the pressurization. In the cryogenic refrigerating device having an oil heating means in the oil return path to the oil cooling path, and a bypass pipe connecting the oil inlet side and the oil outlet side of the air cooling type oil heat exchanger, the cooling air or the air cooling Type oil heat exchanger, the amount of oil flowing through the bypass pipe is controlled as the temperature of the oil return path facing the oil outlet side decreases, and the temperature of the oil return path downstream of the installation portion of the heating means is controlled. With the decline A method for controlling a cryogenic refrigerating apparatus, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10301193A JPH06313644A (en) | 1993-04-28 | 1993-04-28 | Controlling method for very low temperature refrigerating plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10301193A JPH06313644A (en) | 1993-04-28 | 1993-04-28 | Controlling method for very low temperature refrigerating plant |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06313644A true JPH06313644A (en) | 1994-11-08 |
Family
ID=14342708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10301193A Pending JPH06313644A (en) | 1993-04-28 | 1993-04-28 | Controlling method for very low temperature refrigerating plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06313644A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102538134A (en) * | 2010-12-09 | 2012-07-04 | 三菱电机株式会社 | Air-conditioning apparatus |
JP2016075397A (en) * | 2014-10-02 | 2016-05-12 | 三菱重工業株式会社 | Oil separator, refrigeration cycle device, control method of oil return amount |
CN113137714A (en) * | 2021-03-15 | 2021-07-20 | 珠海格力电器股份有限公司 | Air conditioner, oil return control method and device for compressor of air conditioner and storage medium |
-
1993
- 1993-04-28 JP JP10301193A patent/JPH06313644A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102538134A (en) * | 2010-12-09 | 2012-07-04 | 三菱电机株式会社 | Air-conditioning apparatus |
CN102538134B (en) * | 2010-12-09 | 2014-11-19 | 三菱电机株式会社 | Air-conditioning apparatus |
JP2016075397A (en) * | 2014-10-02 | 2016-05-12 | 三菱重工業株式会社 | Oil separator, refrigeration cycle device, control method of oil return amount |
CN113137714A (en) * | 2021-03-15 | 2021-07-20 | 珠海格力电器股份有限公司 | Air conditioner, oil return control method and device for compressor of air conditioner and storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20170184314A1 (en) | Heat pump heating system | |
JP5403766B2 (en) | Vehicle cooling system | |
EP2232230B1 (en) | Refrigeration system comprising a test chamber with temperature and humidity control | |
US7210303B2 (en) | Transcritical heat pump water heating system using auxiliary electric heater | |
CN104813122A (en) | Method and apparatus for defrosting of an evaporator in connection with an air handling unit | |
US4384608A (en) | Reverse cycle air conditioner system | |
JP2000094929A (en) | Heating and air conditioning unit for automobile | |
CN111619305A (en) | Electric or hybrid vehicle, apparatus therefor, and control method | |
GB2237373A (en) | Air conditioning systems | |
JP2004293857A (en) | Heat pump device | |
JP2010007956A (en) | Temperature adjustment system | |
US9180891B2 (en) | HVAC system for heating and cooling a mobile machine cabin | |
JPH06313644A (en) | Controlling method for very low temperature refrigerating plant | |
GB2242261A (en) | Exhaust gas driven air cycle air conditioning system | |
WO2016170616A1 (en) | Air conditioner | |
JP4200533B2 (en) | Air conditioner | |
JPH06313640A (en) | Very low temperature refrigerating plant | |
JP2004361053A (en) | Ice heat storage device, and ice heat storage method | |
JPH06313638A (en) | Very low temperature refrigerating plant | |
JPS61259062A (en) | Waste-heat recovery type heat pump device | |
JPH06313642A (en) | Controlling method for very low temperature refrigerating plant | |
JPH06313641A (en) | Very low temperature refrigerating plant | |
JP3360362B2 (en) | Refrigeration equipment | |
JPH09159232A (en) | Controlling method for ice storage type water chiller | |
JPH06313639A (en) | Very low temperature refrigerating plant |